forked from mirrors/linux
		
	 e86828e544
			
		
	
	
		e86828e544
		
	
	
	
	
		
			
			Switch to a scope-based protection of the objcg pointer on slab/kmem allocation paths. Instead of using the get_() semantics in the pre-allocation hook and put the reference afterwards, let's rely on the fact that objcg is pinned by the scope. It's possible because: 1) if the objcg is received from the current task struct, the task is keeping a reference to the objcg. 2) if the objcg is received from an active memcg (remote charging), the memcg is pinned by the scope and has a reference to the corresponding objcg. Link: https://lkml.kernel.org/r/20231019225346.1822282-5-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Acked-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			894 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			894 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef MM_SLAB_H
 | |
| #define MM_SLAB_H
 | |
| /*
 | |
|  * Internal slab definitions
 | |
|  */
 | |
| void __init kmem_cache_init(void);
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| # ifdef system_has_cmpxchg128
 | |
| # define system_has_freelist_aba()	system_has_cmpxchg128()
 | |
| # define try_cmpxchg_freelist		try_cmpxchg128
 | |
| # endif
 | |
| #define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg128
 | |
| typedef u128 freelist_full_t;
 | |
| #else /* CONFIG_64BIT */
 | |
| # ifdef system_has_cmpxchg64
 | |
| # define system_has_freelist_aba()	system_has_cmpxchg64()
 | |
| # define try_cmpxchg_freelist		try_cmpxchg64
 | |
| # endif
 | |
| #define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg64
 | |
| typedef u64 freelist_full_t;
 | |
| #endif /* CONFIG_64BIT */
 | |
| 
 | |
| #if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 | |
| #undef system_has_freelist_aba
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
 | |
|  * problems with cmpxchg of just a pointer.
 | |
|  */
 | |
| typedef union {
 | |
| 	struct {
 | |
| 		void *freelist;
 | |
| 		unsigned long counter;
 | |
| 	};
 | |
| 	freelist_full_t full;
 | |
| } freelist_aba_t;
 | |
| 
 | |
| /* Reuses the bits in struct page */
 | |
| struct slab {
 | |
| 	unsigned long __page_flags;
 | |
| 
 | |
| #if defined(CONFIG_SLAB)
 | |
| 
 | |
| 	struct kmem_cache *slab_cache;
 | |
| 	union {
 | |
| 		struct {
 | |
| 			struct list_head slab_list;
 | |
| 			void *freelist;	/* array of free object indexes */
 | |
| 			void *s_mem;	/* first object */
 | |
| 		};
 | |
| 		struct rcu_head rcu_head;
 | |
| 	};
 | |
| 	unsigned int active;
 | |
| 
 | |
| #elif defined(CONFIG_SLUB)
 | |
| 
 | |
| 	struct kmem_cache *slab_cache;
 | |
| 	union {
 | |
| 		struct {
 | |
| 			union {
 | |
| 				struct list_head slab_list;
 | |
| #ifdef CONFIG_SLUB_CPU_PARTIAL
 | |
| 				struct {
 | |
| 					struct slab *next;
 | |
| 					int slabs;	/* Nr of slabs left */
 | |
| 				};
 | |
| #endif
 | |
| 			};
 | |
| 			/* Double-word boundary */
 | |
| 			union {
 | |
| 				struct {
 | |
| 					void *freelist;		/* first free object */
 | |
| 					union {
 | |
| 						unsigned long counters;
 | |
| 						struct {
 | |
| 							unsigned inuse:16;
 | |
| 							unsigned objects:15;
 | |
| 							unsigned frozen:1;
 | |
| 						};
 | |
| 					};
 | |
| 				};
 | |
| #ifdef system_has_freelist_aba
 | |
| 				freelist_aba_t freelist_counter;
 | |
| #endif
 | |
| 			};
 | |
| 		};
 | |
| 		struct rcu_head rcu_head;
 | |
| 	};
 | |
| 	unsigned int __unused;
 | |
| 
 | |
| #else
 | |
| #error "Unexpected slab allocator configured"
 | |
| #endif
 | |
| 
 | |
| 	atomic_t __page_refcount;
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	unsigned long memcg_data;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #define SLAB_MATCH(pg, sl)						\
 | |
| 	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
 | |
| SLAB_MATCH(flags, __page_flags);
 | |
| SLAB_MATCH(compound_head, slab_cache);	/* Ensure bit 0 is clear */
 | |
| SLAB_MATCH(_refcount, __page_refcount);
 | |
| #ifdef CONFIG_MEMCG
 | |
| SLAB_MATCH(memcg_data, memcg_data);
 | |
| #endif
 | |
| #undef SLAB_MATCH
 | |
| static_assert(sizeof(struct slab) <= sizeof(struct page));
 | |
| #if defined(system_has_freelist_aba) && defined(CONFIG_SLUB)
 | |
| static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * folio_slab - Converts from folio to slab.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * Currently struct slab is a different representation of a folio where
 | |
|  * folio_test_slab() is true.
