forked from mirrors/linux
		
	Establish the rule that header files are always included in sorted (POSIX local) order. Standard and private headers are separated by a blank line. Similarly, sort all forward-declarations for structures. Signed-off-by: Alex Elder <elder@linaro.org> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
		
			
				
	
	
		
			790 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			790 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
 | 
						|
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
 | 
						|
 * Copyright (C) 2019-2024 Linaro Ltd.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/bitfield.h>
 | 
						|
#include <linux/bits.h>
 | 
						|
#include <linux/dma-direction.h>
 | 
						|
#include <linux/refcount.h>
 | 
						|
#include <linux/scatterlist.h>
 | 
						|
#include <linux/types.h>
 | 
						|
 | 
						|
#include "gsi.h"
 | 
						|
#include "gsi_private.h"
 | 
						|
#include "gsi_trans.h"
 | 
						|
#include "ipa_cmd.h"
 | 
						|
#include "ipa_data.h"
 | 
						|
#include "ipa_gsi.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * DOC: GSI Transactions
 | 
						|
 *
 | 
						|
 * A GSI transaction abstracts the behavior of a GSI channel by representing
 | 
						|
 * everything about a related group of IPA operations in a single structure.
 | 
						|
 * (A "operation" in this sense is either a data transfer or an IPA immediate
 | 
						|
 * command.)  Most details of interaction with the GSI hardware are managed
 | 
						|
 * by the GSI transaction core, allowing users to simply describe operations
 | 
						|
 * to be performed.  When a transaction has completed a callback function
 | 
						|
 * (dependent on the type of endpoint associated with the channel) allows
 | 
						|
 * cleanup of resources associated with the transaction.
 | 
						|
 *
 | 
						|
 * To perform an operation (or set of them), a user of the GSI transaction
 | 
						|
 * interface allocates a transaction, indicating the number of TREs required
 | 
						|
 * (one per operation).  If sufficient TREs are available, they are reserved
 | 
						|
 * for use in the transaction and the allocation succeeds.  This way
 | 
						|
 * exhaustion of the available TREs in a channel ring is detected as early
 | 
						|
 * as possible.  Any other resources that might be needed to complete a
 | 
						|
 * transaction are also allocated when the transaction is allocated.
 | 
						|
 *
 | 
						|
 * Operations performed as part of a transaction are represented in an array
 | 
						|
 * of Linux scatterlist structures, allocated with the transaction.  These
 | 
						|
 * scatterlist structures are initialized by "adding" operations to the
 | 
						|
 * transaction.  If a buffer in an operation must be mapped for DMA, this is
 | 
						|
 * done at the time it is added to the transaction.  It is possible for a
 | 
						|
 * mapping error to occur when an operation is added.  In this case the
 | 
						|
 * transaction should simply be freed; this correctly releases resources
 | 
						|
 * associated with the transaction.
 | 
						|
 *
 | 
						|
 * Once all operations have been successfully added to a transaction, the
 | 
						|
 * transaction is committed.  Committing transfers ownership of the entire
 | 
						|
 * transaction to the GSI transaction core.  The GSI transaction code
 | 
						|
 * formats the content of the scatterlist array into the channel ring
 | 
						|
 * buffer and informs the hardware that new TREs are available to process.
 | 
						|
 *
 | 
						|
 * The last TRE in each transaction is marked to interrupt the AP when the
 | 
						|
 * GSI hardware has completed it.  Because transfers described by TREs are
 | 
						|
 * performed strictly in order, signaling the completion of just the last
 | 
						|
 * TRE in the transaction is sufficient to indicate the full transaction
 | 
						|
 * is complete.
 | 
						|
 *
 | 
						|
 * When a transaction is complete, ipa_gsi_trans_complete() is called by the
 | 
						|
 * GSI code into the IPA layer, allowing it to perform any final cleanup
 | 
						|
 * required before the transaction is freed.
