forked from mirrors/linux
		
	 7f851936a0
			
		
	
	
		7f851936a0
		
	
	
	
	
		
			
			-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE9zuTYTs0RXF+Ke33EVvVyTe/1WoFAmVIg7wACgkQEVvVyTe/ 1WpPtw//WiQc+gwGvLEyi9YFZWTuAOO8ZGSxF7t+CU2SYy9d91s3K8dNRx2kWBh0 ycsFIYhTyq6BrHqlg1JpI4WW8S9SW7BkXbE4f5Lm/kiiGqlJn+eCA+aR8AqPMpVx KemCHJQj2WwcjlHRonAYIyQOApNePwy7EPPDlk+TlVEgMRtDHW+CY1ftChqi8bVf /aYoFdJIbliIUWNKzBeje/Hypz1a3aUrMitquoK3A91RgIgQQmnWN6yirT4Z4gKB Vd9vnnFPu9LWjCv+RUuP3C0G4zHkP92sfbEIulKqml0Vx68JZyTy5jsUzxaGmXaQ im4neCEUV88PZoAJgGFcBHbi4y0bt5WDIf7kdZGheZJv8H/X5TQTxlXle3h0qHEp Rx65OjPGzZjfia1nFzNjUCd+jCtdp02H1WxchfsRpwmXqGPYBLsNPWN+BoSaLjtL gbEMRMAs4mAJObnhAIOZclzh0boLi4IWz0yNkBoZRxkUOAUDV7UaICQoSneWj36j OH75cNrRV7vZeMQy2aLWkxGm2LabhjzDZXwO9zwHZFMKIpGg7zko10Fko9qS+20p BHe+aqWgr0qxcY41fpKzu0ftSuNs9Jsn1/I/jqmgwFw+ogRwjuxgl2LkCHOPh3cS AMwd1ZahQDQKq6Wgh1WCOi31n1d8+/Gy74IojwSC++XaPMqYB0I= =MPCb -----END PGP SIGNATURE----- Merge tag 'ovl-update-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/overlayfs/vfs Pull overlayfs updates from Amir Goldstein: - Overlayfs aio cleanups and fixes Cleanups and minor fixes in preparation for factoring out of read/write passthrough code. - Overlayfs lock ordering changes Hold mnt_writers only throughout copy up instead of a long lived elevated refcount. - Add support for nesting overlayfs private xattrs There are cases where you want to use an overlayfs mount as a lowerdir for another overlayfs mount. For example, if the system rootfs is on overlayfs due to composefs, or to make it volatile (via tmpfs), then you cannot currently store a lowerdir on the rootfs, because the inner overlayfs will eat all the whiteouts and overlay xattrs. This means you can't e.g. store on the rootfs a prepared container image for use with overlayfs. This adds support for nesting of overlayfs mounts by escaping the problematic features and unescaping them when exposing to the overlayfs user. - Add new mount options for appending lowerdirs * tag 'ovl-update-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/overlayfs/vfs: ovl: add support for appending lowerdirs one by one ovl: refactor layer parsing helpers ovl: store and show the user provided lowerdir mount option ovl: remove unused code in lowerdir param parsing ovl: Add documentation on nesting of overlayfs mounts ovl: Add an alternative type of whiteout ovl: Support escaped overlay.* xattrs ovl: Add OVL_XATTR_TRUSTED/USER_PREFIX_LEN macros ovl: Move xattr support to new xattrs.c file ovl: do not encode lower fh with upper sb_writers held ovl: do not open/llseek lower file with upper sb_writers held ovl: reorder ovl_want_write() after ovl_inode_lock() ovl: split ovl_want_write() into two helpers ovl: add helper ovl_file_modified() ovl: protect copying of realinode attributes to ovl inode ovl: punt write aio completion to workqueue ovl: propagate IOCB_APPEND flag on writes to realfile ovl: use simpler function to convert iocb to rw flags
		
			
				
	
	
		
			2163 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2163 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  linux/fs/super.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *
 | |
|  *  super.c contains code to handle: - mount structures
 | |
|  *                                   - super-block tables
 | |
|  *                                   - filesystem drivers list
 | |
|  *                                   - mount system call
 | |
|  *                                   - umount system call
 | |
|  *                                   - ustat system call
 | |
|  *
 | |
|  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
 | |
|  *
 | |
|  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
 | |
|  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
 | |
|  *  Added options to /proc/mounts:
 | |
|  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
 | |
|  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
 | |
|  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/writeback.h>		/* for the emergency remount stuff */
 | |
| #include <linux/idr.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/rculist_bl.h>
 | |
| #include <linux/fscrypt.h>
 | |
| #include <linux/fsnotify.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/user_namespace.h>
 | |
| #include <linux/fs_context.h>
 | |
| #include <uapi/linux/mount.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
 | |
| 
 | |
| static LIST_HEAD(super_blocks);
 | |
| static DEFINE_SPINLOCK(sb_lock);
 | |
| 
 | |
| static char *sb_writers_name[SB_FREEZE_LEVELS] = {
 | |
| 	"sb_writers",
 | |
| 	"sb_pagefaults",
 | |
| 	"sb_internal",
 | |
| };
 | |
| 
 | |
| static inline void __super_lock(struct super_block *sb, bool excl)
 | |
| {
 | |
| 	if (excl)
 | |
| 		down_write(&sb->s_umount);
 | |
| 	else
 | |
| 		down_read(&sb->s_umount);
 | |
| }
 | |
| 
 | |
| static inline void super_unlock(struct super_block *sb, bool excl)
 | |
| {
 | |
| 	if (excl)
 | |
| 		up_write(&sb->s_umount);
 | |
| 	else
 | |
| 		up_read(&sb->s_umount);
 | |
| }
 | |
| 
 | |
| static inline void __super_lock_excl(struct super_block *sb)
 | |
| {
 | |
| 	__super_lock(sb, true);
 | |
| }
 | |
| 
 | |
| static inline void super_unlock_excl(struct super_block *sb)
 | |
| {
 | |
| 	super_unlock(sb, true);
 | |
| }
 | |
| 
 | |
| static inline void super_unlock_shared(struct super_block *sb)
 | |
| {
 | |
| 	super_unlock(sb, false);
 | |
| }
 | |
| 
 | |
| static inline bool wait_born(struct super_block *sb)
 | |
| {
 | |
| 	unsigned int flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pairs with smp_store_release() in super_wake() and ensures
 | |
| 	 * that we see SB_BORN or SB_DYING after we're woken.
 | |
| 	 */
 | |
| 	flags = smp_load_acquire(&sb->s_flags);
 | |
| 	return flags & (SB_BORN | SB_DYING);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * super_lock - wait for superblock to become ready and lock it
 | |
|  * @sb: superblock to wait for
 | |
|  * @excl: whether exclusive access is required
 | |
|  *
 | |
|  * If the superblock has neither passed through vfs_get_tree() or
 | |
|  * generic_shutdown_super() yet wait for it to happen. Either superblock
 | |
|  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
 | |
|  * woken and we'll see SB_DYING.
 | |
|  *
 | |
|  * The caller must have acquired a temporary reference on @sb->s_count.
 | |
|  *
 | |
|  * Return: This returns true if SB_BORN was set, false if SB_DYING was
 | |
|  *         set. The function acquires s_umount and returns with it held.
 | |
|  */
 | |
| static __must_check bool super_lock(struct super_block *sb, bool excl)
 | |
| {
 | |
| 
 | |
| 	lockdep_assert_not_held(&sb->s_umount);
 | |
| 
 | |
| relock:
 | |
| 	__super_lock(sb, excl);
 | |
| 
 | |
| 	/*
 | |
| 	 * Has gone through generic_shutdown_super() in the meantime.
 | |
| 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
 | |
| 	 * grab a reference to this. Tell them so.
 | |
| 	 */
 | |
| 	if (sb->s_flags & SB_DYING)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Has called ->get_tree() successfully. */
 | |
| 	if (sb->s_flags & SB_BORN)
 | |
| 		return true;
 | |
| 
 | |
| 	super_unlock(sb, excl);
 | |
| 
 | |
| 	/* wait until the superblock is ready or dying */
 | |
| 	wait_var_event(&sb->s_flags, wait_born(sb));
 | |
| 
 | |
| 	/*
 | |
| 	 * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
 | |
| 	 * Just reacquire @sb->s_umount for the caller.
 | |
| 	 */
 | |
| 	goto relock;
 | |
| }
 | |
| 
 | |
| /* wait and acquire read-side of @sb->s_umount */
 | |
| static inline bool super_lock_shared(struct super_block *sb)
 | |
| {
 | |
| 	return super_lock(sb, false);
 | |
| }
 | |
| 
 | |
| /* wait and acquire write-side of @sb->s_umount */
 | |
| static inline bool super_lock_excl(struct super_block *sb)
 | |
| {
 | |
| 	return super_lock(sb, true);
 | |
| }
 | |
| 
 | |
| /* wake waiters */
 | |
| #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
 | |
| static void super_wake(struct super_block *sb, unsigned int flag)
 | |
| {
 | |
| 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
 | |
| 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pairs with smp_load_acquire() in super_lock() to make sure
 | |
| 	 * all initializations in the superblock are seen by the user
 | |
| 	 * seeing SB_BORN sent.
 | |
| 	 */
 | |
| 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
 | |
| 	/*
 | |
| 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
 | |
| 	 * ___wait_var_event() either sees SB_BORN set or
 | |
| 	 * waitqueue_active() check in wake_up_var() sees the waiter.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	wake_up_var(&sb->s_flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * One thing we have to be careful of with a per-sb shrinker is that we don't
 | |
|  * drop the last active reference to the superblock from within the shrinker.
 | |
|  * If that happens we could trigger unregistering the shrinker from within the
 | |
|  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
 | |
|  * take a passive reference to the superblock to avoid this from occurring.
 | |
|  */
 | |
| static unsigned long super_cache_scan(struct shrinker *shrink,
 | |
| 				      struct shrink_control *sc)
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 	long	fs_objects = 0;
 | |
| 	long	total_objects;
 | |
| 	long	freed = 0;
 | |
| 	long	dentries;
 | |
| 	long	inodes;
 | |
| 
 | |
| 	sb = shrink->private_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
 | |
| 	 * to recurse into the FS that called us in clear_inode() and friends..
