forked from mirrors/linux
		
	The Top-Level Functional Specification for Hyper-V, Section 3.6 [1, 2],
disallows overlapping of the input and output hypercall areas, and
get_vtl(void) does overlap them.
Use the output hypercall page of the current vCPU for the hypercall.
[1] https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/hypercall-interface
[2] https://github.com/MicrosoftDocs/Virtualization-Documentation/tree/main/tlfs
Fixes: 8387ce06d7 ("x86/hyperv: Set Virtual Trust Level in VMBus init message")
Signed-off-by: Roman Kisel <romank@linux.microsoft.com>
Reviewed-by: Tianyu Lan <tiala@microsoft.com>
Reviewed-by: Easwar Hariharan <eahariha@linux.microsoft.com>
Link: https://lore.kernel.org/r/20250108222138.1623703-5-romank@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20250108222138.1623703-5-romank@linux.microsoft.com>
		
	
			
		
			
				
	
	
		
			731 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			731 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * X86 specific Hyper-V initialization code.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2016, Microsoft, Inc.
 | 
						|
 *
 | 
						|
 * Author : K. Y. Srinivasan <kys@microsoft.com>
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt)  "Hyper-V: " fmt
 | 
						|
 | 
						|
#include <linux/efi.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/bitfield.h>
 | 
						|
#include <linux/io.h>
 | 
						|
#include <asm/apic.h>
 | 
						|
#include <asm/desc.h>
 | 
						|
#include <asm/e820/api.h>
 | 
						|
#include <asm/sev.h>
 | 
						|
#include <asm/ibt.h>
 | 
						|
#include <asm/hypervisor.h>
 | 
						|
#include <hyperv/hvhdk.h>
 | 
						|
#include <asm/mshyperv.h>
 | 
						|
#include <asm/idtentry.h>
 | 
						|
#include <asm/set_memory.h>
 | 
						|
#include <linux/kexec.h>
 | 
						|
#include <linux/version.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/cpuhotplug.h>
 | 
						|
#include <linux/syscore_ops.h>
 | 
						|
#include <clocksource/hyperv_timer.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
 | 
						|
u64 hv_current_partition_id = ~0ull;
 | 
						|
EXPORT_SYMBOL_GPL(hv_current_partition_id);
 | 
						|
 | 
						|
void *hv_hypercall_pg;
 | 
						|
EXPORT_SYMBOL_GPL(hv_hypercall_pg);
 | 
						|
 | 
						|
union hv_ghcb * __percpu *hv_ghcb_pg;
 | 
						|
 | 
						|
/* Storage to save the hypercall page temporarily for hibernation */
 | 
						|
static void *hv_hypercall_pg_saved;
 | 
						|
 | 
						|
struct hv_vp_assist_page **hv_vp_assist_page;
 | 
						|
EXPORT_SYMBOL_GPL(hv_vp_assist_page);
 | 
						|
 | 
						|
static int hyperv_init_ghcb(void)
 | 
						|
{
 | 
						|
	u64 ghcb_gpa;
 | 
						|
	void *ghcb_va;
 | 
						|
	void **ghcb_base;
 | 
						|
 | 
						|
	if (!ms_hyperv.paravisor_present || !hv_isolation_type_snp())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!hv_ghcb_pg)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * GHCB page is allocated by paravisor. The address
 | 
						|
	 * returned by MSR_AMD64_SEV_ES_GHCB is above shared
 | 
						|
	 * memory boundary and map it here.
 | 
						|
	 */
 | 
						|
	rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
 | 
						|
 | 
						|
	/* Mask out vTOM bit. ioremap_cache() maps decrypted */
 | 
						|
	ghcb_gpa &= ~ms_hyperv.shared_gpa_boundary;
 | 
						|
	ghcb_va = (void *)ioremap_cache(ghcb_gpa, HV_HYP_PAGE_SIZE);
 | 
						|
	if (!ghcb_va)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
 | 
						|
	*ghcb_base = ghcb_va;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hv_cpu_init(unsigned int cpu)
 | 
						|
{
 | 
						|
	union hv_vp_assist_msr_contents msr = { 0 };
 | 
						|
	struct hv_vp_assist_page **hvp;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = hv_common_cpu_init(cpu);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (!hv_vp_assist_page)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	hvp = &hv_vp_assist_page[cpu];
 | 
						|
	if (hv_root_partition) {
 | 
						|
		/*
 | 
						|
		 * For root partition we get the hypervisor provided VP assist
 | 
						|
		 * page, instead of allocating a new page.
