forked from mirrors/linux
		
	 57d910cffa
			
		
	
	
		57d910cffa
		
	
	
	
	
		
			
			If allocation is racy with swapoff, we may call free_cluster for cluster
already in free list and trigger BUG_ON() as following:
Allocation                        Swapoff
cluster_alloc_swap_entry
 ...
 /* may get a free cluster with offset */
 offset = xxx;
 if (offset)
  ci = lock_cluster(si, offset);
                                  ...
                                   del_from_avail_list(p, true);
                                    si->flags &= ~SWP_WRITEOK;
  alloc_swap_scan_cluster(si, ci, ...)
   ...
   /* failed to alloc entry from free entry */
   if (!cluster_alloc_range(...))
    break;
   ...
   /* add back a free cluster */
   relocate_cluster(si, ci);
    if (!ci->count)
     free_cluster(si, ci);
      VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
To prevent the BUG_ON(), call free_cluster() for free cluster to move the
cluster to tail of list.
Check cluster is not free before calling free_cluster() in
relocate_cluster() to avoid BUG_ON().
Link: https://lkml.kernel.org/r/20250222160850.505274-4-shikemeng@huaweicloud.com
Fixes: 3b644773ee ("mm, swap: reduce contention on device lock")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			3960 lines
		
	
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3960 lines
		
	
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/mm/swapfile.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie
 | |
|  */
 | |
| 
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/blk-cgroup.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/swapfile.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/swap_slots.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/zswap.h>
 | |
| #include <linux/plist.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/swap_cgroup.h>
 | |
| #include "internal.h"
 | |
| #include "swap.h"
 | |
| 
 | |
| static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
 | |
| 				 unsigned char);
 | |
| static void free_swap_count_continuations(struct swap_info_struct *);
 | |
| static void swap_entry_range_free(struct swap_info_struct *si,
 | |
| 				  struct swap_cluster_info *ci,
 | |
| 				  swp_entry_t entry, unsigned int nr_pages);
 | |
| static void swap_range_alloc(struct swap_info_struct *si,
 | |
| 			     unsigned int nr_entries);
 | |
| static bool folio_swapcache_freeable(struct folio *folio);
 | |
| static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 | |
| 					      unsigned long offset);
 | |
| static inline void unlock_cluster(struct swap_cluster_info *ci);
 | |
| 
 | |
| static DEFINE_SPINLOCK(swap_lock);
 | |
| static unsigned int nr_swapfiles;
 | |
| atomic_long_t nr_swap_pages;
 | |
| /*
 | |
|  * Some modules use swappable objects and may try to swap them out under
 | |
|  * memory pressure (via the shrinker). Before doing so, they may wish to
 | |
|  * check to see if any swap space is available.
 | |
|  */
 | |
| EXPORT_SYMBOL_GPL(nr_swap_pages);
 | |
| /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
 | |
| long total_swap_pages;
 | |
| static int least_priority = -1;
 | |
| unsigned long swapfile_maximum_size;
 | |
| #ifdef CONFIG_MIGRATION
 | |
| bool swap_migration_ad_supported;
 | |
| #endif	/* CONFIG_MIGRATION */
 | |
| 
 | |
| static const char Bad_file[] = "Bad swap file entry ";
 | |
| static const char Unused_file[] = "Unused swap file entry ";
 | |
| static const char Bad_offset[] = "Bad swap offset entry ";
 | |
| static const char Unused_offset[] = "Unused swap offset entry ";
 | |
| 
 | |
| /*
 | |
|  * all active swap_info_structs
 | |
|  * protected with swap_lock, and ordered by priority.
 | |
|  */
 | |
| static PLIST_HEAD(swap_active_head);
 | |
| 
 | |
| /*
 | |
|  * all available (active, not full) swap_info_structs
 | |
|  * protected with swap_avail_lock, ordered by priority.
 | |
|  * This is used by folio_alloc_swap() instead of swap_active_head
 | |
|  * because swap_active_head includes all swap_info_structs,
 | |
|  * but folio_alloc_swap() doesn't need to look at full ones.
 | |
|  * This uses its own lock instead of swap_lock because when a
 | |
|  * swap_info_struct changes between not-full/full, it needs to
 | |
|  * add/remove itself to/from this list, but the swap_info_struct->lock
 | |
|  * is held and the locking order requires swap_lock to be taken
 | |
|  * before any swap_info_struct->lock.
 | |
|  */
 | |
| static struct plist_head *swap_avail_heads;
 | |
| static DEFINE_SPINLOCK(swap_avail_lock);
 | |
| 
 | |
| static struct swap_info_struct *swap_info[MAX_SWAPFILES];
 | |
| 
 | |
| static DEFINE_MUTEX(swapon_mutex);
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 | |
| /* Activity counter to indicate that a swapon or swapoff has occurred */
 | |
| static atomic_t proc_poll_event = ATOMIC_INIT(0);
 | |
| 
 | |
| atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 | |
| 
 | |
| static struct swap_info_struct *swap_type_to_swap_info(int type)
 | |
| {
 | |
| 	if (type >= MAX_SWAPFILES)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 | |
| }
 | |
| 
 | |
| static inline unsigned char swap_count(unsigned char ent)
 | |
| {
 | |
| 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the second highest bit of inuse_pages counter as the indicator
 | |
|  * if one swap device is on the available plist, so the atomic can
 | |
|  * still be updated arithmetically while having special data embedded.
 | |
|  *
 | |
|  * inuse_pages counter is the only thing indicating if a device should
 | |
|  * be on avail_lists or not (except swapon / swapoff). By embedding the
 | |
|  * off-list bit in the atomic counter, updates no longer need any lock
 | |
|  * to check the list status.
 | |
|  *
 | |
|  * This bit will be set if the device is not on the plist and not
 | |
|  * usable, will be cleared if the device is on the plist.
 | |
|  */
 | |
| #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
 | |
| #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
 | |
| static long swap_usage_in_pages(struct swap_info_struct *si)
 | |
| {
 | |
| 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
 | |
| }
 | |
| 
 | |
| /* Reclaim the swap entry anyway if possible */
 | |
| #define TTRS_ANYWAY		0x1
 | |
| /*
 | |
|  * Reclaim the swap entry if there are no more mappings of the
 | |
|  * corresponding page
 | |
|  */
 | |
| #define TTRS_UNMAPPED		0x2
 | |
| /* Reclaim the swap entry if swap is getting full */
 | |
| #define TTRS_FULL		0x4
 | |
| /* Reclaim directly, bypass the slot cache and don't touch device lock */
 | |
| #define TTRS_DIRECT		0x8
 | |
| 
 | |
| static bool swap_is_has_cache(struct swap_info_struct *si,
 | |
| 			      unsigned long offset, int nr_pages)
 | |
| {
 | |
| 	unsigned char *map = si->swap_map + offset;
 | |
| 	unsigned char *map_end = map + nr_pages;
 | |
| 
 | |
| 	do {
 | |
| 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
 | |
| 		if (*map != SWAP_HAS_CACHE)
 | |
| 			return false;
 | |
| 	} while (++map < map_end);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool swap_is_last_map(struct swap_info_struct *si,
 | |
| 		unsigned long offset, int nr_pages, bool *has_cache)
 | |
| {
 | |
| 	unsigned char *map = si->swap_map + offset;
 | |
| 	unsigned char *map_end = map + nr_pages;
 | |
| 	unsigned char count = *map;
 | |
| 
 | |
| 	if (swap_count(count) != 1)
 | |
| 		return false;
 | |
| 
 | |
| 	while (++map < map_end) {
 | |
| 		if (*map != count)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	*has_cache = !!(count & SWAP_HAS_CACHE);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns number of pages in the folio that backs the swap entry. If positive,
 | |
|  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
 | |
|  * folio was associated with the swap entry.
 | |
|  */
 | |
| static int __try_to_reclaim_swap(struct swap_info_struct *si,
 | |
| 				 unsigned long offset, unsigned long flags)
 | |
| {
 | |
| 	swp_entry_t entry = swp_entry(si->type, offset);
 | |
| 	struct address_space *address_space = swap_address_space(entry);
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	struct folio *folio;
 | |
| 	int ret, nr_pages;
 | |
| 	bool need_reclaim;
 | |
| 
 | |
| 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
 | |
| 	if (IS_ERR(folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	nr_pages = folio_nr_pages(folio);
 | |
| 	ret = -nr_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * When this function is called from scan_swap_map_slots() and it's
 | |
| 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
 | |
| 	 * here. We have to use trylock for avoiding deadlock. This is a special
 | |
| 	 * case and you should use folio_free_swap() with explicit folio_lock()
 | |
| 	 * in usual operations.
 | |
| 	 */
 | |
| 	if (!folio_trylock(folio))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* offset could point to the middle of a large folio */
 | |
| 	entry = folio->swap;
 | |
| 	offset = swp_offset(entry);
 | |
| 
 | |
| 	need_reclaim = ((flags & TTRS_ANYWAY) ||
 | |
| 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
 | |
| 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
 | |
| 	if (!need_reclaim || !folio_swapcache_freeable(folio))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * It's safe to delete the folio from swap cache only if the folio's
 | |
| 	 * swap_map is HAS_CACHE only, which means the slots have no page table
 | |
| 	 * reference or pending writeback, and can't be allocated to others.
 | |
| 	 */
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	need_reclaim = swap_is_has_cache(si, offset, nr_pages);
 | |
| 	unlock_cluster(ci);
 | |
| 	if (!need_reclaim)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (!(flags & TTRS_DIRECT)) {
 | |
| 		/* Free through slot cache */
 | |
| 		delete_from_swap_cache(folio);
 | |
| 		folio_set_dirty(folio);
 | |
| 		ret = nr_pages;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	xa_lock_irq(&address_space->i_pages);
 | |
| 	__delete_from_swap_cache(folio, entry, NULL);
 | |
| 	xa_unlock_irq(&address_space->i_pages);
 | |
| 	folio_ref_sub(folio, nr_pages);
 | |
| 	folio_set_dirty(folio);
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	swap_entry_range_free(si, ci, entry, nr_pages);
 | |
| 	unlock_cluster(ci);
 | |
| 	ret = nr_pages;
 | |
| out_unlock:
 | |
| 	folio_unlock(folio);
 | |
| out:
 | |
| 	folio_put(folio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 | |
| {
 | |
| 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 | |
| 	return rb_entry(rb, struct swap_extent, rb_node);
 | |
| }
 | |
| 
 | |
| static inline struct swap_extent *next_se(struct swap_extent *se)
 | |
| {
 | |
| 	struct rb_node *rb = rb_next(&se->rb_node);
 | |
| 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swapon tell device that all the old swap contents can be discarded,
 | |
|  * to allow the swap device to optimize its wear-levelling.
 | |
|  */
 | |
| static int discard_swap(struct swap_info_struct *si)
 | |
| {
 | |
| 	struct swap_extent *se;
 | |
| 	sector_t start_block;
 | |
| 	sector_t nr_blocks;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* Do not discard the swap header page! */
 | |
| 	se = first_se(si);
 | |
| 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 | |
| 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 | |
| 	if (nr_blocks) {
 | |
| 		err = blkdev_issue_discard(si->bdev, start_block,
 | |
| 				nr_blocks, GFP_KERNEL);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	for (se = next_se(se); se; se = next_se(se)) {
 | |
| 		start_block = se->start_block << (PAGE_SHIFT - 9);
 | |
| 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 | |
| 
 | |
| 		err = blkdev_issue_discard(si->bdev, start_block,
 | |
| 				nr_blocks, GFP_KERNEL);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return err;		/* That will often be -EOPNOTSUPP */
 | |
| }
 | |
| 
 | |
| static struct swap_extent *
 | |
| offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 | |
| {
 | |
| 	struct swap_extent *se;
 | |
| 	struct rb_node *rb;
 | |
| 
 | |
| 	rb = sis->swap_extent_root.rb_node;
 | |
| 	while (rb) {
 | |
| 		se = rb_entry(rb, struct swap_extent, rb_node);
 | |
| 		if (offset < se->start_page)
 | |
| 			rb = rb->rb_left;
 | |
| 		else if (offset >= se->start_page + se->nr_pages)
 | |
| 			rb = rb->rb_right;
 | |
| 		else
 | |
| 			return se;
 | |
| 	}
 | |
| 	/* It *must* be present */
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| sector_t swap_folio_sector(struct folio *folio)
 | |
| {
 | |
| 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
 | |
| 	struct swap_extent *se;
 | |
| 	sector_t sector;
 | |
| 	pgoff_t offset;
 | |
| 
 | |
| 	offset = swp_offset(folio->swap);
 | |
| 	se = offset_to_swap_extent(sis, offset);
 | |
| 	sector = se->start_block + (offset - se->start_page);
 | |
| 	return sector << (PAGE_SHIFT - 9);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swap allocation tell device that a cluster of swap can now be discarded,
 | |
|  * to allow the swap device to optimize its wear-levelling.