 | |
| 	 */
 | |
| 	if (!(sc->gfp_mask & __GFP_FS))
 | |
| 		return SHRINK_STOP;
 | |
| 
 | |
| 	if (!super_trylock_shared(sb))
 | |
| 		return SHRINK_STOP;
 | |
| 
 | |
| 	if (sb->s_op->nr_cached_objects)
 | |
| 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
 | |
| 
 | |
| 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
 | |
| 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
 | |
| 	total_objects = dentries + inodes + fs_objects + 1;
 | |
| 	if (!total_objects)
 | |
| 		total_objects = 1;
 | |
| 
 | |
| 	/* proportion the scan between the caches */
 | |
| 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
 | |
| 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
 | |
| 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
 | |
| 
 | |
| 	/*
 | |
| 	 * prune the dcache first as the icache is pinned by it, then
 | |
| 	 * prune the icache, followed by the filesystem specific caches
 | |
| 	 *
 | |
| 	 * Ensure that we always scan at least one object - memcg kmem
 | |
| 	 * accounting uses this to fully empty the caches.
 | |
| 	 */
 | |
| 	sc->nr_to_scan = dentries + 1;
 | |
| 	freed = prune_dcache_sb(sb, sc);
 | |
| 	sc->nr_to_scan = inodes + 1;
 | |
| 	freed += prune_icache_sb(sb, sc);
 | |
| 
 | |
| 	if (fs_objects) {
 | |
| 		sc->nr_to_scan = fs_objects + 1;
 | |
| 		freed += sb->s_op->free_cached_objects(sb, sc);
 | |
| 	}
 | |
| 
 | |
| 	super_unlock_shared(sb);
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static unsigned long super_cache_count(struct shrinker *shrink,
 | |
| 				       struct shrink_control *sc)
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 	long	total_objects = 0;
 | |
| 
 | |
| 	sb = shrink->private_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't call super_trylock_shared() here as it is a scalability
 | |
| 	 * bottleneck, so we're exposed to partial setup state. The shrinker
 | |
| 	 * rwsem does not protect filesystem operations backing
 | |
| 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
 | |
| 	 * change between super_cache_count and super_cache_scan, so we really
 | |
| 	 * don't need locks here.
 | |
| 	 *
 | |
| 	 * However, if we are currently mounting the superblock, the underlying
 | |
| 	 * filesystem might be in a state of partial construction and hence it
 | |
| 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
 | |
| 	 * to avoid this situation, so do the same here. The memory barrier is
 | |
| 	 * matched with the one in mount_fs() as we don't hold locks here.
 | |
| 	 */
 | |
| 	if (!(sb->s_flags & SB_BORN))
 | |
| 		return 0;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (sb->s_op && sb->s_op->nr_cached_objects)
 | |
| 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
 | |
| 
 | |
| 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 | |
| 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 | |
| 
 | |
| 	if (!total_objects)
 | |
| 		return SHRINK_EMPTY;
 | |
| 
 | |
| 	total_objects = vfs_pressure_ratio(total_objects);
 | |
| 	return total_objects;
 | |
| }
 | |
| 
 | |
| static void destroy_super_work(struct work_struct *work)
 | |
| {
 | |
| 	struct super_block *s = container_of(work, struct super_block,
 | |
| 							destroy_work);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
 | |
| 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 | |
| 	kfree(s);
 | |
| }
 | |
| 
 | |
| static void destroy_super_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct super_block *s = container_of(head, struct super_block, rcu);
 | |
| 	INIT_WORK(&s->destroy_work, destroy_super_work);
 | |
| 	schedule_work(&s->destroy_work);
 | |
| }
 | |
| 
 | |
| /* Free a superblock that has never been seen by anyone */
 | |
| static void destroy_unused_super(struct super_block *s)
 | |
| {
 | |
| 	if (!s)
 | |
| 		return;
 | |
| 	super_unlock_excl(s);
 | |
| 	list_lru_destroy(&s->s_dentry_lru);
 | |
| 	list_lru_destroy(&s->s_inode_lru);
 | |
| 	security_sb_free(s);
 | |
| 	put_user_ns(s->s_user_ns);
 | |
| 	kfree(s->s_subtype);
 | |
| 	shrinker_free(s->s_shrink);
 | |
| 	/* no delays needed */
 | |
| 	destroy_super_work(&s->destroy_work);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	alloc_super	-	create new superblock
 | |
|  *	@type:	filesystem type superblock should belong to
 | |
|  *	@flags: the mount flags
 | |
|  *	@user_ns: User namespace for the super_block
 | |
|  *
 | |
|  *	Allocates and initializes a new &struct super_block.  alloc_super()
 | |
|  *	returns a pointer new superblock or %NULL if allocation had failed.
 | |
|  */
 | |
| static struct super_block *alloc_super(struct file_system_type *type, int flags,
 | |
| 				       struct user_namespace *user_ns)
 | |
| {
 | |
| 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 | |
| 	static const struct super_operations default_op;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!s)
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&s->s_mounts);
 | |
| 	s->s_user_ns = get_user_ns(user_ns);
 | |
| 	init_rwsem(&s->s_umount);
 | |
| 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
 | |
| 	/*
 | |
| 	 * sget() can have s_umount recursion.
 | |
| 	 *
 | |
| 	 * When it cannot find a suitable sb, it allocates a new
 | |
| 	 * one (this one), and tries again to find a suitable old
 | |
| 	 * one.
 | |
| 	 *
 | |
| 	 * In case that succeeds, it will acquire the s_umount
 | |
| 	 * lock of the old one. Since these are clearly distrinct
 | |
| 	 * locks, and this object isn't exposed yet, there's no
 | |
| 	 * risk of deadlocks.
 | |
| 	 *
 | |
| 	 * Annotate this by putting this lock in a different
 | |
| 	 * subclass.
 | |
| 	 */
 | |
| 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	if (security_sb_alloc(s))
 | |
| 		goto fail;
 | |
| 
 | |
| 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 | |
| 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 | |
| 					sb_writers_name[i],
 | |
| 					&type->s_writers_key[i]))
 | |
| 			goto fail;
 | |
| 	}
 | |
| 	s->s_bdi = &noop_backing_dev_info;
 | |
| 	s->s_flags = flags;
 | |
| 	if (s->s_user_ns != &init_user_ns)
 | |
| 		s->s_iflags |= SB_I_NODEV;
 | |
| 	INIT_HLIST_NODE(&s->s_instances);
 | |
| 	INIT_HLIST_BL_HEAD(&s->s_roots);
 | |
| 	mutex_init(&s->s_sync_lock);
 | |
| 	INIT_LIST_HEAD(&s->s_inodes);
 | |
| 	spin_lock_init(&s->s_inode_list_lock);
 | |
| 	INIT_LIST_HEAD(&s->s_inodes_wb);
 | |
| 	spin_lock_init(&s->s_inode_wblist_lock);
 | |
| 
 | |
| 	s->s_count = 1;
 | |
| 	atomic_set(&s->s_active, 1);
 | |
| 	mutex_init(&s->s_vfs_rename_mutex);
 | |
| 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 | |
| 	init_rwsem(&s->s_dquot.dqio_sem);
 | |
| 	s->s_maxbytes = MAX_NON_LFS;
 | |
| 	s->s_op = &default_op;
 | |
| 	s->s_time_gran = 1000000000;
 | |
| 	s->s_time_min = TIME64_MIN;
 | |
| 	s->s_time_max = TIME64_MAX;
 | |
| 
 | |
| 	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
 | |
| 				     "sb-%s", type->name);
 | |
| 	if (!s->s_shrink)
 | |
| 		goto fail;
 | |
| 
 | |
| 	s->s_shrink->scan_objects = super_cache_scan;
 | |
| 	s->s_shrink->count_objects = super_cache_count;
 | |
| 	s->s_shrink->batch = 1024;
 | |
| 	s->s_shrink->private_data = s;
 | |
| 
 | |
| 	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
 | |
| 		goto fail;
 | |
| 	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
 | |
| 		goto fail;
 | |
| 	return s;
 | |
| 
 | |
| fail:
 | |
| 	destroy_unused_super(s);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Superblock refcounting  */
 | |
| 
 | |
| /*
 | |
|  * Drop a superblock's refcount.  The caller must hold sb_lock.
 | |
|  */
 | |
| static void __put_super(struct super_block *s)
 | |
| {
 | |
| 	if (!--s->s_count) {
 | |
| 		list_del_init(&s->s_list);
 | |
| 		WARN_ON(s->s_dentry_lru.node);
 | |
| 		WARN_ON(s->s_inode_lru.node);
 | |
| 		WARN_ON(!list_empty(&s->s_mounts));
 | |
| 		security_sb_free(s);
 | |
| 		put_user_ns(s->s_user_ns);
 | |
| 		kfree(s->s_subtype);
 | |
| 		call_rcu(&s->rcu, destroy_super_rcu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	put_super	-	drop a temporary reference to superblock
 | |
|  *	@sb: superblock in question
 | |
|  *
 | |
|  *	Drops a temporary reference, frees superblock if there's no
 | |
|  *	references left.
 | |
|  */
 | |
| void put_super(struct super_block *sb)
 | |
| {
 | |
| 	spin_lock(&sb_lock);
 | |
| 	__put_super(sb);
 | |
| 	spin_unlock(&sb_lock);
 | |
| }
 | |
| 
 | |
| static void kill_super_notify(struct super_block *sb)
 | |
| {
 | |
| 	lockdep_assert_not_held(&sb->s_umount);
 | |
| 
 | |
| 	/* already notified earlier */
 | |
| 	if (sb->s_flags & SB_DEAD)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove it from @fs_supers so it isn't found by new
 | |
| 	 * sget{_fc}() walkers anymore. Any concurrent mounter still
 | |
| 	 * managing to grab a temporary reference is guaranteed to
 | |
| 	 * already see SB_DYING and will wait until we notify them about
 | |
| 	 * SB_DEAD.
 | |
| 	 */
 | |
| 	spin_lock(&sb_lock);
 | |
| 	hlist_del_init(&sb->s_instances);
 | |
| 	spin_unlock(&sb_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let concurrent mounts know that this thing is really dead.
 | |
| 	 * We don't need @sb->s_umount here as every concurrent caller
 | |
| 	 * will see SB_DYING and either discard the superblock or wait
 | |
| 	 * for SB_DEAD.
