forked from mirrors/linux
		
	Move the arm CRC-T10DIF assembly code into the lib directory and wire it up to the library interface. This allows it to be used without going through the crypto API. It remains usable via the crypto API too via the shash algorithms that use the library interface. Thus all the arch-specific "shash" code becomes unnecessary and is removed. Note: to see the diff from arch/arm/crypto/crct10dif-ce-glue.c to arch/arm/lib/crc-t10dif-glue.c, view this commit with 'git show -M10'. Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20241202012056.209768-6-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
		
			
				
	
	
		
			468 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			468 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
//
 | 
						|
// Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
 | 
						|
//
 | 
						|
// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
 | 
						|
// Copyright (C) 2019 Google LLC <ebiggers@google.com>
 | 
						|
//
 | 
						|
// This program is free software; you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU General Public License version 2 as
 | 
						|
// published by the Free Software Foundation.
 | 
						|
//
 | 
						|
 | 
						|
// Derived from the x86 version:
 | 
						|
//
 | 
						|
// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
 | 
						|
//
 | 
						|
// Copyright (c) 2013, Intel Corporation
 | 
						|
//
 | 
						|
// Authors:
 | 
						|
//     Erdinc Ozturk <erdinc.ozturk@intel.com>
 | 
						|
//     Vinodh Gopal <vinodh.gopal@intel.com>
 | 
						|
//     James Guilford <james.guilford@intel.com>
 | 
						|
//     Tim Chen <tim.c.chen@linux.intel.com>
 | 
						|
//
 | 
						|
// This software is available to you under a choice of one of two
 | 
						|
// licenses.  You may choose to be licensed under the terms of the GNU
 | 
						|
// General Public License (GPL) Version 2, available from the file
 | 
						|
// COPYING in the main directory of this source tree, or the
 | 
						|
// OpenIB.org BSD license below:
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
// * Redistributions of source code must retain the above copyright
 | 
						|
//   notice, this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
// * Redistributions in binary form must reproduce the above copyright
 | 
						|
//   notice, this list of conditions and the following disclaimer in the
 | 
						|
//   documentation and/or other materials provided with the
 | 
						|
//   distribution.
 | 
						|
//
 | 
						|
// * Neither the name of the Intel Corporation nor the names of its
 | 
						|
//   contributors may be used to endorse or promote products derived from
 | 
						|
//   this software without specific prior written permission.
 | 
						|
//
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
 | 
						|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | 
						|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
 | 
						|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | 
						|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | 
						|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | 
						|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | 
						|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | 
						|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | 
						|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
//       Reference paper titled "Fast CRC Computation for Generic
 | 
						|
//	Polynomials Using PCLMULQDQ Instruction"
 | 
						|
//       URL: http://www.intel.com/content/dam/www/public/us/en/documents
 | 
						|
//  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
 | 
						|
//
 | 
						|
 | 
						|
#include <linux/linkage.h>
 | 
						|
#include <asm/assembler.h>
 | 
						|
 | 
						|
#ifdef CONFIG_CPU_ENDIAN_BE8
 | 
						|
#define CPU_LE(code...)
 | 
						|
#else
 | 
						|
#define CPU_LE(code...)		code
 | 
						|
#endif
 | 
						|
 | 
						|
	.text
 | 
						|
	.arch		armv8-a
 | 
						|
	.fpu		crypto-neon-fp-armv8
 | 
						|
 | 
						|
	init_crc	.req	r0
 | 
						|
	buf		.req	r1
 | 
						|
	len		.req	r2
 | 
						|
 | 
						|
	fold_consts_ptr	.req	ip
 | 
						|
 | 
						|
	q0l		.req	d0
 | 
						|
	q0h		.req	d1
 | 
						|
	q1l		.req	d2
 | 
						|
	q1h		.req	d3
 | 
						|
	q2l		.req	d4
 | 
						|
	q2h		.req	d5
 | 
						|
	q3l		.req	d6
 | 
						|
	q3h		.req	d7
 | 
						|
	q4l		.req	d8
 | 
						|
	q4h		.req	d9
 | 
						|
	q5l		.req	d10
 | 
						|
	q5h		.req	d11
 | 
						|
	q6l		.req	d12
 | 
						|
	q6h		.req	d13
 | 
						|
	q7l		.req	d14
 | 
						|
	q7h		.req	d15
 | 
						|
	q8l		.req	d16
 | 
						|
	q8h		.req	d17
 | 
						|
	q9l		.req	d18
 | 
						|
	q9h		.req	d19
 | 
						|
	q10l		.req	d20
 | 
						|
	q10h		.req	d21
 | 
						|
	q11l		.req	d22
 | 
						|
	q11h		.req	d23
 | 
						|
	q12l		.req	d24
 | 
						|
	q12h		.req	d25
 | 
						|
 | 
						|
	FOLD_CONSTS	.req	q10
 | 
						|
	FOLD_CONST_L	.req	q10l
 | 
						|
	FOLD_CONST_H	.req	q10h
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Pairwise long polynomial multiplication of two 16-bit values
 | 
						|
	 *
 | 
						|
	 *   { w0, w1 }, { y0, y1 }
 | 
						|
	 *
 | 
						|
	 * by two 64-bit values
 | 
						|
	 *
 | 
						|
	 *   { x0, x1, x2, x3, x4, x5, x6, x7 }, { z0, z1, z2, z3, z4, z5, z6, z7 }
 | 
						|
	 *
 | 
						|
	 * where each vector element is a byte, ordered from least to most
 | 
						|
	 * significant. The resulting 80-bit vectors are XOR'ed together.