 | 
						|
		 */
 | 
						|
		rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
 | 
						|
		*hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
 | 
						|
				PAGE_SIZE, MEMREMAP_WB);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * The VP assist page is an "overlay" page (see Hyper-V TLFS's
 | 
						|
		 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
 | 
						|
		 * out to make sure we always write the EOI MSR in
 | 
						|
		 * hv_apic_eoi_write() *after* the EOI optimization is disabled
 | 
						|
		 * in hv_cpu_die(), otherwise a CPU may not be stopped in the
 | 
						|
		 * case of CPU offlining and the VM will hang.
 | 
						|
		 */
 | 
						|
		if (!*hvp) {
 | 
						|
			*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Hyper-V should never specify a VM that is a Confidential
 | 
						|
			 * VM and also running in the root partition. Root partition
 | 
						|
			 * is blocked to run in Confidential VM. So only decrypt assist
 | 
						|
			 * page in non-root partition here.
 | 
						|
			 */
 | 
						|
			if (*hvp && !ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
 | 
						|
				WARN_ON_ONCE(set_memory_decrypted((unsigned long)(*hvp), 1));
 | 
						|
				memset(*hvp, 0, PAGE_SIZE);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (*hvp)
 | 
						|
			msr.pfn = vmalloc_to_pfn(*hvp);
 | 
						|
 | 
						|
	}
 | 
						|
	if (!WARN_ON(!(*hvp))) {
 | 
						|
		msr.enable = 1;
 | 
						|
		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
 | 
						|
	}
 | 
						|
 | 
						|
	return hyperv_init_ghcb();
 | 
						|
}
 | 
						|
 | 
						|
static void (*hv_reenlightenment_cb)(void);
 | 
						|
 | 
						|
static void hv_reenlightenment_notify(struct work_struct *dummy)
 | 
						|
{
 | 
						|
	struct hv_tsc_emulation_status emu_status;
 | 
						|
 | 
						|
	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
 | 
						|
 | 
						|
	/* Don't issue the callback if TSC accesses are not emulated */
 | 
						|
	if (hv_reenlightenment_cb && emu_status.inprogress)
 | 
						|
		hv_reenlightenment_cb();
 | 
						|
}
 | 
						|
static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
 | 
						|
 | 
						|
void hyperv_stop_tsc_emulation(void)
 | 
						|
{
 | 
						|
	u64 freq;
 | 
						|
	struct hv_tsc_emulation_status emu_status;
 | 
						|
 | 
						|
	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
 | 
						|
	emu_status.inprogress = 0;
 | 
						|
	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
 | 
						|
 | 
						|
	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
 | 
						|
	tsc_khz = div64_u64(freq, 1000);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
 | 
						|
 | 
						|
static inline bool hv_reenlightenment_available(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Check for required features and privileges to make TSC frequency
 | 
						|
	 * change notifications work.