 | 
						|
 */
 | 
						|
 | 
						|
/* Hardware values representing a transfer element type */
 | 
						|
enum gsi_tre_type {
 | 
						|
	GSI_RE_XFER	= 0x2,
 | 
						|
	GSI_RE_IMMD_CMD	= 0x3,
 | 
						|
};
 | 
						|
 | 
						|
/* An entry in a channel ring */
 | 
						|
struct gsi_tre {
 | 
						|
	__le64 addr;		/* DMA address */
 | 
						|
	__le16 len_opcode;	/* length in bytes or enum IPA_CMD_* */
 | 
						|
	__le16 reserved;
 | 
						|
	__le32 flags;		/* TRE_FLAGS_* */
 | 
						|
};
 | 
						|
 | 
						|
/* gsi_tre->flags mask values (in CPU byte order) */
 | 
						|
#define TRE_FLAGS_CHAIN_FMASK	GENMASK(0, 0)
 | 
						|
#define TRE_FLAGS_IEOT_FMASK	GENMASK(9, 9)
 | 
						|
#define TRE_FLAGS_BEI_FMASK	GENMASK(10, 10)
 | 
						|
#define TRE_FLAGS_TYPE_FMASK	GENMASK(23, 16)
 | 
						|
 | 
						|
int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
 | 
						|
			u32 max_alloc)
 | 
						|
{
 | 
						|
	size_t alloc_size;
 | 
						|
	void *virt;
 | 
						|
 | 
						|
	if (!size)
 | 
						|
		return -EINVAL;
 | 
						|
	if (count < max_alloc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!max_alloc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* By allocating a few extra entries in our pool (one less
 | 
						|
	 * than the maximum number that will be requested in a
 | 
						|
	 * single allocation), we can always satisfy requests without
 | 
						|
	 * ever worrying about straddling the end of the pool array.
 | 
						|
	 * If there aren't enough entries starting at the free index,
 | 
						|
	 * we just allocate free entries from the beginning of the pool.
 | 
						|
	 */
 | 
						|
	alloc_size = size_mul(count + max_alloc - 1, size);
 | 
						|
	alloc_size = kmalloc_size_roundup(alloc_size);
 | 
						|
	virt = kzalloc(alloc_size, GFP_KERNEL);
 | 
						|
	if (!virt)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	pool->base = virt;
 | 
						|
	/* If the allocator gave us any extra memory, use it */
 | 
						|
	pool->count = alloc_size / size;
 | 
						|
	pool->free = 0;
 | 
						|
	pool->max_alloc = max_alloc;
 | 
						|
	pool->size = size;
 | 
						|
	pool->addr = 0;		/* Only used for DMA pools */
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
 | 
						|
{
 | 
						|
	kfree(pool->base);
 | 
						|
	memset(pool, 0, sizeof(*pool));
 | 
						|
}
 | 
						|
 | 
						|
/* Home-grown DMA pool.  This way we can preallocate the pool, and guarantee
 | 
						|
 * allocations will succeed.  The immediate commands in a transaction can
 | 
						|
 * require up to max_alloc elements from the pool.  But we only allow
 | 
						|
 * allocation of a single element from a DMA pool at a time.
 | 
						|
 */
 | 
						|
int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
 | 
						|
			    size_t size, u32 count, u32 max_alloc)
 | 
						|
{
 | 
						|
	size_t total_size;
 | 
						|
	dma_addr_t addr;
 | 
						|
	void *virt;
 | 
						|
 | 
						|
	if (!size)
 | 
						|
		return -EINVAL;
 | 
						|
	if (count < max_alloc)
 | 
						|
		return -EINVAL;
 | 
						|
	if (!max_alloc)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Don't let allocations cross a power-of-two boundary */
 | 
						|
	size = __roundup_pow_of_two(size);
 | 
						|
	total_size = (count + max_alloc - 1) * size;
 | 
						|
 | 
						|
	/* The allocator will give us a power-of-2 number of pages
 | 
						|
	 * sufficient to satisfy our request.  Round up our requested
 | 
						|
	 * size to avoid any unused space in the allocation.  This way
 | 
						|
	 * gsi_trans_pool_exit_dma() can assume the total allocated
 | 
						|
	 * size is exactly (count * size).