 | 
						|
	 *
 | 
						|
	 * This can be implemented using 8x8 long polynomial multiplication, by
 | 
						|
	 * reorganizing the input so that each pairwise 8x8 multiplication
 | 
						|
	 * produces one of the terms from the decomposition below, and
 | 
						|
	 * combining the results of each rank and shifting them into place.
 | 
						|
	 *
 | 
						|
	 * Rank
 | 
						|
	 *  0            w0*x0 ^              |        y0*z0 ^
 | 
						|
	 *  1       (w0*x1 ^ w1*x0) <<  8 ^   |   (y0*z1 ^ y1*z0) <<  8 ^
 | 
						|
	 *  2       (w0*x2 ^ w1*x1) << 16 ^   |   (y0*z2 ^ y1*z1) << 16 ^
 | 
						|
	 *  3       (w0*x3 ^ w1*x2) << 24 ^   |   (y0*z3 ^ y1*z2) << 24 ^
 | 
						|
	 *  4       (w0*x4 ^ w1*x3) << 32 ^   |   (y0*z4 ^ y1*z3) << 32 ^
 | 
						|
	 *  5       (w0*x5 ^ w1*x4) << 40 ^   |   (y0*z5 ^ y1*z4) << 40 ^
 | 
						|
	 *  6       (w0*x6 ^ w1*x5) << 48 ^   |   (y0*z6 ^ y1*z5) << 48 ^
 | 
						|
	 *  7       (w0*x7 ^ w1*x6) << 56 ^   |   (y0*z7 ^ y1*z6) << 56 ^
 | 
						|
	 *  8            w1*x7      << 64     |        y1*z7      << 64
 | 
						|
	 *
 | 
						|
	 * The inputs can be reorganized into
 | 
						|
	 *
 | 
						|
	 *   { w0, w0, w0, w0, y0, y0, y0, y0 }, { w1, w1, w1, w1, y1, y1, y1, y1 }
 | 
						|
	 *   { x0, x2, x4, x6, z0, z2, z4, z6 }, { x1, x3, x5, x7, z1, z3, z5, z7 }
 | 
						|
	 *
 | 
						|
	 * and after performing 8x8->16 bit long polynomial multiplication of
 | 
						|
	 * each of the halves of the first vector with those of the second one,
 | 
						|
	 * we obtain the following four vectors of 16-bit elements:
 | 
						|
	 *
 | 
						|
	 *   a := { w0*x0, w0*x2, w0*x4, w0*x6 }, { y0*z0, y0*z2, y0*z4, y0*z6 }
 | 
						|
	 *   b := { w0*x1, w0*x3, w0*x5, w0*x7 }, { y0*z1, y0*z3, y0*z5, y0*z7 }
 | 
						|
	 *   c := { w1*x0, w1*x2, w1*x4, w1*x6 }, { y1*z0, y1*z2, y1*z4, y1*z6 }
 | 
						|
	 *   d := { w1*x1, w1*x3, w1*x5, w1*x7 }, { y1*z1, y1*z3, y1*z5, y1*z7 }
 | 
						|
	 *
 | 
						|
	 * Results b and c can be XORed together, as the vector elements have
 | 
						|
	 * matching ranks. Then, the final XOR can be pulled forward, and
 | 
						|
	 * applied between the halves of each of the remaining three vectors,
 | 
						|
	 * which are then shifted into place, and XORed together to produce the
 | 
						|
	 * final 80-bit result.