 | 
						|
	 */
 | 
						|
	return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
 | 
						|
		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
 | 
						|
		ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
 | 
						|
{
 | 
						|
	apic_eoi();
 | 
						|
	inc_irq_stat(irq_hv_reenlightenment_count);
 | 
						|
	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
 | 
						|
}
 | 
						|
 | 
						|
void set_hv_tscchange_cb(void (*cb)(void))
 | 
						|
{
 | 
						|
	struct hv_reenlightenment_control re_ctrl = {
 | 
						|
		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
 | 
						|
		.enabled = 1,
 | 
						|
	};
 | 
						|
	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
 | 
						|
 | 
						|
	if (!hv_reenlightenment_available()) {
 | 
						|
		pr_warn("reenlightenment support is unavailable\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!hv_vp_index)
 | 
						|
		return;
 | 
						|
 | 
						|
	hv_reenlightenment_cb = cb;
 | 
						|
 | 
						|
	/* Make sure callback is registered before we write to MSRs */
 | 
						|
	wmb();
 | 
						|
 | 
						|
	re_ctrl.target_vp = hv_vp_index[get_cpu()];
 | 
						|
 | 
						|
	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
 | 
						|
	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
 | 
						|
 | 
						|
	put_cpu();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
 | 
						|
 | 
						|
void clear_hv_tscchange_cb(void)
 | 
						|
{
 | 
						|
	struct hv_reenlightenment_control re_ctrl;
 | 
						|
 | 
						|
	if (!hv_reenlightenment_available())
 | 
						|
		return;
 | 
						|
 | 
						|
	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
 | 
						|
	re_ctrl.enabled = 0;
 | 
						|
	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
 | 
						|
 | 
						|
	hv_reenlightenment_cb = NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
 | 
						|
 | 
						|
static int hv_cpu_die(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct hv_reenlightenment_control re_ctrl;
 | 
						|
	unsigned int new_cpu;
 | 
						|
	void **ghcb_va;
 | 
						|
 | 
						|
	if (hv_ghcb_pg) {
 | 
						|
		ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
 | 
						|
		if (*ghcb_va)
 | 
						|
			iounmap(*ghcb_va);
 | 
						|
		*ghcb_va = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	hv_common_cpu_die(cpu);
 | 
						|
 | 
						|
	if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
 | 
						|
		union hv_vp_assist_msr_contents msr = { 0 };
 | 
						|
		if (hv_root_partition) {
 | 
						|
			/*
 | 
						|
			 * For root partition the VP assist page is mapped to
 | 
						|
			 * hypervisor provided page, and thus we unmap the
 | 
						|
			 * page here and nullify it, so that in future we have
 | 
						|
			 * correct page address mapped in hv_cpu_init.
 | 
						|
			 */
 | 
						|
			memunmap(hv_vp_assist_page[cpu]);
 | 
						|
			hv_vp_assist_page[cpu] = NULL;
 | 
						|
			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
 | 
						|
			msr.enable = 0;
 | 
						|
		}
 | 
						|
		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
 | 
						|
	}
 | 
						|
 | 
						|
	if (hv_reenlightenment_cb == NULL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
 | 
						|
	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
 | 
						|
		/*
 | 
						|
		 * Reassign reenlightenment notifications to some other online
 | 
						|
		 * CPU or just disable the feature if there are no online CPUs
 | 
						|
		 * left (happens on hibernation).
 | 
						|
		 */
 | 
						|
		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
 | 
						|
 | 
						|
		if (new_cpu < nr_cpu_ids)
 | 
						|
			re_ctrl.target_vp = hv_vp_index[new_cpu];
 | 
						|
		else
 | 
						|
			re_ctrl.enabled = 0;
 | 
						|
 | 
						|
		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init hv_pci_init(void)
 | 
						|
{
 | 
						|
	bool gen2vm = efi_enabled(EFI_BOOT);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A Generation-2 VM doesn't support legacy PCI/PCIe, so both
 | 
						|
	 * raw_pci_ops and raw_pci_ext_ops are NULL, and pci_subsys_init() ->
 | 
						|
	 * pcibios_init() doesn't call pcibios_resource_survey() ->
 | 
						|
	 * e820__reserve_resources_late(); as a result, any emulated persistent
 | 
						|
	 * memory of E820_TYPE_PRAM (12) via the kernel parameter
 | 
						|
	 * memmap=nn[KMG]!ss is not added into iomem_resource and hence can't be
 | 
						|
	 * detected by register_e820_pmem(). Fix this by directly calling
 | 
						|
	 * e820__reserve_resources_late() here: e820__reserve_resources_late()
 | 
						|
	 * depends on e820__reserve_resources(), which has been called earlier
 | 
						|
	 * from setup_arch(). Note: e820__reserve_resources_late() also adds
 | 
						|
	 * any memory of E820_TYPE_PMEM (7) into iomem_resource, and
 | 
						|
	 * acpi_nfit_register_region() -> acpi_nfit_insert_resource() ->
 | 
						|
	 * region_intersects() returns REGION_INTERSECTS, so the memory of
 | 
						|
	 * E820_TYPE_PMEM won't get added twice.