 | |
|  *
 | |
|  * Return: The slab which contains this folio.
 | |
|  */
 | |
| #define folio_slab(folio)	(_Generic((folio),			\
 | |
| 	const struct folio *:	(const struct slab *)(folio),		\
 | |
| 	struct folio *:		(struct slab *)(folio)))
 | |
| 
 | |
| /**
 | |
|  * slab_folio - The folio allocated for a slab
 | |
|  * @slab: The slab.
 | |
|  *
 | |
|  * Slabs are allocated as folios that contain the individual objects and are
 | |
|  * using some fields in the first struct page of the folio - those fields are
 | |
|  * now accessed by struct slab. It is occasionally necessary to convert back to
 | |
|  * a folio in order to communicate with the rest of the mm.  Please use this
 | |
|  * helper function instead of casting yourself, as the implementation may change
 | |
|  * in the future.
 | |
|  */
 | |
| #define slab_folio(s)		(_Generic((s),				\
 | |
| 	const struct slab *:	(const struct folio *)s,		\
 | |
| 	struct slab *:		(struct folio *)s))
 | |
| 
 | |
| /**
 | |
|  * page_slab - Converts from first struct page to slab.
 | |
|  * @p: The first (either head of compound or single) page of slab.
 | |
|  *
 | |
|  * A temporary wrapper to convert struct page to struct slab in situations where
 | |
|  * we know the page is the compound head, or single order-0 page.
 | |
|  *
 | |
|  * Long-term ideally everything would work with struct slab directly or go
 | |
|  * through folio to struct slab.
 | |
|  *
 | |
|  * Return: The slab which contains this page
 | |
|  */
 | |
| #define page_slab(p)		(_Generic((p),				\
 | |
| 	const struct page *:	(const struct slab *)(p),		\
 | |
| 	struct page *:		(struct slab *)(p)))
 | |
| 
 | |
| /**
 | |
|  * slab_page - The first struct page allocated for a slab
 | |
|  * @slab: The slab.
 | |
|  *
 | |
|  * A convenience wrapper for converting slab to the first struct page of the
 | |
|  * underlying folio, to communicate with code not yet converted to folio or
 | |
|  * struct slab.
 | |
|  */
 | |
| #define slab_page(s) folio_page(slab_folio(s), 0)
 | |
| 
 | |
| /*
 | |
|  * If network-based swap is enabled, sl*b must keep track of whether pages
 | |
|  * were allocated from pfmemalloc reserves.