 | |
| 	 */
 | |
| 	super_wake(sb, SB_DEAD);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	deactivate_locked_super	-	drop an active reference to superblock
 | |
|  *	@s: superblock to deactivate
 | |
|  *
 | |
|  *	Drops an active reference to superblock, converting it into a temporary
 | |
|  *	one if there is no other active references left.  In that case we
 | |
|  *	tell fs driver to shut it down and drop the temporary reference we
 | |
|  *	had just acquired.
 | |
|  *
 | |
|  *	Caller holds exclusive lock on superblock; that lock is released.
 | |
|  */
 | |
| void deactivate_locked_super(struct super_block *s)
 | |
| {
 | |
| 	struct file_system_type *fs = s->s_type;
 | |
| 	if (atomic_dec_and_test(&s->s_active)) {
 | |
| 		shrinker_free(s->s_shrink);
 | |
| 		fs->kill_sb(s);
 | |
| 
 | |
| 		kill_super_notify(s);
 | |
| 
 | |
| 		/*
 | |
| 		 * Since list_lru_destroy() may sleep, we cannot call it from
 | |
| 		 * put_super(), where we hold the sb_lock. Therefore we destroy
 | |
| 		 * the lru lists right now.
 | |
| 		 */
 | |
| 		list_lru_destroy(&s->s_dentry_lru);
 | |
| 		list_lru_destroy(&s->s_inode_lru);
 | |
| 
 | |
| 		put_filesystem(fs);
 | |
| 		put_super(s);
 | |
| 	} else {
 | |
| 		super_unlock_excl(s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(deactivate_locked_super);
 | |
| 
 | |
| /**
 | |
|  *	deactivate_super	-	drop an active reference to superblock
 | |
|  *	@s: superblock to deactivate
 | |
|  *
 | |
|  *	Variant of deactivate_locked_super(), except that superblock is *not*
 | |
|  *	locked by caller.  If we are going to drop the final active reference,
 | |
|  *	lock will be acquired prior to that.
 | |
|  */
 | |
| void deactivate_super(struct super_block *s)
 | |
| {
 | |
| 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
 | |
| 		__super_lock_excl(s);
 | |
| 		deactivate_locked_super(s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(deactivate_super);
 | |
| 
 | |
| /**
 | |
|  *	grab_super - acquire an active reference
 | |
|  *	@s: reference we are trying to make active
 | |
|  *
 | |
|  *	Tries to acquire an active reference.  grab_super() is used when we
 | |
|  * 	had just found a superblock in super_blocks or fs_type->fs_supers
 | |
|  *	and want to turn it into a full-blown active reference.  grab_super()
 | |
|  *	is called with sb_lock held and drops it.  Returns 1 in case of
 | |
|  *	success, 0 if we had failed (superblock contents was already dead or
 | |
|  *	dying when grab_super() had been called).  Note that this is only
 | |
|  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
 | |
|  *	of their type), so increment of ->s_count is OK here.
 | |
|  */
 | |
| static int grab_super(struct super_block *s) __releases(sb_lock)
 | |
| {
 | |
| 	bool born;
 | |
| 
 | |
| 	s->s_count++;
 | |
| 	spin_unlock(&sb_lock);
 | |
| 	born = super_lock_excl(s);
 | |
| 	if (born && atomic_inc_not_zero(&s->s_active)) {
 | |
| 		put_super(s);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	super_unlock_excl(s);
 | |
| 	put_super(s);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool wait_dead(struct super_block *sb)
 | |
| {
 | |
| 	unsigned int flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pairs with memory barrier in super_wake() and ensures
 | |
| 	 * that we see SB_DEAD after we're woken.
 | |
| 	 */
 | |
| 	flags = smp_load_acquire(&sb->s_flags);
 | |
| 	return flags & SB_DEAD;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * grab_super_dead - acquire an active reference to a superblock
 | |
|  * @sb: superblock to acquire
 | |
|  *
 | |
|  * Acquire a temporary reference on a superblock and try to trade it for
 | |
|  * an active reference. This is used in sget{_fc}() to wait for a
 | |
|  * superblock to either become SB_BORN or for it to pass through
 | |
|  * sb->kill() and be marked as SB_DEAD.
 | |
|  *
 | |
|  * Return: This returns true if an active reference could be acquired,
 | |
|  *         false if not.
 | |
|  */
 | |
| static bool grab_super_dead(struct super_block *sb)
 | |
| {
 | |
| 
 | |
| 	sb->s_count++;
 | |
| 	if (grab_super(sb)) {
 | |
| 		put_super(sb);
 | |
| 		lockdep_assert_held(&sb->s_umount);
 | |
| 		return true;
 | |
| 	}
 | |
| 	wait_var_event(&sb->s_flags, wait_dead(sb));
 | |
| 	lockdep_assert_not_held(&sb->s_umount);
 | |
| 	put_super(sb);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	super_trylock_shared - try to grab ->s_umount shared
 | |
|  *	@sb: reference we are trying to grab
 | |
|  *
 | |
|  *	Try to prevent fs shutdown.  This is used in places where we
 | |
|  *	cannot take an active reference but we need to ensure that the
 | |
|  *	filesystem is not shut down while we are working on it. It returns
 | |
|  *	false if we cannot acquire s_umount or if we lose the race and
 | |
|  *	filesystem already got into shutdown, and returns true with the s_umount
 | |
|  *	lock held in read mode in case of success. On successful return,
 | |
|  *	the caller must drop the s_umount lock when done.
 | |
|  *
 | |
|  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 | |
|  *	The reason why it's safe is that we are OK with doing trylock instead
 | |
|  *	of down_read().  There's a couple of places that are OK with that, but
 | |
|  *	it's very much not a general-purpose interface.
 | |
|  */
 | |
| bool super_trylock_shared(struct super_block *sb)
 | |
| {
 | |
| 	if (down_read_trylock(&sb->s_umount)) {
 | |
| 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
 | |
| 		    (sb->s_flags & SB_BORN))
 | |
| 			return true;
 | |
| 		super_unlock_shared(sb);
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	retire_super	-	prevents superblock from being reused
 | |
|  *	@sb: superblock to retire
 | |
|  *
 | |
|  *	The function marks superblock to be ignored in superblock test, which
 | |
|  *	prevents it from being reused for any new mounts.  If the superblock has
 | |
|  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
 | |
|  *	of the superblock to prevent potential races.  The refcount is reduced
 | |
|  *	by generic_shutdown_super().  The function can not be called
 | |
|  *	concurrently with generic_shutdown_super().  It is safe to call the
 | |
|  *	function multiple times, subsequent calls have no effect.
 | |
|  *
 | |
|  *	The marker will affect the re-use only for block-device-based
 | |
|  *	superblocks.  Other superblocks will still get marked if this function
 | |
|  *	is used, but that will not affect their reusability.
 | |
|  */
 | |
| void retire_super(struct super_block *sb)
 | |
| {
 | |
| 	WARN_ON(!sb->s_bdev);
 | |
| 	__super_lock_excl(sb);
 | |
| 	if (sb->s_iflags & SB_I_PERSB_BDI) {
 | |
| 		bdi_unregister(sb->s_bdi);
 | |
| 		sb->s_iflags &= ~SB_I_PERSB_BDI;
 | |
| 	}
 | |
| 	sb->s_iflags |= SB_I_RETIRED;
 | |
| 	super_unlock_excl(sb);
 | |
| }
 | |
| EXPORT_SYMBOL(retire_super);
 | |
| 
 | |
| /**
 | |
|  *	generic_shutdown_super	-	common helper for ->kill_sb()
 | |
|  *	@sb: superblock to kill
 | |
|  *
 | |
|  *	generic_shutdown_super() does all fs-independent work on superblock
 | |
|  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 | |
|  *	that need destruction out of superblock, call generic_shutdown_super()
 | |
|  *	and release aforementioned objects.  Note: dentries and inodes _are_
 | |
|  *	taken care of and do not need specific handling.
 | |
|  *
 | |
|  *	Upon calling this function, the filesystem may no longer alter or
 | |
|  *	rearrange the set of dentries belonging to this super_block, nor may it
 | |
|  *	change the attachments of dentries to inodes.
 | |
|  */
 | |
| void generic_shutdown_super(struct super_block *sb)
 | |
| {
 | |
| 	const struct super_operations *sop = sb->s_op;
 | |
| 
 | |
| 	if (sb->s_root) {
 | |
| 		shrink_dcache_for_umount(sb);
 | |
| 		sync_filesystem(sb);
 | |
| 		sb->s_flags &= ~SB_ACTIVE;
 | |
| 
 | |
| 		cgroup_writeback_umount();
 | |
| 
 | |
| 		/* Evict all inodes with zero refcount. */
 | |
| 		evict_inodes(sb);
 | |
| 
 | |
| 		/*
 | |
| 		 * Clean up and evict any inodes that still have references due
 | |
| 		 * to fsnotify or the security policy.
 | |
| 		 */
 | |
| 		fsnotify_sb_delete(sb);
 | |
| 		security_sb_delete(sb);
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that all potentially-encrypted inodes have been evicted,
 | |
| 		 * the fscrypt keyring can be destroyed.
 | |
| 		 */
 | |
| 		fscrypt_destroy_keyring(sb);
 | |
| 
 | |
| 		if (sb->s_dio_done_wq) {
 | |
| 			destroy_workqueue(sb->s_dio_done_wq);
 | |
| 			sb->s_dio_done_wq = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (sop->put_super)
 | |
| 			sop->put_super(sb);
 | |
| 
 | |
| 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
 | |
| 				"VFS: Busy inodes after unmount of %s (%s)",
 | |
| 				sb->s_id, sb->s_type->name)) {
 | |
| 			/*
 | |
| 			 * Adding a proper bailout path here would be hard, but
 | |
| 			 * we can at least make it more likely that a later
 | |
| 			 * iput_final() or such crashes cleanly.
 | |
| 			 */
 | |
| 			struct inode *inode;
 | |
| 
 | |
| 			spin_lock(&sb->s_inode_list_lock);
 | |
| 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
 | |
| 				inode->i_op = VFS_PTR_POISON;
 | |
| 				inode->i_sb = VFS_PTR_POISON;
 | |
| 				inode->i_mapping = VFS_PTR_POISON;
 | |
| 			}
 | |
| 			spin_unlock(&sb->s_inode_list_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Broadcast to everyone that grabbed a temporary reference to this
 | |
| 	 * superblock before we removed it from @fs_supers that the superblock
 | |
| 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
 | |
| 	 * discard this superblock and treat it as dead.
