forked from mirrors/linux
		
	 0a7dd4e901
			
		
	
	
		0a7dd4e901
		
	
	
	
	
		
			
			When multiple locks are acquired, they should be released in reverse
order. For s_start() and s_stop() in mm/vmalloc.c, that is not the
case.
  s_start: mutex_lock(&vmap_purge_lock); spin_lock(&vmap_area_lock);
  s_stop : mutex_unlock(&vmap_purge_lock); spin_unlock(&vmap_area_lock);
This unlock sequence, though allowed, is not optimal. If a waiter is
present, mutex_unlock() will need to go through the slowpath of waking
up the waiter with preemption disabled. Fix that by releasing the
spinlock first before the mutex.
Link: https://lkml.kernel.org/r/20201213180843.16938-1-longman@redhat.com
Fixes: e36176be1c ("mm/vmalloc: rework vmap_area_lock")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			3594 lines
		
	
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3594 lines
		
	
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  Copyright (C) 1993  Linus Torvalds
 | |
|  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 | |
|  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 | |
|  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
 | |
|  *  Numa awareness, Christoph Lameter, SGI, June 2005
 | |
|  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
 | |
|  */
 | |
| 
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/set_memory.h>
 | |
| #include <linux/debugobjects.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/xarray.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/llist.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/rbtree_augmented.h>
 | |
| #include <linux/overflow.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/shmparam.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "pgalloc-track.h"
 | |
| 
 | |
| bool is_vmalloc_addr(const void *x)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)x;
 | |
| 
 | |
| 	return addr >= VMALLOC_START && addr < VMALLOC_END;
 | |
| }
 | |
| EXPORT_SYMBOL(is_vmalloc_addr);
 | |
| 
 | |
| struct vfree_deferred {
 | |
| 	struct llist_head list;
 | |
| 	struct work_struct wq;
 | |
| };
 | |
| static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
 | |
| 
 | |
| static void __vunmap(const void *, int);
 | |
| 
 | |
| static void free_work(struct work_struct *w)
 | |
| {
 | |
| 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
 | |
| 	struct llist_node *t, *llnode;
 | |
| 
 | |
| 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
 | |
| 		__vunmap((void *)llnode, 1);
 | |
| }
 | |
| 
 | |
| /*** Page table manipulation functions ***/
 | |
| 
 | |
| static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 | |
| 			     pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	do {
 | |
| 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 | |
| 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	*mask |= PGTBL_PTE_MODIFIED;
 | |
| }
 | |
| 
 | |
| static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 | |
| 			     pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	int cleared;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 		cleared = pmd_clear_huge(pmd);
 | |
| 		if (cleared || pmd_bad(*pmd))
 | |
| 			*mask |= PGTBL_PMD_MODIFIED;
 | |
| 
 | |
| 		if (cleared)
 | |
| 			continue;
 | |
| 		if (pmd_none_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		vunmap_pte_range(pmd, addr, next, mask);
 | |
| 
 | |
| 		cond_resched();
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 | |
| 			     pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	int cleared;
 | |
| 
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 
 | |
| 		cleared = pud_clear_huge(pud);
 | |
| 		if (cleared || pud_bad(*pud))
 | |
| 			*mask |= PGTBL_PUD_MODIFIED;
 | |
| 
 | |
| 		if (cleared)
 | |
| 			continue;
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		vunmap_pmd_range(pud, addr, next, mask);
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 | |
| 			     pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	p4d_t *p4d;
 | |
| 	unsigned long next;
 | |
| 	int cleared;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 
 | |
| 		cleared = p4d_clear_huge(p4d);
 | |
| 		if (cleared || p4d_bad(*p4d))
 | |
| 			*mask |= PGTBL_P4D_MODIFIED;
 | |
| 
 | |
| 		if (cleared)
 | |
| 			continue;
 | |
| 		if (p4d_none_or_clear_bad(p4d))
 | |
| 			continue;
 | |
| 		vunmap_pud_range(p4d, addr, next, mask);
 | |
| 	} while (p4d++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unmap_kernel_range_noflush - unmap kernel VM area
 | |
|  * @start: start of the VM area to unmap
 | |
|  * @size: size of the VM area to unmap
 | |
|  *
 | |
|  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 | |
|  * should have been allocated using get_vm_area() and its friends.
 | |
|  *
 | |
|  * NOTE:
 | |
|  * This function does NOT do any cache flushing.  The caller is responsible
 | |
|  * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 | |
|  * function and flush_tlb_kernel_range() after.
 | |
|  */
 | |
| void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
 | |
| {
 | |
| 	unsigned long end = start + size;
 | |
| 	unsigned long next;
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long addr = start;
 | |
| 	pgtbl_mod_mask mask = 0;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_bad(*pgd))
 | |
| 			mask |= PGTBL_PGD_MODIFIED;
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		vunmap_p4d_range(pgd, addr, next, &mask);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 
 | |
| 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 | |
| 		arch_sync_kernel_mappings(start, end);
 | |
| }
 | |
| 
 | |
| static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 | |
| 		pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	/*
 | |
| 	 * nr is a running index into the array which helps higher level
 | |
| 	 * callers keep track of where we're up to.
 | |
| 	 */
 | |
| 
 | |
| 	pte = pte_alloc_kernel_track(pmd, addr, mask);
 | |
| 	if (!pte)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		struct page *page = pages[*nr];
 | |
| 
 | |
| 		if (WARN_ON(!pte_none(*pte)))
 | |
| 			return -EBUSY;
 | |
| 		if (WARN_ON(!page))
 | |
| 			return -ENOMEM;
 | |
| 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 | |
| 		(*nr)++;
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	*mask |= PGTBL_PTE_MODIFIED;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 | |
| 		pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 | |
| 	if (!pmd)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 | |
| 		pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 | |
| 	if (!pud)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 | |
| 		pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	p4d_t *p4d;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 | |
| 	if (!p4d)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
 | |
| 			return -ENOMEM;
 | |
| 	} while (p4d++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * map_kernel_range_noflush - map kernel VM area with the specified pages
 | |
|  * @addr: start of the VM area to map
 | |
|  * @size: size of the VM area to map
 | |
|  * @prot: page protection flags to use
 | |
|  * @pages: pages to map
 | |
|  *
 | |
|  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 | |
|  * have been allocated using get_vm_area() and its friends.
 | |
|  *
 | |
|  * NOTE:
 | |
|  * This function does NOT do any cache flushing.  The caller is responsible for
 | |
|  * calling flush_cache_vmap() on to-be-mapped areas before calling this
 | |
|  * function.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int map_kernel_range_noflush(unsigned long addr, unsigned long size,
 | |
| 			     pgprot_t prot, struct page **pages)
 | |
| {
 | |
| 	unsigned long start = addr;
 | |
| 	unsigned long end = addr + size;
 | |
| 	unsigned long next;
 | |
| 	pgd_t *pgd;
 | |
| 	int err = 0;
 | |
| 	int nr = 0;
 | |
| 	pgtbl_mod_mask mask = 0;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_bad(*pgd))
 | |
| 			mask |= PGTBL_PGD_MODIFIED;
 | |
| 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 
 | |
| 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 | |
| 		arch_sync_kernel_mappings(start, end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
 | |
| 		struct page **pages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = map_kernel_range_noflush(start, size, prot, pages);
 | |
| 	flush_cache_vmap(start, start + size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int is_vmalloc_or_module_addr(const void *x)
 | |
| {
 | |
| 	/*
 | |
| 	 * ARM, x86-64 and sparc64 put modules in a special place,
 | |
| 	 * and fall back on vmalloc() if that fails. Others
 | |
| 	 * just put it in the vmalloc space.
 | |
| 	 */
 | |
| #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 | |
| 	unsigned long addr = (unsigned long)x;
 | |
| 	if (addr >= MODULES_VADDR && addr < MODULES_END)
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return is_vmalloc_addr(x);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk a vmap address to the struct page it maps.
 | |
|  */
 | |
| struct page *vmalloc_to_page(const void *vmalloc_addr)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) vmalloc_addr;
 | |
| 	struct page *page = NULL;
 | |
| 	pgd_t *pgd = pgd_offset_k(addr);
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *ptep, pte;
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 | |
| 	 * architectures that do not vmalloc module space
 | |
| 	 */
 | |
| 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 | |
| 
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return NULL;
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	if (p4d_none(*p4d))
 | |
| 		return NULL;
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't dereference bad PUD or PMD (below) entries. This will also
 | |
| 	 * identify huge mappings, which we may encounter on architectures
 | |
| 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 | |
| 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
 | |
| 	 * not [unambiguously] associated with a struct page, so there is
 | |
| 	 * no correct value to return for them.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(pud_bad(*pud));
 | |
| 	if (pud_none(*pud) || pud_bad(*pud))
 | |
| 		return NULL;
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	WARN_ON_ONCE(pmd_bad(*pmd));
 | |
| 	if (pmd_none(*pmd) || pmd_bad(*pmd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	ptep = pte_offset_map(pmd, addr);
 | |
| 	pte = *ptep;
 | |
| 	if (pte_present(pte))
 | |
| 		page = pte_page(pte);
 | |
| 	pte_unmap(ptep);
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_to_page);
 | |
| 
 | |
| /*
 | |
|  * Map a vmalloc()-space virtual address to the physical page frame number.
 | |
|  */
 | |
| unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 | |
| {
 | |
| 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_to_pfn);
 | |
| 
 | |
| 
 | |
| /*** Global kva allocator ***/
 | |
| 
 | |
| #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 | |
| #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 | |
| 
 | |
| 
 | |
| static DEFINE_SPINLOCK(vmap_area_lock);
 | |
| static DEFINE_SPINLOCK(free_vmap_area_lock);
 | |
| /* Export for kexec only */
 | |
| LIST_HEAD(vmap_area_list);
 | |
| static struct rb_root vmap_area_root = RB_ROOT;
 | |
| static bool vmap_initialized __read_mostly;
 | |
| 
 | |
| static struct rb_root purge_vmap_area_root = RB_ROOT;
 | |
| static LIST_HEAD(purge_vmap_area_list);
 | |
| static DEFINE_SPINLOCK(purge_vmap_area_lock);
 | |
| 
 | |
| /*
 | |
|  * This kmem_cache is used for vmap_area objects. Instead of
 | |
|  * allocating from slab we reuse an object from this cache to
 | |
|  * make things faster. Especially in "no edge" splitting of
 | |
|  * free block.
 | |
|  */
 | |
| static struct kmem_cache *vmap_area_cachep;
 | |
| 
 | |
| /*
 | |
|  * This linked list is used in pair with free_vmap_area_root.
 | |
|  * It gives O(1) access to prev/next to perform fast coalescing.
 | |
|  */
 | |
| static LIST_HEAD(free_vmap_area_list);
 | |
| 
 | |
| /*
 | |
|  * This augment red-black tree represents the free vmap space.
 | |
|  * All vmap_area objects in this tree are sorted by va->va_start
 | |
|  * address. It is used for allocation and merging when a vmap
 | |
|  * object is released.
 | |
|  *
 | |
|  * Each vmap_area node contains a maximum available free block
 | |
|  * of its sub-tree, right or left. Therefore it is possible to
 | |
|  * find a lowest match of free area.
 | |
|  */
 | |
| static struct rb_root free_vmap_area_root = RB_ROOT;
 | |
| 
 | |
| /*
 | |
|  * Preload a CPU with one object for "no edge" split case. The
 | |
|  * aim is to get rid of allocations from the atomic context, thus
 | |
|  * to use more permissive allocation masks.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 | |
| 
 | |
| static __always_inline unsigned long
 | |
| va_size(struct vmap_area *va)
 | |
| {
 | |
| 	return (va->va_end - va->va_start);
 | |
| }
 | |
| 
 | |
| static __always_inline unsigned long
 | |
| get_subtree_max_size(struct rb_node *node)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	va = rb_entry_safe(node, struct vmap_area, rb_node);
 | |
| 	return va ? va->subtree_max_size : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Gets called when remove the node and rotate.
 | |
|  */
 | |
| static __always_inline unsigned long
 | |
| compute_subtree_max_size(struct vmap_area *va)
 | |
| {
 | |
| 	return max3(va_size(va),
 | |
| 		get_subtree_max_size(va->rb_node.rb_left),
 | |
| 		get_subtree_max_size(va->rb_node.rb_right));
 | |
| }
 | |
| 
 | |
| RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 | |
| 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 | |
| 
 | |
| static void purge_vmap_area_lazy(void);
 | |
| static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 | |
| static unsigned long lazy_max_pages(void);
 | |
| 
 | |
| static atomic_long_t nr_vmalloc_pages;
 | |
| 
 | |
| unsigned long vmalloc_nr_pages(void)
 | |
| {
 | |
| 	return atomic_long_read(&nr_vmalloc_pages);
 | |
| }
 | |
| 
 | |
| static struct vmap_area *__find_vmap_area(unsigned long addr)
 | |
| {
 | |
| 	struct rb_node *n = vmap_area_root.rb_node;
 | |
| 
 | |
| 	while (n) {
 | |
| 		struct vmap_area *va;
 | |
| 
 | |
| 		va = rb_entry(n, struct vmap_area, rb_node);
 | |
| 		if (addr < va->va_start)
 | |
| 			n = n->rb_left;
 | |
| 		else if (addr >= va->va_end)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			return va;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function returns back addresses of parent node
 | |
|  * and its left or right link for further processing.
 | |
|  *
 | |
|  * Otherwise NULL is returned. In that case all further
 | |
|  * steps regarding inserting of conflicting overlap range
 | |
|  * have to be declined and actually considered as a bug.
 | |
|  */
 | |
| static __always_inline struct rb_node **
 | |
| find_va_links(struct vmap_area *va,
 | |
| 	struct rb_root *root, struct rb_node *from,
 | |
| 	struct rb_node **parent)
 | |
| {
 | |
| 	struct vmap_area *tmp_va;
 | |
| 	struct rb_node **link;
 | |
| 
 | |
| 	if (root) {
 | |
| 		link = &root->rb_node;
 | |
| 		if (unlikely(!*link)) {
 | |
| 			*parent = NULL;
 | |
| 			return link;
 | |
| 		}
 | |
| 	} else {
 | |
| 		link = &from;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Go to the bottom of the tree. When we hit the last point
 | |
| 	 * we end up with parent rb_node and correct direction, i name
 | |
| 	 * it link, where the new va->rb_node will be attached to.