 | 
						|
	 */
 | 
						|
	total_size = PAGE_SIZE << get_order(total_size);
 | 
						|
 | 
						|
	virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
 | 
						|
	if (!virt)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	pool->base = virt;
 | 
						|
	pool->count = total_size / size;
 | 
						|
	pool->free = 0;
 | 
						|
	pool->size = size;
 | 
						|
	pool->max_alloc = max_alloc;
 | 
						|
	pool->addr = addr;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
 | 
						|
{
 | 
						|
	size_t total_size = pool->count * pool->size;
 | 
						|
 | 
						|
	dma_free_coherent(dev, total_size, pool->base, pool->addr);
 | 
						|
	memset(pool, 0, sizeof(*pool));
 | 
						|
}
 | 
						|
 | 
						|
/* Return the byte offset of the next free entry in the pool */
 | 
						|
static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
 | 
						|
{
 | 
						|
	u32 offset;
 | 
						|
 | 
						|
	WARN_ON(!count);
 | 
						|
	WARN_ON(count > pool->max_alloc);
 | 
						|
 | 
						|
	/* Allocate from beginning if wrap would occur */
 | 
						|
	if (count > pool->count - pool->free)
 | 
						|
		pool->free = 0;
 | 
						|
 | 
						|
	offset = pool->free * pool->size;
 | 
						|
	pool->free += count;
 | 
						|
	memset(pool->base + offset, 0, count * pool->size);
 | 
						|
 | 
						|
	return offset;
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate a contiguous block of zeroed entries from a pool */
 | 
						|
void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
 | 
						|
{
 | 
						|
	return pool->base + gsi_trans_pool_alloc_common(pool, count);
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate a single zeroed entry from a DMA pool */
 | 
						|
void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
 | 
						|
{
 | 
						|
	u32 offset = gsi_trans_pool_alloc_common(pool, 1);
 | 
						|
 | 
						|
	*addr = pool->addr + offset;
 | 
						|
 | 
						|
	return pool->base + offset;
 | 
						|
}
 | 
						|
 | 
						|
/* Map a TRE ring entry index to the transaction it is associated with */
 | 
						|
static void gsi_trans_map(struct gsi_trans *trans, u32 index)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 | 
						|
 | 
						|
	/* The completion event will indicate the last TRE used */
 | 
						|
	index += trans->used_count - 1;
 | 
						|
 | 
						|
	/* Note: index *must* be used modulo the ring count here */
 | 
						|
	channel->trans_info.map[index % channel->tre_ring.count] = trans;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the transaction mapped to a given ring entry */
 | 
						|
struct gsi_trans *
 | 
						|
gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index)
 | 
						|
{
 | 
						|
	/* Note: index *must* be used modulo the ring count here */
 | 
						|
	return channel->trans_info.map[index % channel->tre_ring.count];
 | 
						|
}
 | 
						|
 | 
						|
/* Return the oldest completed transaction for a channel (or null) */
 | 
						|
struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel)
 | 
						|
{
 | 
						|
	struct gsi_trans_info *trans_info = &channel->trans_info;
 | 
						|
	u16 trans_id = trans_info->completed_id;
 | 
						|
 | 
						|
	if (trans_id == trans_info->pending_id) {
 | 
						|
		gsi_channel_update(channel);
 | 
						|
		if (trans_id == trans_info->pending_id)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return &trans_info->trans[trans_id %= channel->tre_count];
 | 
						|
}
 | 
						|
 | 
						|
/* Move a transaction from allocated to committed state */
 | 
						|
static void gsi_trans_move_committed(struct gsi_trans *trans)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 | 
						|
	struct gsi_trans_info *trans_info = &channel->trans_info;
 | 
						|
 | 
						|
	/* This allocated transaction is now committed */
 | 
						|
	trans_info->allocated_id++;
 | 
						|
}
 | 
						|
 | 
						|
/* Move committed transactions to pending state */
 | 
						|
static void gsi_trans_move_pending(struct gsi_trans *trans)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 | 
						|
	struct gsi_trans_info *trans_info = &channel->trans_info;
 | 
						|
	u16 trans_index = trans - &trans_info->trans[0];
 | 
						|
	u16 delta;
 | 
						|
 | 
						|
	/* These committed transactions are now pending */
 | 
						|
	delta = trans_index - trans_info->committed_id + 1;
 | 
						|
	trans_info->committed_id += delta % channel->tre_count;
 | 
						|
}
 | 
						|
 | 
						|
/* Move pending transactions to completed state */
 | 
						|
void gsi_trans_move_complete(struct gsi_trans *trans)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 | 
						|
	struct gsi_trans_info *trans_info = &channel->trans_info;