 | |
|  */
 | |
| static void discard_swap_cluster(struct swap_info_struct *si,
 | |
| 				 pgoff_t start_page, pgoff_t nr_pages)
 | |
| {
 | |
| 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 | |
| 
 | |
| 	while (nr_pages) {
 | |
| 		pgoff_t offset = start_page - se->start_page;
 | |
| 		sector_t start_block = se->start_block + offset;
 | |
| 		sector_t nr_blocks = se->nr_pages - offset;
 | |
| 
 | |
| 		if (nr_blocks > nr_pages)
 | |
| 			nr_blocks = nr_pages;
 | |
| 		start_page += nr_blocks;
 | |
| 		nr_pages -= nr_blocks;
 | |
| 
 | |
| 		start_block <<= PAGE_SHIFT - 9;
 | |
| 		nr_blocks <<= PAGE_SHIFT - 9;
 | |
| 		if (blkdev_issue_discard(si->bdev, start_block,
 | |
| 					nr_blocks, GFP_NOIO))
 | |
| 			break;
 | |
| 
 | |
| 		se = next_se(se);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_THP_SWAP
 | |
| #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 | |
| 
 | |
| #define swap_entry_order(order)	(order)
 | |
| #else
 | |
| #define SWAPFILE_CLUSTER	256
 | |
| 
 | |
| /*
 | |
|  * Define swap_entry_order() as constant to let compiler to optimize
 | |
|  * out some code if !CONFIG_THP_SWAP
 | |
|  */
 | |
| #define swap_entry_order(order)	0
 | |
| #endif
 | |
| #define LATENCY_LIMIT		256
 | |
| 
 | |
| static inline bool cluster_is_empty(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->count == 0;
 | |
| }
 | |
| 
 | |
| static inline bool cluster_is_discard(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->flags == CLUSTER_FLAG_DISCARD;
 | |
| }
 | |
| 
 | |
| static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
 | |
| {
 | |
| 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
 | |
| 		return false;
 | |
| 	if (!order)
 | |
| 		return true;
 | |
| 	return cluster_is_empty(ci) || order == ci->order;
 | |
| }
 | |
| 
 | |
| static inline unsigned int cluster_index(struct swap_info_struct *si,
 | |
| 					 struct swap_cluster_info *ci)
 | |
| {
 | |
| 	return ci - si->cluster_info;
 | |
| }
 | |
| 
 | |
| static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
 | |
| 							  unsigned long offset)
 | |
| {
 | |
| 	return &si->cluster_info[offset / SWAPFILE_CLUSTER];
 | |
| }
 | |
| 
 | |
| static inline unsigned int cluster_offset(struct swap_info_struct *si,
 | |
| 					  struct swap_cluster_info *ci)
 | |
| {
 | |
| 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
 | |
| }
 | |
| 
 | |
| static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 | |
| 						     unsigned long offset)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 
 | |
| 	ci = offset_to_cluster(si, offset);
 | |
| 	spin_lock(&ci->lock);
 | |
| 
 | |
| 	return ci;
 | |
| }
 | |
| 
 | |
| static inline void unlock_cluster(struct swap_cluster_info *ci)
 | |
| {
 | |
| 	spin_unlock(&ci->lock);
 | |
| }
 | |
| 
 | |
| static void move_cluster(struct swap_info_struct *si,
 | |
| 			 struct swap_cluster_info *ci, struct list_head *list,
 | |
| 			 enum swap_cluster_flags new_flags)
 | |
| {
 | |
| 	VM_WARN_ON(ci->flags == new_flags);
 | |
| 
 | |
| 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
 | |
| 	lockdep_assert_held(&ci->lock);
 | |
| 
 | |
| 	spin_lock(&si->lock);
 | |
| 	if (ci->flags == CLUSTER_FLAG_NONE)
 | |
| 		list_add_tail(&ci->list, list);
 | |
| 	else
 | |
| 		list_move_tail(&ci->list, list);
 | |
| 	spin_unlock(&si->lock);
 | |
| 
 | |
| 	if (ci->flags == CLUSTER_FLAG_FRAG)
 | |
| 		atomic_long_dec(&si->frag_cluster_nr[ci->order]);
 | |
| 	else if (new_flags == CLUSTER_FLAG_FRAG)
 | |
| 		atomic_long_inc(&si->frag_cluster_nr[ci->order]);
 | |
| 	ci->flags = new_flags;
 | |
| }
 | |
| 
 | |
| /* Add a cluster to discard list and schedule it to do discard */
 | |
| static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 | |
| 		struct swap_cluster_info *ci)
 | |
| {
 | |
| 	unsigned int idx = cluster_index(si, ci);
 | |
| 	/*
 | |
| 	 * If scan_swap_map_slots() can't find a free cluster, it will check
 | |
| 	 * si->swap_map directly. To make sure the discarding cluster isn't
 | |
| 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 | |
| 	 * It will be cleared after discard
 | |
| 	 */
 | |
| 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 | |
| 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 | |
| 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
 | |
| 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
 | |
| 	schedule_work(&si->discard_work);
 | |
| }
 | |
| 
 | |
| static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
 | |
| {
 | |
| 	lockdep_assert_held(&ci->lock);
 | |
| 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
 | |
| 	ci->order = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Isolate and lock the first cluster that is not contented on a list,
 | |
|  * clean its flag before taken off-list. Cluster flag must be in sync
 | |
|  * with list status, so cluster updaters can always know the cluster
 | |
|  * list status without touching si lock.
 | |
|  *
 | |
|  * Note it's possible that all clusters on a list are contented so
 | |
|  * this returns NULL for an non-empty list.
 | |
|  */
 | |
| static struct swap_cluster_info *isolate_lock_cluster(
 | |
| 		struct swap_info_struct *si, struct list_head *list)
 | |
| {
 | |
| 	struct swap_cluster_info *ci, *ret = NULL;
 | |
| 
 | |
| 	spin_lock(&si->lock);
 | |
| 
 | |
| 	if (unlikely(!(si->flags & SWP_WRITEOK)))
 | |
| 		goto out;
 | |
| 
 | |
| 	list_for_each_entry(ci, list, list) {
 | |
| 		if (!spin_trylock(&ci->lock))
 | |
| 			continue;
 | |
| 
 | |
| 		/* We may only isolate and clear flags of following lists */
 | |
| 		VM_BUG_ON(!ci->flags);
 | |
| 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
 | |
| 			  ci->flags != CLUSTER_FLAG_FULL);
 | |
| 
 | |
| 		list_del(&ci->list);
 | |
| 		ci->flags = CLUSTER_FLAG_NONE;
 | |
| 		ret = ci;
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&si->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Doing discard actually. After a cluster discard is finished, the cluster
 | |
|  * will be added to free cluster list. Discard cluster is a bit special as
 | |
|  * they don't participate in allocation or reclaim, so clusters marked as
 | |
|  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
 | |
|  */
 | |
| static bool swap_do_scheduled_discard(struct swap_info_struct *si)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	bool ret = false;
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	spin_lock(&si->lock);
 | |
| 	while (!list_empty(&si->discard_clusters)) {
 | |
| 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
 | |
| 		/*
 | |
| 		 * Delete the cluster from list to prepare for discard, but keep
 | |
| 		 * the CLUSTER_FLAG_DISCARD flag, there could be percpu_cluster
 | |
| 		 * pointing to it, or ran into by relocate_cluster.
 | |
| 		 */
 | |
| 		list_del(&ci->list);
 | |
| 		idx = cluster_index(si, ci);
 | |
| 		spin_unlock(&si->lock);
 | |
| 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 | |
| 				SWAPFILE_CLUSTER);
 | |
| 
 | |
| 		spin_lock(&ci->lock);
 | |
| 		/*
 | |
| 		 * Discard is done, clear its flags as it's off-list, then
 | |
| 		 * return the cluster to allocation list.
 | |
| 		 */
 | |
| 		ci->flags = CLUSTER_FLAG_NONE;
 | |
| 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 | |
| 				0, SWAPFILE_CLUSTER);
 | |
| 		__free_cluster(si, ci);
 | |
| 		spin_unlock(&ci->lock);
 | |
| 		ret = true;
 | |
| 		spin_lock(&si->lock);
 | |
| 	}
 | |
| 	spin_unlock(&si->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void swap_discard_work(struct work_struct *work)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 
 | |
| 	si = container_of(work, struct swap_info_struct, discard_work);
 | |
| 
 | |
| 	swap_do_scheduled_discard(si);
 | |
| }
 | |
| 
 | |
| static void swap_users_ref_free(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 
 | |
| 	si = container_of(ref, struct swap_info_struct, users);
 | |
| 	complete(&si->comp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called after freeing if ci->count == 0, moves the cluster to free
 | |
|  * or discard list.
 | |
|  */
 | |
| static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
 | |
| {
 | |
| 	VM_BUG_ON(ci->count != 0);
 | |
| 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
 | |
| 	lockdep_assert_held(&ci->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the swap is discardable, prepare discard the cluster
 | |
| 	 * instead of free it immediately. The cluster will be freed
 | |
| 	 * after discard.
 | |
| 	 */
 | |
| 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 | |
| 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 | |
| 		swap_cluster_schedule_discard(si, ci);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	__free_cluster(si, ci);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called after freeing if ci->count != 0, moves the cluster to
 | |
|  * nonfull list.
 | |
|  */
 | |
| static void partial_free_cluster(struct swap_info_struct *si,
 | |
| 				 struct swap_cluster_info *ci)
 | |
| {
 | |
| 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
 | |
| 	lockdep_assert_held(&ci->lock);
 | |
| 
 | |
| 	if (ci->flags != CLUSTER_FLAG_NONFULL)
 | |
| 		move_cluster(si, ci, &si->nonfull_clusters[ci->order],
 | |
| 			     CLUSTER_FLAG_NONFULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called after allocation, moves the cluster to full or frag list.
 | |
|  * Note: allocation doesn't acquire si lock, and may drop the ci lock for
 | |
|  * reclaim, so the cluster could be any where when called.
 | |
|  */
 | |
| static void relocate_cluster(struct swap_info_struct *si,
 | |
| 			     struct swap_cluster_info *ci)
 | |
| {
 | |
| 	lockdep_assert_held(&ci->lock);
 | |
| 
 | |
| 	/* Discard cluster must remain off-list or on discard list */
 | |
| 	if (cluster_is_discard(ci))
 | |
| 		return;
 | |
| 
 | |
| 	if (!ci->count) {
 | |
| 		if (ci->flags != CLUSTER_FLAG_FREE)
 | |
| 			free_cluster(si, ci);
 | |
| 	} else if (ci->count != SWAPFILE_CLUSTER) {
 | |
| 		if (ci->flags != CLUSTER_FLAG_FRAG)
 | |
| 			move_cluster(si, ci, &si->frag_clusters[ci->order],
 | |
| 				     CLUSTER_FLAG_FRAG);
 | |
| 	} else {
 | |
| 		if (ci->flags != CLUSTER_FLAG_FULL)
 | |
| 			move_cluster(si, ci, &si->full_clusters,
 | |
| 				     CLUSTER_FLAG_FULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The cluster corresponding to page_nr will be used. The cluster will not be
 | |
|  * added to free cluster list and its usage counter will be increased by 1.
 | |
|  * Only used for initialization.
 | |
|  */
 | |
| static void inc_cluster_info_page(struct swap_info_struct *si,
 | |
| 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 | |
| {
 | |
| 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 
 | |
| 	ci = cluster_info + idx;
 | |
| 	ci->count++;
 | |
| 
 | |
| 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
 | |
| 	VM_BUG_ON(ci->flags);
 | |
| }
 | |
| 
 | |
| static bool cluster_reclaim_range(struct swap_info_struct *si,
 | |
| 				  struct swap_cluster_info *ci,
 | |
| 				  unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned char *map = si->swap_map;
 | |
| 	unsigned long offset = start;
 | |
| 	int nr_reclaim;
 | |
| 
 | |
| 	spin_unlock(&ci->lock);
 | |
| 	do {
 | |
| 		switch (READ_ONCE(map[offset])) {
 | |
| 		case 0:
 | |
| 			offset++;
 | |
| 			break;
 | |
| 		case SWAP_HAS_CACHE:
 | |
| 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
 | |
| 			if (nr_reclaim > 0)
 | |
| 				offset += nr_reclaim;
 | |
| 			else
 | |
| 				goto out;
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} while (offset < end);
 | |
| out:
 | |
| 	spin_lock(&ci->lock);
 | |
| 	/*
 | |
| 	 * Recheck the range no matter reclaim succeeded or not, the slot
 | |
| 	 * could have been be freed while we are not holding the lock.
 | |
| 	 */
 | |
| 	for (offset = start; offset < end; offset++)
 | |
| 		if (READ_ONCE(map[offset]))
 | |
| 			return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool cluster_scan_range(struct swap_info_struct *si,
 | |
| 			       struct swap_cluster_info *ci,
 | |
| 			       unsigned long start, unsigned int nr_pages,
 | |
| 			       bool *need_reclaim)
 | |
| {
 | |
| 	unsigned long offset, end = start + nr_pages;
 | |
| 	unsigned char *map = si->swap_map;
 | |
| 
 | |
| 	for (offset = start; offset < end; offset++) {
 | |
| 		switch (READ_ONCE(map[offset])) {
 | |
| 		case 0:
 | |
| 			continue;
 | |
| 		case SWAP_HAS_CACHE:
 | |
| 			if (!vm_swap_full())
 | |
| 				return false;
 | |
| 			*need_reclaim = true;
 | |
| 			continue;
 | |
| 		default:
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
 | |
| 				unsigned int start, unsigned char usage,
 | |
| 				unsigned int order)
 | |
| {
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 
 | |
| 	lockdep_assert_held(&ci->lock);
 | |
| 
 | |
| 	if (!(si->flags & SWP_WRITEOK))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The first allocation in a cluster makes the
 | |
| 	 * cluster exclusive to this order
 | |
| 	 */
 | |
| 	if (cluster_is_empty(ci))
 | |
| 		ci->order = order;
 | |
| 
 | |
| 	memset(si->swap_map + start, usage, nr_pages);
 | |
| 	swap_range_alloc(si, nr_pages);
 | |
| 	ci->count += nr_pages;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Try use a new cluster for current CPU and allocate from it. */
 | |
| static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
 | |
| 					    struct swap_cluster_info *ci,
 | |
| 					    unsigned long offset,
 | |
| 					    unsigned int order,
 | |
| 					    unsigned char usage)
 | |
| {
 | |
| 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
 | |
| 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
 | |
| 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 	bool need_reclaim, ret;
 | |
| 
 | |
| 	lockdep_assert_held(&ci->lock);
 | |
| 
 | |
| 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (end -= nr_pages; offset <= end; offset += nr_pages) {
 | |
| 		need_reclaim = false;
 | |
| 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
 | |
| 			continue;
 | |
| 		if (need_reclaim) {
 | |
| 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
 | |
| 			/*
 | |
| 			 * Reclaim drops ci->lock and cluster could be used
 | |
| 			 * by another order. Not checking flag as off-list
 | |
| 			 * cluster has no flag set, and change of list
 | |
| 			 * won't cause fragmentation.