 | |
| 	 */
 | |
| 	do {
 | |
| 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 | |
| 
 | |
| 		/*
 | |
| 		 * During the traversal we also do some sanity check.
 | |
| 		 * Trigger the BUG() if there are sides(left/right)
 | |
| 		 * or full overlaps.
 | |
| 		 */
 | |
| 		if (va->va_start < tmp_va->va_end &&
 | |
| 				va->va_end <= tmp_va->va_start)
 | |
| 			link = &(*link)->rb_left;
 | |
| 		else if (va->va_end > tmp_va->va_start &&
 | |
| 				va->va_start >= tmp_va->va_end)
 | |
| 			link = &(*link)->rb_right;
 | |
| 		else {
 | |
| 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 | |
| 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 | |
| 
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	} while (*link);
 | |
| 
 | |
| 	*parent = &tmp_va->rb_node;
 | |
| 	return link;
 | |
| }
 | |
| 
 | |
| static __always_inline struct list_head *
 | |
| get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 | |
| {
 | |
| 	struct list_head *list;
 | |
| 
 | |
| 	if (unlikely(!parent))
 | |
| 		/*
 | |
| 		 * The red-black tree where we try to find VA neighbors
 | |
| 		 * before merging or inserting is empty, i.e. it means
 | |
| 		 * there is no free vmap space. Normally it does not
 | |
| 		 * happen but we handle this case anyway.
 | |
| 		 */
 | |
| 		return NULL;
 | |
| 
 | |
| 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 | |
| 	return (&parent->rb_right == link ? list->next : list);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| link_va(struct vmap_area *va, struct rb_root *root,
 | |
| 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
 | |
| {
 | |
| 	/*
 | |
| 	 * VA is still not in the list, but we can
 | |
| 	 * identify its future previous list_head node.
 | |
| 	 */
 | |
| 	if (likely(parent)) {
 | |
| 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 | |
| 		if (&parent->rb_right != link)
 | |
| 			head = head->prev;
 | |
| 	}
 | |
| 
 | |
| 	/* Insert to the rb-tree */
 | |
| 	rb_link_node(&va->rb_node, parent, link);
 | |
| 	if (root == &free_vmap_area_root) {
 | |
| 		/*
 | |
| 		 * Some explanation here. Just perform simple insertion
 | |
| 		 * to the tree. We do not set va->subtree_max_size to
 | |
| 		 * its current size before calling rb_insert_augmented().
 | |
| 		 * It is because of we populate the tree from the bottom
 | |
| 		 * to parent levels when the node _is_ in the tree.
 | |
| 		 *
 | |
| 		 * Therefore we set subtree_max_size to zero after insertion,
 | |
| 		 * to let __augment_tree_propagate_from() puts everything to
 | |
| 		 * the correct order later on.
 | |
| 		 */
 | |
| 		rb_insert_augmented(&va->rb_node,
 | |
| 			root, &free_vmap_area_rb_augment_cb);
 | |
| 		va->subtree_max_size = 0;
 | |
| 	} else {
 | |
| 		rb_insert_color(&va->rb_node, root);
 | |
| 	}
 | |
| 
 | |
| 	/* Address-sort this list */
 | |
| 	list_add(&va->list, head);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| unlink_va(struct vmap_area *va, struct rb_root *root)
 | |
| {
 | |
| 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 | |
| 		return;
 | |
| 
 | |
| 	if (root == &free_vmap_area_root)
 | |
| 		rb_erase_augmented(&va->rb_node,
 | |
| 			root, &free_vmap_area_rb_augment_cb);
 | |
| 	else
 | |
| 		rb_erase(&va->rb_node, root);
 | |
| 
 | |
| 	list_del(&va->list);
 | |
| 	RB_CLEAR_NODE(&va->rb_node);
 | |
| }
 | |
| 
 | |
| #if DEBUG_AUGMENT_PROPAGATE_CHECK
 | |
| static void
 | |
| augment_tree_propagate_check(void)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	unsigned long computed_size;
 | |
| 
 | |
| 	list_for_each_entry(va, &free_vmap_area_list, list) {
 | |
| 		computed_size = compute_subtree_max_size(va);
 | |
| 		if (computed_size != va->subtree_max_size)
 | |
| 			pr_emerg("tree is corrupted: %lu, %lu\n",
 | |
| 				va_size(va), va->subtree_max_size);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This function populates subtree_max_size from bottom to upper
 | |
|  * levels starting from VA point. The propagation must be done
 | |
|  * when VA size is modified by changing its va_start/va_end. Or
 | |
|  * in case of newly inserting of VA to the tree.
 | |
|  *
 | |
|  * It means that __augment_tree_propagate_from() must be called:
 | |
|  * - After VA has been inserted to the tree(free path);
 | |
|  * - After VA has been shrunk(allocation path);
 | |
|  * - After VA has been increased(merging path).
 | |
|  *
 | |
|  * Please note that, it does not mean that upper parent nodes
 | |
|  * and their subtree_max_size are recalculated all the time up
 | |
|  * to the root node.
 | |
|  *
 | |
|  *       4--8
 | |
|  *        /\
 | |
|  *       /  \
 | |
|  *      /    \
 | |
|  *    2--2  8--8
 | |
|  *
 | |
|  * For example if we modify the node 4, shrinking it to 2, then
 | |
|  * no any modification is required. If we shrink the node 2 to 1
 | |
|  * its subtree_max_size is updated only, and set to 1. If we shrink
 | |
|  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 | |
|  * node becomes 4--6.
 | |
|  */
 | |
| static __always_inline void
 | |
| augment_tree_propagate_from(struct vmap_area *va)
 | |
| {
 | |
| 	/*
 | |
| 	 * Populate the tree from bottom towards the root until
 | |
| 	 * the calculated maximum available size of checked node
 | |
| 	 * is equal to its current one.
 | |
| 	 */
 | |
| 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
 | |
| 
 | |
| #if DEBUG_AUGMENT_PROPAGATE_CHECK
 | |
| 	augment_tree_propagate_check();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| insert_vmap_area(struct vmap_area *va,
 | |
| 	struct rb_root *root, struct list_head *head)
 | |
| {
 | |
| 	struct rb_node **link;
 | |
| 	struct rb_node *parent;
 | |
| 
 | |
| 	link = find_va_links(va, root, NULL, &parent);
 | |
| 	if (link)
 | |
| 		link_va(va, root, parent, link, head);
 | |
| }
 | |
| 
 | |
| static void
 | |
| insert_vmap_area_augment(struct vmap_area *va,
 | |
| 	struct rb_node *from, struct rb_root *root,
 | |
| 	struct list_head *head)
 | |
| {
 | |
| 	struct rb_node **link;
 | |
| 	struct rb_node *parent;
 | |
| 
 | |
| 	if (from)
 | |
| 		link = find_va_links(va, NULL, from, &parent);
 | |
| 	else
 | |
| 		link = find_va_links(va, root, NULL, &parent);
 | |
| 
 | |
| 	if (link) {
 | |
| 		link_va(va, root, parent, link, head);
 | |
| 		augment_tree_propagate_from(va);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Merge de-allocated chunk of VA memory with previous
 | |
|  * and next free blocks. If coalesce is not done a new
 | |
|  * free area is inserted. If VA has been merged, it is
 | |
|  * freed.
 | |
|  *
 | |
|  * Please note, it can return NULL in case of overlap
 | |
|  * ranges, followed by WARN() report. Despite it is a
 | |
|  * buggy behaviour, a system can be alive and keep
 | |
|  * ongoing.
 | |
|  */
 | |
| static __always_inline struct vmap_area *
 | |
| merge_or_add_vmap_area(struct vmap_area *va,
 | |
| 	struct rb_root *root, struct list_head *head)
 | |
| {
 | |
| 	struct vmap_area *sibling;
 | |
| 	struct list_head *next;
 | |
| 	struct rb_node **link;
 | |
| 	struct rb_node *parent;
 | |
| 	bool merged = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a place in the tree where VA potentially will be
 | |
| 	 * inserted, unless it is merged with its sibling/siblings.
 | |
| 	 */
 | |
| 	link = find_va_links(va, root, NULL, &parent);
 | |
| 	if (!link)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get next node of VA to check if merging can be done.
 | |
| 	 */
 | |
| 	next = get_va_next_sibling(parent, link);
 | |
| 	if (unlikely(next == NULL))
 | |
| 		goto insert;
 | |
| 
 | |
| 	/*
 | |
| 	 * start            end
 | |
| 	 * |                |
 | |
| 	 * |<------VA------>|<-----Next----->|
 | |
| 	 *                  |                |
 | |
| 	 *                  start            end
 | |
| 	 */
 | |
| 	if (next != head) {
 | |
| 		sibling = list_entry(next, struct vmap_area, list);
 | |
| 		if (sibling->va_start == va->va_end) {
 | |
| 			sibling->va_start = va->va_start;
 | |
| 
 | |
| 			/* Free vmap_area object. */
 | |
| 			kmem_cache_free(vmap_area_cachep, va);
 | |
| 
 | |
| 			/* Point to the new merged area. */
 | |
| 			va = sibling;
 | |
| 			merged = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * start            end
 | |
| 	 * |                |
 | |
| 	 * |<-----Prev----->|<------VA------>|
 | |
| 	 *                  |                |
 | |
| 	 *                  start            end
 | |
| 	 */
 | |
| 	if (next->prev != head) {
 | |
| 		sibling = list_entry(next->prev, struct vmap_area, list);
 | |
| 		if (sibling->va_end == va->va_start) {
 | |
| 			/*
 | |
| 			 * If both neighbors are coalesced, it is important
 | |
| 			 * to unlink the "next" node first, followed by merging
 | |
| 			 * with "previous" one. Otherwise the tree might not be
 | |
| 			 * fully populated if a sibling's augmented value is
 | |
| 			 * "normalized" because of rotation operations.
 | |
| 			 */
 | |
| 			if (merged)
 | |
| 				unlink_va(va, root);
 | |
| 
 | |
| 			sibling->va_end = va->va_end;
 | |
| 
 | |
| 			/* Free vmap_area object. */
 | |
| 			kmem_cache_free(vmap_area_cachep, va);
 | |
| 
 | |
| 			/* Point to the new merged area. */
 | |
| 			va = sibling;
 | |
| 			merged = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| insert:
 | |
| 	if (!merged)
 | |
| 		link_va(va, root, parent, link, head);
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| static __always_inline struct vmap_area *
 | |
| merge_or_add_vmap_area_augment(struct vmap_area *va,
 | |
| 	struct rb_root *root, struct list_head *head)
 | |
| {
 | |
| 	va = merge_or_add_vmap_area(va, root, head);
 | |
| 	if (va)
 | |
| 		augment_tree_propagate_from(va);
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| static __always_inline bool
 | |
| is_within_this_va(struct vmap_area *va, unsigned long size,
 | |
| 	unsigned long align, unsigned long vstart)
 | |
| {
 | |
| 	unsigned long nva_start_addr;
 | |
| 
 | |
| 	if (va->va_start > vstart)
 | |
| 		nva_start_addr = ALIGN(va->va_start, align);
 | |
| 	else
 | |
| 		nva_start_addr = ALIGN(vstart, align);
 | |
| 
 | |
| 	/* Can be overflowed due to big size or alignment. */
 | |
| 	if (nva_start_addr + size < nva_start_addr ||
 | |
| 			nva_start_addr < vstart)
 | |
| 		return false;
 | |
| 
 | |
| 	return (nva_start_addr + size <= va->va_end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the first free block(lowest start address) in the tree,
 | |
|  * that will accomplish the request corresponding to passing
 | |
|  * parameters.
 | |
|  */
 | |
| static __always_inline struct vmap_area *
 | |
| find_vmap_lowest_match(unsigned long size,
 | |
| 	unsigned long align, unsigned long vstart)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct rb_node *node;
 | |
| 	unsigned long length;
 | |
| 
 | |
| 	/* Start from the root. */
 | |
| 	node = free_vmap_area_root.rb_node;
 | |
| 
 | |
| 	/* Adjust the search size for alignment overhead. */
 | |
| 	length = size + align - 1;
 | |
| 
 | |
| 	while (node) {
 | |
| 		va = rb_entry(node, struct vmap_area, rb_node);
 | |
| 
 | |
| 		if (get_subtree_max_size(node->rb_left) >= length &&
 | |
| 				vstart < va->va_start) {
 | |
| 			node = node->rb_left;
 | |
| 		} else {
 | |
| 			if (is_within_this_va(va, size, align, vstart))
 | |
| 				return va;
 | |
| 
 | |
| 			/*
 | |
| 			 * Does not make sense to go deeper towards the right
 | |
| 			 * sub-tree if it does not have a free block that is
 | |
| 			 * equal or bigger to the requested search length.
 | |
| 			 */
 | |
| 			if (get_subtree_max_size(node->rb_right) >= length) {
 | |
| 				node = node->rb_right;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * OK. We roll back and find the first right sub-tree,
 | |
| 			 * that will satisfy the search criteria. It can happen
 | |
| 			 * only once due to "vstart" restriction.