 | |
|  */
 | |
| static inline bool slab_test_pfmemalloc(const struct slab *slab)
 | |
| {
 | |
| 	return folio_test_active((struct folio *)slab_folio(slab));
 | |
| }
 | |
| 
 | |
| static inline void slab_set_pfmemalloc(struct slab *slab)
 | |
| {
 | |
| 	folio_set_active(slab_folio(slab));
 | |
| }
 | |
| 
 | |
| static inline void slab_clear_pfmemalloc(struct slab *slab)
 | |
| {
 | |
| 	folio_clear_active(slab_folio(slab));
 | |
| }
 | |
| 
 | |
| static inline void __slab_clear_pfmemalloc(struct slab *slab)
 | |
| {
 | |
| 	__folio_clear_active(slab_folio(slab));
 | |
| }
 | |
| 
 | |
| static inline void *slab_address(const struct slab *slab)
 | |
| {
 | |
| 	return folio_address(slab_folio(slab));
 | |
| }
 | |
| 
 | |
| static inline int slab_nid(const struct slab *slab)
 | |
| {
 | |
| 	return folio_nid(slab_folio(slab));
 | |
| }
 | |
| 
 | |
| static inline pg_data_t *slab_pgdat(const struct slab *slab)
 | |
| {
 | |
| 	return folio_pgdat(slab_folio(slab));
 | |
| }
 | |
| 
 | |
| static inline struct slab *virt_to_slab(const void *addr)
 | |
| {
 | |
| 	struct folio *folio = virt_to_folio(addr);
 | |
| 
 | |
| 	if (!folio_test_slab(folio))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return folio_slab(folio);
 | |
| }
 | |
| 
 | |
| static inline int slab_order(const struct slab *slab)
 | |
| {
 | |
| 	return folio_order((struct folio *)slab_folio(slab));
 | |
| }
 | |
| 
 | |
| static inline size_t slab_size(const struct slab *slab)
 | |
| {
 | |
| 	return PAGE_SIZE << slab_order(slab);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLAB
 | |
| #include <linux/slab_def.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB
 | |
| #include <linux/slub_def.h>
 | |
| #endif
 | |
| 
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/fault-inject.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/list_lru.h>
 | |
| 
 | |
| /*
 | |
|  * State of the slab allocator.
 | |
|  *
 | |
|  * This is used to describe the states of the allocator during bootup.
 | |
|  * Allocators use this to gradually bootstrap themselves. Most allocators
 | |
|  * have the problem that the structures used for managing slab caches are
 | |
|  * allocated from slab caches themselves.
 | |
|  */
 | |
| enum slab_state {
 | |
| 	DOWN,			/* No slab functionality yet */
 | |
| 	PARTIAL,		/* SLUB: kmem_cache_node available */
 | |
| 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
 | |
| 	UP,			/* Slab caches usable but not all extras yet */
 | |
| 	FULL			/* Everything is working */
 | |
| };
 | |
| 
 | |
| extern enum slab_state slab_state;
 | |
| 
 | |
| /* The slab cache mutex protects the management structures during changes */
 | |
| extern struct mutex slab_mutex;
 | |
| 
 | |
| /* The list of all slab caches on the system */
 | |
| extern struct list_head slab_caches;
 | |
| 
 | |
| /* The slab cache that manages slab cache information */
 | |
| extern struct kmem_cache *kmem_cache;
 | |
| 
 | |
| /* A table of kmalloc cache names and sizes */
 | |
| extern const struct kmalloc_info_struct {
 | |
| 	const char *name[NR_KMALLOC_TYPES];
 | |
| 	unsigned int size;
 | |
| } kmalloc_info[];
 | |
| 
 | |
| /* Kmalloc array related functions */
 | |
| void setup_kmalloc_cache_index_table(void);
 | |
| void create_kmalloc_caches(slab_flags_t);
 | |
| 
 | |
| /* Find the kmalloc slab corresponding for a certain size */
 | |
| struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags, unsigned long caller);
 | |
| 
 | |
| void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
 | |
| 			      int node, size_t orig_size,
 | |
| 			      unsigned long caller);
 | |
| void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
 | |
| 
 | |
| gfp_t kmalloc_fix_flags(gfp_t flags);
 | |
| 
 | |
| /* Functions provided by the slab allocators */
 | |
| int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
 | |
| 
 | |
| void __init new_kmalloc_cache(int idx, enum kmalloc_cache_type type,
 | |
| 			      slab_flags_t flags);
 | |
| extern void create_boot_cache(struct kmem_cache *, const char *name,
 | |
| 			unsigned int size, slab_flags_t flags,
 | |
| 			unsigned int useroffset, unsigned int usersize);
 | |
| 
 | |
| int slab_unmergeable(struct kmem_cache *s);
 | |
| struct kmem_cache *find_mergeable(unsigned size, unsigned align,