 | |
| 	 *
 | |
| 	 * We leave the superblock on @fs_supers so it can be found by
 | |
| 	 * sget{_fc}() until we passed sb->kill_sb().
 | |
| 	 */
 | |
| 	super_wake(sb, SB_DYING);
 | |
| 	super_unlock_excl(sb);
 | |
| 	if (sb->s_bdi != &noop_backing_dev_info) {
 | |
| 		if (sb->s_iflags & SB_I_PERSB_BDI)
 | |
| 			bdi_unregister(sb->s_bdi);
 | |
| 		bdi_put(sb->s_bdi);
 | |
| 		sb->s_bdi = &noop_backing_dev_info;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(generic_shutdown_super);
 | |
| 
 | |
| bool mount_capable(struct fs_context *fc)
 | |
| {
 | |
| 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 | |
| 		return capable(CAP_SYS_ADMIN);
 | |
| 	else
 | |
| 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sget_fc - Find or create a superblock
 | |
|  * @fc:	Filesystem context.
 | |
|  * @test: Comparison callback
 | |
|  * @set: Setup callback
 | |
|  *
 | |
|  * Create a new superblock or find an existing one.
 | |
|  *
 | |
|  * The @test callback is used to find a matching existing superblock.
 | |
|  * Whether or not the requested parameters in @fc are taken into account
 | |
|  * is specific to the @test callback that is used. They may even be
 | |
|  * completely ignored.
 | |
|  *
 | |
|  * If an extant superblock is matched, it will be returned unless:
 | |
|  *
 | |
|  * (1) the namespace the filesystem context @fc and the extant
 | |
|  *     superblock's namespace differ
 | |
|  *
 | |
|  * (2) the filesystem context @fc has requested that reusing an extant
 | |
|  *     superblock is not allowed
 | |
|  *
 | |
|  * In both cases EBUSY will be returned.
 | |
|  *
 | |
|  * If no match is made, a new superblock will be allocated and basic
 | |
|  * initialisation will be performed (s_type, s_fs_info and s_id will be
 | |
|  * set and the @set callback will be invoked), the superblock will be
 | |
|  * published and it will be returned in a partially constructed state
 | |
|  * with SB_BORN and SB_ACTIVE as yet unset.
 | |
|  *
 | |
|  * Return: On success, an extant or newly created superblock is
 | |
|  *         returned. On failure an error pointer is returned.
 | |
|  */
 | |
| struct super_block *sget_fc(struct fs_context *fc,
 | |
| 			    int (*test)(struct super_block *, struct fs_context *),
 | |
| 			    int (*set)(struct super_block *, struct fs_context *))
 | |
| {
 | |
| 	struct super_block *s = NULL;
 | |
| 	struct super_block *old;
 | |
| 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 | |
| 	int err;
 | |
| 
 | |
| retry:
 | |
| 	spin_lock(&sb_lock);
 | |
| 	if (test) {
 | |
| 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 | |
| 			if (test(old, fc))
 | |
| 				goto share_extant_sb;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!s) {
 | |
| 		spin_unlock(&sb_lock);
 | |
| 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 | |
| 		if (!s)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	s->s_fs_info = fc->s_fs_info;
 | |
| 	err = set(s, fc);
 | |
| 	if (err) {
 | |
| 		s->s_fs_info = NULL;
 | |
| 		spin_unlock(&sb_lock);
 | |
| 		destroy_unused_super(s);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 	fc->s_fs_info = NULL;
 | |
| 	s->s_type = fc->fs_type;
 | |
| 	s->s_iflags |= fc->s_iflags;
 | |
| 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 | |
| 	/*
 | |
| 	 * Make the superblock visible on @super_blocks and @fs_supers.
 | |
| 	 * It's in a nascent state and users should wait on SB_BORN or
 | |
| 	 * SB_DYING to be set.
 | |
| 	 */
 | |
| 	list_add_tail(&s->s_list, &super_blocks);
 | |
| 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 | |
| 	spin_unlock(&sb_lock);
 | |
| 	get_filesystem(s->s_type);
 | |
| 	shrinker_register(s->s_shrink);
 | |
| 	return s;
 | |
| 
 | |
| share_extant_sb:
 | |
| 	if (user_ns != old->s_user_ns || fc->exclusive) {
 | |
| 		spin_unlock(&sb_lock);
 | |
| 		destroy_unused_super(s);
 | |
| 		if (fc->exclusive)
 | |
| 			warnfc(fc, "reusing existing filesystem not allowed");
 | |
| 		else
 | |
| 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 	}
 | |
| 	if (!grab_super_dead(old))
 | |
| 		goto retry;
 | |
| 	destroy_unused_super(s);
 | |
| 	return old;
 | |
| }
 | |
| EXPORT_SYMBOL(sget_fc);
 | |
| 
 | |
| /**
 | |
|  *	sget	-	find or create a superblock
 | |
|  *	@type:	  filesystem type superblock should belong to
 | |
|  *	@test:	  comparison callback
 | |
|  *	@set:	  setup callback
 | |
|  *	@flags:	  mount flags
 | |
|  *	@data:	  argument to each of them
 | |
|  */
 | |
| struct super_block *sget(struct file_system_type *type,
 | |
| 			int (*test)(struct super_block *,void *),
 | |
| 			int (*set)(struct super_block *,void *),
 | |
| 			int flags,
 | |
| 			void *data)
 | |
| {
 | |
| 	struct user_namespace *user_ns = current_user_ns();
 | |
| 	struct super_block *s = NULL;
 | |
| 	struct super_block *old;
 | |
| 	int err;
 | |
| 
 | |
| 	/* We don't yet pass the user namespace of the parent
 | |
| 	 * mount through to here so always use &init_user_ns
 | |
| 	 * until that changes.
 | |
| 	 */
 | |
| 	if (flags & SB_SUBMOUNT)
 | |
| 		user_ns = &init_user_ns;
 | |
| 
 | |
| retry:
 | |
| 	spin_lock(&sb_lock);
 | |
| 	if (test) {
 | |
| 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 | |
| 			if (!test(old, data))
 | |
| 				continue;
 | |
| 			if (user_ns != old->s_user_ns) {
 | |
| 				spin_unlock(&sb_lock);
 | |
| 				destroy_unused_super(s);
 | |
| 				return ERR_PTR(-EBUSY);
 | |
| 			}
 | |
| 			if (!grab_super_dead(old))
 | |
| 				goto retry;
 | |
| 			destroy_unused_super(s);
 | |
| 			return old;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!s) {
 | |
| 		spin_unlock(&sb_lock);
 | |
| 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 | |
| 		if (!s)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	err = set(s, data);
 | |
| 	if (err) {
 | |
| 		spin_unlock(&sb_lock);
 | |
| 		destroy_unused_super(s);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 	s->s_type = type;
 | |
| 	strscpy(s->s_id, type->name, sizeof(s->s_id));
 | |
| 	list_add_tail(&s->s_list, &super_blocks);
 | |
| 	hlist_add_head(&s->s_instances, &type->fs_supers);
 | |
| 	spin_unlock(&sb_lock);
 | |
| 	get_filesystem(type);
 | |
| 	shrinker_register(s->s_shrink);
 | |
| 	return s;
 | |
| }
 | |
| EXPORT_SYMBOL(sget);
 | |
| 
 | |
| void drop_super(struct super_block *sb)
 | |
| {
 | |
| 	super_unlock_shared(sb);
 | |
| 	put_super(sb);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(drop_super);
 | |
| 
 | |
| void drop_super_exclusive(struct super_block *sb)
 | |
| {
 | |
| 	super_unlock_excl(sb);
 | |
| 	put_super(sb);
 | |
| }
 | |
| EXPORT_SYMBOL(drop_super_exclusive);
 | |
| 
 | |
| static void __iterate_supers(void (*f)(struct super_block *))
 | |
| {
 | |
| 	struct super_block *sb, *p = NULL;
 | |
| 
 | |
| 	spin_lock(&sb_lock);
 | |
| 	list_for_each_entry(sb, &super_blocks, s_list) {
 | |
| 		/* Pairs with memory marrier in super_wake(). */
 | |
| 		if (smp_load_acquire(&sb->s_flags) & SB_DYING)
 | |
| 			continue;
 | |
| 		sb->s_count++;
 | |
| 		spin_unlock(&sb_lock);
 | |
| 
 | |
| 		f(sb);
 | |
| 
 | |
| 		spin_lock(&sb_lock);
 | |
| 		if (p)
 | |
| 			__put_super(p);
 | |
| 		p = sb;
 | |
| 	}
 | |
| 	if (p)
 | |
| 		__put_super(p);
 | |
| 	spin_unlock(&sb_lock);
 | |
| }
 | |
| /**
 | |
|  *	iterate_supers - call function for all active superblocks
 | |
|  *	@f: function to call
 | |
|  *	@arg: argument to pass to it
 | |
|  *
 | |
|  *	Scans the superblock list and calls given function, passing it
 | |
|  *	locked superblock and given argument.
 | |
|  */
 | |
| void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 | |
| {
 | |
| 	struct super_block *sb, *p = NULL;
 | |
| 
 | |
| 	spin_lock(&sb_lock);
 | |
| 	list_for_each_entry(sb, &super_blocks, s_list) {
 | |
| 		bool born;
 | |
| 
 | |
| 		sb->s_count++;
 | |
| 		spin_unlock(&sb_lock);
 | |
| 
 | |
| 		born = super_lock_shared(sb);
 | |
| 		if (born && sb->s_root)
 | |
| 			f(sb, arg);
 | |
| 		super_unlock_shared(sb);
 | |
| 
 | |
| 		spin_lock(&sb_lock);
 | |
| 		if (p)
 | |
| 			__put_super(p);
 | |
| 		p = sb;
 | |
| 	}
 | |
| 	if (p)
 | |
| 		__put_super(p);
 | |
| 	spin_unlock(&sb_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	iterate_supers_type - call function for superblocks of given type
 | |
|  *	@type: fs type
 | |
|  *	@f: function to call
 | |
|  *	@arg: argument to pass to it
 | |
|  *
 | |
|  *	Scans the superblock list and calls given function, passing it
 | |
|  *	locked superblock and given argument.