 | 
						|
	u16 trans_index = trans - trans_info->trans;
 | 
						|
	u16 delta;
 | 
						|
 | 
						|
	/* These pending transactions are now completed */
 | 
						|
	delta = trans_index - trans_info->pending_id + 1;
 | 
						|
	delta %= channel->tre_count;
 | 
						|
	trans_info->pending_id += delta;
 | 
						|
}
 | 
						|
 | 
						|
/* Move a transaction from completed to polled state */
 | 
						|
void gsi_trans_move_polled(struct gsi_trans *trans)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 | 
						|
	struct gsi_trans_info *trans_info = &channel->trans_info;
 | 
						|
 | 
						|
	/* This completed transaction is now polled */
 | 
						|
	trans_info->completed_id++;
 | 
						|
}
 | 
						|
 | 
						|
/* Reserve some number of TREs on a channel.  Returns true if successful */
 | 
						|
static bool
 | 
						|
gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count)
 | 
						|
{
 | 
						|
	int avail = atomic_read(&trans_info->tre_avail);
 | 
						|
	int new;
 | 
						|
 | 
						|
	do {
 | 
						|
		new = avail - (int)tre_count;
 | 
						|
		if (unlikely(new < 0))
 | 
						|
			return false;
 | 
						|
	} while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new));
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Release previously-reserved TRE entries to a channel */
 | 
						|
static void
 | 
						|
gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count)
 | 
						|
{
 | 
						|
	atomic_add(tre_count, &trans_info->tre_avail);
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if no transactions are allocated, false otherwise */
 | 
						|
bool gsi_channel_trans_idle(struct gsi *gsi, u32 channel_id)
 | 
						|
{
 | 
						|
	u32 tre_max = gsi_channel_tre_max(gsi, channel_id);
 | 
						|
	struct gsi_trans_info *trans_info;
 | 
						|
 | 
						|
	trans_info = &gsi->channel[channel_id].trans_info;
 | 
						|
 | 
						|
	return atomic_read(&trans_info->tre_avail) == tre_max;
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate a GSI transaction on a channel */
 | 
						|
struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
 | 
						|
					  u32 tre_count,
 | 
						|
					  enum dma_data_direction direction)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &gsi->channel[channel_id];
 | 
						|
	struct gsi_trans_info *trans_info;
 | 
						|
	struct gsi_trans *trans;
 | 
						|
	u16 trans_index;
 | 
						|
 | 
						|
	if (WARN_ON(tre_count > channel->trans_tre_max))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	trans_info = &channel->trans_info;
 | 
						|
 | 
						|
	/* If we can't reserve the TREs for the transaction, we're done */
 | 
						|
	if (!gsi_trans_tre_reserve(trans_info, tre_count))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	trans_index = trans_info->free_id % channel->tre_count;
 | 
						|
	trans = &trans_info->trans[trans_index];
 | 
						|
	memset(trans, 0, sizeof(*trans));
 | 
						|
 | 
						|
	/* Initialize non-zero fields in the transaction */
 | 
						|
	trans->gsi = gsi;
 | 
						|
	trans->channel_id = channel_id;
 | 
						|
	trans->rsvd_count = tre_count;
 | 
						|
	init_completion(&trans->completion);
 | 
						|
 | 
						|
	/* Allocate the scatterlist */
 | 
						|
	trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count);
 | 
						|
	sg_init_marker(trans->sgl, tre_count);
 | 
						|
 | 
						|
	trans->direction = direction;
 | 
						|
	refcount_set(&trans->refcount, 1);
 | 
						|
 | 
						|
	/* This free transaction is now allocated */
 | 
						|
	trans_info->free_id++;
 | 
						|
 | 
						|
	return trans;
 | 
						|
}
 | 
						|
 | 
						|
/* Free a previously-allocated transaction */
 | 
						|
void gsi_trans_free(struct gsi_trans *trans)
 | 
						|
{
 | 
						|
	struct gsi_trans_info *trans_info;
 | 
						|
 | 
						|
	if (!refcount_dec_and_test(&trans->refcount))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Unused transactions are allocated but never committed, pending,
 | 
						|
	 * completed, or polled.
 | 
						|
	 */
 | 
						|
	trans_info = &trans->gsi->channel[trans->channel_id].trans_info;
 | 
						|
	if (!trans->used_count) {
 | 
						|
		trans_info->allocated_id++;
 | 
						|
		trans_info->committed_id++;
 | 
						|
		trans_info->pending_id++;
 | 
						|
		trans_info->completed_id++;
 | 
						|
	} else {
 | 
						|
		ipa_gsi_trans_release(trans);
 | 
						|
	}
 | 
						|
 | 
						|
	/* This transaction is now free */
 | 
						|
	trans_info->polled_id++;
 | 
						|
 | 
						|
	/* Releasing the reserved TREs implicitly frees the sgl[] and
 | 
						|
	 * (if present) info[] arrays, plus the transaction itself.