 | |
| 			 */
 | |
| 			while ((node = rb_parent(node))) {
 | |
| 				va = rb_entry(node, struct vmap_area, rb_node);
 | |
| 				if (is_within_this_va(va, size, align, vstart))
 | |
| 					return va;
 | |
| 
 | |
| 				if (get_subtree_max_size(node->rb_right) >= length &&
 | |
| 						vstart <= va->va_start) {
 | |
| 					node = node->rb_right;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 | |
| #include <linux/random.h>
 | |
| 
 | |
| static struct vmap_area *
 | |
| find_vmap_lowest_linear_match(unsigned long size,
 | |
| 	unsigned long align, unsigned long vstart)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	list_for_each_entry(va, &free_vmap_area_list, list) {
 | |
| 		if (!is_within_this_va(va, size, align, vstart))
 | |
| 			continue;
 | |
| 
 | |
| 		return va;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| find_vmap_lowest_match_check(unsigned long size)
 | |
| {
 | |
| 	struct vmap_area *va_1, *va_2;
 | |
| 	unsigned long vstart;
 | |
| 	unsigned int rnd;
 | |
| 
 | |
| 	get_random_bytes(&rnd, sizeof(rnd));
 | |
| 	vstart = VMALLOC_START + rnd;
 | |
| 
 | |
| 	va_1 = find_vmap_lowest_match(size, 1, vstart);
 | |
| 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 | |
| 
 | |
| 	if (va_1 != va_2)
 | |
| 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 | |
| 			va_1, va_2, vstart);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| enum fit_type {
 | |
| 	NOTHING_FIT = 0,
 | |
| 	FL_FIT_TYPE = 1,	/* full fit */
 | |
| 	LE_FIT_TYPE = 2,	/* left edge fit */
 | |
| 	RE_FIT_TYPE = 3,	/* right edge fit */
 | |
| 	NE_FIT_TYPE = 4		/* no edge fit */
 | |
| };
 | |
| 
 | |
| static __always_inline enum fit_type
 | |
| classify_va_fit_type(struct vmap_area *va,
 | |
| 	unsigned long nva_start_addr, unsigned long size)
 | |
| {
 | |
| 	enum fit_type type;
 | |
| 
 | |
| 	/* Check if it is within VA. */
 | |
| 	if (nva_start_addr < va->va_start ||
 | |
| 			nva_start_addr + size > va->va_end)
 | |
| 		return NOTHING_FIT;
 | |
| 
 | |
| 	/* Now classify. */
 | |
| 	if (va->va_start == nva_start_addr) {
 | |
| 		if (va->va_end == nva_start_addr + size)
 | |
| 			type = FL_FIT_TYPE;
 | |
| 		else
 | |
| 			type = LE_FIT_TYPE;
 | |
| 	} else if (va->va_end == nva_start_addr + size) {
 | |
| 		type = RE_FIT_TYPE;
 | |
| 	} else {
 | |
| 		type = NE_FIT_TYPE;
 | |
| 	}
 | |
| 
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| static __always_inline int
 | |
| adjust_va_to_fit_type(struct vmap_area *va,
 | |
| 	unsigned long nva_start_addr, unsigned long size,
 | |
| 	enum fit_type type)
 | |
| {
 | |
| 	struct vmap_area *lva = NULL;
 | |
| 
 | |
| 	if (type == FL_FIT_TYPE) {
 | |
| 		/*
 | |
| 		 * No need to split VA, it fully fits.
 | |
| 		 *
 | |
| 		 * |               |
 | |
| 		 * V      NVA      V
 | |
| 		 * |---------------|
 | |
| 		 */
 | |
| 		unlink_va(va, &free_vmap_area_root);
 | |
| 		kmem_cache_free(vmap_area_cachep, va);
 | |
| 	} else if (type == LE_FIT_TYPE) {
 | |
| 		/*
 | |
| 		 * Split left edge of fit VA.
 | |
| 		 *
 | |
| 		 * |       |
 | |
| 		 * V  NVA  V   R
 | |
| 		 * |-------|-------|
 | |
| 		 */
 | |
| 		va->va_start += size;
 | |
| 	} else if (type == RE_FIT_TYPE) {
 | |
| 		/*
 | |
| 		 * Split right edge of fit VA.
 | |
| 		 *
 | |
| 		 *         |       |
 | |
| 		 *     L   V  NVA  V
 | |
| 		 * |-------|-------|
 | |
| 		 */
 | |
| 		va->va_end = nva_start_addr;
 | |
| 	} else if (type == NE_FIT_TYPE) {
 | |
| 		/*
 | |
| 		 * Split no edge of fit VA.
 | |
| 		 *
 | |
| 		 *     |       |
 | |
| 		 *   L V  NVA  V R
 | |
| 		 * |---|-------|---|
 | |
| 		 */
 | |
| 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
 | |
| 		if (unlikely(!lva)) {
 | |
| 			/*
 | |
| 			 * For percpu allocator we do not do any pre-allocation
 | |
| 			 * and leave it as it is. The reason is it most likely
 | |
| 			 * never ends up with NE_FIT_TYPE splitting. In case of
 | |
| 			 * percpu allocations offsets and sizes are aligned to
 | |
| 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
 | |
| 			 * are its main fitting cases.
 | |
| 			 *
 | |
| 			 * There are a few exceptions though, as an example it is
 | |
| 			 * a first allocation (early boot up) when we have "one"
 | |
| 			 * big free space that has to be split.
 | |
| 			 *
 | |
| 			 * Also we can hit this path in case of regular "vmap"
 | |
| 			 * allocations, if "this" current CPU was not preloaded.
 | |
| 			 * See the comment in alloc_vmap_area() why. If so, then
 | |
| 			 * GFP_NOWAIT is used instead to get an extra object for
 | |
| 			 * split purpose. That is rare and most time does not
 | |
| 			 * occur.
 | |
| 			 *
 | |
| 			 * What happens if an allocation gets failed. Basically,
 | |
| 			 * an "overflow" path is triggered to purge lazily freed
 | |
| 			 * areas to free some memory, then, the "retry" path is
 | |
| 			 * triggered to repeat one more time. See more details
 | |
| 			 * in alloc_vmap_area() function.
 | |
| 			 */
 | |
| 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
 | |
| 			if (!lva)
 | |
| 				return -1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Build the remainder.
 | |
| 		 */
 | |
| 		lva->va_start = va->va_start;
 | |
| 		lva->va_end = nva_start_addr;
 | |
| 
 | |
| 		/*
 | |
| 		 * Shrink this VA to remaining size.
 | |
| 		 */
 | |
| 		va->va_start = nva_start_addr + size;
 | |
| 	} else {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (type != FL_FIT_TYPE) {
 | |
| 		augment_tree_propagate_from(va);
 | |
| 
 | |
| 		if (lva)	/* type == NE_FIT_TYPE */
 | |
| 			insert_vmap_area_augment(lva, &va->rb_node,
 | |
| 				&free_vmap_area_root, &free_vmap_area_list);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a start address of the newly allocated area, if success.
 | |
|  * Otherwise a vend is returned that indicates failure.
 | |
|  */
 | |
| static __always_inline unsigned long
 | |
| __alloc_vmap_area(unsigned long size, unsigned long align,
 | |
| 	unsigned long vstart, unsigned long vend)
 | |
| {
 | |
| 	unsigned long nva_start_addr;
 | |
| 	struct vmap_area *va;
 | |
| 	enum fit_type type;
 | |
| 	int ret;
 | |
| 
 | |
| 	va = find_vmap_lowest_match(size, align, vstart);
 | |
| 	if (unlikely(!va))
 | |
| 		return vend;
 | |
| 
 | |
| 	if (va->va_start > vstart)
 | |
| 		nva_start_addr = ALIGN(va->va_start, align);
 | |
| 	else
 | |
| 		nva_start_addr = ALIGN(vstart, align);
 | |
| 
 | |
| 	/* Check the "vend" restriction. */
 | |
| 	if (nva_start_addr + size > vend)
 | |
| 		return vend;
 | |
| 
 | |
| 	/* Classify what we have found. */
 | |
| 	type = classify_va_fit_type(va, nva_start_addr, size);
 | |
| 	if (WARN_ON_ONCE(type == NOTHING_FIT))
 | |
| 		return vend;
 | |
| 
 | |
| 	/* Update the free vmap_area. */
 | |
| 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
 | |
| 	if (ret)
 | |
| 		return vend;
 | |
| 
 | |
| #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 | |
| 	find_vmap_lowest_match_check(size);
 | |
| #endif
 | |
| 
 | |
| 	return nva_start_addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a region of KVA allocated by alloc_vmap_area
 | |
|  */
 | |
| static void free_vmap_area(struct vmap_area *va)
 | |
| {
 | |
| 	/*
 | |
| 	 * Remove from the busy tree/list.
 | |
| 	 */
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	unlink_va(va, &vmap_area_root);
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Insert/Merge it back to the free tree/list.
 | |
| 	 */
 | |
| 	spin_lock(&free_vmap_area_lock);
 | |
| 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a region of KVA of the specified size and alignment, within the
 | |
|  * vstart and vend.
 | |
|  */
 | |
| static struct vmap_area *alloc_vmap_area(unsigned long size,
 | |
| 				unsigned long align,
 | |
| 				unsigned long vstart, unsigned long vend,
 | |
| 				int node, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct vmap_area *va, *pva;
 | |
| 	unsigned long addr;
 | |
| 	int purged = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(!size);
 | |
| 	BUG_ON(offset_in_page(size));
 | |
| 	BUG_ON(!is_power_of_2(align));
 | |
| 
 | |
| 	if (unlikely(!vmap_initialized))
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 
 | |
| 	might_sleep();
 | |
| 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
 | |
| 
 | |
| 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 | |
| 	if (unlikely(!va))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only scan the relevant parts containing pointers to other objects
 | |
| 	 * to avoid false negatives.
 | |
| 	 */
 | |
| 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
 | |
| 
 | |
| retry:
 | |
| 	/*
 | |
| 	 * Preload this CPU with one extra vmap_area object. It is used
 | |
| 	 * when fit type of free area is NE_FIT_TYPE. Please note, it
 | |
| 	 * does not guarantee that an allocation occurs on a CPU that
 | |
| 	 * is preloaded, instead we minimize the case when it is not.
 | |
| 	 * It can happen because of cpu migration, because there is a
 | |
| 	 * race until the below spinlock is taken.
 | |
| 	 *
 | |
| 	 * The preload is done in non-atomic context, thus it allows us
 | |
| 	 * to use more permissive allocation masks to be more stable under
 | |
| 	 * low memory condition and high memory pressure. In rare case,
 | |
| 	 * if not preloaded, GFP_NOWAIT is used.
 | |
| 	 *
 | |
| 	 * Set "pva" to NULL here, because of "retry" path.
 | |
| 	 */
 | |
| 	pva = NULL;
 | |
| 
 | |
| 	if (!this_cpu_read(ne_fit_preload_node))
 | |
| 		/*
 | |
| 		 * Even if it fails we do not really care about that.
 | |
| 		 * Just proceed as it is. If needed "overflow" path
 | |
| 		 * will refill the cache we allocate from.
 | |
| 		 */
 | |
| 		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 | |
| 
 | |
| 	spin_lock(&free_vmap_area_lock);
 | |
| 
 | |
| 	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
 | |
| 		kmem_cache_free(vmap_area_cachep, pva);
 | |
| 
 | |
| 	/*
 | |
| 	 * If an allocation fails, the "vend" address is
 | |
| 	 * returned. Therefore trigger the overflow path.
 | |
| 	 */
 | |
| 	addr = __alloc_vmap_area(size, align, vstart, vend);
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| 
 | |
| 	if (unlikely(addr == vend))
 | |
| 		goto overflow;
 | |
| 
 | |
| 	va->va_start = addr;
 | |
| 	va->va_end = addr + size;
 | |
| 	va->vm = NULL;
 | |
| 
 | |
| 
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 	BUG_ON(!IS_ALIGNED(va->va_start, align));
 | |
| 	BUG_ON(va->va_start < vstart);
 | |
| 	BUG_ON(va->va_end > vend);
 | |
| 
 | |
| 	ret = kasan_populate_vmalloc(addr, size);
 | |
| 	if (ret) {
 | |
| 		free_vmap_area(va);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	return va;
 | |
| 
 | |
| overflow:
 | |
| 	if (!purged) {
 | |
| 		purge_vmap_area_lazy();
 | |
| 		purged = 1;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (gfpflags_allow_blocking(gfp_mask)) {
 | |
| 		unsigned long freed = 0;
 | |
| 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 | |
| 		if (freed > 0) {
 | |
| 			purged = 0;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
 | |
| 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 | |
| 			size);
 | |
| 
 | |
| 	kmem_cache_free(vmap_area_cachep, va);
 | |
| 	return ERR_PTR(-EBUSY);
 | |
| }
 | |
| 
 | |
| int register_vmap_purge_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 | |
| 
 | |
| int unregister_vmap_purge_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 | |
| 
 | |
| /*
 | |
|  * lazy_max_pages is the maximum amount of virtual address space we gather up
 | |
|  * before attempting to purge with a TLB flush.
 | |
|  *
 | |
|  * There is a tradeoff here: a larger number will cover more kernel page tables
 | |
|  * and take slightly longer to purge, but it will linearly reduce the number of
 | |
|  * global TLB flushes that must be performed. It would seem natural to scale
 | |
|  * this number up linearly with the number of CPUs (because vmapping activity
 | |
|  * could also scale linearly with the number of CPUs), however it is likely
 | |
|  * that in practice, workloads might be constrained in other ways that mean
 | |
|  * vmap activity will not scale linearly with CPUs. Also, I want to be
 | |
|  * conservative and not introduce a big latency on huge systems, so go with
 | |
|  * a less aggressive log scale. It will still be an improvement over the old
 | |
|  * code, and it will be simple to change the scale factor if we find that it
 | |
|  * becomes a problem on bigger systems.
 | |
|  */
 | |
| static unsigned long lazy_max_pages(void)
 | |
| {
 | |
| 	unsigned int log;
 | |
| 
 | |
| 	log = fls(num_online_cpus());
 | |
| 
 | |
| 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
 | |
| 
 | |
| /*
 | |
|  * Serialize vmap purging.  There is no actual criticial section protected
 | |
|  * by this look, but we want to avoid concurrent calls for performance
 | |
|  * reasons and to make the pcpu_get_vm_areas more deterministic.
 | |
|  */
 | |
| static DEFINE_MUTEX(vmap_purge_lock);
 | |
| 
 | |
| /* for per-CPU blocks */
 | |
| static void purge_fragmented_blocks_allcpus(void);
 | |
| 
 | |
| /*
 | |
|  * called before a call to iounmap() if the caller wants vm_area_struct's
 | |
|  * immediately freed.
 | |
|  */
 | |
| void set_iounmap_nonlazy(void)
 | |
| {
 | |
| 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Purges all lazily-freed vmap areas.