 | |
| 		slab_flags_t flags, const char *name, void (*ctor)(void *));
 | |
| struct kmem_cache *
 | |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
 | |
| 		   slab_flags_t flags, void (*ctor)(void *));
 | |
| 
 | |
| slab_flags_t kmem_cache_flags(unsigned int object_size,
 | |
| 	slab_flags_t flags, const char *name);
 | |
| 
 | |
| static inline bool is_kmalloc_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	return (s->flags & SLAB_KMALLOC);
 | |
| }
 | |
| 
 | |
| /* Legal flag mask for kmem_cache_create(), for various configurations */
 | |
| #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
 | |
| 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
 | |
| 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_SLAB)
 | |
| #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 | |
| #elif defined(CONFIG_SLUB_DEBUG)
 | |
| #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 | |
| 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
 | |
| #else
 | |
| #define SLAB_DEBUG_FLAGS (0)
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_SLAB)
 | |
| #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
 | |
| 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
 | |
| 			  SLAB_ACCOUNT | SLAB_NO_MERGE)
 | |
| #elif defined(CONFIG_SLUB)
 | |
| #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
 | |
| 			  SLAB_TEMPORARY | SLAB_ACCOUNT | \
 | |
| 			  SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)
 | |
| #else
 | |
| #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
 | |
| #endif
 | |
| 
 | |
| /* Common flags available with current configuration */
 | |
| #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
 | |
| 
 | |
| /* Common flags permitted for kmem_cache_create */
 | |
| #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
 | |
| 			      SLAB_RED_ZONE | \
 | |
| 			      SLAB_POISON | \
 | |
| 			      SLAB_STORE_USER | \
 | |
| 			      SLAB_TRACE | \
 | |
| 			      SLAB_CONSISTENCY_CHECKS | \
 | |
| 			      SLAB_MEM_SPREAD | \
 | |
| 			      SLAB_NOLEAKTRACE | \
 | |
| 			      SLAB_RECLAIM_ACCOUNT | \
 | |
| 			      SLAB_TEMPORARY | \
 | |
| 			      SLAB_ACCOUNT | \
 | |
| 			      SLAB_KMALLOC | \
 | |
| 			      SLAB_NO_MERGE | \
 | |
| 			      SLAB_NO_USER_FLAGS)
 | |
| 
 | |
| bool __kmem_cache_empty(struct kmem_cache *);
 | |
| int __kmem_cache_shutdown(struct kmem_cache *);
 | |
| void __kmem_cache_release(struct kmem_cache *);
 | |
| int __kmem_cache_shrink(struct kmem_cache *);
 | |
| void slab_kmem_cache_release(struct kmem_cache *);
 | |
| 
 | |
| struct seq_file;
 | |
| struct file;
 | |
| 
 | |
| struct slabinfo {
 | |
| 	unsigned long active_objs;
 | |
| 	unsigned long num_objs;
 | |
| 	unsigned long active_slabs;
 | |
| 	unsigned long num_slabs;
 | |
| 	unsigned long shared_avail;
 | |
| 	unsigned int limit;
 | |
| 	unsigned int batchcount;
 | |
| 	unsigned int shared;
 | |
| 	unsigned int objects_per_slab;
 | |
| 	unsigned int cache_order;
 | |
| };
 | |
| 
 | |
| void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
 | |
| void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
 | |
| ssize_t slabinfo_write(struct file *file, const char __user *buffer,
 | |
| 		       size_t count, loff_t *ppos);
 | |
| 
 | |
| static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
 | |
| {
 | |
| 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
 | |
| 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| #ifdef CONFIG_SLUB_DEBUG_ON
 | |
| DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
 | |
| #else
 | |
| DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
 | |
| #endif
 | |
| extern void print_tracking(struct kmem_cache *s, void *object);
 | |
| long validate_slab_cache(struct kmem_cache *s);
 | |
| static inline bool __slub_debug_enabled(void)
 | |
| {
 | |
| 	return static_branch_unlikely(&slub_debug_enabled);
 | |
| }
 | |
| #else
 | |
| static inline void print_tracking(struct kmem_cache *s, void *object)
 | |
| {
 | |
| }
 | |
| static inline bool __slub_debug_enabled(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Returns true if any of the specified slub_debug flags is enabled for the
 | |
|  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
 | |
|  * the static key.