 | |
|  */
 | |
| void iterate_supers_type(struct file_system_type *type,
 | |
| 	void (*f)(struct super_block *, void *), void *arg)
 | |
| {
 | |
| 	struct super_block *sb, *p = NULL;
 | |
| 
 | |
| 	spin_lock(&sb_lock);
 | |
| 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 | |
| 		bool born;
 | |
| 
 | |
| 		sb->s_count++;
 | |
| 		spin_unlock(&sb_lock);
 | |
| 
 | |
| 		born = super_lock_shared(sb);
 | |
| 		if (born && sb->s_root)
 | |
| 			f(sb, arg);
 | |
| 		super_unlock_shared(sb);
 | |
| 
 | |
| 		spin_lock(&sb_lock);
 | |
| 		if (p)
 | |
| 			__put_super(p);
 | |
| 		p = sb;
 | |
| 	}
 | |
| 	if (p)
 | |
| 		__put_super(p);
 | |
| 	spin_unlock(&sb_lock);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(iterate_supers_type);
 | |
| 
 | |
| /**
 | |
|  * get_active_super - get an active reference to the superblock of a device
 | |
|  * @bdev: device to get the superblock for
 | |
|  *
 | |
|  * Scans the superblock list and finds the superblock of the file system
 | |
|  * mounted on the device given.  Returns the superblock with an active
 | |
|  * reference or %NULL if none was found.
 | |
|  */
 | |
| struct super_block *get_active_super(struct block_device *bdev)
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 
 | |
| 	if (!bdev)
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock(&sb_lock);
 | |
| 	list_for_each_entry(sb, &super_blocks, s_list) {
 | |
| 		if (sb->s_bdev == bdev) {
 | |
| 			if (!grab_super(sb))
 | |
| 				return NULL;
 | |
| 			super_unlock_excl(sb);
 | |
| 			return sb;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&sb_lock);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct super_block *user_get_super(dev_t dev, bool excl)
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 
 | |
| 	spin_lock(&sb_lock);
 | |
| 	list_for_each_entry(sb, &super_blocks, s_list) {
 | |
| 		if (sb->s_dev ==  dev) {
 | |
| 			bool born;
 | |
| 
 | |
| 			sb->s_count++;
 | |
| 			spin_unlock(&sb_lock);
 | |
| 			/* still alive? */
 | |
| 			born = super_lock(sb, excl);
 | |
| 			if (born && sb->s_root)
 | |
| 				return sb;
 | |
| 			super_unlock(sb, excl);
 | |
| 			/* nope, got unmounted */
 | |
| 			spin_lock(&sb_lock);
 | |
| 			__put_super(sb);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&sb_lock);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * reconfigure_super - asks filesystem to change superblock parameters
 | |
|  * @fc: The superblock and configuration
 | |
|  *
 | |
|  * Alters the configuration parameters of a live superblock.
 | |
|  */
 | |
| int reconfigure_super(struct fs_context *fc)
 | |
| {
 | |
| 	struct super_block *sb = fc->root->d_sb;
 | |
| 	int retval;
 | |
| 	bool remount_ro = false;
 | |
| 	bool remount_rw = false;
 | |
| 	bool force = fc->sb_flags & SB_FORCE;
 | |
| 
 | |
| 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
 | |
| 		return -EINVAL;
 | |
| 	if (sb->s_writers.frozen != SB_UNFROZEN)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	retval = security_sb_remount(sb, fc->security);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	if (fc->sb_flags_mask & SB_RDONLY) {
 | |
| #ifdef CONFIG_BLOCK
 | |
| 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
 | |
| 		    bdev_read_only(sb->s_bdev))
 | |
| 			return -EACCES;
 | |
| #endif
 | |
| 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
 | |
| 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 | |
| 	}
 | |
| 
 | |
| 	if (remount_ro) {
 | |
| 		if (!hlist_empty(&sb->s_pins)) {
 | |
| 			super_unlock_excl(sb);
 | |
| 			group_pin_kill(&sb->s_pins);
 | |
| 			__super_lock_excl(sb);
 | |
| 			if (!sb->s_root)
 | |
| 				return 0;
 | |
| 			if (sb->s_writers.frozen != SB_UNFROZEN)
 | |
| 				return -EBUSY;
 | |
| 			remount_ro = !sb_rdonly(sb);
 | |
| 		}
 | |
| 	}
 | |
| 	shrink_dcache_sb(sb);
 | |
| 
 | |
| 	/* If we are reconfiguring to RDONLY and current sb is read/write,
 | |
| 	 * make sure there are no files open for writing.
 | |
| 	 */
 | |
| 	if (remount_ro) {
 | |
| 		if (force) {
 | |
| 			sb_start_ro_state_change(sb);
 | |
| 		} else {
 | |
| 			retval = sb_prepare_remount_readonly(sb);
 | |
| 			if (retval)
 | |
| 				return retval;
 | |
| 		}
 | |
| 	} else if (remount_rw) {
 | |
| 		/*
 | |
| 		 * Protect filesystem's reconfigure code from writes from
 | |
| 		 * userspace until reconfigure finishes.
 | |
| 		 */
 | |
| 		sb_start_ro_state_change(sb);
 | |
| 	}
 | |
| 
 | |
| 	if (fc->ops->reconfigure) {
 | |
| 		retval = fc->ops->reconfigure(fc);
 | |
| 		if (retval) {
 | |
| 			if (!force)
 | |
| 				goto cancel_readonly;
 | |
| 			/* If forced remount, go ahead despite any errors */
 | |
| 			WARN(1, "forced remount of a %s fs returned %i\n",
 | |
| 			     sb->s_type->name, retval);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 | |
| 				 (fc->sb_flags & fc->sb_flags_mask)));
 | |
| 	sb_end_ro_state_change(sb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some filesystems modify their metadata via some other path than the
 | |
| 	 * bdev buffer cache (eg. use a private mapping, or directories in
 | |
| 	 * pagecache, etc). Also file data modifications go via their own
 | |
| 	 * mappings. So If we try to mount readonly then copy the filesystem
 | |
| 	 * from bdev, we could get stale data, so invalidate it to give a best
 | |
| 	 * effort at coherency.
 | |
| 	 */
 | |
| 	if (remount_ro && sb->s_bdev)
 | |
| 		invalidate_bdev(sb->s_bdev);
 | |
| 	return 0;
 | |
| 
 | |
| cancel_readonly:
 | |
| 	sb_end_ro_state_change(sb);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void do_emergency_remount_callback(struct super_block *sb)
 | |
| {
 | |
| 	bool born = super_lock_excl(sb);
 | |
| 
 | |
| 	if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
 | |
| 		struct fs_context *fc;
 | |
| 
 | |
| 		fc = fs_context_for_reconfigure(sb->s_root,
 | |
| 					SB_RDONLY | SB_FORCE, SB_RDONLY);
 | |
| 		if (!IS_ERR(fc)) {
 | |
| 			if (parse_monolithic_mount_data(fc, NULL) == 0)
 | |
| 				(void)reconfigure_super(fc);
 | |
| 			put_fs_context(fc);
 | |
| 		}
 | |
| 	}
 | |
| 	super_unlock_excl(sb);
 | |
| }
 | |
| 
 | |
| static void do_emergency_remount(struct work_struct *work)
 | |
| {
 | |
| 	__iterate_supers(do_emergency_remount_callback);
 | |
| 	kfree(work);
 | |
| 	printk("Emergency Remount complete\n");
 | |
| }
 | |
| 
 | |
| void emergency_remount(void)
 | |
| {
 | |
| 	struct work_struct *work;
 | |
| 
 | |
| 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 | |
| 	if (work) {
 | |
| 		INIT_WORK(work, do_emergency_remount);
 | |
| 		schedule_work(work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void do_thaw_all_callback(struct super_block *sb)
 | |
| {
 | |
| 	bool born = super_lock_excl(sb);
 | |
| 
 | |
| 	if (born && sb->s_root) {
 | |
| 		if (IS_ENABLED(CONFIG_BLOCK))
 | |
| 			while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
 | |
| 				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
 | |
| 		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
 | |
| 	} else {
 | |
| 		super_unlock_excl(sb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void do_thaw_all(struct work_struct *work)
 | |
| {
 | |
| 	__iterate_supers(do_thaw_all_callback);
 | |
| 	kfree(work);
 | |
| 	printk(KERN_WARNING "Emergency Thaw complete\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * emergency_thaw_all -- forcibly thaw every frozen filesystem
 | |
|  *
 | |
|  * Used for emergency unfreeze of all filesystems via SysRq
 | |
|  */
 | |
| void emergency_thaw_all(void)
 | |
| {
 | |
| 	struct work_struct *work;
 | |
| 
 | |
| 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
 | |
| 	if (work) {
 | |
| 		INIT_WORK(work, do_thaw_all);
 | |
| 		schedule_work(work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static DEFINE_IDA(unnamed_dev_ida);
 | |
| 
 | |
| /**
 | |
|  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
 | |
|  * @p: Pointer to a dev_t.
 | |
|  *
 | |
|  * Filesystems which don't use real block devices can call this function
 | |
|  * to allocate a virtual block device.
 | |
|  *
 | |
|  * Context: Any context.  Frequently called while holding sb_lock.
 | |
|  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
 | |
|  * or -ENOMEM if memory allocation failed.
 | |
|  */
 | |
| int get_anon_bdev(dev_t *p)
 | |
| {
 | |
| 	int dev;
 | |
| 
 | |
| 	/*
 | |
| 	 * Many userspace utilities consider an FSID of 0 invalid.
 | |
| 	 * Always return at least 1 from get_anon_bdev.