 | |
|  */
 | |
| static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long resched_threshold;
 | |
| 	struct list_head local_pure_list;
 | |
| 	struct vmap_area *va, *n_va;
 | |
| 
 | |
| 	lockdep_assert_held(&vmap_purge_lock);
 | |
| 
 | |
| 	spin_lock(&purge_vmap_area_lock);
 | |
| 	purge_vmap_area_root = RB_ROOT;
 | |
| 	list_replace_init(&purge_vmap_area_list, &local_pure_list);
 | |
| 	spin_unlock(&purge_vmap_area_lock);
 | |
| 
 | |
| 	if (unlikely(list_empty(&local_pure_list)))
 | |
| 		return false;
 | |
| 
 | |
| 	start = min(start,
 | |
| 		list_first_entry(&local_pure_list,
 | |
| 			struct vmap_area, list)->va_start);
 | |
| 
 | |
| 	end = max(end,
 | |
| 		list_last_entry(&local_pure_list,
 | |
| 			struct vmap_area, list)->va_end);
 | |
| 
 | |
| 	flush_tlb_kernel_range(start, end);
 | |
| 	resched_threshold = lazy_max_pages() << 1;
 | |
| 
 | |
| 	spin_lock(&free_vmap_area_lock);
 | |
| 	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
 | |
| 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 | |
| 		unsigned long orig_start = va->va_start;
 | |
| 		unsigned long orig_end = va->va_end;
 | |
| 
 | |
| 		/*
 | |
| 		 * Finally insert or merge lazily-freed area. It is
 | |
| 		 * detached and there is no need to "unlink" it from
 | |
| 		 * anything.
 | |
| 		 */
 | |
| 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
 | |
| 				&free_vmap_area_list);
 | |
| 
 | |
| 		if (!va)
 | |
| 			continue;
 | |
| 
 | |
| 		if (is_vmalloc_or_module_addr((void *)orig_start))
 | |
| 			kasan_release_vmalloc(orig_start, orig_end,
 | |
| 					      va->va_start, va->va_end);
 | |
| 
 | |
| 		atomic_long_sub(nr, &vmap_lazy_nr);
 | |
| 
 | |
| 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
 | |
| 			cond_resched_lock(&free_vmap_area_lock);
 | |
| 	}
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 | |
|  * is already purging.
 | |
|  */
 | |
| static void try_purge_vmap_area_lazy(void)
 | |
| {
 | |
| 	if (mutex_trylock(&vmap_purge_lock)) {
 | |
| 		__purge_vmap_area_lazy(ULONG_MAX, 0);
 | |
| 		mutex_unlock(&vmap_purge_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick off a purge of the outstanding lazy areas.
 | |
|  */
 | |
| static void purge_vmap_area_lazy(void)
 | |
| {
 | |
| 	mutex_lock(&vmap_purge_lock);
 | |
| 	purge_fragmented_blocks_allcpus();
 | |
| 	__purge_vmap_area_lazy(ULONG_MAX, 0);
 | |
| 	mutex_unlock(&vmap_purge_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a vmap area, caller ensuring that the area has been unmapped
 | |
|  * and flush_cache_vunmap had been called for the correct range
 | |
|  * previously.
 | |
|  */
 | |
| static void free_vmap_area_noflush(struct vmap_area *va)
 | |
| {
 | |
| 	unsigned long nr_lazy;
 | |
| 
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	unlink_va(va, &vmap_area_root);
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
 | |
| 				PAGE_SHIFT, &vmap_lazy_nr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Merge or place it to the purge tree/list.
 | |
| 	 */
 | |
| 	spin_lock(&purge_vmap_area_lock);
 | |
| 	merge_or_add_vmap_area(va,
 | |
| 		&purge_vmap_area_root, &purge_vmap_area_list);
 | |
| 	spin_unlock(&purge_vmap_area_lock);
 | |
| 
 | |
| 	/* After this point, we may free va at any time */
 | |
| 	if (unlikely(nr_lazy > lazy_max_pages()))
 | |
| 		try_purge_vmap_area_lazy();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free and unmap a vmap area
 | |
|  */
 | |
| static void free_unmap_vmap_area(struct vmap_area *va)
 | |
| {
 | |
| 	flush_cache_vunmap(va->va_start, va->va_end);
 | |
| 	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
 | |
| 	if (debug_pagealloc_enabled_static())
 | |
| 		flush_tlb_kernel_range(va->va_start, va->va_end);
 | |
| 
 | |
| 	free_vmap_area_noflush(va);
 | |
| }
 | |
| 
 | |
| static struct vmap_area *find_vmap_area(unsigned long addr)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	va = __find_vmap_area(addr);
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| /*** Per cpu kva allocator ***/
 | |
| 
 | |
| /*
 | |
|  * vmap space is limited especially on 32 bit architectures. Ensure there is
 | |
|  * room for at least 16 percpu vmap blocks per CPU.
 | |
|  */
 | |
| /*
 | |
|  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 | |
|  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 | |
|  * instead (we just need a rough idea)
 | |
|  */
 | |
| #if BITS_PER_LONG == 32
 | |
| #define VMALLOC_SPACE		(128UL*1024*1024)
 | |
| #else
 | |
| #define VMALLOC_SPACE		(128UL*1024*1024*1024)
 | |
| #endif
 | |
| 
 | |
| #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 | |
| #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 | |
| #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 | |
| #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 | |
| #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 | |
| #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 | |
| #define VMAP_BBMAP_BITS		\
 | |
| 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 | |
| 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 | |
| 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 | |
| 
 | |
| #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 | |
| 
 | |
| struct vmap_block_queue {
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head free;
 | |
| };
 | |
| 
 | |
| struct vmap_block {
 | |
| 	spinlock_t lock;
 | |
| 	struct vmap_area *va;
 | |
| 	unsigned long free, dirty;
 | |
| 	unsigned long dirty_min, dirty_max; /*< dirty range */
 | |
| 	struct list_head free_list;
 | |
| 	struct rcu_head rcu_head;
 | |
| 	struct list_head purge;
 | |
| };
 | |
| 
 | |
| /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 | |
| static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 | |
| 
 | |
| /*
 | |
|  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
 | |
|  * in the free path. Could get rid of this if we change the API to return a
 | |
|  * "cookie" from alloc, to be passed to free. But no big deal yet.
 | |
|  */
 | |
| static DEFINE_XARRAY(vmap_blocks);
 | |
| 
 | |
| /*
 | |
|  * We should probably have a fallback mechanism to allocate virtual memory
 | |
|  * out of partially filled vmap blocks. However vmap block sizing should be
 | |
|  * fairly reasonable according to the vmalloc size, so it shouldn't be a
 | |
|  * big problem.
 | |
|  */
 | |
| 
 | |
| static unsigned long addr_to_vb_idx(unsigned long addr)
 | |
| {
 | |
| 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 | |
| 	addr /= VMAP_BLOCK_SIZE;
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	addr = va_start + (pages_off << PAGE_SHIFT);
 | |
| 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 | |
| 	return (void *)addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 | |
|  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 | |
|  * @order:    how many 2^order pages should be occupied in newly allocated block
 | |
|  * @gfp_mask: flags for the page level allocator
 | |
|  *
 | |
|  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
 | |
|  */
 | |
| static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct vmap_block_queue *vbq;
 | |
| 	struct vmap_block *vb;
 | |
| 	struct vmap_area *va;
 | |
| 	unsigned long vb_idx;
 | |
| 	int node, err;
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	node = numa_node_id();
 | |
| 
 | |
| 	vb = kmalloc_node(sizeof(struct vmap_block),
 | |
| 			gfp_mask & GFP_RECLAIM_MASK, node);
 | |
| 	if (unlikely(!vb))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 | |
| 					VMALLOC_START, VMALLOC_END,
 | |
| 					node, gfp_mask);
 | |
| 	if (IS_ERR(va)) {
 | |
| 		kfree(vb);
 | |
| 		return ERR_CAST(va);
 | |
| 	}
 | |
| 
 | |
| 	vaddr = vmap_block_vaddr(va->va_start, 0);
 | |
| 	spin_lock_init(&vb->lock);
 | |
| 	vb->va = va;
 | |
| 	/* At least something should be left free */
 | |
| 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 | |
| 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
 | |
| 	vb->dirty = 0;
 | |
| 	vb->dirty_min = VMAP_BBMAP_BITS;
 | |
| 	vb->dirty_max = 0;
 | |
| 	INIT_LIST_HEAD(&vb->free_list);
 | |
| 
 | |
| 	vb_idx = addr_to_vb_idx(va->va_start);
 | |
| 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
 | |
| 	if (err) {
 | |
| 		kfree(vb);
 | |
| 		free_vmap_area(va);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	vbq = &get_cpu_var(vmap_block_queue);
 | |
| 	spin_lock(&vbq->lock);
 | |
| 	list_add_tail_rcu(&vb->free_list, &vbq->free);
 | |
| 	spin_unlock(&vbq->lock);
 | |
| 	put_cpu_var(vmap_block_queue);
 | |
| 
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static void free_vmap_block(struct vmap_block *vb)
 | |
| {
 | |
| 	struct vmap_block *tmp;
 | |
| 
 | |
| 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
 | |
| 	BUG_ON(tmp != vb);
 | |
| 
 | |
| 	free_vmap_area_noflush(vb->va);
 | |
| 	kfree_rcu(vb, rcu_head);
 | |
| }
 | |
| 
 | |
| static void purge_fragmented_blocks(int cpu)
 | |
| {
 | |
| 	LIST_HEAD(purge);
 | |
| 	struct vmap_block *vb;
 | |
| 	struct vmap_block *n_vb;
 | |
| 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | |
| 
 | |
| 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&vb->lock);
 | |
| 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 | |
| 			vb->free = 0; /* prevent further allocs after releasing lock */
 | |
| 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 | |
| 			vb->dirty_min = 0;
 | |
| 			vb->dirty_max = VMAP_BBMAP_BITS;
 | |
| 			spin_lock(&vbq->lock);
 | |
| 			list_del_rcu(&vb->free_list);
 | |
| 			spin_unlock(&vbq->lock);
 | |
| 			spin_unlock(&vb->lock);
 | |
| 			list_add_tail(&vb->purge, &purge);
 | |
| 		} else
 | |
| 			spin_unlock(&vb->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 | |
| 		list_del(&vb->purge);
 | |
| 		free_vmap_block(vb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void purge_fragmented_blocks_allcpus(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		purge_fragmented_blocks(cpu);
 | |
| }
 | |
| 
 | |
| static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct vmap_block_queue *vbq;
 | |
| 	struct vmap_block *vb;
 | |
| 	void *vaddr = NULL;
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	BUG_ON(offset_in_page(size));
 | |
| 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 | |
| 	if (WARN_ON(size == 0)) {
 | |
| 		/*
 | |
| 		 * Allocating 0 bytes isn't what caller wants since
 | |
| 		 * get_order(0) returns funny result. Just warn and terminate
 | |
| 		 * early.
 | |
| 		 */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	order = get_order(size);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	vbq = &get_cpu_var(vmap_block_queue);
 | |
| 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | |
| 		unsigned long pages_off;
 | |
| 
 | |
| 		spin_lock(&vb->lock);
 | |
| 		if (vb->free < (1UL << order)) {
 | |
| 			spin_unlock(&vb->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pages_off = VMAP_BBMAP_BITS - vb->free;
 | |
| 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 | |
| 		vb->free -= 1UL << order;
 | |
| 		if (vb->free == 0) {
 | |
| 			spin_lock(&vbq->lock);
 | |
| 			list_del_rcu(&vb->free_list);
 | |
| 			spin_unlock(&vbq->lock);
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&vb->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	put_cpu_var(vmap_block_queue);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* Allocate new block if nothing was found */
 | |
| 	if (!vaddr)
 | |
| 		vaddr = new_vmap_block(order, gfp_mask);
 | |
| 
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static void vb_free(unsigned long addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 	unsigned int order;
 | |
| 	struct vmap_block *vb;
 | |
| 
 | |
| 	BUG_ON(offset_in_page(size));
 | |
| 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 | |
| 
 | |
| 	flush_cache_vunmap(addr, addr + size);
 | |
| 
 | |
| 	order = get_order(size);
 | |
| 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
 | |
| 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
 | |
| 
 | |
| 	unmap_kernel_range_noflush(addr, size);
 | |
| 
 | |
| 	if (debug_pagealloc_enabled_static())
 | |
| 		flush_tlb_kernel_range(addr, addr + size);
 | |
| 
 | |
| 	spin_lock(&vb->lock);
 | |
| 
 | |
| 	/* Expand dirty range */
 | |
| 	vb->dirty_min = min(vb->dirty_min, offset);
 | |
| 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
 | |
| 
 | |
| 	vb->dirty += 1UL << order;
 | |
| 	if (vb->dirty == VMAP_BBMAP_BITS) {
 | |
| 		BUG_ON(vb->free);
 | |
| 		spin_unlock(&vb->lock);
 | |
| 		free_vmap_block(vb);
 | |
| 	} else
 | |
| 		spin_unlock(&vb->lock);
 | |
| }
 | |
| 
 | |
| static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (unlikely(!vmap_initialized))
 | |
| 		return;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 | |
| 		struct vmap_block *vb;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | |
| 			spin_lock(&vb->lock);
 | |
| 			if (vb->dirty) {
 | |
| 				unsigned long va_start = vb->va->va_start;
 | |
| 				unsigned long s, e;
 | |
| 
 | |
| 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
 | |
| 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
 | |
| 
 | |
| 				start = min(s, start);
 | |
| 				end   = max(e, end);
 | |
| 
 | |
| 				flush = 1;
 | |
| 			}
 | |
| 			spin_unlock(&vb->lock);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&vmap_purge_lock);
 | |
| 	purge_fragmented_blocks_allcpus();
 | |
| 	if (!__purge_vmap_area_lazy(start, end) && flush)
 | |
| 		flush_tlb_kernel_range(start, end);
 | |
| 	mutex_unlock(&vmap_purge_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 | |
|  *
 | |
|  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 | |
|  * to amortize TLB flushing overheads. What this means is that any page you
 | |
|  * have now, may, in a former life, have been mapped into kernel virtual
 | |
|  * address by the vmap layer and so there might be some CPUs with TLB entries
 | |
|  * still referencing that page (additional to the regular 1:1 kernel mapping).
 | |
|  *
 | |
|  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 | |
|  * be sure that none of the pages we have control over will have any aliases
 | |
|  * from the vmap layer.