 | |
|  */
 | |
| static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
 | |
| 		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
 | |
| 	if (__slub_debug_enabled())
 | |
| 		return s->flags & flags;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| /*
 | |
|  * slab_objcgs - get the object cgroups vector associated with a slab
 | |
|  * @slab: a pointer to the slab struct
 | |
|  *
 | |
|  * Returns a pointer to the object cgroups vector associated with the slab,
 | |
|  * or NULL if no such vector has been associated yet.
 | |
|  */
 | |
| static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
 | |
| {
 | |
| 	unsigned long memcg_data = READ_ONCE(slab->memcg_data);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
 | |
| 							slab_page(slab));
 | |
| 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
 | |
| 
 | |
| 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 | |
| }
 | |
| 
 | |
| int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
 | |
| 				 gfp_t gfp, bool new_slab);
 | |
| void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
 | |
| 		     enum node_stat_item idx, int nr);
 | |
| 
 | |
| static inline void memcg_free_slab_cgroups(struct slab *slab)
 | |
| {
 | |
| 	kfree(slab_objcgs(slab));
 | |
| 	slab->memcg_data = 0;
 | |
| }
 | |
| 
 | |
| static inline size_t obj_full_size(struct kmem_cache *s)
 | |
| {
 | |
| 	/*
 | |
| 	 * For each accounted object there is an extra space which is used
 | |
| 	 * to store obj_cgroup membership. Charge it too.
 | |
| 	 */
 | |
| 	return s->size + sizeof(struct obj_cgroup *);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns false if the allocation should fail.
 | |
|  */
 | |
| static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
 | |
| 					     struct list_lru *lru,
 | |
| 					     struct obj_cgroup **objcgp,
 | |
| 					     size_t objects, gfp_t flags)
 | |
| {
 | |
| 	struct obj_cgroup *objcg;
 | |
| 
 | |
| 	if (!memcg_kmem_online())
 | |
| 		return true;
 | |
| 
 | |
| 	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * The obtained objcg pointer is safe to use within the current scope,
 | |
| 	 * defined by current task or set_active_memcg() pair.
 | |
| 	 * obj_cgroup_get() is used to get a permanent reference.