 | |
| 			 */
 | |
| 			if (!cluster_is_usable(ci, order))
 | |
| 				goto out;
 | |
| 			if (cluster_is_empty(ci))
 | |
| 				offset = start;
 | |
| 			/* Reclaim failed but cluster is usable, try next */
 | |
| 			if (!ret)
 | |
| 				continue;
 | |
| 		}
 | |
| 		if (!cluster_alloc_range(si, ci, offset, usage, order))
 | |
| 			break;
 | |
| 		found = offset;
 | |
| 		offset += nr_pages;
 | |
| 		if (ci->count < SWAPFILE_CLUSTER && offset <= end)
 | |
| 			next = offset;
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	relocate_cluster(si, ci);
 | |
| 	unlock_cluster(ci);
 | |
| 	if (si->flags & SWP_SOLIDSTATE)
 | |
| 		__this_cpu_write(si->percpu_cluster->next[order], next);
 | |
| 	else
 | |
| 		si->global_cluster->next[order] = next;
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /* Return true if reclaimed a whole cluster */
 | |
| static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
 | |
| {
 | |
| 	long to_scan = 1;
 | |
| 	unsigned long offset, end;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned char *map = si->swap_map;
 | |
| 	int nr_reclaim;
 | |
| 
 | |
| 	if (force)
 | |
| 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
 | |
| 
 | |
| 	while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
 | |
| 		offset = cluster_offset(si, ci);
 | |
| 		end = min(si->max, offset + SWAPFILE_CLUSTER);
 | |
| 		to_scan--;
 | |
| 
 | |
| 		while (offset < end) {
 | |
| 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
 | |
| 				spin_unlock(&ci->lock);
 | |
| 				nr_reclaim = __try_to_reclaim_swap(si, offset,
 | |
| 								   TTRS_ANYWAY | TTRS_DIRECT);
 | |
| 				spin_lock(&ci->lock);
 | |
| 				if (nr_reclaim) {
 | |
| 					offset += abs(nr_reclaim);
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 			offset++;
 | |
| 		}
 | |
| 
 | |
| 		/* in case no swap cache is reclaimed */
 | |
| 		if (ci->flags == CLUSTER_FLAG_NONE)
 | |
| 			relocate_cluster(si, ci);
 | |
| 
 | |
| 		unlock_cluster(ci);
 | |
| 		if (to_scan <= 0)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void swap_reclaim_work(struct work_struct *work)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 
 | |
| 	si = container_of(work, struct swap_info_struct, reclaim_work);
 | |
| 
 | |
| 	swap_reclaim_full_clusters(si, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to get swap entries with specified order from current cpu's swap entry
 | |
|  * pool (a cluster). This might involve allocating a new cluster for current CPU
 | |
|  * too.
 | |
|  */
 | |
| static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
 | |
| 					      unsigned char usage)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned int offset, found = 0;
 | |
| 
 | |
| 	if (si->flags & SWP_SOLIDSTATE) {
 | |
| 		/* Fast path using per CPU cluster */
 | |
| 		local_lock(&si->percpu_cluster->lock);
 | |
| 		offset = __this_cpu_read(si->percpu_cluster->next[order]);
 | |
| 	} else {
 | |
| 		/* Serialize HDD SWAP allocation for each device. */
 | |
| 		spin_lock(&si->global_cluster_lock);
 | |
| 		offset = si->global_cluster->next[order];
 | |
| 	}
 | |
| 
 | |
| 	if (offset) {
 | |
| 		ci = lock_cluster(si, offset);
 | |
| 		/* Cluster could have been used by another order */
 | |
| 		if (cluster_is_usable(ci, order)) {
 | |
| 			if (cluster_is_empty(ci))
 | |
| 				offset = cluster_offset(si, ci);
 | |
| 			found = alloc_swap_scan_cluster(si, ci, offset,
 | |
| 							order, usage);
 | |
| 		} else {
 | |
| 			unlock_cluster(ci);
 | |
| 		}
 | |
| 		if (found)
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| new_cluster:
 | |
| 	ci = isolate_lock_cluster(si, &si->free_clusters);
 | |
| 	if (ci) {
 | |
| 		found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
 | |
| 						order, usage);
 | |
| 		if (found)
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Try reclaim from full clusters if free clusters list is drained */
 | |
| 	if (vm_swap_full())
 | |
| 		swap_reclaim_full_clusters(si, false);
 | |
| 
 | |
| 	if (order < PMD_ORDER) {
 | |
| 		unsigned int frags = 0, frags_existing;
 | |
| 
 | |
| 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
 | |
| 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
 | |
| 							order, usage);
 | |
| 			if (found)
 | |
| 				goto done;
 | |
| 			/* Clusters failed to allocate are moved to frag_clusters */
 | |
| 			frags++;
 | |
| 		}
 | |
| 
 | |
| 		frags_existing = atomic_long_read(&si->frag_cluster_nr[order]);
 | |
| 		while (frags < frags_existing &&
 | |
| 		       (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) {
 | |
| 			atomic_long_dec(&si->frag_cluster_nr[order]);
 | |
| 			/*
 | |
| 			 * Rotate the frag list to iterate, they were all
 | |
| 			 * failing high order allocation or moved here due to
 | |
| 			 * per-CPU usage, but they could contain newly released
 | |
| 			 * reclaimable (eg. lazy-freed swap cache) slots.
 | |
| 			 */
 | |
| 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
 | |
| 							order, usage);
 | |
| 			if (found)
 | |
| 				goto done;
 | |
| 			frags++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't have free cluster but have some clusters in
 | |
| 	 * discarding, do discard now and reclaim them, then
 | |
| 	 * reread cluster_next_cpu since we dropped si->lock
 | |
| 	 */
 | |
| 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
 | |
| 		goto new_cluster;
 | |
| 
 | |
| 	if (order)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Order 0 stealing from higher order */
 | |
| 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
 | |
| 		/*
 | |
| 		 * Clusters here have at least one usable slots and can't fail order 0
 | |
| 		 * allocation, but reclaim may drop si->lock and race with another user.
 | |
| 		 */
 | |
| 		while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
 | |
| 			atomic_long_dec(&si->frag_cluster_nr[o]);
 | |
| 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
 | |
| 							0, usage);
 | |
| 			if (found)
 | |
| 				goto done;
 | |
| 		}
 | |
| 
 | |
| 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
 | |
| 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
 | |
| 							0, usage);
 | |
| 			if (found)
 | |
| 				goto done;
 | |
| 		}
 | |
| 	}
 | |
| done:
 | |
| 	if (si->flags & SWP_SOLIDSTATE)
 | |
| 		local_unlock(&si->percpu_cluster->lock);
 | |
| 	else
 | |
| 		spin_unlock(&si->global_cluster_lock);
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
 | |
| static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
 | |
| {
 | |
| 	int nid;
 | |
| 	unsigned long pages;
 | |
| 
 | |
| 	spin_lock(&swap_avail_lock);
 | |
| 
 | |
| 	if (swapoff) {
 | |
| 		/*
 | |
| 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for
 | |
| 		 * swapoff here so it's synchronized by both si->lock and
 | |
| 		 * swap_avail_lock, to ensure the result can be seen by
 | |
| 		 * add_to_avail_list.
 | |
| 		 */
 | |
| 		lockdep_assert_held(&si->lock);
 | |
| 		si->flags &= ~SWP_WRITEOK;
 | |
| 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If not called by swapoff, take it off-list only if it's
 | |
| 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
 | |
| 		 * si->inuse_pages == pages), any concurrent slot freeing,
 | |
| 		 * or device already removed from plist by someone else
 | |
| 		 * will make this return false.
 | |
| 		 */
 | |
| 		pages = si->pages;
 | |
| 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
 | |
| 					     pages | SWAP_USAGE_OFFLIST_BIT))
 | |
| 			goto skip;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node(nid)
 | |
| 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
 | |
| 
 | |
| skip:
 | |
| 	spin_unlock(&swap_avail_lock);
 | |
| }
 | |
| 
 | |
| /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
 | |
| static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
 | |
| {
 | |
| 	int nid;
 | |
| 	long val;
 | |
| 	unsigned long pages;
 | |
| 
 | |
| 	spin_lock(&swap_avail_lock);
 | |
| 
 | |
| 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
 | |
| 	if (swapon) {
 | |
| 		lockdep_assert_held(&si->lock);
 | |
| 		si->flags |= SWP_WRITEOK;
 | |
| 	} else {
 | |
| 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
 | |
| 			goto skip;
 | |
| 	}
 | |
| 
 | |
| 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
 | |
| 		goto skip;
 | |
| 
 | |
| 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * When device is full and device is on the plist, only one updater will
 | |
| 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
 | |
| 	 * that updater happen to be here, just skip adding.
 | |
| 	 */
 | |
| 	pages = si->pages;
 | |
| 	if (val == pages) {
 | |
| 		/* Just like the cmpxchg in del_from_avail_list */
 | |
| 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
 | |
| 					    pages | SWAP_USAGE_OFFLIST_BIT))
 | |
| 			goto skip;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node(nid)
 | |
| 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
 | |
| 
 | |
| skip:
 | |
| 	spin_unlock(&swap_avail_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
 | |
|  * within each cluster, so the total contribution to the global counter should
 | |
|  * always be positive and cannot exceed the total number of usable slots.
 | |
|  */
 | |
| static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
 | |
| {
 | |
| 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
 | |
| 	 * remove it from the plist.
 | |
| 	 */
 | |
| 	if (unlikely(val == si->pages)) {
 | |
| 		del_from_avail_list(si, false);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
 | |
| {
 | |
| 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
 | |
| 	 * remove it from the plist.
 | |
| 	 */
 | |
| 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
 | |
| 		add_to_avail_list(si, false);
 | |
| }
 | |
| 
 | |
| static void swap_range_alloc(struct swap_info_struct *si,
 | |
| 			     unsigned int nr_entries)
 | |
| {
 | |
| 	if (swap_usage_add(si, nr_entries)) {
 | |
| 		if (vm_swap_full())
 | |
| 			schedule_work(&si->reclaim_work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 | |
| 			    unsigned int nr_entries)
 | |
| {
 | |
| 	unsigned long begin = offset;
 | |
| 	unsigned long end = offset + nr_entries - 1;
 | |
| 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
 | |
| 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
 | |
| 	 */
 | |
| 	for (i = 0; i < nr_entries; i++) {
 | |
| 		clear_bit(offset + i, si->zeromap);
 | |
| 		zswap_invalidate(swp_entry(si->type, offset + i));
 | |
| 	}
 | |
| 
 | |
| 	if (si->flags & SWP_BLKDEV)
 | |
| 		swap_slot_free_notify =
 | |
| 			si->bdev->bd_disk->fops->swap_slot_free_notify;
 | |
| 	else
 | |
| 		swap_slot_free_notify = NULL;
 | |
| 	while (offset <= end) {
 | |
| 		arch_swap_invalidate_page(si->type, offset);
 | |
| 		if (swap_slot_free_notify)
 | |
| 			swap_slot_free_notify(si->bdev, offset);
 | |
| 		offset++;
 | |
| 	}
 | |
| 	clear_shadow_from_swap_cache(si->type, begin, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
 | |
| 	 * only after the above cleanups are done.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	atomic_long_add(nr_entries, &nr_swap_pages);
 | |
| 	swap_usage_sub(si, nr_entries);
 | |
| }
 | |
| 
 | |
| static int cluster_alloc_swap(struct swap_info_struct *si,
 | |
| 			     unsigned char usage, int nr,
 | |
| 			     swp_entry_t slots[], int order)
 | |
| {
 | |
| 	int n_ret = 0;
 | |
| 
 | |
| 	while (n_ret < nr) {
 | |
| 		unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
 | |
| 
 | |
| 		if (!offset)
 | |
| 			break;
 | |
| 		slots[n_ret++] = swp_entry(si->type, offset);
 | |
| 	}
 | |
| 
 | |
| 	return n_ret;
 | |
| }
 | |
| 
 | |
| static int scan_swap_map_slots(struct swap_info_struct *si,
 | |
| 			       unsigned char usage, int nr,
 | |
| 			       swp_entry_t slots[], int order)
 | |
| {
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 
 | |
| 	/*
 | |
| 	 * We try to cluster swap pages by allocating them sequentially
 | |
| 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 | |
| 	 * way, however, we resort to first-free allocation, starting
 | |
| 	 * a new cluster.  This prevents us from scattering swap pages
 | |
| 	 * all over the entire swap partition, so that we reduce
 | |
| 	 * overall disk seek times between swap pages.  -- sct
 | |
| 	 * But we do now try to find an empty cluster.  -Andrea
 | |
| 	 * And we let swap pages go all over an SSD partition.  Hugh
 | |
| 	 */
 | |
| 	if (order > 0) {
 | |
| 		/*
 | |
| 		 * Should not even be attempting large allocations when huge
 | |
| 		 * page swap is disabled.  Warn and fail the allocation.