 | 
						|
	 */
 | 
						|
        .macro		pmull16x64_p8, v16, v64
 | 
						|
	vext.8		q11, \v64, \v64, #1
 | 
						|
	vld1.64		{q12}, [r4, :128]
 | 
						|
	vuzp.8		q11, \v64
 | 
						|
	vtbl.8		d24, {\v16\()_L-\v16\()_H}, d24
 | 
						|
	vtbl.8		d25, {\v16\()_L-\v16\()_H}, d25
 | 
						|
	bl		__pmull16x64_p8
 | 
						|
	veor		\v64, q12, q14
 | 
						|
        .endm
 | 
						|
 | 
						|
__pmull16x64_p8:
 | 
						|
	vmull.p8	q13, d23, d24
 | 
						|
	vmull.p8	q14, d23, d25
 | 
						|
	vmull.p8	q15, d22, d24
 | 
						|
	vmull.p8	q12, d22, d25
 | 
						|
 | 
						|
	veor		q14, q14, q15
 | 
						|
	veor		d24, d24, d25
 | 
						|
	veor		d26, d26, d27
 | 
						|
	veor		d28, d28, d29
 | 
						|
	vmov.i32	d25, #0
 | 
						|
	vmov.i32	d29, #0
 | 
						|
	vext.8		q12, q12, q12, #14
 | 
						|
	vext.8		q14, q14, q14, #15
 | 
						|
	veor		d24, d24, d26
 | 
						|
	bx		lr
 | 
						|
ENDPROC(__pmull16x64_p8)
 | 
						|
 | 
						|
        .macro		pmull16x64_p64, v16, v64
 | 
						|
	vmull.p64	q11, \v64\()l, \v16\()_L
 | 
						|
	vmull.p64	\v64, \v64\()h, \v16\()_H
 | 
						|
	veor		\v64, \v64, q11
 | 
						|
	.endm
 | 
						|
 | 
						|
	// Fold reg1, reg2 into the next 32 data bytes, storing the result back
 | 
						|
	// into reg1, reg2.
 | 
						|
	.macro		fold_32_bytes, reg1, reg2, p
 | 
						|
	vld1.64		{q8-q9}, [buf]!
 | 
						|
 | 
						|
	pmull16x64_\p	FOLD_CONST, \reg1
 | 
						|
	pmull16x64_\p	FOLD_CONST, \reg2
 | 
						|
 | 
						|
CPU_LE(	vrev64.8	q8, q8	)
 | 
						|
CPU_LE(	vrev64.8	q9, q9	)
 | 
						|
	vswp		q8l, q8h
 | 
						|
	vswp		q9l, q9h
 | 
						|
 | 
						|
	veor.8		\reg1, \reg1, q8
 | 
						|
	veor.8		\reg2, \reg2, q9
 | 
						|
	.endm
 | 
						|
 | 
						|
	// Fold src_reg into dst_reg, optionally loading the next fold constants
 | 
						|
	.macro		fold_16_bytes, src_reg, dst_reg, p, load_next_consts
 | 
						|
	pmull16x64_\p	FOLD_CONST, \src_reg
 | 
						|
	.ifnb		\load_next_consts
 | 
						|
	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
 | 
						|
	.endif
 | 
						|
	veor.8		\dst_reg, \dst_reg, \src_reg
 | 
						|
	.endm
 | 
						|
 | 
						|
	.macro		crct10dif, p
 | 
						|
	// For sizes less than 256 bytes, we can't fold 128 bytes at a time.
 | 
						|
	cmp		len, #256
 | 
						|
	blt		.Lless_than_256_bytes\@
 | 
						|
 | 
						|
	mov_l		fold_consts_ptr, .Lfold_across_128_bytes_consts
 | 
						|
 | 
						|
	// Load the first 128 data bytes.  Byte swapping is necessary to make
 | 
						|
	// the bit order match the polynomial coefficient order.
 | 
						|
	vld1.64		{q0-q1}, [buf]!
 | 
						|
	vld1.64		{q2-q3}, [buf]!
 | 
						|
	vld1.64		{q4-q5}, [buf]!