 | |
| 	 */
 | |
| 	objcg = current_obj_cgroup();
 | |
| 	if (!objcg)
 | |
| 		return true;
 | |
| 
 | |
| 	if (lru) {
 | |
| 		int ret;
 | |
| 		struct mem_cgroup *memcg;
 | |
| 
 | |
| 		memcg = get_mem_cgroup_from_objcg(objcg);
 | |
| 		ret = memcg_list_lru_alloc(memcg, lru, flags);
 | |
| 		css_put(&memcg->css);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
 | |
| 		return false;
 | |
| 
 | |
| 	*objcgp = objcg;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
 | |
| 					      struct obj_cgroup *objcg,
 | |
| 					      gfp_t flags, size_t size,
 | |
| 					      void **p)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 	unsigned long off;
 | |
| 	size_t i;
 | |
| 
 | |
| 	if (!memcg_kmem_online() || !objcg)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		if (likely(p[i])) {
 | |
| 			slab = virt_to_slab(p[i]);
 | |
| 
 | |
| 			if (!slab_objcgs(slab) &&
 | |
| 			    memcg_alloc_slab_cgroups(slab, s, flags,
 | |
| 							 false)) {
 | |
| 				obj_cgroup_uncharge(objcg, obj_full_size(s));
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			off = obj_to_index(s, slab, p[i]);
 | |
| 			obj_cgroup_get(objcg);
 | |
| 			slab_objcgs(slab)[off] = objcg;
 | |
| 			mod_objcg_state(objcg, slab_pgdat(slab),
 | |
| 					cache_vmstat_idx(s), obj_full_size(s));
 | |
| 		} else {
 | |
| 			obj_cgroup_uncharge(objcg, obj_full_size(s));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
 | |
| 					void **p, int objects)
 | |
| {
 | |
| 	struct obj_cgroup **objcgs;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!memcg_kmem_online())
 | |
| 		return;
 | |
| 
 | |
| 	objcgs = slab_objcgs(slab);
 | |
| 	if (!objcgs)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < objects; i++) {
 | |
| 		struct obj_cgroup *objcg;
 | |
| 		unsigned int off;
 | |
| 
 | |
| 		off = obj_to_index(s, slab, p[i]);
 | |
| 		objcg = objcgs[off];
 | |
| 		if (!objcg)
 | |
| 			continue;
 | |
| 
 | |
| 		objcgs[off] = NULL;
 | |
| 		obj_cgroup_uncharge(objcg, obj_full_size(s));
 | |
| 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
 | |
| 				-obj_full_size(s));
 | |
| 		obj_cgroup_put(objcg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_MEMCG_KMEM */
 | |
| static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline int memcg_alloc_slab_cgroups(struct slab *slab,
 | |
| 					       struct kmem_cache *s, gfp_t gfp,
 | |
| 					       bool new_slab)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void memcg_free_slab_cgroups(struct slab *slab)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
 | |
| 					     struct list_lru *lru,
 | |
| 					     struct obj_cgroup **objcgp,
 | |
| 					     size_t objects, gfp_t flags)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
 | |
| 					      struct obj_cgroup *objcg,
 | |
| 					      gfp_t flags, size_t size,
 | |
| 					      void **p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
 | |
| 					void **p, int objects)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MEMCG_KMEM */
 | |
| 
 | |
| static inline struct kmem_cache *virt_to_cache(const void *obj)
 | |
| {
 | |
| 	struct slab *slab;
 | |
| 
 | |
| 	slab = virt_to_slab(obj);
 | |
| 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
 | |
| 					__func__))
 | |
| 		return NULL;
 | |
| 	return slab->slab_cache;
 | |
| }
 | |
| 
 | |
| static __always_inline void account_slab(struct slab *slab, int order,
 | |
| 					 struct kmem_cache *s, gfp_t gfp)
 | |
| {
 | |
| 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
 | |
| 		memcg_alloc_slab_cgroups(slab, s, gfp, true);
 | |
| 
 | |
| 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
 | |
| 			    PAGE_SIZE << order);
 | |
| }
 | |
| 
 | |
| static __always_inline void unaccount_slab(struct slab *slab, int order,
 | |
| 					   struct kmem_cache *s)
 | |
| {
 | |
| 	if (memcg_kmem_online())
 | |
| 		memcg_free_slab_cgroups(slab);
 | |
| 
 | |
| 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
 | |
| 			    -(PAGE_SIZE << order));
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 | |
| 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
 | |
| 		return s;
 | |
| 
 | |
| 	cachep = virt_to_cache(x);
 | |
| 	if (WARN(cachep && cachep != s,
 | |
| 		  "%s: Wrong slab cache. %s but object is from %s\n",
 | |
| 		  __func__, s->name, cachep->name))
 | |
| 		print_tracking(cachep, x);
 | |
| 	return cachep;
 | |
| }
 | |
| 
 | |
| void free_large_kmalloc(struct folio *folio, void *object);
 | |
| 
 | |
| size_t __ksize(const void *objp);
 | |
| 
 | |
| static inline size_t slab_ksize(const struct kmem_cache *s)
 | |
| {
 | |
| #ifndef CONFIG_SLUB
 | |
| 	return s->object_size;
 | |
| 
 | |
| #else /* CONFIG_SLUB */
 | |
| # ifdef CONFIG_SLUB_DEBUG
 | |
| 	/*
 | |
| 	 * Debugging requires use of the padding between object
 | |
| 	 * and whatever may come after it.