 | 
						|
	 */
 | 
						|
	gsi_trans_tre_release(trans_info, trans->rsvd_count);
 | 
						|
}
 | 
						|
 | 
						|
/* Add an immediate command to a transaction */
 | 
						|
void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
 | 
						|
		       dma_addr_t addr, enum ipa_cmd_opcode opcode)
 | 
						|
{
 | 
						|
	u32 which = trans->used_count++;
 | 
						|
	struct scatterlist *sg;
 | 
						|
 | 
						|
	WARN_ON(which >= trans->rsvd_count);
 | 
						|
 | 
						|
	/* Commands are quite different from data transfer requests.
 | 
						|
	 * Their payloads come from a pool whose memory is allocated
 | 
						|
	 * using dma_alloc_coherent().  We therefore do *not* map them
 | 
						|
	 * for DMA (unlike what we do for pages and skbs).
 | 
						|
	 *
 | 
						|
	 * When a transaction completes, the SGL is normally unmapped.
 | 
						|
	 * A command transaction has direction DMA_NONE, which tells
 | 
						|
	 * gsi_trans_complete() to skip the unmapping step.
 | 
						|
	 *
 | 
						|
	 * The only things we use directly in a command scatter/gather
 | 
						|
	 * entry are the DMA address and length.  We still need the SG
 | 
						|
	 * table flags to be maintained though, so assign a NULL page
 | 
						|
	 * pointer for that purpose.
 | 
						|
	 */
 | 
						|
	sg = &trans->sgl[which];
 | 
						|
	sg_assign_page(sg, NULL);
 | 
						|
	sg_dma_address(sg) = addr;
 | 
						|
	sg_dma_len(sg) = size;
 | 
						|
 | 
						|
	trans->cmd_opcode[which] = opcode;
 | 
						|
}
 | 
						|
 | 
						|
/* Add a page transfer to a transaction.  It will fill the only TRE. */
 | 
						|
int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
 | 
						|
		       u32 offset)
 | 
						|
{
 | 
						|
	struct scatterlist *sg = &trans->sgl[0];
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (WARN_ON(trans->rsvd_count != 1))
 | 
						|
		return -EINVAL;
 | 
						|
	if (WARN_ON(trans->used_count))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	sg_set_page(sg, page, size, offset);
 | 
						|
	ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction);
 | 
						|
	if (!ret)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	trans->used_count++;	/* Transaction now owns the (DMA mapped) page */
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Add an SKB transfer to a transaction.  No other TREs will be used. */
 | 
						|
int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb)
 | 
						|
{
 | 
						|
	struct scatterlist *sg = &trans->sgl[0];
 | 
						|
	u32 used_count;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (WARN_ON(trans->rsvd_count != 1))
 | 
						|
		return -EINVAL;
 | 
						|
	if (WARN_ON(trans->used_count))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* skb->len will not be 0 (checked early) */
 | 
						|
	ret = skb_to_sgvec(skb, sg, 0, skb->len);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
	used_count = ret;
 | 
						|
 | 
						|
	ret = dma_map_sg(trans->gsi->dev, sg, used_count, trans->direction);
 | 
						|
	if (!ret)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	/* Transaction now owns the (DMA mapped) skb */
 | 
						|
	trans->used_count += used_count;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Compute the length/opcode value to use for a TRE */
 | 
						|
static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len)
 | 
						|
{
 | 
						|
	return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len)
 | 
						|
				      : cpu_to_le16((u16)opcode);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute the flags value to use for a given TRE */
 | 
						|
static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode)
 | 
						|
{
 | 
						|
	enum gsi_tre_type tre_type;
 | 
						|
	u32 tre_flags;
 | 
						|
 | 
						|
	tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD;
 | 
						|
	tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK);
 | 
						|
 | 
						|
	/* Last TRE contains interrupt flags */
 | 
						|
	if (last_tre) {
 | 
						|
		/* All transactions end in a transfer completion interrupt */
 | 
						|
		tre_flags |= TRE_FLAGS_IEOT_FMASK;
 | 
						|
		/* Don't interrupt when outbound commands are acknowledged */
 | 
						|
		if (bei)
 | 
						|
			tre_flags |= TRE_FLAGS_BEI_FMASK;
 | 
						|
	} else {	/* All others indicate there's more to come */
 | 
						|
		tre_flags |= TRE_FLAGS_CHAIN_FMASK;
 | 
						|
	}
 | 
						|
 | 
						|
	return cpu_to_le32(tre_flags);
 | 
						|
}
 | 
						|
 | 
						|
static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr,
 | 
						|
			       u32 len, bool last_tre, bool bei,
 | 
						|
			       enum ipa_cmd_opcode opcode)
 | 
						|
{
 | 
						|
	struct gsi_tre tre;
 | 
						|
 | 
						|
	tre.addr = cpu_to_le64(addr);
 | 
						|
	tre.len_opcode = gsi_tre_len_opcode(opcode, len);
 | 
						|
	tre.reserved = 0;
 | 
						|
	tre.flags = gsi_tre_flags(last_tre, bei, opcode);
 | 
						|
 | 
						|
	/* ARM64 can write 16 bytes as a unit with a single instruction.