 | |
| 	 */
 | |
| 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
 | |
| 			GFP_ATOMIC);
 | |
| 	if (dev == -ENOSPC)
 | |
| 		dev = -EMFILE;
 | |
| 	if (dev < 0)
 | |
| 		return dev;
 | |
| 
 | |
| 	*p = MKDEV(0, dev);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(get_anon_bdev);
 | |
| 
 | |
| void free_anon_bdev(dev_t dev)
 | |
| {
 | |
| 	ida_free(&unnamed_dev_ida, MINOR(dev));
 | |
| }
 | |
| EXPORT_SYMBOL(free_anon_bdev);
 | |
| 
 | |
| int set_anon_super(struct super_block *s, void *data)
 | |
| {
 | |
| 	return get_anon_bdev(&s->s_dev);
 | |
| }
 | |
| EXPORT_SYMBOL(set_anon_super);
 | |
| 
 | |
| void kill_anon_super(struct super_block *sb)
 | |
| {
 | |
| 	dev_t dev = sb->s_dev;
 | |
| 	generic_shutdown_super(sb);
 | |
| 	kill_super_notify(sb);
 | |
| 	free_anon_bdev(dev);
 | |
| }
 | |
| EXPORT_SYMBOL(kill_anon_super);
 | |
| 
 | |
| void kill_litter_super(struct super_block *sb)
 | |
| {
 | |
| 	if (sb->s_root)
 | |
| 		d_genocide(sb->s_root);
 | |
| 	kill_anon_super(sb);
 | |
| }
 | |
| EXPORT_SYMBOL(kill_litter_super);
 | |
| 
 | |
| int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
 | |
| {
 | |
| 	return set_anon_super(sb, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(set_anon_super_fc);
 | |
| 
 | |
| static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
 | |
| {
 | |
| 	return sb->s_fs_info == fc->s_fs_info;
 | |
| }
 | |
| 
 | |
| static int test_single_super(struct super_block *s, struct fs_context *fc)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int vfs_get_super(struct fs_context *fc,
 | |
| 		int (*test)(struct super_block *, struct fs_context *),
 | |
| 		int (*fill_super)(struct super_block *sb,
 | |
| 				  struct fs_context *fc))
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 	int err;
 | |
| 
 | |
| 	sb = sget_fc(fc, test, set_anon_super_fc);
 | |
| 	if (IS_ERR(sb))
 | |
| 		return PTR_ERR(sb);
 | |
| 
 | |
| 	if (!sb->s_root) {
 | |
| 		err = fill_super(sb, fc);
 | |
| 		if (err)
 | |
| 			goto error;
 | |
| 
 | |
| 		sb->s_flags |= SB_ACTIVE;
 | |
| 	}
 | |
| 
 | |
| 	fc->root = dget(sb->s_root);
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	deactivate_locked_super(sb);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int get_tree_nodev(struct fs_context *fc,
 | |
| 		  int (*fill_super)(struct super_block *sb,
 | |
| 				    struct fs_context *fc))
 | |
| {
 | |
| 	return vfs_get_super(fc, NULL, fill_super);
 | |
| }
 | |
| EXPORT_SYMBOL(get_tree_nodev);
 | |
| 
 | |
| int get_tree_single(struct fs_context *fc,
 | |
| 		  int (*fill_super)(struct super_block *sb,
 | |
| 				    struct fs_context *fc))
 | |
| {
 | |
| 	return vfs_get_super(fc, test_single_super, fill_super);
 | |
| }
 | |
| EXPORT_SYMBOL(get_tree_single);
 | |
| 
 | |
| int get_tree_keyed(struct fs_context *fc,
 | |
| 		  int (*fill_super)(struct super_block *sb,
 | |
| 				    struct fs_context *fc),
 | |
| 		void *key)
 | |
| {
 | |
| 	fc->s_fs_info = key;
 | |
| 	return vfs_get_super(fc, test_keyed_super, fill_super);
 | |
| }
 | |
| EXPORT_SYMBOL(get_tree_keyed);
 | |
| 
 | |
| static int set_bdev_super(struct super_block *s, void *data)
 | |
| {
 | |
| 	s->s_dev = *(dev_t *)data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
 | |
| {
 | |
| 	return set_bdev_super(s, fc->sget_key);
 | |
| }
 | |
| 
 | |
| static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
 | |
| {
 | |
| 	return !(s->s_iflags & SB_I_RETIRED) &&
 | |
| 		s->s_dev == *(dev_t *)fc->sget_key;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sget_dev - Find or create a superblock by device number
 | |
|  * @fc: Filesystem context.
 | |
|  * @dev: device number
 | |
|  *
 | |
|  * Find or create a superblock using the provided device number that
 | |
|  * will be stored in fc->sget_key.
 | |
|  *
 | |
|  * If an extant superblock is matched, then that will be returned with
 | |
|  * an elevated reference count that the caller must transfer or discard.
 | |
|  *
 | |
|  * If no match is made, a new superblock will be allocated and basic
 | |
|  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
 | |
|  * be set). The superblock will be published and it will be returned in
 | |
|  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
 | |
|  * unset.
 | |
|  *
 | |
|  * Return: an existing or newly created superblock on success, an error
 | |
|  *         pointer on failure.
 | |
|  */
 | |
| struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
 | |
| {
 | |
| 	fc->sget_key = &dev;
 | |
| 	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
 | |
| }
 | |
| EXPORT_SYMBOL(sget_dev);
 | |
| 
 | |
| #ifdef CONFIG_BLOCK
 | |
| /*
 | |
|  * Lock the superblock that is holder of the bdev. Returns the superblock
 | |
|  * pointer if we successfully locked the superblock and it is alive. Otherwise
 | |
|  * we return NULL and just unlock bdev->bd_holder_lock.
 | |
|  *
 | |
|  * The function must be called with bdev->bd_holder_lock and releases it.
 | |
|  */
 | |
| static struct super_block *bdev_super_lock_shared(struct block_device *bdev)
 | |
| 	__releases(&bdev->bd_holder_lock)
 | |
| {
 | |
| 	struct super_block *sb = bdev->bd_holder;
 | |
| 	bool born;
 | |
| 
 | |
| 	lockdep_assert_held(&bdev->bd_holder_lock);
 | |
| 	lockdep_assert_not_held(&sb->s_umount);
 | |
| 	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
 | |
| 
 | |
| 	/* Make sure sb doesn't go away from under us */
 | |
| 	spin_lock(&sb_lock);
 | |
| 	sb->s_count++;
 | |
| 	spin_unlock(&sb_lock);
 | |
| 	mutex_unlock(&bdev->bd_holder_lock);
 | |
| 
 | |
| 	born = super_lock_shared(sb);
 | |
| 	if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
 | |
| 		super_unlock_shared(sb);
 | |
| 		put_super(sb);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * The superblock is active and we hold s_umount, we can drop our
 | |
| 	 * temporary reference now.
 | |
| 	 */
 | |
| 	put_super(sb);
 | |
| 	return sb;
 | |
| }
 | |
| 
 | |
| static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 
 | |
| 	sb = bdev_super_lock_shared(bdev);
 | |
| 	if (!sb)
 | |
| 		return;
 | |
| 
 | |
| 	if (!surprise)
 | |
| 		sync_filesystem(sb);
 | |
| 	shrink_dcache_sb(sb);
 | |
| 	invalidate_inodes(sb);
 | |
| 	if (sb->s_op->shutdown)
 | |
| 		sb->s_op->shutdown(sb);
 | |
| 
 | |
| 	super_unlock_shared(sb);
 | |
| }
 | |
| 
 | |
| static void fs_bdev_sync(struct block_device *bdev)
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 
 | |
| 	sb = bdev_super_lock_shared(bdev);
 | |
| 	if (!sb)
 | |
| 		return;
 | |
| 	sync_filesystem(sb);
 | |
| 	super_unlock_shared(sb);
 | |
| }
 | |
| 
 | |
| const struct blk_holder_ops fs_holder_ops = {
 | |
| 	.mark_dead		= fs_bdev_mark_dead,
 | |
| 	.sync			= fs_bdev_sync,
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(fs_holder_ops);
 | |
| 
 | |
| int setup_bdev_super(struct super_block *sb, int sb_flags,
 | |
| 		struct fs_context *fc)
 | |
| {
 | |
| 	blk_mode_t mode = sb_open_mode(sb_flags);
 | |
| 	struct bdev_handle *bdev_handle;
 | |
| 	struct block_device *bdev;
 | |
| 
 | |
| 	bdev_handle = bdev_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
 | |
| 	if (IS_ERR(bdev_handle)) {
 | |
| 		if (fc)
 | |
| 			errorf(fc, "%s: Can't open blockdev", fc->source);
 | |
| 		return PTR_ERR(bdev_handle);
 | |
| 	}
 | |
| 	bdev = bdev_handle->bdev;
 | |
| 
 | |
| 	/*
 | |
| 	 * This really should be in blkdev_get_by_dev, but right now can't due
 | |
| 	 * to legacy issues that require us to allow opening a block device node
 | |
| 	 * writable from userspace even for a read-only block device.
 | |
| 	 */
 | |
| 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
 | |
| 		bdev_release(bdev_handle);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Until SB_BORN flag is set, there can be no active superblock
 | |
| 	 * references and thus no filesystem freezing. get_active_super() will
 | |
| 	 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
 | |
| 	 *
 | |
| 	 * It is enough to check bdev was not frozen before we set s_bdev.
 | |
| 	 */
 | |
| 	mutex_lock(&bdev->bd_fsfreeze_mutex);
 | |
| 	if (bdev->bd_fsfreeze_count > 0) {
 | |
| 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 | |
| 		if (fc)
 | |
| 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
 | |
| 		bdev_release(bdev_handle);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	spin_lock(&sb_lock);
 | |
| 	sb->s_bdev_handle = bdev_handle;
 | |
| 	sb->s_bdev = bdev;
 | |
| 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
 | |
| 	if (bdev_stable_writes(bdev))
 | |
| 		sb->s_iflags |= SB_I_STABLE_WRITES;
 | |
| 	spin_unlock(&sb_lock);
 | |
| 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 | |
| 
 | |
| 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
 | |
| 	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
 | |
| 				sb->s_id);
 | |
| 	sb_set_blocksize(sb, block_size(bdev));
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(setup_bdev_super);
 | |
| 
 | |
| /**
 | |
|  * get_tree_bdev - Get a superblock based on a single block device
 | |
|  * @fc: The filesystem context holding the parameters
 | |
|  * @fill_super: Helper to initialise a new superblock
 | |
|  */
 | |
| int get_tree_bdev(struct fs_context *fc,
 | |
| 		int (*fill_super)(struct super_block *,
 | |
| 				  struct fs_context *))
 | |
| {
 | |
| 	struct super_block *s;
 | |
| 	int error = 0;
 | |
| 	dev_t dev;
 | |
| 
 | |
| 	if (!fc->source)
 | |
| 		return invalf(fc, "No source specified");
 | |
| 
 | |
| 	error = lookup_bdev(fc->source, &dev);
 | |
| 	if (error) {
 | |
| 		errorf(fc, "%s: Can't lookup blockdev", fc->source);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	fc->sb_flags |= SB_NOSEC;
 | |
| 	s = sget_dev(fc, dev);
 | |
| 	if (IS_ERR(s))
 | |
| 		return PTR_ERR(s);
 | |
| 
 | |
| 	if (s->s_root) {
 | |
| 		/* Don't summarily change the RO/RW state. */
 | |
| 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
 | |
| 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
 | |
| 			deactivate_locked_super(s);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We drop s_umount here because we need to open the bdev and
 | |
| 		 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
 | |
| 		 * bdev_mark_dead()). It is safe because we have active sb
 | |
| 		 * reference and SB_BORN is not set yet.