 | |
| 		 */
 | |
| 		if (!IS_ENABLED(CONFIG_THP_SWAP) ||
 | |
| 		    nr_pages > SWAPFILE_CLUSTER) {
 | |
| 			VM_WARN_ON_ONCE(1);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Swapfile is not block device so unable
 | |
| 		 * to allocate large entries.
 | |
| 		 */
 | |
| 		if (!(si->flags & SWP_BLKDEV))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return cluster_alloc_swap(si, usage, nr, slots, order);
 | |
| }
 | |
| 
 | |
| static bool get_swap_device_info(struct swap_info_struct *si)
 | |
| {
 | |
| 	if (!percpu_ref_tryget_live(&si->users))
 | |
| 		return false;
 | |
| 	/*
 | |
| 	 * Guarantee the si->users are checked before accessing other
 | |
| 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
 | |
| 	 * up to dated.
 | |
| 	 *
 | |
| 	 * Paired with the spin_unlock() after setup_swap_info() in
 | |
| 	 * enable_swap_info(), and smp_wmb() in swapoff.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
 | |
| {
 | |
| 	int order = swap_entry_order(entry_order);
 | |
| 	unsigned long size = 1 << order;
 | |
| 	struct swap_info_struct *si, *next;
 | |
| 	long avail_pgs;
 | |
| 	int n_ret = 0;
 | |
| 	int node;
 | |
| 
 | |
| 	spin_lock(&swap_avail_lock);
 | |
| 
 | |
| 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
 | |
| 	if (avail_pgs <= 0) {
 | |
| 		spin_unlock(&swap_avail_lock);
 | |
| 		goto noswap;
 | |
| 	}
 | |
| 
 | |
| 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
 | |
| 
 | |
| 	atomic_long_sub(n_goal * size, &nr_swap_pages);
 | |
| 
 | |
| start_over:
 | |
| 	node = numa_node_id();
 | |
| 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
 | |
| 		/* requeue si to after same-priority siblings */
 | |
| 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
 | |
| 		spin_unlock(&swap_avail_lock);
 | |
| 		if (get_swap_device_info(si)) {
 | |
| 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
 | |
| 					n_goal, swp_entries, order);
 | |
| 			put_swap_device(si);
 | |
| 			if (n_ret || size > 1)
 | |
| 				goto check_out;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&swap_avail_lock);
 | |
| 		/*
 | |
| 		 * if we got here, it's likely that si was almost full before,
 | |
| 		 * and since scan_swap_map_slots() can drop the si->lock,
 | |
| 		 * multiple callers probably all tried to get a page from the
 | |
| 		 * same si and it filled up before we could get one; or, the si
 | |
| 		 * filled up between us dropping swap_avail_lock and taking
 | |
| 		 * si->lock. Since we dropped the swap_avail_lock, the
 | |
| 		 * swap_avail_head list may have been modified; so if next is
 | |
| 		 * still in the swap_avail_head list then try it, otherwise
 | |
| 		 * start over if we have not gotten any slots.
 | |
| 		 */
 | |
| 		if (plist_node_empty(&next->avail_lists[node]))
 | |
| 			goto start_over;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&swap_avail_lock);
 | |
| 
 | |
| check_out:
 | |
| 	if (n_ret < n_goal)
 | |
| 		atomic_long_add((long)(n_goal - n_ret) * size,
 | |
| 				&nr_swap_pages);
 | |
| noswap:
 | |
| 	return n_ret;
 | |
| }
 | |
| 
 | |
| static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	if (!entry.val)
 | |
| 		goto out;
 | |
| 	si = swp_swap_info(entry);
 | |
| 	if (!si)
 | |
| 		goto bad_nofile;
 | |
| 	if (data_race(!(si->flags & SWP_USED)))
 | |
| 		goto bad_device;
 | |
| 	offset = swp_offset(entry);
 | |
| 	if (offset >= si->max)
 | |
| 		goto bad_offset;
 | |
| 	if (data_race(!si->swap_map[swp_offset(entry)]))
 | |
| 		goto bad_free;
 | |
| 	return si;
 | |
| 
 | |
| bad_free:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
 | |
| 	goto out;
 | |
| bad_offset:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
 | |
| 	goto out;
 | |
| bad_device:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
 | |
| 	goto out;
 | |
| bad_nofile:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
 | |
| 					      unsigned long offset,
 | |
| 					      unsigned char usage)
 | |
| {
 | |
| 	unsigned char count;
 | |
| 	unsigned char has_cache;
 | |
| 
 | |
| 	count = si->swap_map[offset];
 | |
| 
 | |
| 	has_cache = count & SWAP_HAS_CACHE;
 | |
| 	count &= ~SWAP_HAS_CACHE;
 | |
| 
 | |
| 	if (usage == SWAP_HAS_CACHE) {
 | |
| 		VM_BUG_ON(!has_cache);
 | |
| 		has_cache = 0;
 | |
| 	} else if (count == SWAP_MAP_SHMEM) {
 | |
| 		/*
 | |
| 		 * Or we could insist on shmem.c using a special
 | |
| 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 | |
| 		 */
 | |
| 		count = 0;
 | |
| 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 | |
| 		if (count == COUNT_CONTINUED) {
 | |
| 			if (swap_count_continued(si, offset, count))
 | |
| 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 | |
| 			else
 | |
| 				count = SWAP_MAP_MAX;
 | |
| 		} else
 | |
| 			count--;
 | |
| 	}
 | |
| 
 | |
| 	usage = count | has_cache;
 | |
| 	if (usage)
 | |
| 		WRITE_ONCE(si->swap_map[offset], usage);
 | |
| 	else
 | |
| 		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
 | |
| 
 | |
| 	return usage;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we get a swap entry, if there aren't some other ways to
 | |
|  * prevent swapoff, such as the folio in swap cache is locked, RCU
 | |
|  * reader side is locked, etc., the swap entry may become invalid
 | |
|  * because of swapoff.  Then, we need to enclose all swap related
 | |
|  * functions with get_swap_device() and put_swap_device(), unless the
 | |
|  * swap functions call get/put_swap_device() by themselves.
 | |
|  *
 | |
|  * RCU reader side lock (including any spinlock) is sufficient to
 | |
|  * prevent swapoff, because synchronize_rcu() is called in swapoff()
 | |
|  * before freeing data structures.
 | |
|  *
 | |
|  * Check whether swap entry is valid in the swap device.  If so,
 | |
|  * return pointer to swap_info_struct, and keep the swap entry valid
 | |
|  * via preventing the swap device from being swapoff, until
 | |
|  * put_swap_device() is called.  Otherwise return NULL.
 | |
|  *
 | |
|  * Notice that swapoff or swapoff+swapon can still happen before the
 | |
|  * percpu_ref_tryget_live() in get_swap_device() or after the
 | |
|  * percpu_ref_put() in put_swap_device() if there isn't any other way
 | |
|  * to prevent swapoff.  The caller must be prepared for that.  For
 | |
|  * example, the following situation is possible.
 | |
|  *
 | |
|  *   CPU1				CPU2
 | |
|  *   do_swap_page()
 | |
|  *     ...				swapoff+swapon
 | |
|  *     __read_swap_cache_async()
 | |
|  *       swapcache_prepare()
 | |
|  *         __swap_duplicate()
 | |
|  *           // check swap_map
 | |
|  *     // verify PTE not changed
 | |
|  *
 | |
|  * In __swap_duplicate(), the swap_map need to be checked before
 | |
|  * changing partly because the specified swap entry may be for another
 | |
|  * swap device which has been swapoff.  And in do_swap_page(), after
 | |
|  * the page is read from the swap device, the PTE is verified not
 | |
|  * changed with the page table locked to check whether the swap device
 | |
|  * has been swapoff or swapoff+swapon.
 | |
|  */
 | |
| struct swap_info_struct *get_swap_device(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	if (!entry.val)
 | |
| 		goto out;
 | |
| 	si = swp_swap_info(entry);
 | |
| 	if (!si)
 | |
| 		goto bad_nofile;
 | |
| 	if (!get_swap_device_info(si))
 | |
| 		goto out;
 | |
| 	offset = swp_offset(entry);
 | |
| 	if (offset >= si->max)
 | |
| 		goto put_out;
 | |
| 
 | |
| 	return si;
 | |
| bad_nofile:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
 | |
| out:
 | |
| 	return NULL;
 | |
| put_out:
 | |
| 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
 | |
| 	percpu_ref_put(&si->users);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static unsigned char __swap_entry_free(struct swap_info_struct *si,
 | |
| 				       swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 	unsigned char usage;
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	usage = __swap_entry_free_locked(si, offset, 1);
 | |
| 	if (!usage)
 | |
| 		swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1);
 | |
| 	unlock_cluster(ci);
 | |
| 
 | |
| 	return usage;
 | |
| }
 | |
| 
 | |
| static bool __swap_entries_free(struct swap_info_struct *si,
 | |
| 		swp_entry_t entry, int nr)
 | |
| {
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 	unsigned int type = swp_type(entry);
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	bool has_cache = false;
 | |
| 	unsigned char count;
 | |
| 	int i;
 | |
| 
 | |
| 	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
 | |
| 		goto fallback;
 | |
| 	/* cross into another cluster */
 | |
| 	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
 | |
| 		goto fallback;
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
 | |
| 		unlock_cluster(ci);
 | |
| 		goto fallback;
 | |
| 	}
 | |
| 	for (i = 0; i < nr; i++)
 | |
| 		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
 | |
| 	if (!has_cache)
 | |
| 		swap_entry_range_free(si, ci, entry, nr);
 | |
| 	unlock_cluster(ci);
 | |
| 
 | |
| 	return has_cache;
 | |
| 
 | |
| fallback:
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		if (data_race(si->swap_map[offset + i])) {
 | |
| 			count = __swap_entry_free(si, swp_entry(type, offset + i));
 | |
| 			if (count == SWAP_HAS_CACHE)
 | |
| 				has_cache = true;
 | |
| 		} else {
 | |
| 			WARN_ON_ONCE(1);
 | |
| 		}
 | |
| 	}
 | |
| 	return has_cache;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drop the last HAS_CACHE flag of swap entries, caller have to
 | |
|  * ensure all entries belong to the same cgroup.
 | |
|  */
 | |
| static void swap_entry_range_free(struct swap_info_struct *si,
 | |
| 				  struct swap_cluster_info *ci,
 | |
| 				  swp_entry_t entry, unsigned int nr_pages)
 | |
| {
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 	unsigned char *map = si->swap_map + offset;
 | |
| 	unsigned char *map_end = map + nr_pages;
 | |
| 
 | |
| 	/* It should never free entries across different clusters */
 | |
| 	VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
 | |
| 	VM_BUG_ON(cluster_is_empty(ci));
 | |
| 	VM_BUG_ON(ci->count < nr_pages);
 | |
| 
 | |
| 	ci->count -= nr_pages;
 | |
| 	do {
 | |
| 		VM_BUG_ON(*map != SWAP_HAS_CACHE);
 | |
| 		*map = 0;
 | |
| 	} while (++map < map_end);
 | |
| 
 | |
| 	mem_cgroup_uncharge_swap(entry, nr_pages);
 | |
| 	swap_range_free(si, offset, nr_pages);
 | |
| 
 | |
| 	if (!ci->count)
 | |
| 		free_cluster(si, ci);
 | |
| 	else
 | |
| 		partial_free_cluster(si, ci);
 | |
| }
 | |
| 
 | |
| static void cluster_swap_free_nr(struct swap_info_struct *si,
 | |
| 		unsigned long offset, int nr_pages,
 | |
| 		unsigned char usage)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long end = offset + nr_pages;
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	do {
 | |
| 		if (!__swap_entry_free_locked(si, offset, usage))
 | |
| 			swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1);
 | |
| 	} while (++offset < end);
 | |
| 	unlock_cluster(ci);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller has made sure that the swap device corresponding to entry
 | |
|  * is still around or has not been recycled.
 | |
|  */
 | |
| void swap_free_nr(swp_entry_t entry, int nr_pages)
 | |
| {
 | |
| 	int nr;
 | |
| 	struct swap_info_struct *sis;
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 
 | |
| 	sis = _swap_info_get(entry);
 | |
| 	if (!sis)
 | |
| 		return;
 | |
| 
 | |
| 	while (nr_pages) {
 | |
| 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
 | |
| 		cluster_swap_free_nr(sis, offset, nr, 1);
 | |
| 		offset += nr;
 | |
| 		nr_pages -= nr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after dropping swapcache to decrease refcnt to swap entries.
 | |
|  */
 | |
| void put_swap_folio(struct folio *folio, swp_entry_t entry)
 | |
| {
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	struct swap_info_struct *si;
 | |
| 	int size = 1 << swap_entry_order(folio_order(folio));
 | |
| 
 | |
| 	si = _swap_info_get(entry);
 | |
| 	if (!si)
 | |
| 		return;
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	if (swap_is_has_cache(si, offset, size))
 | |
| 		swap_entry_range_free(si, ci, entry, size);
 | |
| 	else {
 | |
| 		for (int i = 0; i < size; i++, entry.val++) {
 | |
| 			if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE))
 | |
| 				swap_entry_range_free(si, ci, entry, 1);
 | |
| 		}
 | |
| 	}
 | |
| 	unlock_cluster(ci);
 | |
| }
 | |
| 
 | |
| void swapcache_free_entries(swp_entry_t *entries, int n)
 | |
| {
 | |
| 	int i;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	struct swap_info_struct *si = NULL;
 | |
| 
 | |
| 	if (n <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		si = _swap_info_get(entries[i]);
 | |
| 		if (si) {
 | |
| 			ci = lock_cluster(si, swp_offset(entries[i]));
 | |
| 			swap_entry_range_free(si, ci, entries[i], 1);
 | |
| 			unlock_cluster(ci);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __swap_count(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *si = swp_swap_info(entry);
 | |
| 	pgoff_t offset = swp_offset(entry);
 | |
| 
 | |
| 	return swap_count(si->swap_map[offset]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many references to @entry are currently swapped out?