 | 
						|
	vld1.64		{q6-q7}, [buf]!
 | 
						|
CPU_LE(	vrev64.8	q0, q0	)
 | 
						|
CPU_LE(	vrev64.8	q1, q1	)
 | 
						|
CPU_LE(	vrev64.8	q2, q2	)
 | 
						|
CPU_LE(	vrev64.8	q3, q3	)
 | 
						|
CPU_LE(	vrev64.8	q4, q4	)
 | 
						|
CPU_LE(	vrev64.8	q5, q5	)
 | 
						|
CPU_LE(	vrev64.8	q6, q6	)
 | 
						|
CPU_LE(	vrev64.8	q7, q7	)
 | 
						|
	vswp		q0l, q0h
 | 
						|
	vswp		q1l, q1h
 | 
						|
	vswp		q2l, q2h
 | 
						|
	vswp		q3l, q3h
 | 
						|
	vswp		q4l, q4h
 | 
						|
	vswp		q5l, q5h
 | 
						|
	vswp		q6l, q6h
 | 
						|
	vswp		q7l, q7h
 | 
						|
 | 
						|
	// XOR the first 16 data *bits* with the initial CRC value.
 | 
						|
	vmov.i8		q8h, #0
 | 
						|
	vmov.u16	q8h[3], init_crc
 | 
						|
	veor		q0h, q0h, q8h
 | 
						|
 | 
						|
	// Load the constants for folding across 128 bytes.
 | 
						|
	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
 | 
						|
 | 
						|
	// Subtract 128 for the 128 data bytes just consumed.  Subtract another
 | 
						|
	// 128 to simplify the termination condition of the following loop.
 | 
						|
	sub		len, len, #256
 | 
						|
 | 
						|
	// While >= 128 data bytes remain (not counting q0-q7), fold the 128
 | 
						|
	// bytes q0-q7 into them, storing the result back into q0-q7.
 | 
						|
.Lfold_128_bytes_loop\@:
 | 
						|
	fold_32_bytes	q0, q1, \p
 | 
						|
	fold_32_bytes	q2, q3, \p
 | 
						|
	fold_32_bytes	q4, q5, \p
 | 
						|
	fold_32_bytes	q6, q7, \p
 | 
						|
	subs		len, len, #128
 | 
						|
	bge		.Lfold_128_bytes_loop\@
 | 
						|
 | 
						|
	// Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
 | 
						|
 | 
						|
	// Fold across 64 bytes.
 | 
						|
	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
 | 
						|
	fold_16_bytes	q0, q4, \p
 | 
						|
	fold_16_bytes	q1, q5, \p
 | 
						|
	fold_16_bytes	q2, q6, \p
 | 
						|
	fold_16_bytes	q3, q7, \p, 1
 | 
						|
	// Fold across 32 bytes.
 | 
						|
	fold_16_bytes	q4, q6, \p
 | 
						|
	fold_16_bytes	q5, q7, \p, 1
 | 
						|
	// Fold across 16 bytes.
 | 
						|
	fold_16_bytes	q6, q7, \p
 | 
						|
 | 
						|
	// Add 128 to get the correct number of data bytes remaining in 0...127
 | 
						|
	// (not counting q7), following the previous extra subtraction by 128.
 | 
						|
	// Then subtract 16 to simplify the termination condition of the
 | 
						|
	// following loop.
 | 
						|
	adds		len, len, #(128-16)
 | 
						|
 | 
						|
	// While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
 | 
						|
	// into them, storing the result back into q7.
 | 
						|
	blt		.Lfold_16_bytes_loop_done\@
 | 
						|
.Lfold_16_bytes_loop\@:
 | 
						|
	pmull16x64_\p	FOLD_CONST, q7
 | 
						|
	vld1.64		{q0}, [buf]!
 | 
						|
CPU_LE(	vrev64.8	q0, q0	)
 | 
						|
	vswp		q0l, q0h
 | 
						|
	veor.8		q7, q7, q0
 | 
						|
	subs		len, len, #16
 | 
						|
	bge		.Lfold_16_bytes_loop\@
 | 
						|
 | 
						|
.Lfold_16_bytes_loop_done\@:
 | 
						|
	// Add 16 to get the correct number of data bytes remaining in 0...15
 | 
						|
	// (not counting q7), following the previous extra subtraction by 16.