 | |
| 		 */
 | |
| 		super_unlock_excl(s);
 | |
| 		error = setup_bdev_super(s, fc->sb_flags, fc);
 | |
| 		__super_lock_excl(s);
 | |
| 		if (!error)
 | |
| 			error = fill_super(s, fc);
 | |
| 		if (error) {
 | |
| 			deactivate_locked_super(s);
 | |
| 			return error;
 | |
| 		}
 | |
| 		s->s_flags |= SB_ACTIVE;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(fc->root);
 | |
| 	fc->root = dget(s->s_root);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(get_tree_bdev);
 | |
| 
 | |
| static int test_bdev_super(struct super_block *s, void *data)
 | |
| {
 | |
| 	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
 | |
| }
 | |
| 
 | |
| struct dentry *mount_bdev(struct file_system_type *fs_type,
 | |
| 	int flags, const char *dev_name, void *data,
 | |
| 	int (*fill_super)(struct super_block *, void *, int))
 | |
| {
 | |
| 	struct super_block *s;
 | |
| 	int error;
 | |
| 	dev_t dev;
 | |
| 
 | |
| 	error = lookup_bdev(dev_name, &dev);
 | |
| 	if (error)
 | |
| 		return ERR_PTR(error);
 | |
| 
 | |
| 	flags |= SB_NOSEC;
 | |
| 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
 | |
| 	if (IS_ERR(s))
 | |
| 		return ERR_CAST(s);
 | |
| 
 | |
| 	if (s->s_root) {
 | |
| 		if ((flags ^ s->s_flags) & SB_RDONLY) {
 | |
| 			deactivate_locked_super(s);
 | |
| 			return ERR_PTR(-EBUSY);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We drop s_umount here because we need to open the bdev and
 | |
| 		 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
 | |
| 		 * bdev_mark_dead()). It is safe because we have active sb
 | |
| 		 * reference and SB_BORN is not set yet.
 | |
| 		 */
 | |
| 		super_unlock_excl(s);
 | |
| 		error = setup_bdev_super(s, flags, NULL);
 | |
| 		__super_lock_excl(s);
 | |
| 		if (!error)
 | |
| 			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
 | |
| 		if (error) {
 | |
| 			deactivate_locked_super(s);
 | |
| 			return ERR_PTR(error);
 | |
| 		}
 | |
| 
 | |
| 		s->s_flags |= SB_ACTIVE;
 | |
| 	}
 | |
| 
 | |
| 	return dget(s->s_root);
 | |
| }
 | |
| EXPORT_SYMBOL(mount_bdev);
 | |
| 
 | |
| void kill_block_super(struct super_block *sb)
 | |
| {
 | |
| 	struct block_device *bdev = sb->s_bdev;
 | |
| 
 | |
| 	generic_shutdown_super(sb);
 | |
| 	if (bdev) {
 | |
| 		sync_blockdev(bdev);
 | |
| 		bdev_release(sb->s_bdev_handle);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(kill_block_super);
 | |
| #endif
 | |
| 
 | |
| struct dentry *mount_nodev(struct file_system_type *fs_type,
 | |
| 	int flags, void *data,
 | |
| 	int (*fill_super)(struct super_block *, void *, int))
 | |
| {
 | |
| 	int error;
 | |
| 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
 | |
| 
 | |
| 	if (IS_ERR(s))
 | |
| 		return ERR_CAST(s);
 | |
| 
 | |
| 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
 | |
| 	if (error) {
 | |
| 		deactivate_locked_super(s);
 | |
| 		return ERR_PTR(error);
 | |
| 	}
 | |
| 	s->s_flags |= SB_ACTIVE;
 | |
| 	return dget(s->s_root);
 | |
| }
 | |
| EXPORT_SYMBOL(mount_nodev);
 | |
| 
 | |
| int reconfigure_single(struct super_block *s,
 | |
| 		       int flags, void *data)
 | |
| {
 | |
| 	struct fs_context *fc;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* The caller really need to be passing fc down into mount_single(),
 | |
| 	 * then a chunk of this can be removed.  [Bollocks -- AV]
 | |
| 	 * Better yet, reconfiguration shouldn't happen, but rather the second
 | |
| 	 * mount should be rejected if the parameters are not compatible.
 | |
| 	 */
 | |
| 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
 | |
| 	if (IS_ERR(fc))
 | |
| 		return PTR_ERR(fc);
 | |
| 
 | |
| 	ret = parse_monolithic_mount_data(fc, data);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = reconfigure_super(fc);
 | |
| out:
 | |
| 	put_fs_context(fc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int compare_single(struct super_block *s, void *p)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| struct dentry *mount_single(struct file_system_type *fs_type,
 | |
| 	int flags, void *data,
 | |
| 	int (*fill_super)(struct super_block *, void *, int))
 | |
| {
 | |
| 	struct super_block *s;
 | |
| 	int error;
 | |
| 
 | |
| 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
 | |
| 	if (IS_ERR(s))
 | |
| 		return ERR_CAST(s);
 | |
| 	if (!s->s_root) {
 | |
| 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
 | |
| 		if (!error)
 | |
| 			s->s_flags |= SB_ACTIVE;
 | |
| 	} else {
 | |
| 		error = reconfigure_single(s, flags, data);
 | |
| 	}
 | |
| 	if (unlikely(error)) {
 | |
| 		deactivate_locked_super(s);
 | |
| 		return ERR_PTR(error);
 | |
| 	}
 | |
| 	return dget(s->s_root);
 | |
| }
 | |
| EXPORT_SYMBOL(mount_single);
 | |
| 
 | |
| /**
 | |
|  * vfs_get_tree - Get the mountable root
 | |
|  * @fc: The superblock configuration context.
 | |
|  *
 | |
|  * The filesystem is invoked to get or create a superblock which can then later
 | |
|  * be used for mounting.  The filesystem places a pointer to the root to be
 | |
|  * used for mounting in @fc->root.
 | |
|  */
 | |
| int vfs_get_tree(struct fs_context *fc)
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 	int error;
 | |
| 
 | |
| 	if (fc->root)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Get the mountable root in fc->root, with a ref on the root and a ref
 | |
| 	 * on the superblock.
 | |
| 	 */
 | |
| 	error = fc->ops->get_tree(fc);
 | |
| 	if (error < 0)
 | |
| 		return error;
 | |
| 
 | |
| 	if (!fc->root) {
 | |
| 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
 | |
| 		       fc->fs_type->name);
 | |
| 		/* We don't know what the locking state of the superblock is -
 | |
| 		 * if there is a superblock.
 | |
| 		 */
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	sb = fc->root->d_sb;
 | |
| 	WARN_ON(!sb->s_bdi);
 | |
| 
 | |
| 	/*
 | |
| 	 * super_wake() contains a memory barrier which also care of
 | |
| 	 * ordering for super_cache_count(). We place it before setting
 | |
| 	 * SB_BORN as the data dependency between the two functions is
 | |
| 	 * the superblock structure contents that we just set up, not
 | |
| 	 * the SB_BORN flag.
 | |
| 	 */
 | |
| 	super_wake(sb, SB_BORN);
 | |
| 
 | |
| 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
 | |
| 	if (unlikely(error)) {
 | |
| 		fc_drop_locked(fc);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
 | |
| 	 * but s_maxbytes was an unsigned long long for many releases. Throw
 | |
| 	 * this warning for a little while to try and catch filesystems that
 | |
| 	 * violate this rule.
 | |
| 	 */
 | |
| 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
 | |
| 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(vfs_get_tree);
 | |
| 
 | |
| /*
 | |
|  * Setup private BDI for given superblock. It gets automatically cleaned up
 | |
|  * in generic_shutdown_super().
 | |
|  */
 | |
| int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
 | |
| {
 | |
| 	struct backing_dev_info *bdi;
 | |
| 	int err;
 | |
| 	va_list args;
 | |
| 
 | |
| 	bdi = bdi_alloc(NUMA_NO_NODE);
 | |
| 	if (!bdi)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	err = bdi_register_va(bdi, fmt, args);
 | |
| 	va_end(args);
 | |
| 	if (err) {
 | |
| 		bdi_put(bdi);
 | |
| 		return err;
 | |
| 	}
 | |
| 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
 | |
| 	sb->s_bdi = bdi;
 | |
| 	sb->s_iflags |= SB_I_PERSB_BDI;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(super_setup_bdi_name);
 | |
| 
 | |
| /*
 | |
|  * Setup private BDI for given superblock. I gets automatically cleaned up
 | |
|  * in generic_shutdown_super().
 | |
|  */
 | |
| int super_setup_bdi(struct super_block *sb)
 | |
| {
 | |
| 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
 | |
| 
 | |
| 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
 | |
| 				    atomic_long_inc_return(&bdi_seq));
 | |
| }
 | |
| EXPORT_SYMBOL(super_setup_bdi);
 | |
| 
 | |
| /**
 | |
|  * sb_wait_write - wait until all writers to given file system finish
 | |
|  * @sb: the super for which we wait
 | |
|  * @level: type of writers we wait for (normal vs page fault)
 | |
|  *
 | |
|  * This function waits until there are no writers of given type to given file
 | |
|  * system.
 | |
|  */
 | |
| static void sb_wait_write(struct super_block *sb, int level)
 | |
| {
 | |
| 	percpu_down_write(sb->s_writers.rw_sem + level-1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are going to return to userspace and forget about these locks, the
 | |
|  * ownership goes to the caller of thaw_super() which does unlock().