 | |
| 	 */
 | |
| 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 | |
| 		return s->object_size;
 | |
| # endif
 | |
| 	if (s->flags & SLAB_KASAN)
 | |
| 		return s->object_size;
 | |
| 	/*
 | |
| 	 * If we have the need to store the freelist pointer
 | |
| 	 * back there or track user information then we can
 | |
| 	 * only use the space before that information.
 | |
| 	 */
 | |
| 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
 | |
| 		return s->inuse;
 | |
| 	/*
 | |
| 	 * Else we can use all the padding etc for the allocation
 | |
| 	 */
 | |
| 	return s->size;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
 | |
| 						     struct list_lru *lru,
 | |
| 						     struct obj_cgroup **objcgp,
 | |
| 						     size_t size, gfp_t flags)
 | |
| {
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	might_alloc(flags);
 | |
| 
 | |
| 	if (should_failslab(s, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| static inline void slab_post_alloc_hook(struct kmem_cache *s,
 | |
| 					struct obj_cgroup *objcg, gfp_t flags,
 | |
| 					size_t size, void **p, bool init,
 | |
| 					unsigned int orig_size)
 | |
| {
 | |
| 	unsigned int zero_size = s->object_size;
 | |
| 	bool kasan_init = init;
 | |
| 	size_t i;
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * For kmalloc object, the allocated memory size(object_size) is likely
 | |
| 	 * larger than the requested size(orig_size). If redzone check is
 | |
| 	 * enabled for the extra space, don't zero it, as it will be redzoned
 | |
| 	 * soon. The redzone operation for this extra space could be seen as a
 | |
| 	 * replacement of current poisoning under certain debug option, and
 | |
| 	 * won't break other sanity checks.
 | |
| 	 */
 | |
| 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
 | |
| 	    (s->flags & SLAB_KMALLOC))
 | |
| 		zero_size = orig_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * When slub_debug is enabled, avoid memory initialization integrated
 | |
| 	 * into KASAN and instead zero out the memory via the memset below with
 | |
| 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
 | |
| 	 * cause false-positive reports. This does not lead to a performance
 | |
| 	 * penalty on production builds, as slub_debug is not intended to be
 | |
| 	 * enabled there.
 | |
| 	 */
 | |
| 	if (__slub_debug_enabled())
 | |
| 		kasan_init = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * As memory initialization might be integrated into KASAN,
 | |
| 	 * kasan_slab_alloc and initialization memset must be
 | |
| 	 * kept together to avoid discrepancies in behavior.
 | |
| 	 *
 | |
| 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
 | |
| 	 */
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		p[i] = kasan_slab_alloc(s, p[i], flags, kasan_init);
 | |
| 		if (p[i] && init && (!kasan_init || !kasan_has_integrated_init()))
 | |
| 			memset(p[i], 0, zero_size);
 | |
| 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
 | |
| 					 s->flags, flags);
 | |
| 		kmsan_slab_alloc(s, p[i], flags);
 | |
| 	}
 | |
| 
 | |
| 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The slab lists for all objects.