 | 
						|
	 * Doing the assignment this way is an attempt to make that happen.
 | 
						|
	 */
 | 
						|
	*dest_tre = tre;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __gsi_trans_commit() - Common GSI transaction commit code
 | 
						|
 * @trans:	Transaction to commit
 | 
						|
 * @ring_db:	Whether to tell the hardware about these queued transfers
 | 
						|
 *
 | 
						|
 * Formats channel ring TRE entries based on the content of the scatterlist.
 | 
						|
 * Maps a transaction pointer to the last ring entry used for the transaction,
 | 
						|
 * so it can be recovered when it completes.  Moves the transaction to
 | 
						|
 * pending state.  Finally, updates the channel ring pointer and optionally
 | 
						|
 * rings the doorbell.
 | 
						|
 */
 | 
						|
static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 | 
						|
	struct gsi_ring *tre_ring = &channel->tre_ring;
 | 
						|
	enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
 | 
						|
	bool bei = channel->toward_ipa;
 | 
						|
	struct gsi_tre *dest_tre;
 | 
						|
	struct scatterlist *sg;
 | 
						|
	u32 byte_count = 0;
 | 
						|
	u8 *cmd_opcode;
 | 
						|
	u32 avail;
 | 
						|
	u32 i;
 | 
						|
 | 
						|
	WARN_ON(!trans->used_count);
 | 
						|
 | 
						|
	/* Consume the entries.  If we cross the end of the ring while
 | 
						|
	 * filling them we'll switch to the beginning to finish.
 | 
						|
	 * If there is no info array we're doing a simple data
 | 
						|
	 * transfer request, whose opcode is IPA_CMD_NONE.
 | 
						|
	 */
 | 
						|
	cmd_opcode = channel->command ? &trans->cmd_opcode[0] : NULL;
 | 
						|
	avail = tre_ring->count - tre_ring->index % tre_ring->count;
 | 
						|
	dest_tre = gsi_ring_virt(tre_ring, tre_ring->index);
 | 
						|
	for_each_sg(trans->sgl, sg, trans->used_count, i) {
 | 
						|
		bool last_tre = i == trans->used_count - 1;
 | 
						|
		dma_addr_t addr = sg_dma_address(sg);
 | 
						|
		u32 len = sg_dma_len(sg);
 | 
						|
 | 
						|
		byte_count += len;
 | 
						|
		if (!avail--)
 | 
						|
			dest_tre = gsi_ring_virt(tre_ring, 0);
 | 
						|
		if (cmd_opcode)
 | 
						|
			opcode = *cmd_opcode++;
 | 
						|
 | 
						|
		gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode);
 | 
						|
		dest_tre++;
 | 
						|
	}
 | 
						|
	/* Associate the TRE with the transaction */
 | 
						|
	gsi_trans_map(trans, tre_ring->index);
 | 
						|
 | 
						|
	tre_ring->index += trans->used_count;
 | 
						|
 | 
						|
	trans->len = byte_count;
 | 
						|
	if (channel->toward_ipa)
 | 
						|
		gsi_trans_tx_committed(trans);
 | 
						|
 | 
						|
	gsi_trans_move_committed(trans);
 | 
						|
 | 
						|
	/* Ring doorbell if requested, or if all TREs are allocated */
 | 
						|
	if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) {
 | 
						|
		/* Report what we're handing off to hardware for TX channels */
 | 
						|
		if (channel->toward_ipa)
 | 
						|
			gsi_trans_tx_queued(trans);
 | 
						|
		gsi_trans_move_pending(trans);
 | 
						|
		gsi_channel_doorbell(channel);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Commit a GSI transaction */
 | 
						|
void gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
 | 
						|
{
 | 
						|
	if (trans->used_count)
 | 
						|
		__gsi_trans_commit(trans, ring_db);
 | 
						|
	else
 | 
						|
		gsi_trans_free(trans);
 | 
						|
}
 | 
						|
 | 
						|
/* Commit a GSI transaction and wait for it to complete */
 | 
						|
void gsi_trans_commit_wait(struct gsi_trans *trans)
 | 
						|
{
 | 
						|
	if (!trans->used_count)
 | 
						|
		goto out_trans_free;
 | 
						|
 | 
						|
	refcount_inc(&trans->refcount);
 | 
						|
 | 
						|
	__gsi_trans_commit(trans, true);
 | 
						|
 | 
						|
	wait_for_completion(&trans->completion);