 | |
|  * This does not give an exact answer when swap count is continued,
 | |
|  * but does include the high COUNT_CONTINUED flag to allow for that.
 | |
|  */
 | |
| int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
 | |
| {
 | |
| 	pgoff_t offset = swp_offset(entry);
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	int count;
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	count = swap_count(si->swap_map[offset]);
 | |
| 	unlock_cluster(ci);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many references to @entry are currently swapped out?
 | |
|  * This considers COUNT_CONTINUED so it returns exact answer.
 | |
|  */
 | |
| int swp_swapcount(swp_entry_t entry)
 | |
| {
 | |
| 	int count, tmp_count, n;
 | |
| 	struct swap_info_struct *si;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	struct page *page;
 | |
| 	pgoff_t offset;
 | |
| 	unsigned char *map;
 | |
| 
 | |
| 	si = _swap_info_get(entry);
 | |
| 	if (!si)
 | |
| 		return 0;
 | |
| 
 | |
| 	offset = swp_offset(entry);
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 
 | |
| 	count = swap_count(si->swap_map[offset]);
 | |
| 	if (!(count & COUNT_CONTINUED))
 | |
| 		goto out;
 | |
| 
 | |
| 	count &= ~COUNT_CONTINUED;
 | |
| 	n = SWAP_MAP_MAX + 1;
 | |
| 
 | |
| 	page = vmalloc_to_page(si->swap_map + offset);
 | |
| 	offset &= ~PAGE_MASK;
 | |
| 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
 | |
| 
 | |
| 	do {
 | |
| 		page = list_next_entry(page, lru);
 | |
| 		map = kmap_local_page(page);
 | |
| 		tmp_count = map[offset];
 | |
| 		kunmap_local(map);
 | |
| 
 | |
| 		count += (tmp_count & ~COUNT_CONTINUED) * n;
 | |
| 		n *= (SWAP_CONT_MAX + 1);
 | |
| 	} while (tmp_count & COUNT_CONTINUED);
 | |
| out:
 | |
| 	unlock_cluster(ci);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
 | |
| 					 swp_entry_t entry, int order)
 | |
| {
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned char *map = si->swap_map;
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 	unsigned long roffset = swp_offset(entry);
 | |
| 	unsigned long offset = round_down(roffset, nr_pages);
 | |
| 	int i;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 	if (nr_pages == 1) {
 | |
| 		if (swap_count(map[roffset]))
 | |
| 			ret = true;
 | |
| 		goto unlock_out;
 | |
| 	}
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		if (swap_count(map[offset + i])) {
 | |
| 			ret = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| unlock_out:
 | |
| 	unlock_cluster(ci);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool folio_swapped(struct folio *folio)
 | |
| {
 | |
| 	swp_entry_t entry = folio->swap;
 | |
| 	struct swap_info_struct *si = _swap_info_get(entry);
 | |
| 
 | |
| 	if (!si)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
 | |
| 		return swap_swapcount(si, entry) != 0;
 | |
| 
 | |
| 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
 | |
| }
 | |
| 
 | |
| static bool folio_swapcache_freeable(struct folio *folio)
 | |
| {
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 
 | |
| 	if (!folio_test_swapcache(folio))
 | |
| 		return false;
 | |
| 	if (folio_test_writeback(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once hibernation has begun to create its image of memory,
 | |
| 	 * there's a danger that one of the calls to folio_free_swap()
 | |
| 	 * - most probably a call from __try_to_reclaim_swap() while
 | |
| 	 * hibernation is allocating its own swap pages for the image,
 | |
| 	 * but conceivably even a call from memory reclaim - will free
 | |
| 	 * the swap from a folio which has already been recorded in the
 | |
| 	 * image as a clean swapcache folio, and then reuse its swap for
 | |
| 	 * another page of the image.  On waking from hibernation, the
 | |
| 	 * original folio might be freed under memory pressure, then
 | |
| 	 * later read back in from swap, now with the wrong data.
 | |
| 	 *
 | |
| 	 * Hibernation suspends storage while it is writing the image
 | |
| 	 * to disk so check that here.
 | |
| 	 */
 | |
| 	if (pm_suspended_storage())
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_free_swap() - Free the swap space used for this folio.
 | |
|  * @folio: The folio to remove.
 | |
|  *
 | |
|  * If swap is getting full, or if there are no more mappings of this folio,
 | |
|  * then call folio_free_swap to free its swap space.
 | |
|  *
 | |
|  * Return: true if we were able to release the swap space.
 | |
|  */
 | |
| bool folio_free_swap(struct folio *folio)
 | |
| {
 | |
| 	if (!folio_swapcache_freeable(folio))
 | |
| 		return false;
 | |
| 	if (folio_swapped(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	delete_from_swap_cache(folio);
 | |
| 	folio_set_dirty(folio);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_swap_and_cache_nr() - Release reference on range of swap entries and
 | |
|  *                            reclaim their cache if no more references remain.
 | |
|  * @entry: First entry of range.
 | |
|  * @nr: Number of entries in range.
 | |
|  *
 | |
|  * For each swap entry in the contiguous range, release a reference. If any swap
 | |
|  * entries become free, try to reclaim their underlying folios, if present. The
 | |
|  * offset range is defined by [entry.offset, entry.offset + nr).
 | |
|  */
 | |
| void free_swap_and_cache_nr(swp_entry_t entry, int nr)
 | |
| {
 | |
| 	const unsigned long start_offset = swp_offset(entry);
 | |
| 	const unsigned long end_offset = start_offset + nr;
 | |
| 	struct swap_info_struct *si;
 | |
| 	bool any_only_cache = false;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	if (non_swap_entry(entry))
 | |
| 		return;
 | |
| 
 | |
| 	si = get_swap_device(entry);
 | |
| 	if (!si)
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON(end_offset > si->max))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * First free all entries in the range.
 | |
| 	 */
 | |
| 	any_only_cache = __swap_entries_free(si, entry, nr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Short-circuit the below loop if none of the entries had their
 | |
| 	 * reference drop to zero.
 | |
| 	 */
 | |
| 	if (!any_only_cache)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now go back over the range trying to reclaim the swap cache. This is
 | |
| 	 * more efficient for large folios because we will only try to reclaim
 | |
| 	 * the swap once per folio in the common case. If we do
 | |
| 	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
 | |
| 	 * latter will get a reference and lock the folio for every individual
 | |
| 	 * page but will only succeed once the swap slot for every subpage is
 | |
| 	 * zero.
 | |
| 	 */
 | |
| 	for (offset = start_offset; offset < end_offset; offset += nr) {
 | |
| 		nr = 1;
 | |
| 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 | |
| 			/*
 | |
| 			 * Folios are always naturally aligned in swap so
 | |
| 			 * advance forward to the next boundary. Zero means no
 | |
| 			 * folio was found for the swap entry, so advance by 1
 | |
| 			 * in this case. Negative value means folio was found
 | |
| 			 * but could not be reclaimed. Here we can still advance
 | |
| 			 * to the next boundary.
 | |
| 			 */
 | |
| 			nr = __try_to_reclaim_swap(si, offset,
 | |
| 						   TTRS_UNMAPPED | TTRS_FULL);
 | |
| 			if (nr == 0)
 | |
| 				nr = 1;
 | |
| 			else if (nr < 0)
 | |
| 				nr = -nr;
 | |
| 			nr = ALIGN(offset + 1, nr) - offset;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	put_swap_device(si);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| 
 | |
| swp_entry_t get_swap_page_of_type(int type)
 | |
| {
 | |
| 	struct swap_info_struct *si = swap_type_to_swap_info(type);
 | |
| 	swp_entry_t entry = {0};
 | |
| 
 | |
| 	if (!si)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/* This is called for allocating swap entry, not cache */
 | |
| 	if (get_swap_device_info(si)) {
 | |
| 		if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
 | |
| 			atomic_long_dec(&nr_swap_pages);
 | |
| 		put_swap_device(si);
 | |
| 	}
 | |
| fail:
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the swap type that corresponds to given device (if any).
 | |
|  *
 | |
|  * @offset - number of the PAGE_SIZE-sized block of the device, starting
 | |
|  * from 0, in which the swap header is expected to be located.
 | |
|  *
 | |
|  * This is needed for the suspend to disk (aka swsusp).
 | |
|  */
 | |
| int swap_type_of(dev_t device, sector_t offset)
 | |
| {
 | |
| 	int type;
 | |
| 
 | |
| 	if (!device)
 | |
| 		return -1;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		struct swap_info_struct *sis = swap_info[type];
 | |
| 
 | |
| 		if (!(sis->flags & SWP_WRITEOK))
 | |
| 			continue;
 | |
| 
 | |
| 		if (device == sis->bdev->bd_dev) {
 | |
| 			struct swap_extent *se = first_se(sis);
 | |
| 
 | |
| 			if (se->start_block == offset) {
 | |
| 				spin_unlock(&swap_lock);
 | |
| 				return type;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| int find_first_swap(dev_t *device)
 | |
| {
 | |
| 	int type;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		struct swap_info_struct *sis = swap_info[type];
 | |
| 
 | |
| 		if (!(sis->flags & SWP_WRITEOK))
 | |
| 			continue;
 | |
| 		*device = sis->bdev->bd_dev;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		return type;
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 | |
|  * corresponding to given index in swap_info (swap type).
 | |
|  */
 | |
| sector_t swapdev_block(int type, pgoff_t offset)
 | |
| {
 | |
| 	struct swap_info_struct *si = swap_type_to_swap_info(type);
 | |
| 	struct swap_extent *se;
 | |
| 
 | |
| 	if (!si || !(si->flags & SWP_WRITEOK))
 | |
| 		return 0;
 | |
| 	se = offset_to_swap_extent(si, offset);
 | |
| 	return se->start_block + (offset - se->start_page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return either the total number of swap pages of given type, or the number
 | |
|  * of free pages of that type (depending on @free)
 | |
|  *
 | |
|  * This is needed for software suspend
 | |
|  */
 | |
| unsigned int count_swap_pages(int type, int free)
 | |
| {
 | |
| 	unsigned int n = 0;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	if ((unsigned int)type < nr_swapfiles) {
 | |
| 		struct swap_info_struct *sis = swap_info[type];
 | |
| 
 | |
| 		spin_lock(&sis->lock);
 | |
| 		if (sis->flags & SWP_WRITEOK) {
 | |
| 			n = sis->pages;
 | |
| 			if (free)
 | |
| 				n -= swap_usage_in_pages(sis);
 | |
| 		}
 | |
| 		spin_unlock(&sis->lock);
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return n;
 | |
| }
 | |
| #endif /* CONFIG_HIBERNATION */
 | |
| 
 | |
| static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
 | |
| {
 | |
| 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No need to decide whether this PTE shares the swap entry with others,
 | |
|  * just let do_wp_page work it out if a write is requested later - to
 | |
|  * force COW, vm_page_prot omits write permission from any private vma.
 | |
|  */
 | |
| static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long addr, swp_entry_t entry, struct folio *folio)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct folio *swapcache;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t *pte, new_pte, old_pte;
 | |
| 	bool hwpoisoned = false;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	swapcache = folio;
 | |
| 	folio = ksm_might_need_to_copy(folio, vma, addr);
 | |
| 	if (unlikely(!folio))
 | |
| 		return -ENOMEM;
 | |
| 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
 | |
| 		hwpoisoned = true;
 | |
| 		folio = swapcache;
 | |
| 	}
 | |
| 
 | |
| 	page = folio_file_page(folio, swp_offset(entry));
 | |
| 	if (PageHWPoison(page))
 | |
| 		hwpoisoned = true;
 | |
| 
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
 | |
| 						swp_entry_to_pte(entry)))) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	old_pte = ptep_get(pte);
 | |
| 
 | |
| 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
 | |
| 		swp_entry_t swp_entry;
 | |
| 
 | |
| 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 | |
| 		if (hwpoisoned) {
 | |
| 			swp_entry = make_hwpoison_entry(page);
 | |
| 		} else {
 | |
| 			swp_entry = make_poisoned_swp_entry();
 | |
| 		}
 | |
| 		new_pte = swp_entry_to_pte(swp_entry);
 | |
| 		ret = 0;
 | |
| 		goto setpte;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some architectures may have to restore extra metadata to the page
 | |
| 	 * when reading from swap. This metadata may be indexed by swap entry
 | |
| 	 * so this must be called before swap_free().
 | |
| 	 */
 | |
| 	arch_swap_restore(folio_swap(entry, folio), folio);
 | |
| 
 | |
| 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 | |
| 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
 | |
| 	folio_get(folio);
 | |
| 	if (folio == swapcache) {
 | |
| 		rmap_t rmap_flags = RMAP_NONE;
 | |
| 
 | |
| 		/*
 | |
| 		 * See do_swap_page(): writeback would be problematic.
 | |
| 		 * However, we do a folio_wait_writeback() just before this
 | |
| 		 * call and have the folio locked.
 | |
| 		 */
 | |
| 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
 | |
| 		if (pte_swp_exclusive(old_pte))
 | |
| 			rmap_flags |= RMAP_EXCLUSIVE;
 | |
| 		/*
 | |
| 		 * We currently only expect small !anon folios, which are either
 | |
| 		 * fully exclusive or fully shared. If we ever get large folios
 | |
| 		 * here, we have to be careful.