 | 
						|
	 *
 | 
						|
	 * We return 0 here so that pci_arch_init() won't print the warning:
 | 
						|
	 * "PCI: Fatal: No config space access function found"
 | 
						|
	 */
 | 
						|
	if (gen2vm) {
 | 
						|
		e820__reserve_resources_late();
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int hv_suspend(void)
 | 
						|
{
 | 
						|
	union hv_x64_msr_hypercall_contents hypercall_msr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (hv_root_partition)
 | 
						|
		return -EPERM;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reset the hypercall page as it is going to be invalidated
 | 
						|
	 * across hibernation. Setting hv_hypercall_pg to NULL ensures
 | 
						|
	 * that any subsequent hypercall operation fails safely instead of
 | 
						|
	 * crashing due to an access of an invalid page. The hypercall page
 | 
						|
	 * pointer is restored on resume.
 | 
						|
	 */
 | 
						|
	hv_hypercall_pg_saved = hv_hypercall_pg;
 | 
						|
	hv_hypercall_pg = NULL;
 | 
						|
 | 
						|
	/* Disable the hypercall page in the hypervisor */
 | 
						|
	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 | 
						|
	hypercall_msr.enable = 0;
 | 
						|
	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 | 
						|
 | 
						|
	ret = hv_cpu_die(0);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void hv_resume(void)
 | 
						|
{
 | 
						|
	union hv_x64_msr_hypercall_contents hypercall_msr;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = hv_cpu_init(0);
 | 
						|
	WARN_ON(ret);
 | 
						|
 | 
						|
	/* Re-enable the hypercall page */
 | 
						|
	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 | 
						|
	hypercall_msr.enable = 1;
 | 
						|
	hypercall_msr.guest_physical_address =
 | 
						|
		vmalloc_to_pfn(hv_hypercall_pg_saved);
 | 
						|
	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 | 
						|
 | 
						|
	hv_hypercall_pg = hv_hypercall_pg_saved;
 | 
						|
	hv_hypercall_pg_saved = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
 | 
						|
	 * reenable them here if hv_reenlightenment_cb was previously set.
 | 
						|
	 */
 | 
						|
	if (hv_reenlightenment_cb)
 | 
						|
		set_hv_tscchange_cb(hv_reenlightenment_cb);
 | 
						|
}
 | 
						|
 | 
						|
/* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
 | 
						|
static struct syscore_ops hv_syscore_ops = {
 | 
						|
	.suspend	= hv_suspend,
 | 
						|
	.resume		= hv_resume,
 | 
						|
};
 | 
						|
 | 
						|
static void (* __initdata old_setup_percpu_clockev)(void);
 | 
						|
 | 
						|
static void __init hv_stimer_setup_percpu_clockev(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Ignore any errors in setting up stimer clockevents
 | 
						|
	 * as we can run with the LAPIC timer as a fallback.
 | 
						|
	 */
 | 
						|
	(void)hv_stimer_alloc(false);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Still register the LAPIC timer, because the direct-mode STIMER is
 | 
						|
	 * not supported by old versions of Hyper-V. This also allows users
 | 
						|
	 * to switch to LAPIC timer via /sys, if they want to.
 | 
						|
	 */
 | 
						|
	if (old_setup_percpu_clockev)
 | 
						|
		old_setup_percpu_clockev();
 | 
						|
}
 | 
						|
 | 
						|
static void __init hv_get_partition_id(void)
 | 
						|
{
 | 
						|
	struct hv_get_partition_id *output_page;
 | 
						|
	u64 status;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
 | 
						|
	status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
 | 
						|
	if (!hv_result_success(status)) {
 | 
						|
		/* No point in proceeding if this failed */
 | 
						|
		pr_err("Failed to get partition ID: %lld\n", status);
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
	hv_current_partition_id = output_page->partition_id;
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
#if IS_ENABLED(CONFIG_HYPERV_VTL_MODE)
 | 
						|
static u8 __init get_vtl(void)
 | 
						|
{
 | 
						|
	u64 control = HV_HYPERCALL_REP_COMP_1 | HVCALL_GET_VP_REGISTERS;
 | 
						|
	struct hv_input_get_vp_registers *input;
 | 
						|
	struct hv_output_get_vp_registers *output;
 | 
						|
	unsigned long flags;
 | 
						|
	u64 ret;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	input = *this_cpu_ptr(hyperv_pcpu_input_arg);
 | 
						|
	output = *this_cpu_ptr(hyperv_pcpu_output_arg);
 | 
						|
 | 
						|
	memset(input, 0, struct_size(input, names, 1));
 | 
						|
	input->partition_id = HV_PARTITION_ID_SELF;
 | 
						|
	input->vp_index = HV_VP_INDEX_SELF;
 | 
						|
	input->input_vtl.as_uint8 = 0;
 | 
						|
	input->names[0] = HV_REGISTER_VSM_VP_STATUS;
 | 
						|
 | 
						|
	ret = hv_do_hypercall(control, input, output);
 | 
						|
	if (hv_result_success(ret)) {
 | 
						|
		ret = output->values[0].reg8 & HV_X64_VTL_MASK;
 | 
						|
	} else {
 | 
						|
		pr_err("Failed to get VTL(error: %lld) exiting...\n", ret);
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline u8 get_vtl(void) { return 0; }
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is to be invoked early in the boot sequence after the
 | 
						|
 * hypervisor has been detected.