 | 
						|
 | 
						|
out_trans_free:
 | 
						|
	gsi_trans_free(trans);
 | 
						|
}
 | 
						|
 | 
						|
/* Process the completion of a transaction; called while polling */
 | 
						|
void gsi_trans_complete(struct gsi_trans *trans)
 | 
						|
{
 | 
						|
	/* If the entire SGL was mapped when added, unmap it now */
 | 
						|
	if (trans->direction != DMA_NONE)
 | 
						|
		dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used_count,
 | 
						|
			     trans->direction);
 | 
						|
 | 
						|
	ipa_gsi_trans_complete(trans);
 | 
						|
 | 
						|
	complete(&trans->completion);
 | 
						|
 | 
						|
	gsi_trans_free(trans);
 | 
						|
}
 | 
						|
 | 
						|
/* Cancel a channel's pending transactions */
 | 
						|
void gsi_channel_trans_cancel_pending(struct gsi_channel *channel)
 | 
						|
{
 | 
						|
	struct gsi_trans_info *trans_info = &channel->trans_info;
 | 
						|
	u16 trans_id = trans_info->pending_id;
 | 
						|
 | 
						|
	/* channel->gsi->mutex is held by caller */
 | 
						|
 | 
						|
	/* If there are no pending transactions, we're done */
 | 
						|
	if (trans_id == trans_info->committed_id)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Mark all pending transactions cancelled */
 | 
						|
	do {
 | 
						|
		struct gsi_trans *trans;
 | 
						|
 | 
						|
		trans = &trans_info->trans[trans_id % channel->tre_count];
 | 
						|
		trans->cancelled = true;
 | 
						|
	} while (++trans_id != trans_info->committed_id);
 | 
						|
 | 
						|
	/* All pending transactions are now completed */
 | 
						|
	trans_info->pending_id = trans_info->committed_id;
 | 
						|
 | 
						|
	/* Schedule NAPI polling to complete the cancelled transactions */
 | 
						|
	napi_schedule(&channel->napi);
 | 
						|
}
 | 
						|
 | 
						|
/* Issue a command to read a single byte from a channel */
 | 
						|
int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &gsi->channel[channel_id];
 | 
						|
	struct gsi_ring *tre_ring = &channel->tre_ring;
 | 
						|
	struct gsi_trans_info *trans_info;
 | 
						|
	struct gsi_tre *dest_tre;
 | 
						|
 | 
						|
	trans_info = &channel->trans_info;
 | 
						|
 | 
						|
	/* First reserve the TRE, if possible */
 | 
						|
	if (!gsi_trans_tre_reserve(trans_info, 1))
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	/* Now fill the reserved TRE and tell the hardware */
 | 
						|
 | 
						|
	dest_tre = gsi_ring_virt(tre_ring, tre_ring->index);
 | 
						|
	gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE);
 | 
						|
 | 
						|
	tre_ring->index++;
 | 
						|
	gsi_channel_doorbell(channel);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Mark a gsi_trans_read_byte() request done */
 | 
						|
void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &gsi->channel[channel_id];
 | 
						|
 | 
						|
	gsi_trans_tre_release(&channel->trans_info, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Initialize a channel's GSI transaction info */
 | 
						|
int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id)
 | 
						|
{
 | 
						|
	struct gsi_channel *channel = &gsi->channel[channel_id];
 | 
						|
	u32 tre_count = channel->tre_count;
 | 
						|
	struct gsi_trans_info *trans_info;
 | 
						|
	u32 tre_max;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Ensure the size of a channel element is what's expected */
 | 
						|
	BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE);
 | 
						|
 | 
						|
	trans_info = &channel->trans_info;
 | 
						|
 | 
						|
	/* The tre_avail field is what ultimately limits the number of
 | 
						|
	 * outstanding transactions and their resources.  A transaction
 | 
						|
	 * allocation succeeds only if the TREs available are sufficient
 | 
						|
	 * for what the transaction might need.