 | |
|  */
 | |
| void vm_unmap_aliases(void)
 | |
| {
 | |
| 	unsigned long start = ULONG_MAX, end = 0;
 | |
| 	int flush = 0;
 | |
| 
 | |
| 	_vm_unmap_aliases(start, end, flush);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 | |
| 
 | |
| /**
 | |
|  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 | |
|  * @mem: the pointer returned by vm_map_ram
 | |
|  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 | |
|  */
 | |
| void vm_unmap_ram(const void *mem, unsigned int count)
 | |
| {
 | |
| 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
 | |
| 	unsigned long addr = (unsigned long)mem;
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	might_sleep();
 | |
| 	BUG_ON(!addr);
 | |
| 	BUG_ON(addr < VMALLOC_START);
 | |
| 	BUG_ON(addr > VMALLOC_END);
 | |
| 	BUG_ON(!PAGE_ALIGNED(addr));
 | |
| 
 | |
| 	kasan_poison_vmalloc(mem, size);
 | |
| 
 | |
| 	if (likely(count <= VMAP_MAX_ALLOC)) {
 | |
| 		debug_check_no_locks_freed(mem, size);
 | |
| 		vb_free(addr, size);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	va = find_vmap_area(addr);
 | |
| 	BUG_ON(!va);
 | |
| 	debug_check_no_locks_freed((void *)va->va_start,
 | |
| 				    (va->va_end - va->va_start));
 | |
| 	free_unmap_vmap_area(va);
 | |
| }
 | |
| EXPORT_SYMBOL(vm_unmap_ram);
 | |
| 
 | |
| /**
 | |
|  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 | |
|  * @pages: an array of pointers to the pages to be mapped
 | |
|  * @count: number of pages
 | |
|  * @node: prefer to allocate data structures on this node
 | |
|  *
 | |
|  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 | |
|  * faster than vmap so it's good.  But if you mix long-life and short-life
 | |
|  * objects with vm_map_ram(), it could consume lots of address space through
 | |
|  * fragmentation (especially on a 32bit machine).  You could see failures in
 | |
|  * the end.  Please use this function for short-lived objects.
 | |
|  *
 | |
|  * Returns: a pointer to the address that has been mapped, or %NULL on failure
 | |
|  */
 | |
| void *vm_map_ram(struct page **pages, unsigned int count, int node)
 | |
| {
 | |
| 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
 | |
| 	unsigned long addr;
 | |
| 	void *mem;
 | |
| 
 | |
| 	if (likely(count <= VMAP_MAX_ALLOC)) {
 | |
| 		mem = vb_alloc(size, GFP_KERNEL);
 | |
| 		if (IS_ERR(mem))
 | |
| 			return NULL;
 | |
| 		addr = (unsigned long)mem;
 | |
| 	} else {
 | |
| 		struct vmap_area *va;
 | |
| 		va = alloc_vmap_area(size, PAGE_SIZE,
 | |
| 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
 | |
| 		if (IS_ERR(va))
 | |
| 			return NULL;
 | |
| 
 | |
| 		addr = va->va_start;
 | |
| 		mem = (void *)addr;
 | |
| 	}
 | |
| 
 | |
| 	kasan_unpoison_vmalloc(mem, size);
 | |
| 
 | |
| 	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
 | |
| 		vm_unmap_ram(mem, count);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return mem;
 | |
| }
 | |
| EXPORT_SYMBOL(vm_map_ram);
 | |
| 
 | |
| static struct vm_struct *vmlist __initdata;
 | |
| 
 | |
| /**
 | |
|  * vm_area_add_early - add vmap area early during boot
 | |
|  * @vm: vm_struct to add
 | |
|  *
 | |
|  * This function is used to add fixed kernel vm area to vmlist before
 | |
|  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 | |
|  * should contain proper values and the other fields should be zero.
 | |
|  *
 | |
|  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 | |
|  */
 | |
| void __init vm_area_add_early(struct vm_struct *vm)
 | |
| {
 | |
| 	struct vm_struct *tmp, **p;
 | |
| 
 | |
| 	BUG_ON(vmap_initialized);
 | |
| 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
 | |
| 		if (tmp->addr >= vm->addr) {
 | |
| 			BUG_ON(tmp->addr < vm->addr + vm->size);
 | |
| 			break;
 | |
| 		} else
 | |
| 			BUG_ON(tmp->addr + tmp->size > vm->addr);
 | |
| 	}
 | |
| 	vm->next = *p;
 | |
| 	*p = vm;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vm_area_register_early - register vmap area early during boot
 | |
|  * @vm: vm_struct to register
 | |
|  * @align: requested alignment
 | |
|  *
 | |
|  * This function is used to register kernel vm area before
 | |
|  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 | |
|  * proper values on entry and other fields should be zero.  On return,
 | |
|  * vm->addr contains the allocated address.
 | |
|  *
 | |
|  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 | |
|  */
 | |
| void __init vm_area_register_early(struct vm_struct *vm, size_t align)
 | |
| {
 | |
| 	static size_t vm_init_off __initdata;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
 | |
| 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
 | |
| 
 | |
| 	vm->addr = (void *)addr;
 | |
| 
 | |
| 	vm_area_add_early(vm);
 | |
| }
 | |
| 
 | |
| static void vmap_init_free_space(void)
 | |
| {
 | |
| 	unsigned long vmap_start = 1;
 | |
| 	const unsigned long vmap_end = ULONG_MAX;
 | |
| 	struct vmap_area *busy, *free;
 | |
| 
 | |
| 	/*
 | |
| 	 *     B     F     B     B     B     F
 | |
| 	 * -|-----|.....|-----|-----|-----|.....|-
 | |
| 	 *  |           The KVA space           |
 | |
| 	 *  |<--------------------------------->|
 | |
| 	 */
 | |
| 	list_for_each_entry(busy, &vmap_area_list, list) {
 | |
| 		if (busy->va_start - vmap_start > 0) {
 | |
| 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
 | |
| 			if (!WARN_ON_ONCE(!free)) {
 | |
| 				free->va_start = vmap_start;
 | |
| 				free->va_end = busy->va_start;
 | |
| 
 | |
| 				insert_vmap_area_augment(free, NULL,
 | |
| 					&free_vmap_area_root,
 | |
| 						&free_vmap_area_list);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		vmap_start = busy->va_end;
 | |
| 	}
 | |
| 
 | |
| 	if (vmap_end - vmap_start > 0) {
 | |
| 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
 | |
| 		if (!WARN_ON_ONCE(!free)) {
 | |
| 			free->va_start = vmap_start;
 | |
| 			free->va_end = vmap_end;
 | |
| 
 | |
| 			insert_vmap_area_augment(free, NULL,
 | |
| 				&free_vmap_area_root,
 | |
| 					&free_vmap_area_list);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init vmalloc_init(void)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Create the cache for vmap_area objects.
 | |
| 	 */
 | |
| 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct vmap_block_queue *vbq;
 | |
| 		struct vfree_deferred *p;
 | |
| 
 | |
| 		vbq = &per_cpu(vmap_block_queue, i);
 | |
| 		spin_lock_init(&vbq->lock);
 | |
| 		INIT_LIST_HEAD(&vbq->free);
 | |
| 		p = &per_cpu(vfree_deferred, i);
 | |
| 		init_llist_head(&p->list);
 | |
| 		INIT_WORK(&p->wq, free_work);
 | |
| 	}
 | |
| 
 | |
| 	/* Import existing vmlist entries. */
 | |
| 	for (tmp = vmlist; tmp; tmp = tmp->next) {
 | |
| 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
 | |
| 		if (WARN_ON_ONCE(!va))
 | |
| 			continue;
 | |
| 
 | |
| 		va->va_start = (unsigned long)tmp->addr;
 | |
| 		va->va_end = va->va_start + tmp->size;
 | |
| 		va->vm = tmp;
 | |
| 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we can initialize a free vmap space.
 | |
| 	 */
 | |
| 	vmap_init_free_space();
 | |
| 	vmap_initialized = true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 | |
|  * @addr: start of the VM area to unmap
 | |
|  * @size: size of the VM area to unmap
 | |
|  *
 | |
|  * Similar to unmap_kernel_range_noflush() but flushes vcache before
 | |
|  * the unmapping and tlb after.
 | |
|  */
 | |
| void unmap_kernel_range(unsigned long addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long end = addr + size;
 | |
| 
 | |
| 	flush_cache_vunmap(addr, end);
 | |
| 	unmap_kernel_range_noflush(addr, size);
 | |
| 	flush_tlb_kernel_range(addr, end);
 | |
| }
 | |
| 
 | |
| static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
 | |
| 	struct vmap_area *va, unsigned long flags, const void *caller)
 | |
| {
 | |
| 	vm->flags = flags;
 | |
| 	vm->addr = (void *)va->va_start;
 | |
| 	vm->size = va->va_end - va->va_start;
 | |
| 	vm->caller = caller;
 | |
| 	va->vm = vm;
 | |
| }
 | |
| 
 | |
| static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
 | |
| 			      unsigned long flags, const void *caller)
 | |
| {
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	setup_vmalloc_vm_locked(vm, va, flags, caller);
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| }
 | |
| 
 | |
| static void clear_vm_uninitialized_flag(struct vm_struct *vm)
 | |
| {
 | |
| 	/*
 | |
| 	 * Before removing VM_UNINITIALIZED,
 | |
| 	 * we should make sure that vm has proper values.
 | |
| 	 * Pair with smp_rmb() in show_numa_info().
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	vm->flags &= ~VM_UNINITIALIZED;
 | |
| }
 | |
| 
 | |
| static struct vm_struct *__get_vm_area_node(unsigned long size,
 | |
| 		unsigned long align, unsigned long flags, unsigned long start,
 | |
| 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long requested_size = size;
 | |
| 
 | |
| 	BUG_ON(in_interrupt());
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	if (unlikely(!size))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (flags & VM_IOREMAP)
 | |
| 		align = 1ul << clamp_t(int, get_count_order_long(size),
 | |
| 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
 | |
| 
 | |
| 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
 | |
| 	if (unlikely(!area))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!(flags & VM_NO_GUARD))
 | |
| 		size += PAGE_SIZE;
 | |
| 
 | |
| 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
 | |
| 	if (IS_ERR(va)) {
 | |
| 		kfree(area);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
 | |
| 
 | |
| 	setup_vmalloc_vm(area, va, flags, caller);
 | |
| 
 | |
| 	return area;
 | |
| }
 | |
| 
 | |
| struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
 | |
| 				       unsigned long start, unsigned long end,
 | |
| 				       const void *caller)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
 | |
| 				  GFP_KERNEL, caller);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_vm_area - reserve a contiguous kernel virtual area
 | |
|  * @size:	 size of the area
 | |
|  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
 | |
|  *
 | |
|  * Search an area of @size in the kernel virtual mapping area,
 | |
|  * and reserved it for out purposes.  Returns the area descriptor
 | |
|  * on success or %NULL on failure.
 | |
|  *
 | |
|  * Return: the area descriptor on success or %NULL on failure.
 | |
|  */
 | |
| struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 | |
| 				  NUMA_NO_NODE, GFP_KERNEL,
 | |
| 				  __builtin_return_address(0));
 | |
| }
 | |
| 
 | |
| struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
 | |
| 				const void *caller)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 | |
| 				  NUMA_NO_NODE, GFP_KERNEL, caller);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_vm_area - find a continuous kernel virtual area
 | |
|  * @addr:	  base address
 | |
|  *
 | |
|  * Search for the kernel VM area starting at @addr, and return it.
 | |
|  * It is up to the caller to do all required locking to keep the returned
 | |
|  * pointer valid.
 | |
|  *
 | |
|  * Return: the area descriptor on success or %NULL on failure.
 | |
|  */
 | |
| struct vm_struct *find_vm_area(const void *addr)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	va = find_vmap_area((unsigned long)addr);
 | |
| 	if (!va)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return va->vm;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * remove_vm_area - find and remove a continuous kernel virtual area
 | |
|  * @addr:	    base address
 | |
|  *
 | |
|  * Search for the kernel VM area starting at @addr, and remove it.
 | |
|  * This function returns the found VM area, but using it is NOT safe
 | |
|  * on SMP machines, except for its size or flags.
 | |
|  *
 | |
|  * Return: the area descriptor on success or %NULL on failure.
 | |
|  */
 | |
| struct vm_struct *remove_vm_area(const void *addr)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	va = __find_vmap_area((unsigned long)addr);
 | |
| 	if (va && va->vm) {
 | |
| 		struct vm_struct *vm = va->vm;
 | |
| 
 | |
| 		va->vm = NULL;
 | |
| 		spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 		kasan_free_shadow(vm);
 | |
| 		free_unmap_vmap_area(va);
 | |
| 
 | |
| 		return vm;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void set_area_direct_map(const struct vm_struct *area,
 | |
| 				       int (*set_direct_map)(struct page *page))
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < area->nr_pages; i++)
 | |
| 		if (page_address(area->pages[i]))
 | |
| 			set_direct_map(area->pages[i]);
 | |
| }
 | |
| 
 | |
| /* Handle removing and resetting vm mappings related to the vm_struct. */
 | |
| static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
 | |
| {
 | |
| 	unsigned long start = ULONG_MAX, end = 0;
 | |
| 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
 | |
| 	int flush_dmap = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	remove_vm_area(area->addr);
 | |
| 
 | |
| 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
 | |
| 	if (!flush_reset)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If not deallocating pages, just do the flush of the VM area and
 | |
| 	 * return.
 | |
| 	 */
 | |
| 	if (!deallocate_pages) {
 | |
| 		vm_unmap_aliases();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If execution gets here, flush the vm mapping and reset the direct
 | |
| 	 * map. Find the start and end range of the direct mappings to make sure
 | |
| 	 * the vm_unmap_aliases() flush includes the direct map.
 | |
| 	 */
 | |
| 	for (i = 0; i < area->nr_pages; i++) {
 | |
| 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
 | |
| 		if (addr) {
 | |
| 			start = min(addr, start);
 | |
| 			end = max(addr + PAGE_SIZE, end);
 | |
| 			flush_dmap = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set direct map to something invalid so that it won't be cached if
 | |
| 	 * there are any accesses after the TLB flush, then flush the TLB and
 | |
| 	 * reset the direct map permissions to the default.