 | |
| 		 */
 | |
| 		if (!folio_test_anon(folio)) {
 | |
| 			VM_WARN_ON_ONCE(folio_test_large(folio));
 | |
| 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
 | |
| 		} else {
 | |
| 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
 | |
| 		}
 | |
| 	} else { /* ksm created a completely new copy */
 | |
| 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
 | |
| 		folio_add_lru_vma(folio, vma);
 | |
| 	}
 | |
| 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
 | |
| 	if (pte_swp_soft_dirty(old_pte))
 | |
| 		new_pte = pte_mksoft_dirty(new_pte);
 | |
| 	if (pte_swp_uffd_wp(old_pte))
 | |
| 		new_pte = pte_mkuffd_wp(new_pte);
 | |
| setpte:
 | |
| 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
 | |
| 	swap_free(entry);
 | |
| out:
 | |
| 	if (pte)
 | |
| 		pte_unmap_unlock(pte, ptl);
 | |
| 	if (folio != swapcache) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 			unsigned long addr, unsigned long end,
 | |
| 			unsigned int type)
 | |
| {
 | |
| 	pte_t *pte = NULL;
 | |
| 	struct swap_info_struct *si;
 | |
| 
 | |
| 	si = swap_info[type];
 | |
| 	do {
 | |
| 		struct folio *folio;
 | |
| 		unsigned long offset;
 | |
| 		unsigned char swp_count;
 | |
| 		swp_entry_t entry;
 | |
| 		int ret;
 | |
| 		pte_t ptent;
 | |
| 
 | |
| 		if (!pte++) {
 | |
| 			pte = pte_offset_map(pmd, addr);
 | |
| 			if (!pte)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		ptent = ptep_get_lockless(pte);
 | |
| 
 | |
| 		if (!is_swap_pte(ptent))
 | |
| 			continue;
 | |
| 
 | |
| 		entry = pte_to_swp_entry(ptent);
 | |
| 		if (swp_type(entry) != type)
 | |
| 			continue;
 | |
| 
 | |
| 		offset = swp_offset(entry);
 | |
| 		pte_unmap(pte);
 | |
| 		pte = NULL;
 | |
| 
 | |
| 		folio = swap_cache_get_folio(entry, vma, addr);
 | |
| 		if (!folio) {
 | |
| 			struct vm_fault vmf = {
 | |
| 				.vma = vma,
 | |
| 				.address = addr,
 | |
| 				.real_address = addr,
 | |
| 				.pmd = pmd,
 | |
| 			};
 | |
| 
 | |
| 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
 | |
| 						&vmf);
 | |
| 		}
 | |
| 		if (!folio) {
 | |
| 			swp_count = READ_ONCE(si->swap_map[offset]);
 | |
| 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
 | |
| 				continue;
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		folio_lock(folio);
 | |
| 		folio_wait_writeback(folio);
 | |
| 		ret = unuse_pte(vma, pmd, addr, entry, folio);
 | |
| 		if (ret < 0) {
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		folio_free_swap(folio);
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 	} while (addr += PAGE_SIZE, addr != end);
 | |
| 
 | |
| 	if (pte)
 | |
| 		pte_unmap(pte);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				unsigned int type)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		cond_resched();
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		ret = unuse_pte_range(vma, pmd, addr, next, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				unsigned int type)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		ret = unuse_pmd_range(vma, pud, addr, next, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				unsigned int type)
 | |
| {
 | |
| 	p4d_t *p4d;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 		if (p4d_none_or_clear_bad(p4d))
 | |
| 			continue;
 | |
| 		ret = unuse_pud_range(vma, p4d, addr, next, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (p4d++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long addr, end, next;
 | |
| 	int ret;
 | |
| 
 | |
| 	addr = vma->vm_start;
 | |
| 	end = vma->vm_end;
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unuse_mm(struct mm_struct *mm, unsigned int type)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int ret = 0;
 | |
| 	VMA_ITERATOR(vmi, mm, 0);
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	for_each_vma(vmi, vma) {
 | |
| 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
 | |
| 			ret = unuse_vma(vma, type);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	mmap_read_unlock(mm);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan swap_map from current position to next entry still in use.
 | |
|  * Return 0 if there are no inuse entries after prev till end of
 | |
|  * the map.
 | |
|  */
 | |
| static unsigned int find_next_to_unuse(struct swap_info_struct *si,
 | |
| 					unsigned int prev)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned char count;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need for swap_lock here: we're just looking
 | |
| 	 * for whether an entry is in use, not modifying it; false
 | |
| 	 * hits are okay, and sys_swapoff() has already prevented new
 | |
| 	 * allocations from this area (while holding swap_lock).
 | |
| 	 */
 | |
| 	for (i = prev + 1; i < si->max; i++) {
 | |
| 		count = READ_ONCE(si->swap_map[i]);
 | |
| 		if (count && swap_count(count) != SWAP_MAP_BAD)
 | |
| 			break;
 | |
| 		if ((i % LATENCY_LIMIT) == 0)
 | |
| 			cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	if (i == si->max)
 | |
| 		i = 0;
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static int try_to_unuse(unsigned int type)
 | |
| {
 | |
| 	struct mm_struct *prev_mm;
 | |
| 	struct mm_struct *mm;
 | |
| 	struct list_head *p;
 | |
| 	int retval = 0;
 | |
| 	struct swap_info_struct *si = swap_info[type];
 | |
| 	struct folio *folio;
 | |
| 	swp_entry_t entry;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!swap_usage_in_pages(si))
 | |
| 		goto success;
 | |
| 
 | |
| retry:
 | |
| 	retval = shmem_unuse(type);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	prev_mm = &init_mm;
 | |
| 	mmget(prev_mm);
 | |
| 
 | |
| 	spin_lock(&mmlist_lock);
 | |
| 	p = &init_mm.mmlist;
 | |
| 	while (swap_usage_in_pages(si) &&
 | |
| 	       !signal_pending(current) &&
 | |
| 	       (p = p->next) != &init_mm.mmlist) {
 | |
| 
 | |
| 		mm = list_entry(p, struct mm_struct, mmlist);
 | |
| 		if (!mmget_not_zero(mm))
 | |
| 			continue;
 | |
| 		spin_unlock(&mmlist_lock);
 | |
| 		mmput(prev_mm);
 | |
| 		prev_mm = mm;
 | |
| 		retval = unuse_mm(mm, type);
 | |
| 		if (retval) {
 | |
| 			mmput(prev_mm);
 | |
| 			return retval;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that we aren't completely killing
 | |
| 		 * interactive performance.
 | |
| 		 */
 | |
| 		cond_resched();
 | |
| 		spin_lock(&mmlist_lock);
 | |
| 	}
 | |
| 	spin_unlock(&mmlist_lock);
 | |
| 
 | |
| 	mmput(prev_mm);
 | |
| 
 | |
| 	i = 0;
 | |
| 	while (swap_usage_in_pages(si) &&
 | |
| 	       !signal_pending(current) &&
 | |
| 	       (i = find_next_to_unuse(si, i)) != 0) {
 | |
| 
 | |
| 		entry = swp_entry(type, i);
 | |
| 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
 | |
| 		if (IS_ERR(folio))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * It is conceivable that a racing task removed this folio from
 | |
| 		 * swap cache just before we acquired the page lock. The folio
 | |
| 		 * might even be back in swap cache on another swap area. But
 | |
| 		 * that is okay, folio_free_swap() only removes stale folios.
 | |
| 		 */
 | |
| 		folio_lock(folio);
 | |
| 		folio_wait_writeback(folio);
 | |
| 		folio_free_swap(folio);
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Lets check again to see if there are still swap entries in the map.
 | |
| 	 * If yes, we would need to do retry the unuse logic again.
 | |
| 	 * Under global memory pressure, swap entries can be reinserted back
 | |
| 	 * into process space after the mmlist loop above passes over them.
 | |
| 	 *
 | |
| 	 * Limit the number of retries? No: when mmget_not_zero()
 | |
| 	 * above fails, that mm is likely to be freeing swap from
 | |
| 	 * exit_mmap(), which proceeds at its own independent pace;
 | |
| 	 * and even shmem_writepage() could have been preempted after
 | |
| 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
 | |
| 	 * and robust (though cpu-intensive) just to keep retrying.
 | |
| 	 */
 | |
| 	if (swap_usage_in_pages(si)) {
 | |
| 		if (!signal_pending(current))
 | |
| 			goto retry;
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| success:
 | |
| 	/*
 | |
| 	 * Make sure that further cleanups after try_to_unuse() returns happen
 | |
| 	 * after swap_range_free() reduces si->inuse_pages to 0.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After a successful try_to_unuse, if no swap is now in use, we know
 | |
|  * we can empty the mmlist.  swap_lock must be held on entry and exit.
 | |
|  * Note that mmlist_lock nests inside swap_lock, and an mm must be
 | |
|  * added to the mmlist just after page_duplicate - before would be racy.
 | |
|  */
 | |
| static void drain_mmlist(void)
 | |
| {
 | |
| 	struct list_head *p, *next;
 | |
| 	unsigned int type;
 | |
| 
 | |
| 	for (type = 0; type < nr_swapfiles; type++)
 | |
| 		if (swap_usage_in_pages(swap_info[type]))
 | |
| 			return;
 | |
| 	spin_lock(&mmlist_lock);
 | |
| 	list_for_each_safe(p, next, &init_mm.mmlist)
 | |
| 		list_del_init(p);
 | |
| 	spin_unlock(&mmlist_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free all of a swapdev's extent information
 | |
|  */
 | |
| static void destroy_swap_extents(struct swap_info_struct *sis)
 | |
| {
 | |
| 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
 | |
| 		struct rb_node *rb = sis->swap_extent_root.rb_node;
 | |
| 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
 | |
| 
 | |
| 		rb_erase(rb, &sis->swap_extent_root);
 | |
| 		kfree(se);
 | |
| 	}
 | |
| 
 | |
| 	if (sis->flags & SWP_ACTIVATED) {
 | |
| 		struct file *swap_file = sis->swap_file;
 | |
| 		struct address_space *mapping = swap_file->f_mapping;
 | |
| 
 | |
| 		sis->flags &= ~SWP_ACTIVATED;
 | |
| 		if (mapping->a_ops->swap_deactivate)
 | |
| 			mapping->a_ops->swap_deactivate(swap_file);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a block range (and the corresponding page range) into this swapdev's
 | |
|  * extent tree.
 | |
|  *
 | |
|  * This function rather assumes that it is called in ascending page order.
 | |
|  */
 | |
| int
 | |
| add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
 | |
| 		unsigned long nr_pages, sector_t start_block)
 | |
| {
 | |
| 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
 | |
| 	struct swap_extent *se;
 | |
| 	struct swap_extent *new_se;
 | |
| 
 | |
| 	/*
 | |
| 	 * place the new node at the right most since the
 | |
| 	 * function is called in ascending page order.
 | |
| 	 */
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		link = &parent->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	if (parent) {
 | |
| 		se = rb_entry(parent, struct swap_extent, rb_node);
 | |
| 		BUG_ON(se->start_page + se->nr_pages != start_page);
 | |
| 		if (se->start_block + se->nr_pages == start_block) {
 | |
| 			/* Merge it */
 | |
| 			se->nr_pages += nr_pages;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* No merge, insert a new extent. */
 | |
| 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
 | |
| 	if (new_se == NULL)
 | |
| 		return -ENOMEM;
 | |
| 	new_se->start_page = start_page;
 | |
| 	new_se->nr_pages = nr_pages;
 | |
| 	new_se->start_block = start_block;
 | |
| 
 | |
| 	rb_link_node(&new_se->rb_node, parent, link);
 | |
| 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_swap_extent);
 | |
| 
 | |
| /*
 | |
|  * A `swap extent' is a simple thing which maps a contiguous range of pages
 | |
|  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
 | |
|  * built at swapon time and is then used at swap_writepage/swap_read_folio
 | |
|  * time for locating where on disk a page belongs.
 | |
|  *
 | |
|  * If the swapfile is an S_ISBLK block device, a single extent is installed.
 | |
|  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
 | |
|  * swap files identically.
 | |
|  *
 | |
|  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
 | |
|  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
 | |
|  * swapfiles are handled *identically* after swapon time.
 | |
|  *
 | |
|  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
 | |
|  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
 | |
|  * blocks are found which do not fall within the PAGE_SIZE alignment
 | |
|  * requirements, they are simply tossed out - we will never use those blocks
 | |
|  * for swapping.
 | |
|  *
 | |
|  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
 | |
|  * prevents users from writing to the swap device, which will corrupt memory.
 | |
|  *
 | |
|  * The amount of disk space which a single swap extent represents varies.
 | |
|  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
 | |
|  * extents in the rbtree. - akpm.