 | 
						|
 *
 | 
						|
 * 1. Setup the hypercall page.
 | 
						|
 * 2. Register Hyper-V specific clocksource.
 | 
						|
 * 3. Setup Hyper-V specific APIC entry points.
 | 
						|
 */
 | 
						|
void __init hyperv_init(void)
 | 
						|
{
 | 
						|
	u64 guest_id;
 | 
						|
	union hv_x64_msr_hypercall_contents hypercall_msr;
 | 
						|
	int cpuhp;
 | 
						|
 | 
						|
	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (hv_common_init())
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The VP assist page is useless to a TDX guest: the only use we
 | 
						|
	 * would have for it is lazy EOI, which can not be used with TDX.
 | 
						|
	 */
 | 
						|
	if (hv_isolation_type_tdx())
 | 
						|
		hv_vp_assist_page = NULL;
 | 
						|
	else
 | 
						|
		hv_vp_assist_page = kcalloc(nr_cpu_ids,
 | 
						|
					    sizeof(*hv_vp_assist_page),
 | 
						|
					    GFP_KERNEL);
 | 
						|
	if (!hv_vp_assist_page) {
 | 
						|
		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
 | 
						|
 | 
						|
		if (!hv_isolation_type_tdx())
 | 
						|
			goto common_free;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
 | 
						|
		/* Negotiate GHCB Version. */
 | 
						|
		if (!hv_ghcb_negotiate_protocol())
 | 
						|
			hv_ghcb_terminate(SEV_TERM_SET_GEN,
 | 
						|
					  GHCB_SEV_ES_PROT_UNSUPPORTED);
 | 
						|
 | 
						|
		hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
 | 
						|
		if (!hv_ghcb_pg)
 | 
						|
			goto free_vp_assist_page;
 | 
						|
	}
 | 
						|
 | 
						|
	cpuhp = cpuhp_setup_state(CPUHP_AP_HYPERV_ONLINE, "x86/hyperv_init:online",
 | 
						|
				  hv_cpu_init, hv_cpu_die);
 | 
						|
	if (cpuhp < 0)
 | 
						|
		goto free_ghcb_page;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Setup the hypercall page and enable hypercalls.
 | 
						|
	 * 1. Register the guest ID
 | 
						|
	 * 2. Enable the hypercall and register the hypercall page
 | 
						|
	 *
 | 
						|
	 * A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg:
 | 
						|
	 * when the hypercall input is a page, such a VM must pass a decrypted
 | 
						|
	 * page to Hyper-V, e.g. hv_post_message() uses the per-CPU page
 | 
						|
	 * hyperv_pcpu_input_arg, which is decrypted if no paravisor is present.
 | 
						|
	 *
 | 
						|
	 * A TDX VM with the paravisor uses hv_hypercall_pg for most hypercalls,
 | 
						|
	 * which are handled by the paravisor and the VM must use an encrypted
 | 
						|
	 * input page: in such a VM, the hyperv_pcpu_input_arg is encrypted and
 | 
						|
	 * used in the hypercalls, e.g. see hv_mark_gpa_visibility() and
 | 
						|
	 * hv_arch_irq_unmask(). Such a VM uses TDX GHCI for two hypercalls:
 | 
						|
	 * 1. HVCALL_SIGNAL_EVENT: see vmbus_set_event() and _hv_do_fast_hypercall8().
 | 
						|
	 * 2. HVCALL_POST_MESSAGE: the input page must be a decrypted page, i.e.