 | |
| 	 */
 | |
| 	set_area_direct_map(area, set_direct_map_invalid_noflush);
 | |
| 	_vm_unmap_aliases(start, end, flush_dmap);
 | |
| 	set_area_direct_map(area, set_direct_map_default_noflush);
 | |
| }
 | |
| 
 | |
| static void __vunmap(const void *addr, int deallocate_pages)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
 | |
| 			addr))
 | |
| 		return;
 | |
| 
 | |
| 	area = find_vm_area(addr);
 | |
| 	if (unlikely(!area)) {
 | |
| 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
 | |
| 				addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
 | |
| 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
 | |
| 
 | |
| 	kasan_poison_vmalloc(area->addr, area->size);
 | |
| 
 | |
| 	vm_remove_mappings(area, deallocate_pages);
 | |
| 
 | |
| 	if (deallocate_pages) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < area->nr_pages; i++) {
 | |
| 			struct page *page = area->pages[i];
 | |
| 
 | |
| 			BUG_ON(!page);
 | |
| 			__free_pages(page, 0);
 | |
| 		}
 | |
| 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
 | |
| 
 | |
| 		kvfree(area->pages);
 | |
| 	}
 | |
| 
 | |
| 	kfree(area);
 | |
| }
 | |
| 
 | |
| static inline void __vfree_deferred(const void *addr)
 | |
| {
 | |
| 	/*
 | |
| 	 * Use raw_cpu_ptr() because this can be called from preemptible
 | |
| 	 * context. Preemption is absolutely fine here, because the llist_add()
 | |
| 	 * implementation is lockless, so it works even if we are adding to
 | |
| 	 * another cpu's list. schedule_work() should be fine with this too.
 | |
| 	 */
 | |
| 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
 | |
| 
 | |
| 	if (llist_add((struct llist_node *)addr, &p->list))
 | |
| 		schedule_work(&p->wq);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vfree_atomic - release memory allocated by vmalloc()
 | |
|  * @addr:	  memory base address
 | |
|  *
 | |
|  * This one is just like vfree() but can be called in any atomic context
 | |
|  * except NMIs.
 | |
|  */
 | |
| void vfree_atomic(const void *addr)
 | |
| {
 | |
| 	BUG_ON(in_nmi());
 | |
| 
 | |
| 	kmemleak_free(addr);
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return;
 | |
| 	__vfree_deferred(addr);
 | |
| }
 | |
| 
 | |
| static void __vfree(const void *addr)
 | |
| {
 | |
| 	if (unlikely(in_interrupt()))
 | |
| 		__vfree_deferred(addr);
 | |
| 	else
 | |
| 		__vunmap(addr, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vfree - Release memory allocated by vmalloc()
 | |
|  * @addr:  Memory base address
 | |
|  *
 | |
|  * Free the virtually continuous memory area starting at @addr, as obtained
 | |
|  * from one of the vmalloc() family of APIs.  This will usually also free the
 | |
|  * physical memory underlying the virtual allocation, but that memory is
 | |
|  * reference counted, so it will not be freed until the last user goes away.
 | |
|  *
 | |
|  * If @addr is NULL, no operation is performed.
 | |
|  *
 | |
|  * Context:
 | |
|  * May sleep if called *not* from interrupt context.
 | |
|  * Must not be called in NMI context (strictly speaking, it could be
 | |
|  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 | |
|  * conventions for vfree() arch-depenedent would be a really bad idea).
 | |
|  */
 | |
| void vfree(const void *addr)
 | |
| {
 | |
| 	BUG_ON(in_nmi());
 | |
| 
 | |
| 	kmemleak_free(addr);
 | |
| 
 | |
| 	might_sleep_if(!in_interrupt());
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return;
 | |
| 
 | |
| 	__vfree(addr);
 | |
| }
 | |
| EXPORT_SYMBOL(vfree);
 | |
| 
 | |
| /**
 | |
|  * vunmap - release virtual mapping obtained by vmap()
 | |
|  * @addr:   memory base address
 | |
|  *
 | |
|  * Free the virtually contiguous memory area starting at @addr,
 | |
|  * which was created from the page array passed to vmap().
 | |
|  *
 | |
|  * Must not be called in interrupt context.
 | |
|  */
 | |
| void vunmap(const void *addr)
 | |
| {
 | |
| 	BUG_ON(in_interrupt());
 | |
| 	might_sleep();
 | |
| 	if (addr)
 | |
| 		__vunmap(addr, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(vunmap);
 | |
| 
 | |
| /**
 | |
|  * vmap - map an array of pages into virtually contiguous space
 | |
|  * @pages: array of page pointers
 | |
|  * @count: number of pages to map
 | |
|  * @flags: vm_area->flags
 | |
|  * @prot: page protection for the mapping
 | |
|  *
 | |
|  * Maps @count pages from @pages into contiguous kernel virtual space.
 | |
|  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
 | |
|  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
 | |
|  * are transferred from the caller to vmap(), and will be freed / dropped when
 | |
|  * vfree() is called on the return value.
 | |
|  *
 | |
|  * Return: the address of the area or %NULL on failure
 | |
|  */
 | |
| void *vmap(struct page **pages, unsigned int count,
 | |
| 	   unsigned long flags, pgprot_t prot)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long size;		/* In bytes */
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (count > totalram_pages())
 | |
| 		return NULL;
 | |
| 
 | |
| 	size = (unsigned long)count << PAGE_SHIFT;
 | |
| 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
 | |
| 	if (!area)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
 | |
| 			pages) < 0) {
 | |
| 		vunmap(area->addr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & VM_MAP_PUT_PAGES)
 | |
| 		area->pages = pages;
 | |
| 	return area->addr;
 | |
| }
 | |
| EXPORT_SYMBOL(vmap);
 | |
| 
 | |
| #ifdef CONFIG_VMAP_PFN
 | |
| struct vmap_pfn_data {
 | |
| 	unsigned long	*pfns;
 | |
| 	pgprot_t	prot;
 | |
| 	unsigned int	idx;
 | |
| };
 | |
| 
 | |
| static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
 | |
| {
 | |
| 	struct vmap_pfn_data *data = private;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
 | |
| 		return -EINVAL;
 | |
| 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmap_pfn - map an array of PFNs into virtually contiguous space
 | |
|  * @pfns: array of PFNs
 | |
|  * @count: number of pages to map
 | |
|  * @prot: page protection for the mapping
 | |
|  *
 | |
|  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
 | |
|  * the start address of the mapping.
 | |
|  */
 | |
| void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
 | |
| {
 | |
| 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
 | |
| 	struct vm_struct *area;
 | |
| 
 | |
| 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
 | |
| 			__builtin_return_address(0));
 | |
| 	if (!area)
 | |
| 		return NULL;
 | |
| 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
 | |
| 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
 | |
| 		free_vm_area(area);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return area->addr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vmap_pfn);
 | |
| #endif /* CONFIG_VMAP_PFN */
 | |
| 
 | |
| static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
 | |
| 				 pgprot_t prot, int node)
 | |
| {
 | |
| 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
 | |
| 	unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
 | |
| 	unsigned long array_size;
 | |
| 	unsigned int i;
 | |
| 	struct page **pages;
 | |
| 
 | |
| 	array_size = (unsigned long)nr_pages * sizeof(struct page *);
 | |
| 	gfp_mask |= __GFP_NOWARN;
 | |
| 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
 | |
| 		gfp_mask |= __GFP_HIGHMEM;
 | |
| 
 | |
| 	/* Please note that the recursion is strictly bounded. */
 | |
| 	if (array_size > PAGE_SIZE) {
 | |
| 		pages = __vmalloc_node(array_size, 1, nested_gfp, node,
 | |
| 					area->caller);
 | |
| 	} else {
 | |
| 		pages = kmalloc_node(array_size, nested_gfp, node);
 | |
| 	}
 | |
| 
 | |
| 	if (!pages) {
 | |
| 		free_vm_area(area);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	area->pages = pages;
 | |
| 	area->nr_pages = nr_pages;
 | |
| 
 | |
| 	for (i = 0; i < area->nr_pages; i++) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (node == NUMA_NO_NODE)
 | |
| 			page = alloc_page(gfp_mask);
 | |
| 		else
 | |
| 			page = alloc_pages_node(node, gfp_mask, 0);
 | |
| 
 | |
| 		if (unlikely(!page)) {
 | |
| 			/* Successfully allocated i pages, free them in __vfree() */
 | |
| 			area->nr_pages = i;
 | |
| 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		area->pages[i] = page;
 | |
| 		if (gfpflags_allow_blocking(gfp_mask))
 | |
| 			cond_resched();
 | |
| 	}
 | |
| 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
 | |
| 
 | |
| 	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
 | |
| 			prot, pages) < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	return area->addr;
 | |
| 
 | |
| fail:
 | |
| 	warn_alloc(gfp_mask, NULL,
 | |
| 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
 | |
| 			  (area->nr_pages*PAGE_SIZE), area->size);
 | |
| 	__vfree(area->addr);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __vmalloc_node_range - allocate virtually contiguous memory
 | |
|  * @size:		  allocation size
 | |
|  * @align:		  desired alignment
 | |
|  * @start:		  vm area range start
 | |
|  * @end:		  vm area range end
 | |
|  * @gfp_mask:		  flags for the page level allocator
 | |
|  * @prot:		  protection mask for the allocated pages
 | |
|  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 | |
|  * @node:		  node to use for allocation or NUMA_NO_NODE
 | |
|  * @caller:		  caller's return address
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator with @gfp_mask flags.  Map them into contiguous
 | |
|  * kernel virtual space, using a pagetable protection of @prot.
 | |
|  *
 | |
|  * Return: the address of the area or %NULL on failure
 | |
|  */
 | |
| void *__vmalloc_node_range(unsigned long size, unsigned long align,
 | |
| 			unsigned long start, unsigned long end, gfp_t gfp_mask,
 | |
| 			pgprot_t prot, unsigned long vm_flags, int node,
 | |
| 			const void *caller)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	void *addr;
 | |
| 	unsigned long real_size = size;
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
 | |
| 		goto fail;
 | |
| 
 | |
| 	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
 | |
| 				vm_flags, start, end, node, gfp_mask, caller);
 | |
| 	if (!area)
 | |
| 		goto fail;
 | |
| 
 | |
| 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
 | |
| 	if (!addr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
 | |
| 	 * flag. It means that vm_struct is not fully initialized.
 | |
| 	 * Now, it is fully initialized, so remove this flag here.
 | |
| 	 */
 | |
| 	clear_vm_uninitialized_flag(area);
 | |
| 
 | |
| 	kmemleak_vmalloc(area, size, gfp_mask);
 | |
| 
 | |
| 	return addr;
 | |
| 
 | |
| fail:
 | |
| 	warn_alloc(gfp_mask, NULL,
 | |
| 			  "vmalloc: allocation failure: %lu bytes", real_size);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __vmalloc_node - allocate virtually contiguous memory
 | |
|  * @size:	    allocation size
 | |
|  * @align:	    desired alignment
 | |
|  * @gfp_mask:	    flags for the page level allocator
 | |
|  * @node:	    node to use for allocation or NUMA_NO_NODE
 | |
|  * @caller:	    caller's return address
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level allocator with
 | |
|  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 | |
|  * and __GFP_NOFAIL are not supported
 | |
|  *
 | |
|  * Any use of gfp flags outside of GFP_KERNEL should be consulted
 | |
|  * with mm people.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *__vmalloc_node(unsigned long size, unsigned long align,
 | |
| 			    gfp_t gfp_mask, int node, const void *caller)
 | |
| {
 | |
| 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
 | |
| 				gfp_mask, PAGE_KERNEL, 0, node, caller);
 | |
| }
 | |
| /*
 | |
|  * This is only for performance analysis of vmalloc and stress purpose.
 | |
|  * It is required by vmalloc test module, therefore do not use it other
 | |
|  * than that.
 | |
|  */
 | |
| #ifdef CONFIG_TEST_VMALLOC_MODULE
 | |
| EXPORT_SYMBOL_GPL(__vmalloc_node);
 | |
| #endif
 | |
| 
 | |
| void *__vmalloc(unsigned long size, gfp_t gfp_mask)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(__vmalloc);
 | |
| 
 | |
| /**
 | |
|  * vmalloc - allocate virtually contiguous memory
 | |
|  * @size:    allocation size
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator and map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  * For tight control over page level allocator and protection flags
 | |
|  * use __vmalloc() instead.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc);
 | |
| 
 | |
| /**
 | |
|  * vzalloc - allocate virtually contiguous memory with zero fill
 | |
|  * @size:    allocation size
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator and map them into contiguous kernel virtual space.
 | |
|  * The memory allocated is set to zero.
 | |
|  *
 | |
|  * For tight control over page level allocator and protection flags
 | |
|  * use __vmalloc() instead.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vzalloc(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vzalloc);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 | |
|  * @size: allocation size
 | |
|  *
 | |
|  * The resulting memory area is zeroed so it can be mapped to userspace
 | |
|  * without leaking data.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_user(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
 | |
| 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
 | |
| 				    VM_USERMAP, NUMA_NO_NODE,
 | |
| 				    __builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_user);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_node - allocate memory on a specific node
 | |
|  * @size:	  allocation size
 | |
|  * @node:	  numa node
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator and map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  * For tight control over page level allocator and protection flags
 | |
|  * use __vmalloc() instead.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_node(unsigned long size, int node)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
 | |
| 			__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_node);
 | |
| 
 | |
| /**
 | |
|  * vzalloc_node - allocate memory on a specific node with zero fill
 | |
|  * @size:	allocation size
 | |
|  * @node:	numa node
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator and map them into contiguous kernel virtual space.
 | |
|  * The memory allocated is set to zero.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vzalloc_node(unsigned long size, int node)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vzalloc_node);
 | |
| 
 | |
| #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
 | |
| #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
 | |
| #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
 | |
| #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
 | |
| #else
 | |
| /*
 | |
|  * 64b systems should always have either DMA or DMA32 zones. For others
 | |
|  * GFP_DMA32 should do the right thing and use the normal zone.
 | |
|  */
 | |
| #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 | |
|  * @size:	allocation size
 | |
|  *
 | |
|  * Allocate enough 32bit PA addressable pages to cover @size from the
 | |
|  * page level allocator and map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_32(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
 | |
| 			__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_32);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 | |
|  * @size:	     allocation size
 | |
|  *
 | |
|  * The resulting memory area is 32bit addressable and zeroed so it can be
 | |
|  * mapped to userspace without leaking data.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_32_user(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
 | |
| 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
 | |
| 				    VM_USERMAP, NUMA_NO_NODE,
 | |
| 				    __builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_32_user);
 | |
| 
 | |
| /*
 | |
|  * small helper routine , copy contents to buf from addr.