 | 
						|
	adds		len, len, #16
 | 
						|
	beq		.Lreduce_final_16_bytes\@
 | 
						|
 | 
						|
.Lhandle_partial_segment\@:
 | 
						|
	// Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
 | 
						|
	// 16 bytes are in q7 and the rest are the remaining data in 'buf'.  To
 | 
						|
	// do this without needing a fold constant for each possible 'len',
 | 
						|
	// redivide the bytes into a first chunk of 'len' bytes and a second
 | 
						|
	// chunk of 16 bytes, then fold the first chunk into the second.
 | 
						|
 | 
						|
	// q0 = last 16 original data bytes
 | 
						|
	add		buf, buf, len
 | 
						|
	sub		buf, buf, #16
 | 
						|
	vld1.64		{q0}, [buf]
 | 
						|
CPU_LE(	vrev64.8	q0, q0	)
 | 
						|
	vswp		q0l, q0h
 | 
						|
 | 
						|
	// q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
 | 
						|
	mov_l		r1, .Lbyteshift_table + 16
 | 
						|
	sub		r1, r1, len
 | 
						|
	vld1.8		{q2}, [r1]
 | 
						|
	vtbl.8		q1l, {q7l-q7h}, q2l
 | 
						|
	vtbl.8		q1h, {q7l-q7h}, q2h
 | 
						|
 | 
						|
	// q3 = first chunk: q7 right-shifted by '16-len' bytes.
 | 
						|
	vmov.i8		q3, #0x80
 | 
						|
	veor.8		q2, q2, q3
 | 
						|
	vtbl.8		q3l, {q7l-q7h}, q2l
 | 
						|
	vtbl.8		q3h, {q7l-q7h}, q2h
 | 
						|
 | 
						|
	// Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
 | 
						|
	vshr.s8		q2, q2, #7
 | 
						|
 | 
						|
	// q2 = second chunk: 'len' bytes from q0 (low-order bytes),
 | 
						|
	// then '16-len' bytes from q1 (high-order bytes).
 | 
						|
	vbsl.8		q2, q1, q0
 | 
						|
 | 
						|
	// Fold the first chunk into the second chunk, storing the result in q7.
 | 
						|
	pmull16x64_\p	FOLD_CONST, q3
 | 
						|
	veor.8		q7, q3, q2
 | 
						|
	b		.Lreduce_final_16_bytes\@
 | 
						|
 | 
						|
.Lless_than_256_bytes\@:
 | 
						|
	// Checksumming a buffer of length 16...255 bytes
 | 
						|
 | 
						|
	mov_l		fold_consts_ptr, .Lfold_across_16_bytes_consts
 | 
						|
 | 
						|
	// Load the first 16 data bytes.
 | 
						|
	vld1.64		{q7}, [buf]!
 | 
						|
CPU_LE(	vrev64.8	q7, q7	)
 | 
						|
	vswp		q7l, q7h
 | 
						|
 | 
						|
	// XOR the first 16 data *bits* with the initial CRC value.
 | 
						|
	vmov.i8		q0h, #0
 | 
						|
	vmov.u16	q0h[3], init_crc
 | 
						|
	veor.8		q7h, q7h, q0h
 | 
						|
 | 
						|
	// Load the fold-across-16-bytes constants.
 | 
						|
	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
 | 
						|
 | 
						|
	cmp		len, #16
 | 
						|
	beq		.Lreduce_final_16_bytes\@	// len == 16
 | 
						|
	subs		len, len, #32
 | 
						|
	addlt		len, len, #16
 | 
						|
	blt		.Lhandle_partial_segment\@	// 17 <= len <= 31
 | 
						|
	b		.Lfold_16_bytes_loop\@		// 32 <= len <= 255
 | 
						|
 | 
						|
.Lreduce_final_16_bytes\@:
 | 
						|
	.endm
 | 
						|
 | 
						|
//
 | 
						|
// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
 | 
						|
//
 | 
						|
// Assumes len >= 16.
 | 
						|
//
 | 
						|
ENTRY(crc_t10dif_pmull64)
 | 
						|
	crct10dif	p64
 | 
						|
 | 
						|
	// Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
 | 
						|
 | 
						|
	// Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
 | 
						|
	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
 | 
						|
 | 
						|
	// Fold the high 64 bits into the low 64 bits, while also multiplying by
 | 
						|
	// x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
 | 
						|
	// whose low 48 bits are 0.