 | 
						|
	 * hv_post_message() in such a VM can't use the encrypted hyperv_pcpu_input_arg;
 | 
						|
	 * instead, hv_post_message() uses the post_msg_page, which is decrypted
 | 
						|
	 * in such a VM and is only used in such a VM.
 | 
						|
	 */
 | 
						|
	guest_id = hv_generate_guest_id(LINUX_VERSION_CODE);
 | 
						|
	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
 | 
						|
 | 
						|
	/* With the paravisor, the VM must also write the ID via GHCB/GHCI */
 | 
						|
	hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
 | 
						|
 | 
						|
	/* A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg */
 | 
						|
	if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
 | 
						|
		goto skip_hypercall_pg_init;
 | 
						|
 | 
						|
	hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
 | 
						|
			VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
 | 
						|
			VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
 | 
						|
			__builtin_return_address(0));
 | 
						|
	if (hv_hypercall_pg == NULL)
 | 
						|
		goto clean_guest_os_id;
 | 
						|
 | 
						|
	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 | 
						|
	hypercall_msr.enable = 1;
 | 
						|
 | 
						|
	if (hv_root_partition) {
 | 
						|
		struct page *pg;
 | 
						|
		void *src;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * For the root partition, the hypervisor will set up its
 | 
						|
		 * hypercall page. The hypervisor guarantees it will not show
 | 
						|
		 * up in the root's address space. The root can't change the
 | 
						|
		 * location of the hypercall page.
 | 
						|
		 *
 | 
						|
		 * Order is important here. We must enable the hypercall page
 | 
						|
		 * so it is populated with code, then copy the code to an
 | 
						|
		 * executable page.
 | 
						|
		 */
 | 
						|
		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 | 
						|
 | 
						|
		pg = vmalloc_to_page(hv_hypercall_pg);
 | 
						|
		src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
 | 
						|
				MEMREMAP_WB);
 | 
						|
		BUG_ON(!src);
 | 
						|
		memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE);
 | 
						|
		memunmap(src);
 | 
						|
 | 
						|
		hv_remap_tsc_clocksource();
 | 
						|
	} else {
 | 
						|
		hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
 | 
						|
		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 | 
						|
	}
 | 
						|
 | 
						|
skip_hypercall_pg_init:
 | 
						|
	/*
 | 
						|
	 * Some versions of Hyper-V that provide IBT in guest VMs have a bug
 | 
						|
	 * in that there's no ENDBR64 instruction at the entry to the
 | 
						|
	 * hypercall page. Because hypercalls are invoked via an indirect call
 | 
						|
	 * to the hypercall page, all hypercall attempts fail when IBT is
 | 
						|
	 * enabled, and Linux panics. For such buggy versions, disable IBT.
 | 
						|
	 *
 | 
						|
	 * Fixed versions of Hyper-V always provide ENDBR64 on the hypercall
 | 
						|
	 * page, so if future Linux kernel versions enable IBT for 32-bit
 | 
						|
	 * builds, additional hypercall page hackery will be required here
 | 
						|
	 * to provide an ENDBR32.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_X86_KERNEL_IBT
 | 
						|
	if (cpu_feature_enabled(X86_FEATURE_IBT) &&
 | 
						|
	    *(u32 *)hv_hypercall_pg != gen_endbr()) {
 | 
						|
		setup_clear_cpu_cap(X86_FEATURE_IBT);
 | 
						|
		pr_warn("Disabling IBT because of Hyper-V bug\n");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * hyperv_init() is called before LAPIC is initialized: see
 | 
						|
	 * apic_intr_mode_init() -> x86_platform.apic_post_init() and
 | 
						|
	 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
 | 
						|
	 * depends on LAPIC, so hv_stimer_alloc() should be called from
 | 
						|
	 * x86_init.timers.setup_percpu_clockev.
 | 
						|
	 */
 | 
						|
	old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
 | 
						|
	x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
 | 
						|
 | 
						|
	hv_apic_init();
 | 
						|
 | 
						|
	x86_init.pci.arch_init = hv_pci_init;
 | 
						|
 | 
						|
	register_syscore_ops(&hv_syscore_ops);
 | 
						|
 | 
						|
	if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
 | 
						|
		hv_get_partition_id();
 | 
						|
 | 
						|
	BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
 | 
						|
 | 
						|
#ifdef CONFIG_PCI_MSI
 | 
						|
	/*
 | 
						|
	 * If we're running as root, we want to create our own PCI MSI domain.