 | |
|  */
 | |
| static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
 | |
| {
 | |
| 	struct file *swap_file = sis->swap_file;
 | |
| 	struct address_space *mapping = swap_file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		ret = add_swap_extent(sis, 0, sis->max, 0);
 | |
| 		*span = sis->pages;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (mapping->a_ops->swap_activate) {
 | |
| 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		sis->flags |= SWP_ACTIVATED;
 | |
| 		if ((sis->flags & SWP_FS_OPS) &&
 | |
| 		    sio_pool_init() != 0) {
 | |
| 			destroy_swap_extents(sis);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return generic_swapfile_activate(sis, swap_file, span);
 | |
| }
 | |
| 
 | |
| static int swap_node(struct swap_info_struct *si)
 | |
| {
 | |
| 	struct block_device *bdev;
 | |
| 
 | |
| 	if (si->bdev)
 | |
| 		bdev = si->bdev;
 | |
| 	else
 | |
| 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
 | |
| 
 | |
| 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
 | |
| }
 | |
| 
 | |
| static void setup_swap_info(struct swap_info_struct *si, int prio,
 | |
| 			    unsigned char *swap_map,
 | |
| 			    struct swap_cluster_info *cluster_info,
 | |
| 			    unsigned long *zeromap)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (prio >= 0)
 | |
| 		si->prio = prio;
 | |
| 	else
 | |
| 		si->prio = --least_priority;
 | |
| 	/*
 | |
| 	 * the plist prio is negated because plist ordering is
 | |
| 	 * low-to-high, while swap ordering is high-to-low
 | |
| 	 */
 | |
| 	si->list.prio = -si->prio;
 | |
| 	for_each_node(i) {
 | |
| 		if (si->prio >= 0)
 | |
| 			si->avail_lists[i].prio = -si->prio;
 | |
| 		else {
 | |
| 			if (swap_node(si) == i)
 | |
| 				si->avail_lists[i].prio = 1;
 | |
| 			else
 | |
| 				si->avail_lists[i].prio = -si->prio;
 | |
| 		}
 | |
| 	}
 | |
| 	si->swap_map = swap_map;
 | |
| 	si->cluster_info = cluster_info;
 | |
| 	si->zeromap = zeromap;
 | |
| }
 | |
| 
 | |
| static void _enable_swap_info(struct swap_info_struct *si)
 | |
| {
 | |
| 	atomic_long_add(si->pages, &nr_swap_pages);
 | |
| 	total_swap_pages += si->pages;
 | |
| 
 | |
| 	assert_spin_locked(&swap_lock);
 | |
| 	/*
 | |
| 	 * both lists are plists, and thus priority ordered.
 | |
| 	 * swap_active_head needs to be priority ordered for swapoff(),
 | |
| 	 * which on removal of any swap_info_struct with an auto-assigned
 | |
| 	 * (i.e. negative) priority increments the auto-assigned priority
 | |
| 	 * of any lower-priority swap_info_structs.
 | |
| 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
 | |
| 	 * which allocates swap pages from the highest available priority
 | |
| 	 * swap_info_struct.
 | |
| 	 */
 | |
| 	plist_add(&si->list, &swap_active_head);
 | |
| 
 | |
| 	/* Add back to available list */
 | |
| 	add_to_avail_list(si, true);
 | |
| }
 | |
| 
 | |
| static void enable_swap_info(struct swap_info_struct *si, int prio,
 | |
| 				unsigned char *swap_map,
 | |
| 				struct swap_cluster_info *cluster_info,
 | |
| 				unsigned long *zeromap)
 | |
| {
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&si->lock);
 | |
| 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
 | |
| 	spin_unlock(&si->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	/*
 | |
| 	 * Finished initializing swap device, now it's safe to reference it.
 | |
| 	 */
 | |
| 	percpu_ref_resurrect(&si->users);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&si->lock);
 | |
| 	_enable_swap_info(si);
 | |
| 	spin_unlock(&si->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| static void reinsert_swap_info(struct swap_info_struct *si)
 | |
| {
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&si->lock);
 | |
| 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
 | |
| 	_enable_swap_info(si);
 | |
| 	spin_unlock(&si->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| static bool __has_usable_swap(void)
 | |
| {
 | |
| 	return !plist_head_empty(&swap_active_head);
 | |
| }
 | |
| 
 | |
| bool has_usable_swap(void)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	ret = __has_usable_swap();
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
 | |
|  * see the updated flags, so there will be no more allocations.
 | |
|  */
 | |
| static void wait_for_allocation(struct swap_info_struct *si)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
 | |
| 	struct swap_cluster_info *ci;
 | |
| 
 | |
| 	BUG_ON(si->flags & SWP_WRITEOK);
 | |
| 
 | |
| 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
 | |
| 		ci = lock_cluster(si, offset);
 | |
| 		unlock_cluster(ci);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
 | |
| {
 | |
| 	struct swap_info_struct *p = NULL;
 | |
| 	unsigned char *swap_map;
 | |
| 	unsigned long *zeromap;
 | |
| 	struct swap_cluster_info *cluster_info;
 | |
| 	struct file *swap_file, *victim;
 | |
| 	struct address_space *mapping;
 | |
| 	struct inode *inode;
 | |
| 	struct filename *pathname;
 | |
| 	int err, found = 0;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	BUG_ON(!current->mm);
 | |
| 
 | |
| 	pathname = getname(specialfile);
 | |
| 	if (IS_ERR(pathname))
 | |
| 		return PTR_ERR(pathname);
 | |
| 
 | |
| 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
 | |
| 	err = PTR_ERR(victim);
 | |
| 	if (IS_ERR(victim))
 | |
| 		goto out;
 | |
| 
 | |
| 	mapping = victim->f_mapping;
 | |
| 	spin_lock(&swap_lock);
 | |
| 	plist_for_each_entry(p, &swap_active_head, list) {
 | |
| 		if (p->flags & SWP_WRITEOK) {
 | |
| 			if (p->swap_file->f_mapping == mapping) {
 | |
| 				found = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (!found) {
 | |
| 		err = -EINVAL;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
 | |
| 		vm_unacct_memory(p->pages);
 | |
| 	else {
 | |
| 		err = -ENOMEM;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 	spin_lock(&p->lock);
 | |
| 	del_from_avail_list(p, true);
 | |
| 	if (p->prio < 0) {
 | |
| 		struct swap_info_struct *si = p;
 | |
| 		int nid;
 | |
| 
 | |
| 		plist_for_each_entry_continue(si, &swap_active_head, list) {
 | |
| 			si->prio++;
 | |
| 			si->list.prio--;
 | |
| 			for_each_node(nid) {
 | |
| 				if (si->avail_lists[nid].prio != 1)
 | |
| 					si->avail_lists[nid].prio--;
 | |
| 			}
 | |
| 		}
 | |
| 		least_priority++;
 | |
| 	}
 | |
| 	plist_del(&p->list, &swap_active_head);
 | |
| 	atomic_long_sub(p->pages, &nr_swap_pages);
 | |
| 	total_swap_pages -= p->pages;
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| 
 | |
| 	wait_for_allocation(p);
 | |
| 
 | |
| 	disable_swap_slots_cache_lock();
 | |
| 
 | |
| 	set_current_oom_origin();
 | |
| 	err = try_to_unuse(p->type);
 | |
| 	clear_current_oom_origin();
 | |
| 
 | |
| 	if (err) {
 | |
| 		/* re-insert swap space back into swap_list */
 | |
| 		reinsert_swap_info(p);
 | |
| 		reenable_swap_slots_cache_unlock();
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 
 | |
| 	reenable_swap_slots_cache_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for swap operations protected by get/put_swap_device()
 | |
| 	 * to complete.  Because of synchronize_rcu() here, all swap
 | |
| 	 * operations protected by RCU reader side lock (including any
 | |
| 	 * spinlock) will be waited too.  This makes it easy to
 | |
| 	 * prevent folio_test_swapcache() and the following swap cache
 | |
| 	 * operations from racing with swapoff.
 | |
| 	 */
 | |
| 	percpu_ref_kill(&p->users);
 | |
| 	synchronize_rcu();
 | |
| 	wait_for_completion(&p->comp);
 | |
| 
 | |
| 	flush_work(&p->discard_work);
 | |
| 	flush_work(&p->reclaim_work);
 | |
| 
 | |
| 	destroy_swap_extents(p);
 | |
| 	if (p->flags & SWP_CONTINUED)
 | |
| 		free_swap_count_continuations(p);
 | |
| 
 | |
| 	if (!p->bdev || !bdev_nonrot(p->bdev))
 | |
| 		atomic_dec(&nr_rotate_swap);
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&p->lock);
 | |
| 	drain_mmlist();
 | |
| 
 | |
| 	swap_file = p->swap_file;
 | |
| 	p->swap_file = NULL;
 | |
| 	p->max = 0;
 | |
| 	swap_map = p->swap_map;
 | |
| 	p->swap_map = NULL;
 | |
| 	zeromap = p->zeromap;
 | |
| 	p->zeromap = NULL;
 | |
| 	cluster_info = p->cluster_info;
 | |
| 	p->cluster_info = NULL;
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	arch_swap_invalidate_area(p->type);
 | |
| 	zswap_swapoff(p->type);
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| 	free_percpu(p->percpu_cluster);
 | |
| 	p->percpu_cluster = NULL;
 | |
| 	kfree(p->global_cluster);
 | |
| 	p->global_cluster = NULL;
 | |
| 	vfree(swap_map);
 | |
| 	kvfree(zeromap);
 | |
| 	kvfree(cluster_info);
 | |
| 	/* Destroy swap account information */
 | |
| 	swap_cgroup_swapoff(p->type);
 | |
| 	exit_swap_address_space(p->type);
 | |
| 
 | |
| 	inode = mapping->host;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 	inode->i_flags &= ~S_SWAPFILE;
 | |
| 	inode_unlock(inode);
 | |
| 	filp_close(swap_file, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the SWP_USED flag after all resources are freed so that swapon
 | |
| 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
 | |
| 	 * not hold p->lock after we cleared its SWP_WRITEOK.
 | |
| 	 */
 | |
| 	spin_lock(&swap_lock);
 | |
| 	p->flags = 0;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 
 | |
| 	err = 0;
 | |
| 	atomic_inc(&proc_poll_event);
 | |
| 	wake_up_interruptible(&proc_poll_wait);
 | |
| 
 | |
| out_dput:
 | |
| 	filp_close(victim, NULL);
 | |
| out:
 | |
| 	putname(pathname);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static __poll_t swaps_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	struct seq_file *seq = file->private_data;
 | |
| 
 | |
| 	poll_wait(file, &proc_poll_wait, wait);
 | |
| 
 | |
| 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
 | |
| 		seq->poll_event = atomic_read(&proc_poll_event);
 | |
| 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
 | |
| 	}
 | |
| 
 | |
| 	return EPOLLIN | EPOLLRDNORM;
 | |
| }
 | |
| 
 | |
| /* iterator */
 | |
| static void *swap_start(struct seq_file *swap, loff_t *pos)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	int type;
 | |
| 	loff_t l = *pos;
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 
 | |
| 	if (!l)
 | |
| 		return SEQ_START_TOKEN;
 | |
| 
 | |
| 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
 | |
| 		if (!(si->flags & SWP_USED) || !si->swap_map)
 | |
| 			continue;
 | |
| 		if (!--l)
 | |
| 			return si;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct swap_info_struct *si = v;
 | |
| 	int type;
 | |
| 
 | |
| 	if (v == SEQ_START_TOKEN)
 | |
| 		type = 0;
 | |
| 	else
 | |
| 		type = si->type + 1;
 | |
| 
 | |
| 	++(*pos);
 | |
| 	for (; (si = swap_type_to_swap_info(type)); type++) {
 | |
| 		if (!(si->flags & SWP_USED) || !si->swap_map)
 | |
| 			continue;
 | |
| 		return si;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void swap_stop(struct seq_file *swap, void *v)
 | |
| {
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| }
 | |
| 
 | |
| static int swap_show(struct seq_file *swap, void *v)
 | |
| {
 | |
| 	struct swap_info_struct *si = v;
 | |
| 	struct file *file;
 | |
| 	int len;
 | |
| 	unsigned long bytes, inuse;
 | |
| 
 | |
| 	if (si == SEQ_START_TOKEN) {
 | |
| 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	bytes = K(si->pages);
 | |
| 	inuse = K(swap_usage_in_pages(si));
 | |
| 
 | |
| 	file = si->swap_file;
 | |
| 	len = seq_file_path(swap, file, " \t\n\\");
 | |
| 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
 | |
| 			len < 40 ? 40 - len : 1, " ",
 | |
| 			S_ISBLK(file_inode(file)->i_mode) ?
 | |
| 				"partition" : "file\t",
 | |
| 			bytes, bytes < 10000000 ? "\t" : "",
 | |
| 			inuse, inuse < 10000000 ? "\t" : "",
 | |
| 			si->prio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations swaps_op = {
 | |
| 	.start =	swap_start,
 | |
| 	.next =		swap_next,
 | |
| 	.stop =		swap_stop,
 | |
| 	.show =		swap_show
 | |
| };
 | |
| 
 | |
| static int swaps_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct seq_file *seq;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = seq_open(file, &swaps_op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	seq = file->private_data;
 | |
| 	seq->poll_event = atomic_read(&proc_poll_event);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct proc_ops swaps_proc_ops = {
 | |
| 	.proc_flags	= PROC_ENTRY_PERMANENT,
 | |
| 	.proc_open	= swaps_open,
 | |
| 	.proc_read	= seq_read,
 | |
| 	.proc_lseek	= seq_lseek,
 | |
| 	.proc_release	= seq_release,
 | |
| 	.proc_poll	= swaps_poll,
 | |
| };
 | |
| 
 | |
| static int __init procswaps_init(void)
 | |
| {
 | |
| 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(procswaps_init);
 | |
| #endif /* CONFIG_PROC_FS */
 | |
| 
 | |
| #ifdef MAX_SWAPFILES_CHECK
 | |
| static int __init max_swapfiles_check(void)
 | |
| {
 | |
| 	MAX_SWAPFILES_CHECK();
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(max_swapfiles_check);
 | |
| #endif
 | |
| 
 | |
| static struct swap_info_struct *alloc_swap_info(void)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	struct swap_info_struct *defer = NULL;
 | |
| 	unsigned int type;
 | |
| 	int i;
 | |
| 
 | |
| 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (percpu_ref_init(&p->users, swap_users_ref_free,
 | |
| 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
 | |
| 		kvfree(p);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		if (!(swap_info[type]->flags & SWP_USED))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (type >= MAX_SWAPFILES) {
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		percpu_ref_exit(&p->users);
 | |
| 		kvfree(p);
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 	}
 | |
| 	if (type >= nr_swapfiles) {
 | |
| 		p->type = type;
 | |
| 		/*
 | |
| 		 * Publish the swap_info_struct after initializing it.