 | |
|  */
 | |
| static void lockdep_sb_freeze_release(struct super_block *sb)
 | |
| {
 | |
| 	int level;
 | |
| 
 | |
| 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
 | |
| 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
 | |
|  */
 | |
| static void lockdep_sb_freeze_acquire(struct super_block *sb)
 | |
| {
 | |
| 	int level;
 | |
| 
 | |
| 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
 | |
| 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
 | |
| }
 | |
| 
 | |
| static void sb_freeze_unlock(struct super_block *sb, int level)
 | |
| {
 | |
| 	for (level--; level >= 0; level--)
 | |
| 		percpu_up_write(sb->s_writers.rw_sem + level);
 | |
| }
 | |
| 
 | |
| static int wait_for_partially_frozen(struct super_block *sb)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned short old = sb->s_writers.frozen;
 | |
| 
 | |
| 		up_write(&sb->s_umount);
 | |
| 		ret = wait_var_event_killable(&sb->s_writers.frozen,
 | |
| 					       sb->s_writers.frozen != old);
 | |
| 		down_write(&sb->s_umount);
 | |
| 	} while (ret == 0 &&
 | |
| 		 sb->s_writers.frozen != SB_UNFROZEN &&
 | |
| 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * freeze_super - lock the filesystem and force it into a consistent state
 | |
|  * @sb: the super to lock
 | |
|  * @who: context that wants to freeze
 | |
|  *
 | |
|  * Syncs the super to make sure the filesystem is consistent and calls the fs's
 | |
|  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
 | |
|  * -EBUSY.
 | |
|  *
 | |
|  * @who should be:
 | |
|  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
 | |
|  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
 | |
|  *
 | |
|  * The @who argument distinguishes between the kernel and userspace trying to
 | |
|  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
 | |
|  * multiple userspace freezes in effect at any given time, the kernel and
 | |
|  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
 | |
|  * until there are no kernel or userspace freezes in effect.
 | |
|  *
 | |
|  * During this function, sb->s_writers.frozen goes through these values:
 | |
|  *
 | |
|  * SB_UNFROZEN: File system is normal, all writes progress as usual.
 | |
|  *
 | |
|  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
 | |
|  * writes should be blocked, though page faults are still allowed. We wait for
 | |
|  * all writes to complete and then proceed to the next stage.
 | |
|  *
 | |
|  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
 | |
|  * but internal fs threads can still modify the filesystem (although they
 | |
|  * should not dirty new pages or inodes), writeback can run etc. After waiting
 | |
|  * for all running page faults we sync the filesystem which will clean all
 | |
|  * dirty pages and inodes (no new dirty pages or inodes can be created when
 | |
|  * sync is running).
 | |
|  *
 | |
|  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
 | |
|  * modification are blocked (e.g. XFS preallocation truncation on inode
 | |
|  * reclaim). This is usually implemented by blocking new transactions for
 | |
|  * filesystems that have them and need this additional guard. After all
 | |
|  * internal writers are finished we call ->freeze_fs() to finish filesystem
 | |
|  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
 | |
|  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
 | |
|  *
 | |
|  * sb->s_writers.frozen is protected by sb->s_umount.
 | |
|  */
 | |
| int freeze_super(struct super_block *sb, enum freeze_holder who)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	atomic_inc(&sb->s_active);
 | |
| 	if (!super_lock_excl(sb))
 | |
| 		WARN(1, "Dying superblock while freezing!");
 | |
| 
 | |
| retry:
 | |
| 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
 | |
| 		if (sb->s_writers.freeze_holders & who) {
 | |
| 			deactivate_locked_super(sb);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON(sb->s_writers.freeze_holders == 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * Someone else already holds this type of freeze; share the
 | |
| 		 * freeze and assign the active ref to the freeze.
 | |
| 		 */
 | |
| 		sb->s_writers.freeze_holders |= who;
 | |
| 		super_unlock_excl(sb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (sb->s_writers.frozen != SB_UNFROZEN) {
 | |
| 		ret = wait_for_partially_frozen(sb);
 | |
| 		if (ret) {
 | |
| 			deactivate_locked_super(sb);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (!(sb->s_flags & SB_BORN)) {
 | |
| 		super_unlock_excl(sb);
 | |
| 		return 0;	/* sic - it's "nothing to do" */
 | |
| 	}
 | |
| 
 | |
| 	if (sb_rdonly(sb)) {
 | |
| 		/* Nothing to do really... */
 | |
| 		sb->s_writers.freeze_holders |= who;
 | |
| 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
 | |
| 		wake_up_var(&sb->s_writers.frozen);
 | |
| 		super_unlock_excl(sb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	sb->s_writers.frozen = SB_FREEZE_WRITE;
 | |
| 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
 | |
| 	super_unlock_excl(sb);
 | |
| 	sb_wait_write(sb, SB_FREEZE_WRITE);
 | |
| 	if (!super_lock_excl(sb))
 | |
| 		WARN(1, "Dying superblock while freezing!");
 | |
| 
 | |
| 	/* Now we go and block page faults... */
 | |
| 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
 | |
| 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
 | |
| 
 | |
| 	/* All writers are done so after syncing there won't be dirty data */
 | |
| 	ret = sync_filesystem(sb);
 | |
| 	if (ret) {
 | |
| 		sb->s_writers.frozen = SB_UNFROZEN;
 | |
| 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
 | |
| 		wake_up_var(&sb->s_writers.frozen);
 | |
| 		deactivate_locked_super(sb);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Now wait for internal filesystem counter */
 | |
| 	sb->s_writers.frozen = SB_FREEZE_FS;
 | |
| 	sb_wait_write(sb, SB_FREEZE_FS);
 | |
| 
 | |
| 	if (sb->s_op->freeze_fs) {
 | |
| 		ret = sb->s_op->freeze_fs(sb);
 | |
| 		if (ret) {
 | |
| 			printk(KERN_ERR
 | |
| 				"VFS:Filesystem freeze failed\n");
 | |
| 			sb->s_writers.frozen = SB_UNFROZEN;
 | |
| 			sb_freeze_unlock(sb, SB_FREEZE_FS);
 | |
| 			wake_up_var(&sb->s_writers.frozen);
 | |
| 			deactivate_locked_super(sb);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * For debugging purposes so that fs can warn if it sees write activity
 | |
| 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
 | |
| 	 */
 | |
| 	sb->s_writers.freeze_holders |= who;
 | |
| 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
 | |
| 	wake_up_var(&sb->s_writers.frozen);
 | |
| 	lockdep_sb_freeze_release(sb);
 | |
| 	super_unlock_excl(sb);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(freeze_super);
 | |
| 
 | |
| /*
 | |
|  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
 | |
|  * frozen both by userspace and the kernel, a thaw call from either source
 | |
|  * removes that state without releasing the other state or unlocking the
 | |
|  * filesystem.
 | |
|  */
 | |
| static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
 | |
| 		if (!(sb->s_writers.freeze_holders & who)) {
 | |
| 			super_unlock_excl(sb);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Freeze is shared with someone else.  Release our hold and
 | |
| 		 * drop the active ref that freeze_super assigned to the
 | |
| 		 * freezer.
 | |
| 		 */
 | |
| 		if (sb->s_writers.freeze_holders & ~who) {
 | |
| 			sb->s_writers.freeze_holders &= ~who;
 | |
| 			deactivate_locked_super(sb);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		super_unlock_excl(sb);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (sb_rdonly(sb)) {
 | |
| 		sb->s_writers.freeze_holders &= ~who;
 | |
| 		sb->s_writers.frozen = SB_UNFROZEN;
 | |
| 		wake_up_var(&sb->s_writers.frozen);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	lockdep_sb_freeze_acquire(sb);
 | |
| 
 | |
| 	if (sb->s_op->unfreeze_fs) {
 | |
| 		error = sb->s_op->unfreeze_fs(sb);
 | |
| 		if (error) {
 | |
| 			printk(KERN_ERR "VFS:Filesystem thaw failed\n");
 | |
| 			lockdep_sb_freeze_release(sb);
 | |
| 			super_unlock_excl(sb);
 | |
| 			return error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sb->s_writers.freeze_holders &= ~who;
 | |
| 	sb->s_writers.frozen = SB_UNFROZEN;
 | |
| 	wake_up_var(&sb->s_writers.frozen);
 | |
| 	sb_freeze_unlock(sb, SB_FREEZE_FS);
 | |
| out:
 | |
| 	deactivate_locked_super(sb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * thaw_super -- unlock filesystem
 | |
|  * @sb: the super to thaw
 | |
|  * @who: context that wants to freeze
 | |
|  *
 | |
|  * Unlocks the filesystem and marks it writeable again after freeze_super()
 | |
|  * if there are no remaining freezes on the filesystem.
 | |
|  *
 | |
|  * @who should be:
 | |
|  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
 | |
|  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
 | |
|  */
 | |
| int thaw_super(struct super_block *sb, enum freeze_holder who)
 | |
| {
 | |
| 	if (!super_lock_excl(sb))
 | |
| 		WARN(1, "Dying superblock while thawing!");
 | |
| 	return thaw_super_locked(sb, who);
 | |
| }
 | |
| EXPORT_SYMBOL(thaw_super);
 | |
| 
 | |
| /*
 | |
|  * Create workqueue for deferred direct IO completions. We allocate the
 | |
|  * workqueue when it's first needed. This avoids creating workqueue for
 | |
|  * filesystems that don't need it and also allows us to create the workqueue
 | |
|  * late enough so the we can include s_id in the name of the workqueue.
 | |
|  */
 | |
| int sb_init_dio_done_wq(struct super_block *sb)
 | |
| {
 | |
| 	struct workqueue_struct *old;
 | |
| 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
 | |
| 						      WQ_MEM_RECLAIM, 0,
 | |
| 						      sb->s_id);
 | |
| 	if (!wq)
 | |
| 		return -ENOMEM;
 | |
| 	/*
 | |
| 	 * This has to be atomic as more DIOs can race to create the workqueue
 | |
| 	 */
 | |
| 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
 | |
| 	/* Someone created workqueue before us? Free ours... */
 | |
| 	if (old)
 | |
| 		destroy_workqueue(wq);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
 |