 | |
|  * If the page is not present, fill zero.
 | |
|  */
 | |
| 
 | |
| static int aligned_vread(char *buf, char *addr, unsigned long count)
 | |
| {
 | |
| 	struct page *p;
 | |
| 	int copied = 0;
 | |
| 
 | |
| 	while (count) {
 | |
| 		unsigned long offset, length;
 | |
| 
 | |
| 		offset = offset_in_page(addr);
 | |
| 		length = PAGE_SIZE - offset;
 | |
| 		if (length > count)
 | |
| 			length = count;
 | |
| 		p = vmalloc_to_page(addr);
 | |
| 		/*
 | |
| 		 * To do safe access to this _mapped_ area, we need
 | |
| 		 * lock. But adding lock here means that we need to add
 | |
| 		 * overhead of vmalloc()/vfree() calles for this _debug_
 | |
| 		 * interface, rarely used. Instead of that, we'll use
 | |
| 		 * kmap() and get small overhead in this access function.
 | |
| 		 */
 | |
| 		if (p) {
 | |
| 			/*
 | |
| 			 * we can expect USER0 is not used (see vread/vwrite's
 | |
| 			 * function description)
 | |
| 			 */
 | |
| 			void *map = kmap_atomic(p);
 | |
| 			memcpy(buf, map + offset, length);
 | |
| 			kunmap_atomic(map);
 | |
| 		} else
 | |
| 			memset(buf, 0, length);
 | |
| 
 | |
| 		addr += length;
 | |
| 		buf += length;
 | |
| 		copied += length;
 | |
| 		count -= length;
 | |
| 	}
 | |
| 	return copied;
 | |
| }
 | |
| 
 | |
| static int aligned_vwrite(char *buf, char *addr, unsigned long count)
 | |
| {
 | |
| 	struct page *p;
 | |
| 	int copied = 0;
 | |
| 
 | |
| 	while (count) {
 | |
| 		unsigned long offset, length;
 | |
| 
 | |
| 		offset = offset_in_page(addr);
 | |
| 		length = PAGE_SIZE - offset;
 | |
| 		if (length > count)
 | |
| 			length = count;
 | |
| 		p = vmalloc_to_page(addr);
 | |
| 		/*
 | |
| 		 * To do safe access to this _mapped_ area, we need
 | |
| 		 * lock. But adding lock here means that we need to add
 | |
| 		 * overhead of vmalloc()/vfree() calles for this _debug_
 | |
| 		 * interface, rarely used. Instead of that, we'll use
 | |
| 		 * kmap() and get small overhead in this access function.
 | |
| 		 */
 | |
| 		if (p) {
 | |
| 			/*
 | |
| 			 * we can expect USER0 is not used (see vread/vwrite's
 | |
| 			 * function description)
 | |
| 			 */
 | |
| 			void *map = kmap_atomic(p);
 | |
| 			memcpy(map + offset, buf, length);
 | |
| 			kunmap_atomic(map);
 | |
| 		}
 | |
| 		addr += length;
 | |
| 		buf += length;
 | |
| 		copied += length;
 | |
| 		count -= length;
 | |
| 	}
 | |
| 	return copied;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vread() - read vmalloc area in a safe way.
 | |
|  * @buf:     buffer for reading data
 | |
|  * @addr:    vm address.
 | |
|  * @count:   number of bytes to be read.
 | |
|  *
 | |
|  * This function checks that addr is a valid vmalloc'ed area, and
 | |
|  * copy data from that area to a given buffer. If the given memory range
 | |
|  * of [addr...addr+count) includes some valid address, data is copied to
 | |
|  * proper area of @buf. If there are memory holes, they'll be zero-filled.
 | |
|  * IOREMAP area is treated as memory hole and no copy is done.
 | |
|  *
 | |
|  * If [addr...addr+count) doesn't includes any intersects with alive
 | |
|  * vm_struct area, returns 0. @buf should be kernel's buffer.
 | |
|  *
 | |
|  * Note: In usual ops, vread() is never necessary because the caller
 | |
|  * should know vmalloc() area is valid and can use memcpy().
 | |
|  * This is for routines which have to access vmalloc area without
 | |
|  * any information, as /dev/kmem.
 | |
|  *
 | |
|  * Return: number of bytes for which addr and buf should be increased
 | |
|  * (same number as @count) or %0 if [addr...addr+count) doesn't
 | |
|  * include any intersection with valid vmalloc area
 | |
|  */
 | |
| long vread(char *buf, char *addr, unsigned long count)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *vm;
 | |
| 	char *vaddr, *buf_start = buf;
 | |
| 	unsigned long buflen = count;
 | |
| 	unsigned long n;
 | |
| 
 | |
| 	/* Don't allow overflow */
 | |
| 	if ((unsigned long) addr + count < count)
 | |
| 		count = -(unsigned long) addr;
 | |
| 
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	list_for_each_entry(va, &vmap_area_list, list) {
 | |
| 		if (!count)
 | |
| 			break;
 | |
| 
 | |
| 		if (!va->vm)
 | |
| 			continue;
 | |
| 
 | |
| 		vm = va->vm;
 | |
| 		vaddr = (char *) vm->addr;
 | |
| 		if (addr >= vaddr + get_vm_area_size(vm))
 | |
| 			continue;
 | |
| 		while (addr < vaddr) {
 | |
| 			if (count == 0)
 | |
| 				goto finished;
 | |
| 			*buf = '\0';
 | |
| 			buf++;
 | |
| 			addr++;
 | |
| 			count--;
 | |
| 		}
 | |
| 		n = vaddr + get_vm_area_size(vm) - addr;
 | |
| 		if (n > count)
 | |
| 			n = count;
 | |
| 		if (!(vm->flags & VM_IOREMAP))
 | |
| 			aligned_vread(buf, addr, n);
 | |
| 		else /* IOREMAP area is treated as memory hole */
 | |
| 			memset(buf, 0, n);
 | |
| 		buf += n;
 | |
| 		addr += n;
 | |
| 		count -= n;
 | |
| 	}
 | |
| finished:
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 	if (buf == buf_start)
 | |
| 		return 0;
 | |
| 	/* zero-fill memory holes */
 | |
| 	if (buf != buf_start + buflen)
 | |
| 		memset(buf, 0, buflen - (buf - buf_start));
 | |
| 
 | |
| 	return buflen;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vwrite() - write vmalloc area in a safe way.
 | |
|  * @buf:      buffer for source data
 | |
|  * @addr:     vm address.
 | |
|  * @count:    number of bytes to be read.
 | |
|  *
 | |
|  * This function checks that addr is a valid vmalloc'ed area, and
 | |
|  * copy data from a buffer to the given addr. If specified range of
 | |
|  * [addr...addr+count) includes some valid address, data is copied from
 | |
|  * proper area of @buf. If there are memory holes, no copy to hole.
 | |
|  * IOREMAP area is treated as memory hole and no copy is done.
 | |
|  *
 | |
|  * If [addr...addr+count) doesn't includes any intersects with alive
 | |
|  * vm_struct area, returns 0. @buf should be kernel's buffer.
 | |
|  *
 | |
|  * Note: In usual ops, vwrite() is never necessary because the caller
 | |
|  * should know vmalloc() area is valid and can use memcpy().
 | |
|  * This is for routines which have to access vmalloc area without
 | |
|  * any information, as /dev/kmem.
 | |
|  *
 | |
|  * Return: number of bytes for which addr and buf should be
 | |
|  * increased (same number as @count) or %0 if [addr...addr+count)
 | |
|  * doesn't include any intersection with valid vmalloc area
 | |
|  */
 | |
| long vwrite(char *buf, char *addr, unsigned long count)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *vm;
 | |
| 	char *vaddr;
 | |
| 	unsigned long n, buflen;
 | |
| 	int copied = 0;
 | |
| 
 | |
| 	/* Don't allow overflow */
 | |
| 	if ((unsigned long) addr + count < count)
 | |
| 		count = -(unsigned long) addr;
 | |
| 	buflen = count;
 | |
| 
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	list_for_each_entry(va, &vmap_area_list, list) {
 | |
| 		if (!count)
 | |
| 			break;
 | |
| 
 | |
| 		if (!va->vm)
 | |
| 			continue;
 | |
| 
 | |
| 		vm = va->vm;
 | |
| 		vaddr = (char *) vm->addr;
 | |
| 		if (addr >= vaddr + get_vm_area_size(vm))
 | |
| 			continue;
 | |
| 		while (addr < vaddr) {
 | |
| 			if (count == 0)
 | |
| 				goto finished;
 | |
| 			buf++;
 | |
| 			addr++;
 | |
| 			count--;
 | |
| 		}
 | |
| 		n = vaddr + get_vm_area_size(vm) - addr;
 | |
| 		if (n > count)
 | |
| 			n = count;
 | |
| 		if (!(vm->flags & VM_IOREMAP)) {
 | |
| 			aligned_vwrite(buf, addr, n);
 | |
| 			copied++;
 | |
| 		}
 | |
| 		buf += n;
 | |
| 		addr += n;
 | |
| 		count -= n;
 | |
| 	}
 | |
| finished:
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 	if (!copied)
 | |
| 		return 0;
 | |
| 	return buflen;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * remap_vmalloc_range_partial - map vmalloc pages to userspace
 | |
|  * @vma:		vma to cover
 | |
|  * @uaddr:		target user address to start at
 | |
|  * @kaddr:		virtual address of vmalloc kernel memory
 | |
|  * @pgoff:		offset from @kaddr to start at
 | |
|  * @size:		size of map area
 | |
|  *
 | |
|  * Returns:	0 for success, -Exxx on failure
 | |
|  *
 | |
|  * This function checks that @kaddr is a valid vmalloc'ed area,
 | |
|  * and that it is big enough to cover the range starting at
 | |
|  * @uaddr in @vma. Will return failure if that criteria isn't
 | |
|  * met.
 | |
|  *
 | |
|  * Similar to remap_pfn_range() (see mm/memory.c)
 | |
|  */
 | |
| int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
 | |
| 				void *kaddr, unsigned long pgoff,
 | |
| 				unsigned long size)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long off;
 | |
| 	unsigned long end_index;
 | |
| 
 | |
| 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 
 | |
| 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	area = find_vm_area(kaddr);
 | |
| 	if (!area)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (check_add_overflow(size, off, &end_index) ||
 | |
| 	    end_index > get_vm_area_size(area))
 | |
| 		return -EINVAL;
 | |
| 	kaddr += off;
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page = vmalloc_to_page(kaddr);
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = vm_insert_page(vma, uaddr, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		uaddr += PAGE_SIZE;
 | |
| 		kaddr += PAGE_SIZE;
 | |
| 		size -= PAGE_SIZE;
 | |
| 	} while (size > 0);
 | |
| 
 | |
| 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(remap_vmalloc_range_partial);
 | |
| 
 | |
| /**
 | |
|  * remap_vmalloc_range - map vmalloc pages to userspace
 | |
|  * @vma:		vma to cover (map full range of vma)
 | |
|  * @addr:		vmalloc memory
 | |
|  * @pgoff:		number of pages into addr before first page to map
 | |
|  *
 | |
|  * Returns:	0 for success, -Exxx on failure
 | |
|  *
 | |
|  * This function checks that addr is a valid vmalloc'ed area, and
 | |
|  * that it is big enough to cover the vma. Will return failure if
 | |
|  * that criteria isn't met.
 | |
|  *
 | |
|  * Similar to remap_pfn_range() (see mm/memory.c)
 | |
|  */
 | |
| int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
 | |
| 						unsigned long pgoff)
 | |
| {
 | |
| 	return remap_vmalloc_range_partial(vma, vma->vm_start,
 | |
| 					   addr, pgoff,
 | |
| 					   vma->vm_end - vma->vm_start);
 | |
| }
 | |
| EXPORT_SYMBOL(remap_vmalloc_range);
 | |
| 
 | |
| void free_vm_area(struct vm_struct *area)
 | |
| {
 | |
| 	struct vm_struct *ret;
 | |
| 	ret = remove_vm_area(area->addr);
 | |
| 	BUG_ON(ret != area);
 | |
| 	kfree(area);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(free_vm_area);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static struct vmap_area *node_to_va(struct rb_node *n)
 | |
| {
 | |
| 	return rb_entry_safe(n, struct vmap_area, rb_node);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 | |
|  * @addr: target address
 | |
|  *
 | |
|  * Returns: vmap_area if it is found. If there is no such area
 | |
|  *   the first highest(reverse order) vmap_area is returned
 | |
|  *   i.e. va->va_start < addr && va->va_end < addr or NULL
 | |
|  *   if there are no any areas before @addr.
 | |
|  */
 | |
| static struct vmap_area *
 | |
| pvm_find_va_enclose_addr(unsigned long addr)
 | |
| {
 | |
| 	struct vmap_area *va, *tmp;
 | |
| 	struct rb_node *n;
 | |
| 
 | |
| 	n = free_vmap_area_root.rb_node;
 | |
| 	va = NULL;
 | |
| 
 | |
| 	while (n) {
 | |
| 		tmp = rb_entry(n, struct vmap_area, rb_node);
 | |
| 		if (tmp->va_start <= addr) {
 | |
| 			va = tmp;
 | |
| 			if (tmp->va_end >= addr)
 | |
| 				break;
 | |
| 
 | |
| 			n = n->rb_right;
 | |
| 		} else {
 | |
| 			n = n->rb_left;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pvm_determine_end_from_reverse - find the highest aligned address
 | |
|  * of free block below VMALLOC_END
 | |
|  * @va:
 | |
|  *   in - the VA we start the search(reverse order);
 | |
|  *   out - the VA with the highest aligned end address.