 | 
						|
	 * We can't set this in hv_pci_init because that would be too late.
 | 
						|
	 */
 | 
						|
	if (hv_root_partition)
 | 
						|
		x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Query the VMs extended capability once, so that it can be cached. */
 | 
						|
	hv_query_ext_cap(0);
 | 
						|
 | 
						|
	/* Find the VTL */
 | 
						|
	ms_hyperv.vtl = get_vtl();
 | 
						|
 | 
						|
	if (ms_hyperv.vtl > 0) /* non default VTL */
 | 
						|
		hv_vtl_early_init();
 | 
						|
 | 
						|
	return;
 | 
						|
 | 
						|
clean_guest_os_id:
 | 
						|
	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
 | 
						|
	hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
 | 
						|
	cpuhp_remove_state(CPUHP_AP_HYPERV_ONLINE);
 | 
						|
free_ghcb_page:
 | 
						|
	free_percpu(hv_ghcb_pg);
 | 
						|
free_vp_assist_page:
 | 
						|
	kfree(hv_vp_assist_page);
 | 
						|
	hv_vp_assist_page = NULL;
 | 
						|
common_free:
 | 
						|
	hv_common_free();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine is called before kexec/kdump, it does the required cleanup.
 | 
						|
 */
 | 
						|
void hyperv_cleanup(void)
 | 
						|
{
 | 
						|
	union hv_x64_msr_hypercall_contents hypercall_msr;
 | 
						|
	union hv_reference_tsc_msr tsc_msr;
 | 
						|
 | 
						|
	/* Reset our OS id */
 | 
						|
	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
 | 
						|
	hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reset hypercall page reference before reset the page,
 | 
						|
	 * let hypercall operations fail safely rather than
 | 
						|
	 * panic the kernel for using invalid hypercall page
 | 
						|
	 */
 | 
						|
	hv_hypercall_pg = NULL;
 | 
						|
 | 
						|
	/* Reset the hypercall page */
 | 
						|
	hypercall_msr.as_uint64 = hv_get_msr(HV_X64_MSR_HYPERCALL);
 | 
						|
	hypercall_msr.enable = 0;
 | 
						|
	hv_set_msr(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 | 
						|
 | 
						|
	/* Reset the TSC page */
 | 
						|
	tsc_msr.as_uint64 = hv_get_msr(HV_X64_MSR_REFERENCE_TSC);
 | 
						|
	tsc_msr.enable = 0;
 | 
						|
	hv_set_msr(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
 | 
						|
}
 | 
						|
 | 
						|
void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
 | 
						|
{
 | 
						|
	static bool panic_reported;
 | 
						|
	u64 guest_id;
 | 
						|
 | 
						|
	if (in_die && !panic_on_oops)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We prefer to report panic on 'die' chain as we have proper
 | 
						|
	 * registers to report, but if we miss it (e.g. on BUG()) we need
 | 
						|
	 * to report it on 'panic'.
 | 
						|
	 */
 | 
						|
	if (panic_reported)
 | 
						|
		return;
 | 
						|
	panic_reported = true;
 | 
						|
 | 
						|
	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
 | 
						|
 | 
						|
	wrmsrl(HV_X64_MSR_CRASH_P0, err);
 | 
						|
	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
 | 
						|
	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
 | 
						|
	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
 | 
						|
	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Let Hyper-V know there is crash data available
 | 
						|
	 */
 | 
						|
	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hyperv_report_panic);
 | 
						|
 | 
						|
bool hv_is_hyperv_initialized(void)
 | 
						|
{
 | 
						|
	union hv_x64_msr_hypercall_contents hypercall_msr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
 | 
						|
	 * emulation of Hyper-V
 | 
						|
	 */
 | 
						|
	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* A TDX VM with no paravisor uses TDX GHCI call rather than hv_hypercall_pg */
 | 
						|
	if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
 | 
						|
		return true;
 | 
						|
	/*
 | 
						|
	 * Verify that earlier initialization succeeded by checking
 | 
						|
	 * that the hypercall page is setup
 | 
						|
	 */
 | 
						|
	hypercall_msr.as_uint64 = 0;
 | 
						|
	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
 | 
						|
 | 
						|
	return hypercall_msr.enable;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
 |