 | 
						|
	 */
 | 
						|
	tre_max = gsi_channel_tre_max(channel->gsi, channel_id);
 | 
						|
	atomic_set(&trans_info->tre_avail, tre_max);
 | 
						|
 | 
						|
	/* We can't use more TREs than the number available in the ring.
 | 
						|
	 * This limits the number of transactions that can be outstanding.
 | 
						|
	 * Worst case is one TRE per transaction (but we actually limit
 | 
						|
	 * it to something a little less than that).  By allocating a
 | 
						|
	 * power-of-two number of transactions we can use an index
 | 
						|
	 * modulo that number to determine the next one that's free.
 | 
						|
	 * Transactions are allocated one at a time.
 | 
						|
	 */
 | 
						|
	trans_info->trans = kcalloc(tre_count, sizeof(*trans_info->trans),
 | 
						|
				    GFP_KERNEL);
 | 
						|
	if (!trans_info->trans)
 | 
						|
		return -ENOMEM;
 | 
						|
	trans_info->free_id = 0;	/* all modulo channel->tre_count */
 | 
						|
	trans_info->allocated_id = 0;
 | 
						|
	trans_info->committed_id = 0;
 | 
						|
	trans_info->pending_id = 0;
 | 
						|
	trans_info->completed_id = 0;
 | 
						|
	trans_info->polled_id = 0;
 | 
						|
 | 
						|
	/* A completion event contains a pointer to the TRE that caused
 | 
						|
	 * the event (which will be the last one used by the transaction).
 | 
						|
	 * Each entry in this map records the transaction associated
 | 
						|
	 * with a corresponding completed TRE.
 | 
						|
	 */
 | 
						|
	trans_info->map = kcalloc(tre_count, sizeof(*trans_info->map),
 | 
						|
				  GFP_KERNEL);
 | 
						|
	if (!trans_info->map) {
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto err_trans_free;
 | 
						|
	}
 | 
						|
 | 
						|
	/* A transaction uses a scatterlist array to represent the data
 | 
						|
	 * transfers implemented by the transaction.  Each scatterlist
 | 
						|
	 * element is used to fill a single TRE when the transaction is
 | 
						|
	 * committed.  So we need as many scatterlist elements as the
 | 
						|
	 * maximum number of TREs that can be outstanding.
 | 
						|
	 */
 | 
						|
	ret = gsi_trans_pool_init(&trans_info->sg_pool,
 | 
						|
				  sizeof(struct scatterlist),
 | 
						|
				  tre_max, channel->trans_tre_max);
 | 
						|
	if (ret)
 | 
						|
		goto err_map_free;
 | 
						|
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_map_free:
 | 
						|
	kfree(trans_info->map);
 | 
						|
err_trans_free:
 | 
						|
	kfree(trans_info->trans);
 | 
						|
 | 
						|
	dev_err(gsi->dev, "error %d initializing channel %u transactions\n",
 | 
						|
		ret, channel_id);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Inverse of gsi_channel_trans_init() */
 | 
						|
void gsi_channel_trans_exit(struct gsi_channel *channel)
 | 
						|
{
 | 
						|
	struct gsi_trans_info *trans_info = &channel->trans_info;
 | 
						|
 | 
						|
	gsi_trans_pool_exit(&trans_info->sg_pool);
 | 
						|
	kfree(trans_info->trans);
 | 
						|
	kfree(trans_info->map);
 | 
						|
}
 |