 | |
|  * @align: alignment for required highest address
 | |
|  *
 | |
|  * Returns: determined end address within vmap_area
 | |
|  */
 | |
| static unsigned long
 | |
| pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
 | |
| {
 | |
| 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	if (likely(*va)) {
 | |
| 		list_for_each_entry_from_reverse((*va),
 | |
| 				&free_vmap_area_list, list) {
 | |
| 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
 | |
| 			if ((*va)->va_start < addr)
 | |
| 				return addr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 | |
|  * @offsets: array containing offset of each area
 | |
|  * @sizes: array containing size of each area
 | |
|  * @nr_vms: the number of areas to allocate
 | |
|  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 | |
|  *
 | |
|  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 | |
|  *	    vm_structs on success, %NULL on failure
 | |
|  *
 | |
|  * Percpu allocator wants to use congruent vm areas so that it can
 | |
|  * maintain the offsets among percpu areas.  This function allocates
 | |
|  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 | |
|  * be scattered pretty far, distance between two areas easily going up
 | |
|  * to gigabytes.  To avoid interacting with regular vmallocs, these
 | |
|  * areas are allocated from top.
 | |
|  *
 | |
|  * Despite its complicated look, this allocator is rather simple. It
 | |
|  * does everything top-down and scans free blocks from the end looking
 | |
|  * for matching base. While scanning, if any of the areas do not fit the
 | |
|  * base address is pulled down to fit the area. Scanning is repeated till
 | |
|  * all the areas fit and then all necessary data structures are inserted
 | |
|  * and the result is returned.
 | |
|  */
 | |
| struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
 | |
| 				     const size_t *sizes, int nr_vms,
 | |
| 				     size_t align)
 | |
| {
 | |
| 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
 | |
| 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
 | |
| 	struct vmap_area **vas, *va;
 | |
| 	struct vm_struct **vms;
 | |
| 	int area, area2, last_area, term_area;
 | |
| 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
 | |
| 	bool purged = false;
 | |
| 	enum fit_type type;
 | |
| 
 | |
| 	/* verify parameters and allocate data structures */
 | |
| 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
 | |
| 	for (last_area = 0, area = 0; area < nr_vms; area++) {
 | |
| 		start = offsets[area];
 | |
| 		end = start + sizes[area];
 | |
| 
 | |
| 		/* is everything aligned properly? */
 | |
| 		BUG_ON(!IS_ALIGNED(offsets[area], align));
 | |
| 		BUG_ON(!IS_ALIGNED(sizes[area], align));
 | |
| 
 | |
| 		/* detect the area with the highest address */
 | |
| 		if (start > offsets[last_area])
 | |
| 			last_area = area;
 | |
| 
 | |
| 		for (area2 = area + 1; area2 < nr_vms; area2++) {
 | |
| 			unsigned long start2 = offsets[area2];
 | |
| 			unsigned long end2 = start2 + sizes[area2];
 | |
| 
 | |
| 			BUG_ON(start2 < end && start < end2);
 | |
| 		}
 | |
| 	}
 | |
| 	last_end = offsets[last_area] + sizes[last_area];
 | |
| 
 | |
| 	if (vmalloc_end - vmalloc_start < last_end) {
 | |
| 		WARN_ON(true);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
 | |
| 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
 | |
| 	if (!vas || !vms)
 | |
| 		goto err_free2;
 | |
| 
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
 | |
| 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
 | |
| 		if (!vas[area] || !vms[area])
 | |
| 			goto err_free;
 | |
| 	}
 | |
| retry:
 | |
| 	spin_lock(&free_vmap_area_lock);
 | |
| 
 | |
| 	/* start scanning - we scan from the top, begin with the last area */
 | |
| 	area = term_area = last_area;
 | |
| 	start = offsets[area];
 | |
| 	end = start + sizes[area];
 | |
| 
 | |
| 	va = pvm_find_va_enclose_addr(vmalloc_end);
 | |
| 	base = pvm_determine_end_from_reverse(&va, align) - end;
 | |
| 
 | |
| 	while (true) {
 | |
| 		/*
 | |
| 		 * base might have underflowed, add last_end before
 | |
| 		 * comparing.
 | |
| 		 */
 | |
| 		if (base + last_end < vmalloc_start + last_end)
 | |
| 			goto overflow;
 | |
| 
 | |
| 		/*
 | |
| 		 * Fitting base has not been found.
 | |
| 		 */
 | |
| 		if (va == NULL)
 | |
| 			goto overflow;
 | |
| 
 | |
| 		/*
 | |
| 		 * If required width exceeds current VA block, move
 | |
| 		 * base downwards and then recheck.
 | |
| 		 */
 | |
| 		if (base + end > va->va_end) {
 | |
| 			base = pvm_determine_end_from_reverse(&va, align) - end;
 | |
| 			term_area = area;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If this VA does not fit, move base downwards and recheck.
 | |
| 		 */
 | |
| 		if (base + start < va->va_start) {
 | |
| 			va = node_to_va(rb_prev(&va->rb_node));
 | |
| 			base = pvm_determine_end_from_reverse(&va, align) - end;
 | |
| 			term_area = area;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This area fits, move on to the previous one.  If
 | |
| 		 * the previous one is the terminal one, we're done.
 | |
| 		 */
 | |
| 		area = (area + nr_vms - 1) % nr_vms;
 | |
| 		if (area == term_area)
 | |
| 			break;
 | |
| 
 | |
| 		start = offsets[area];
 | |
| 		end = start + sizes[area];
 | |
| 		va = pvm_find_va_enclose_addr(base + end);
 | |
| 	}
 | |
| 
 | |
| 	/* we've found a fitting base, insert all va's */
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		start = base + offsets[area];
 | |
| 		size = sizes[area];
 | |
| 
 | |
| 		va = pvm_find_va_enclose_addr(start);
 | |
| 		if (WARN_ON_ONCE(va == NULL))
 | |
| 			/* It is a BUG(), but trigger recovery instead. */
 | |
| 			goto recovery;
 | |
| 
 | |
| 		type = classify_va_fit_type(va, start, size);
 | |
| 		if (WARN_ON_ONCE(type == NOTHING_FIT))
 | |
| 			/* It is a BUG(), but trigger recovery instead. */
 | |
| 			goto recovery;
 | |
| 
 | |
| 		ret = adjust_va_to_fit_type(va, start, size, type);
 | |
| 		if (unlikely(ret))
 | |
| 			goto recovery;
 | |
| 
 | |
| 		/* Allocated area. */
 | |
| 		va = vas[area];
 | |
| 		va->va_start = start;
 | |
| 		va->va_end = start + size;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| 
 | |
| 	/* populate the kasan shadow space */
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
 | |
| 			goto err_free_shadow;
 | |
| 
 | |
| 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
 | |
| 				       sizes[area]);
 | |
| 	}
 | |
| 
 | |
| 	/* insert all vm's */
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
 | |
| 
 | |
| 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
 | |
| 				 pcpu_get_vm_areas);
 | |
| 	}
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 	kfree(vas);
 | |
| 	return vms;
 | |
| 
 | |
| recovery:
 | |
| 	/*
 | |
| 	 * Remove previously allocated areas. There is no
 | |
| 	 * need in removing these areas from the busy tree,
 | |
| 	 * because they are inserted only on the final step
 | |
| 	 * and when pcpu_get_vm_areas() is success.
 | |
| 	 */
 | |
| 	while (area--) {
 | |
| 		orig_start = vas[area]->va_start;
 | |
| 		orig_end = vas[area]->va_end;
 | |
| 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
 | |
| 				&free_vmap_area_list);
 | |
| 		if (va)
 | |
| 			kasan_release_vmalloc(orig_start, orig_end,
 | |
| 				va->va_start, va->va_end);
 | |
| 		vas[area] = NULL;
 | |
| 	}
 | |
| 
 | |
| overflow:
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| 	if (!purged) {
 | |
| 		purge_vmap_area_lazy();
 | |
| 		purged = true;
 | |
| 
 | |
| 		/* Before "retry", check if we recover. */
 | |
| 		for (area = 0; area < nr_vms; area++) {
 | |
| 			if (vas[area])
 | |
| 				continue;
 | |
| 
 | |
| 			vas[area] = kmem_cache_zalloc(
 | |
| 				vmap_area_cachep, GFP_KERNEL);
 | |
| 			if (!vas[area])
 | |
| 				goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| err_free:
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		if (vas[area])
 | |
| 			kmem_cache_free(vmap_area_cachep, vas[area]);
 | |
| 
 | |
| 		kfree(vms[area]);
 | |
| 	}
 | |
| err_free2:
 | |
| 	kfree(vas);
 | |
| 	kfree(vms);
 | |
| 	return NULL;
 | |
| 
 | |
| err_free_shadow:
 | |
| 	spin_lock(&free_vmap_area_lock);
 | |
| 	/*
 | |
| 	 * We release all the vmalloc shadows, even the ones for regions that
 | |
| 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
 | |
| 	 * being able to tolerate this case.
 | |
| 	 */
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		orig_start = vas[area]->va_start;
 | |
| 		orig_end = vas[area]->va_end;
 | |
| 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
 | |
| 				&free_vmap_area_list);
 | |
| 		if (va)
 | |
| 			kasan_release_vmalloc(orig_start, orig_end,
 | |
| 				va->va_start, va->va_end);
 | |
| 		vas[area] = NULL;
 | |
| 		kfree(vms[area]);
 | |
| 	}
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| 	kfree(vas);
 | |
| 	kfree(vms);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 | |
|  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 | |
|  * @nr_vms: the number of allocated areas
 | |
|  *
 | |
|  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 | |
|  */
 | |
| void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_vms; i++)
 | |
| 		free_vm_area(vms[i]);
 | |
| 	kfree(vms);
 | |
| }
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static void *s_start(struct seq_file *m, loff_t *pos)
 | |
| 	__acquires(&vmap_purge_lock)
 | |
| 	__acquires(&vmap_area_lock)
 | |
| {
 | |
| 	mutex_lock(&vmap_purge_lock);
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 
 | |
| 	return seq_list_start(&vmap_area_list, *pos);
 | |
| }
 | |
| 
 | |
| static void *s_next(struct seq_file *m, void *p, loff_t *pos)
 | |
| {
 | |
| 	return seq_list_next(p, &vmap_area_list, pos);
 | |
| }
 | |
| 
 | |
| static void s_stop(struct seq_file *m, void *p)
 | |
| 	__releases(&vmap_area_lock)
 | |
| 	__releases(&vmap_purge_lock)
 | |
| {
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 	mutex_unlock(&vmap_purge_lock);
 | |
| }
 | |
| 
 | |
| static void show_numa_info(struct seq_file *m, struct vm_struct *v)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_NUMA)) {
 | |
| 		unsigned int nr, *counters = m->private;
 | |
| 
 | |
| 		if (!counters)
 | |
| 			return;
 | |
| 
 | |
| 		if (v->flags & VM_UNINITIALIZED)
 | |
| 			return;
 | |
| 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
 | |
| 
 | |
| 		for (nr = 0; nr < v->nr_pages; nr++)
 | |
| 			counters[page_to_nid(v->pages[nr])]++;
 | |
| 
 | |
| 		for_each_node_state(nr, N_HIGH_MEMORY)
 | |
| 			if (counters[nr])
 | |
| 				seq_printf(m, " N%u=%u", nr, counters[nr]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void show_purge_info(struct seq_file *m)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	spin_lock(&purge_vmap_area_lock);
 | |
| 	list_for_each_entry(va, &purge_vmap_area_list, list) {
 | |
| 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
 | |
| 			(void *)va->va_start, (void *)va->va_end,
 | |
| 			va->va_end - va->va_start);
 | |
| 	}
 | |
| 	spin_unlock(&purge_vmap_area_lock);
 | |
| }
 | |
| 
 | |
| static int s_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *v;
 | |
| 
 | |
| 	va = list_entry(p, struct vmap_area, list);
 | |
| 
 | |
| 	/*
 | |
| 	 * s_show can encounter race with remove_vm_area, !vm on behalf
 | |
| 	 * of vmap area is being tear down or vm_map_ram allocation.
 | |
| 	 */
 | |
| 	if (!va->vm) {
 | |
| 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
 | |
| 			(void *)va->va_start, (void *)va->va_end,
 | |
| 			va->va_end - va->va_start);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	v = va->vm;
 | |
| 
 | |
| 	seq_printf(m, "0x%pK-0x%pK %7ld",
 | |
| 		v->addr, v->addr + v->size, v->size);
 | |
| 
 | |
| 	if (v->caller)
 | |
| 		seq_printf(m, " %pS", v->caller);
 | |
| 
 | |
| 	if (v->nr_pages)
 | |
| 		seq_printf(m, " pages=%d", v->nr_pages);
 | |
| 
 | |
| 	if (v->phys_addr)
 | |
| 		seq_printf(m, " phys=%pa", &v->phys_addr);
 | |
| 
 | |
| 	if (v->flags & VM_IOREMAP)
 | |
| 		seq_puts(m, " ioremap");
 | |
| 
 | |
| 	if (v->flags & VM_ALLOC)
 | |
| 		seq_puts(m, " vmalloc");
 | |
| 
 | |
| 	if (v->flags & VM_MAP)
 | |
| 		seq_puts(m, " vmap");
 | |
| 
 | |
| 	if (v->flags & VM_USERMAP)
 | |
| 		seq_puts(m, " user");
 | |
| 
 | |
| 	if (v->flags & VM_DMA_COHERENT)
 | |
| 		seq_puts(m, " dma-coherent");
 | |
| 
 | |
| 	if (is_vmalloc_addr(v->pages))
 | |
| 		seq_puts(m, " vpages");
 | |
| 
 | |
| 	show_numa_info(m, v);
 | |
| 	seq_putc(m, '\n');
 | |
| 
 | |
| 	/*
 | |
| 	 * As a final step, dump "unpurged" areas.
 | |
| 	 */
 | |
| 	if (list_is_last(&va->list, &vmap_area_list))
 | |
| 		show_purge_info(m);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations vmalloc_op = {
 | |
| 	.start = s_start,
 | |
| 	.next = s_next,
 | |
| 	.stop = s_stop,
 | |
| 	.show = s_show,
 | |
| };
 | |
| 
 | |
| static int __init proc_vmalloc_init(void)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_NUMA))
 | |
| 		proc_create_seq_private("vmallocinfo", 0400, NULL,
 | |
| 				&vmalloc_op,
 | |
| 				nr_node_ids * sizeof(unsigned int), NULL);
 | |
| 	else
 | |
| 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
 | |
| 	return 0;
 | |
| }
 | |
| module_init(proc_vmalloc_init);
 | |
| 
 | |
| #endif
 |