 | |
|  */
 | |
| struct kmem_cache_node {
 | |
| #ifdef CONFIG_SLAB
 | |
| 	raw_spinlock_t list_lock;
 | |
| 	struct list_head slabs_partial;	/* partial list first, better asm code */
 | |
| 	struct list_head slabs_full;
 | |
| 	struct list_head slabs_free;
 | |
| 	unsigned long total_slabs;	/* length of all slab lists */
 | |
| 	unsigned long free_slabs;	/* length of free slab list only */
 | |
| 	unsigned long free_objects;
 | |
| 	unsigned int free_limit;
 | |
| 	unsigned int colour_next;	/* Per-node cache coloring */
 | |
| 	struct array_cache *shared;	/* shared per node */
 | |
| 	struct alien_cache **alien;	/* on other nodes */
 | |
| 	unsigned long next_reap;	/* updated without locking */
 | |
| 	int free_touched;		/* updated without locking */
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB
 | |
| 	spinlock_t list_lock;
 | |
| 	unsigned long nr_partial;
 | |
| 	struct list_head partial;
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	atomic_long_t nr_slabs;
 | |
| 	atomic_long_t total_objects;
 | |
| 	struct list_head full;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| };
 | |
| 
 | |
| static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 | |
| {
 | |
| 	return s->node[node];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterator over all nodes. The body will be executed for each node that has
 | |
|  * a kmem_cache_node structure allocated (which is true for all online nodes)
 | |
|  */
 | |
| #define for_each_kmem_cache_node(__s, __node, __n) \
 | |
| 	for (__node = 0; __node < nr_node_ids; __node++) \
 | |
| 		 if ((__n = get_node(__s, __node)))
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 | |
| void dump_unreclaimable_slab(void);
 | |
| #else
 | |
| static inline void dump_unreclaimable_slab(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM
 | |
| int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 | |
| 			gfp_t gfp);
 | |
| void cache_random_seq_destroy(struct kmem_cache *cachep);
 | |
| #else
 | |
| static inline int cache_random_seq_create(struct kmem_cache *cachep,
 | |
| 					unsigned int count, gfp_t gfp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
 | |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 | |
| 
 | |
| static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
 | |
| {
 | |
| 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
 | |
| 				&init_on_alloc)) {
 | |
| 		if (c->ctor)
 | |
| 			return false;
 | |
| 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
 | |
| 			return flags & __GFP_ZERO;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return flags & __GFP_ZERO;
 | |
| }
 | |
| 
 | |
| static inline bool slab_want_init_on_free(struct kmem_cache *c)
 | |
| {
 | |
| 	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
 | |
| 				&init_on_free))
 | |
| 		return !(c->ctor ||
 | |
| 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
 | |
| void debugfs_slab_release(struct kmem_cache *);
 | |
| #else
 | |
| static inline void debugfs_slab_release(struct kmem_cache *s) { }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| #define KS_ADDRS_COUNT 16
 | |
| struct kmem_obj_info {
 | |
| 	void *kp_ptr;
 | |
| 	struct slab *kp_slab;
 | |
| 	void *kp_objp;
 | |
| 	unsigned long kp_data_offset;
 | |
| 	struct kmem_cache *kp_slab_cache;
 | |
| 	void *kp_ret;
 | |
| 	void *kp_stack[KS_ADDRS_COUNT];
 | |
| 	void *kp_free_stack[KS_ADDRS_COUNT];
 | |
| };
 | |
| void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
 | |
| #endif
 | |
| 
 | |
| void __check_heap_object(const void *ptr, unsigned long n,
 | |
| 			 const struct slab *slab, bool to_user);
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| void skip_orig_size_check(struct kmem_cache *s, const void *object);
 | |
| #endif
 | |
| 
 | |
| #endif /* MM_SLAB_H */
 |