 | 
						|
	vmull.p64	q0, q7h, FOLD_CONST_H	// high bits * x^48 * (x^80 mod G(x))
 | 
						|
	veor.8		q0h, q0h, q7l		// + low bits * x^64
 | 
						|
 | 
						|
	// Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
 | 
						|
	// value congruent to x^64 * M(x) and whose low 48 bits are 0.
 | 
						|
	vmov.i8		q1, #0
 | 
						|
	vmov		s4, s3			// extract high 32 bits
 | 
						|
	vmov		s3, s5			// zero high 32 bits
 | 
						|
	vmull.p64	q1, q1l, FOLD_CONST_L	// high 32 bits * x^48 * (x^48 mod G(x))
 | 
						|
	veor.8		q0, q0, q1		// + low bits
 | 
						|
 | 
						|
	// Load G(x) and floor(x^48 / G(x)).
 | 
						|
	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]
 | 
						|
 | 
						|
	// Use Barrett reduction to compute the final CRC value.
 | 
						|
	vmull.p64	q1, q0h, FOLD_CONST_H	// high 32 bits * floor(x^48 / G(x))
 | 
						|
	vshr.u64	q1l, q1l, #32		// /= x^32
 | 
						|
	vmull.p64	q1, q1l, FOLD_CONST_L	// *= G(x)
 | 
						|
	vshr.u64	q0l, q0l, #48
 | 
						|
	veor.8		q0l, q0l, q1l		// + low 16 nonzero bits
 | 
						|
	// Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
 | 
						|
 | 
						|
	vmov.u16	r0, q0l[0]
 | 
						|
	bx		lr
 | 
						|
ENDPROC(crc_t10dif_pmull64)
 | 
						|
 | 
						|
ENTRY(crc_t10dif_pmull8)
 | 
						|
	push		{r4, lr}
 | 
						|
	mov_l		r4, .L16x64perm
 | 
						|
 | 
						|
	crct10dif	p8
 | 
						|
 | 
						|
CPU_LE(	vrev64.8	q7, q7	)
 | 
						|
	vswp		q7l, q7h
 | 
						|
	vst1.64		{q7}, [r3, :128]
 | 
						|
	pop		{r4, pc}
 | 
						|
ENDPROC(crc_t10dif_pmull8)
 | 
						|
 | 
						|
	.section	".rodata", "a"
 | 
						|
	.align		4
 | 
						|
 | 
						|
// Fold constants precomputed from the polynomial 0x18bb7
 | 
						|
// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
 | 
						|
.Lfold_across_128_bytes_consts:
 | 
						|
	.quad		0x0000000000006123	// x^(8*128)	mod G(x)
 | 
						|
	.quad		0x0000000000002295	// x^(8*128+64)	mod G(x)
 | 
						|
// .Lfold_across_64_bytes_consts:
 | 
						|
	.quad		0x0000000000001069	// x^(4*128)	mod G(x)
 | 
						|
	.quad		0x000000000000dd31	// x^(4*128+64)	mod G(x)
 | 
						|
// .Lfold_across_32_bytes_consts:
 | 
						|
	.quad		0x000000000000857d	// x^(2*128)	mod G(x)
 | 
						|
	.quad		0x0000000000007acc	// x^(2*128+64)	mod G(x)
 | 
						|
.Lfold_across_16_bytes_consts:
 | 
						|
	.quad		0x000000000000a010	// x^(1*128)	mod G(x)
 | 
						|
	.quad		0x0000000000001faa	// x^(1*128+64)	mod G(x)
 | 
						|
// .Lfinal_fold_consts:
 | 
						|
	.quad		0x1368000000000000	// x^48 * (x^48 mod G(x))
 | 
						|
	.quad		0x2d56000000000000	// x^48 * (x^80 mod G(x))
 | 
						|
// .Lbarrett_reduction_consts:
 | 
						|
	.quad		0x0000000000018bb7	// G(x)
 | 
						|
	.quad		0x00000001f65a57f8	// floor(x^48 / G(x))
 | 
						|
 | 
						|
// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
 | 
						|
// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
 | 
						|
// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
 | 
						|
.Lbyteshift_table:
 | 
						|
	.byte		 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
 | 
						|
	.byte		0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
 | 
						|
	.byte		 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
 | 
						|
	.byte		 0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0
 | 
						|
 | 
						|
.L16x64perm:
 | 
						|
	.quad		0x808080800000000, 0x909090901010101
 |