 | |
| 		 * Note that kvzalloc() above zeroes all its fields.
 | |
| 		 */
 | |
| 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
 | |
| 		nr_swapfiles++;
 | |
| 	} else {
 | |
| 		defer = p;
 | |
| 		p = swap_info[type];
 | |
| 		/*
 | |
| 		 * Do not memset this entry: a racing procfs swap_next()
 | |
| 		 * would be relying on p->type to remain valid.
 | |
| 		 */
 | |
| 	}
 | |
| 	p->swap_extent_root = RB_ROOT;
 | |
| 	plist_node_init(&p->list, 0);
 | |
| 	for_each_node(i)
 | |
| 		plist_node_init(&p->avail_lists[i], 0);
 | |
| 	p->flags = SWP_USED;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	if (defer) {
 | |
| 		percpu_ref_exit(&defer->users);
 | |
| 		kvfree(defer);
 | |
| 	}
 | |
| 	spin_lock_init(&p->lock);
 | |
| 	spin_lock_init(&p->cont_lock);
 | |
| 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
 | |
| 	init_completion(&p->comp);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
 | |
| {
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		si->bdev = I_BDEV(inode);
 | |
| 		/*
 | |
| 		 * Zoned block devices contain zones that have a sequential
 | |
| 		 * write only restriction.  Hence zoned block devices are not
 | |
| 		 * suitable for swapping.  Disallow them here.
 | |
| 		 */
 | |
| 		if (bdev_is_zoned(si->bdev))
 | |
| 			return -EINVAL;
 | |
| 		si->flags |= SWP_BLKDEV;
 | |
| 	} else if (S_ISREG(inode->i_mode)) {
 | |
| 		si->bdev = inode->i_sb->s_bdev;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Find out how many pages are allowed for a single swap device. There
 | |
|  * are two limiting factors:
 | |
|  * 1) the number of bits for the swap offset in the swp_entry_t type, and
 | |
|  * 2) the number of bits in the swap pte, as defined by the different
 | |
|  * architectures.
 | |
|  *
 | |
|  * In order to find the largest possible bit mask, a swap entry with
 | |
|  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
 | |
|  * decoded to a swp_entry_t again, and finally the swap offset is
 | |
|  * extracted.
 | |
|  *
 | |
|  * This will mask all the bits from the initial ~0UL mask that can't
 | |
|  * be encoded in either the swp_entry_t or the architecture definition
 | |
|  * of a swap pte.
 | |
|  */
 | |
| unsigned long generic_max_swapfile_size(void)
 | |
| {
 | |
| 	return swp_offset(pte_to_swp_entry(
 | |
| 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
 | |
| }
 | |
| 
 | |
| /* Can be overridden by an architecture for additional checks. */
 | |
| __weak unsigned long arch_max_swapfile_size(void)
 | |
| {
 | |
| 	return generic_max_swapfile_size();
 | |
| }
 | |
| 
 | |
| static unsigned long read_swap_header(struct swap_info_struct *si,
 | |
| 					union swap_header *swap_header,
 | |
| 					struct inode *inode)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long maxpages;
 | |
| 	unsigned long swapfilepages;
 | |
| 	unsigned long last_page;
 | |
| 
 | |
| 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
 | |
| 		pr_err("Unable to find swap-space signature\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* swap partition endianness hack... */
 | |
| 	if (swab32(swap_header->info.version) == 1) {
 | |
| 		swab32s(&swap_header->info.version);
 | |
| 		swab32s(&swap_header->info.last_page);
 | |
| 		swab32s(&swap_header->info.nr_badpages);
 | |
| 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
 | |
| 			return 0;
 | |
| 		for (i = 0; i < swap_header->info.nr_badpages; i++)
 | |
| 			swab32s(&swap_header->info.badpages[i]);
 | |
| 	}
 | |
| 	/* Check the swap header's sub-version */
 | |
| 	if (swap_header->info.version != 1) {
 | |
| 		pr_warn("Unable to handle swap header version %d\n",
 | |
| 			swap_header->info.version);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	maxpages = swapfile_maximum_size;
 | |
| 	last_page = swap_header->info.last_page;
 | |
| 	if (!last_page) {
 | |
| 		pr_warn("Empty swap-file\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (last_page > maxpages) {
 | |
| 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
 | |
| 			K(maxpages), K(last_page));
 | |
| 	}
 | |
| 	if (maxpages > last_page) {
 | |
| 		maxpages = last_page + 1;
 | |
| 		/* p->max is an unsigned int: don't overflow it */
 | |
| 		if ((unsigned int)maxpages == 0)
 | |
| 			maxpages = UINT_MAX;
 | |
| 	}
 | |
| 
 | |
| 	if (!maxpages)
 | |
| 		return 0;
 | |
| 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
 | |
| 	if (swapfilepages && maxpages > swapfilepages) {
 | |
| 		pr_warn("Swap area shorter than signature indicates\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
 | |
| 		return 0;
 | |
| 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
 | |
| 		return 0;
 | |
| 
 | |
| 	return maxpages;
 | |
| }
 | |
| 
 | |
| #define SWAP_CLUSTER_INFO_COLS						\
 | |
| 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
 | |
| #define SWAP_CLUSTER_SPACE_COLS						\
 | |
| 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
 | |
| #define SWAP_CLUSTER_COLS						\
 | |
| 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
 | |
| 
 | |
| static int setup_swap_map_and_extents(struct swap_info_struct *si,
 | |
| 					union swap_header *swap_header,
 | |
| 					unsigned char *swap_map,
 | |
| 					unsigned long maxpages,
 | |
| 					sector_t *span)
 | |
| {
 | |
| 	unsigned int nr_good_pages;
 | |
| 	unsigned long i;
 | |
| 	int nr_extents;
 | |
| 
 | |
| 	nr_good_pages = maxpages - 1;	/* omit header page */
 | |
| 
 | |
| 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
 | |
| 		unsigned int page_nr = swap_header->info.badpages[i];
 | |
| 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
 | |
| 			return -EINVAL;
 | |
| 		if (page_nr < maxpages) {
 | |
| 			swap_map[page_nr] = SWAP_MAP_BAD;
 | |
| 			nr_good_pages--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nr_good_pages) {
 | |
| 		swap_map[0] = SWAP_MAP_BAD;
 | |
| 		si->max = maxpages;
 | |
| 		si->pages = nr_good_pages;
 | |
| 		nr_extents = setup_swap_extents(si, span);
 | |
| 		if (nr_extents < 0)
 | |
| 			return nr_extents;
 | |
| 		nr_good_pages = si->pages;
 | |
| 	}
 | |
| 	if (!nr_good_pages) {
 | |
| 		pr_warn("Empty swap-file\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return nr_extents;
 | |
| }
 | |
| 
 | |
| static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
 | |
| 						union swap_header *swap_header,
 | |
| 						unsigned long maxpages)
 | |
| {
 | |
| 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
 | |
| 	struct swap_cluster_info *cluster_info;
 | |
| 	unsigned long i, j, k, idx;
 | |
| 	int cpu, err = -ENOMEM;
 | |
| 
 | |
| 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
 | |
| 	if (!cluster_info)
 | |
| 		goto err;
 | |
| 
 | |
| 	for (i = 0; i < nr_clusters; i++)
 | |
| 		spin_lock_init(&cluster_info[i].lock);
 | |
| 
 | |
| 	if (si->flags & SWP_SOLIDSTATE) {
 | |
| 		si->percpu_cluster = alloc_percpu(struct percpu_cluster);
 | |
| 		if (!si->percpu_cluster)
 | |
| 			goto err_free;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			struct percpu_cluster *cluster;
 | |
| 
 | |
| 			cluster = per_cpu_ptr(si->percpu_cluster, cpu);
 | |
| 			for (i = 0; i < SWAP_NR_ORDERS; i++)
 | |
| 				cluster->next[i] = SWAP_ENTRY_INVALID;
 | |
| 			local_lock_init(&cluster->lock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		si->global_cluster = kmalloc(sizeof(*si->global_cluster),
 | |
| 				     GFP_KERNEL);
 | |
| 		if (!si->global_cluster)
 | |
| 			goto err_free;
 | |
| 		for (i = 0; i < SWAP_NR_ORDERS; i++)
 | |
| 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
 | |
| 		spin_lock_init(&si->global_cluster_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark unusable pages as unavailable. The clusters aren't
 | |
| 	 * marked free yet, so no list operations are involved yet.
 | |
| 	 *
 | |
| 	 * See setup_swap_map_and_extents(): header page, bad pages,
 | |
| 	 * and the EOF part of the last cluster.
 | |
| 	 */
 | |
| 	inc_cluster_info_page(si, cluster_info, 0);
 | |
| 	for (i = 0; i < swap_header->info.nr_badpages; i++)
 | |
| 		inc_cluster_info_page(si, cluster_info,
 | |
| 				      swap_header->info.badpages[i]);
 | |
| 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
 | |
| 		inc_cluster_info_page(si, cluster_info, i);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&si->free_clusters);
 | |
| 	INIT_LIST_HEAD(&si->full_clusters);
 | |
| 	INIT_LIST_HEAD(&si->discard_clusters);
 | |
| 
 | |
| 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
 | |
| 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
 | |
| 		INIT_LIST_HEAD(&si->frag_clusters[i]);
 | |
| 		atomic_long_set(&si->frag_cluster_nr[i], 0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Reduce false cache line sharing between cluster_info and
 | |
| 	 * sharing same address space.
 | |
| 	 */
 | |
| 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
 | |
| 		j = k % SWAP_CLUSTER_COLS;
 | |
| 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
 | |
| 			struct swap_cluster_info *ci;
 | |
| 			idx = i * SWAP_CLUSTER_COLS + j;
 | |
| 			ci = cluster_info + idx;
 | |
| 			if (idx >= nr_clusters)
 | |
| 				continue;
 | |
| 			if (ci->count) {
 | |
| 				ci->flags = CLUSTER_FLAG_NONFULL;
 | |
| 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
 | |
| 				continue;
 | |
| 			}
 | |
| 			ci->flags = CLUSTER_FLAG_FREE;
 | |
| 			list_add_tail(&ci->list, &si->free_clusters);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return cluster_info;
 | |
| 
 | |
| err_free:
 | |
| 	kvfree(cluster_info);
 | |
| err:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	struct filename *name;
 | |
| 	struct file *swap_file = NULL;
 | |
| 	struct address_space *mapping;
 | |
| 	struct dentry *dentry;
 | |
| 	int prio;
 | |
| 	int error;
 | |
| 	union swap_header *swap_header;
 | |
| 	int nr_extents;
 | |
| 	sector_t span;
 | |
| 	unsigned long maxpages;
 | |
| 	unsigned char *swap_map = NULL;
 | |
| 	unsigned long *zeromap = NULL;
 | |
| 	struct swap_cluster_info *cluster_info = NULL;
 | |
| 	struct folio *folio = NULL;
 | |
| 	struct inode *inode = NULL;
 | |
| 	bool inced_nr_rotate_swap = false;
 | |
| 
 | |
| 	if (swap_flags & ~SWAP_FLAGS_VALID)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (!swap_avail_heads)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	si = alloc_swap_info();
 | |
| 	if (IS_ERR(si))
 | |
| 		return PTR_ERR(si);
 | |
| 
 | |
| 	INIT_WORK(&si->discard_work, swap_discard_work);
 | |
| 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
 | |
| 
 | |
| 	name = getname(specialfile);
 | |
| 	if (IS_ERR(name)) {
 | |
| 		error = PTR_ERR(name);
 | |
| 		name = NULL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
 | |
| 	if (IS_ERR(swap_file)) {
 | |
| 		error = PTR_ERR(swap_file);
 | |
| 		swap_file = NULL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	si->swap_file = swap_file;
 | |
| 	mapping = swap_file->f_mapping;
 | |
| 	dentry = swap_file->f_path.dentry;
 | |
| 	inode = mapping->host;
 | |
| 
 | |
| 	error = claim_swapfile(si, inode);
 | |
| 	if (unlikely(error))
 | |
| 		goto bad_swap;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 	if (d_unlinked(dentry) || cant_mount(dentry)) {
 | |
| 		error = -ENOENT;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 	if (IS_SWAPFILE(inode)) {
 | |
| 		error = -EBUSY;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the swap header.
 | |
| 	 */
 | |
| 	if (!mapping->a_ops->read_folio) {
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 	folio = read_mapping_folio(mapping, 0, swap_file);
 | |
| 	if (IS_ERR(folio)) {
 | |
| 		error = PTR_ERR(folio);
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 	swap_header = kmap_local_folio(folio, 0);
 | |
| 
 | |
| 	maxpages = read_swap_header(si, swap_header, inode);
 | |
| 	if (unlikely(!maxpages)) {
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 
 | |
| 	/* OK, set up the swap map and apply the bad block list */
 | |
| 	swap_map = vzalloc(maxpages);
 | |
| 	if (!swap_map) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 
 | |
| 	error = swap_cgroup_swapon(si->type, maxpages);
 | |
| 	if (error)
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 
 | |
| 	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
 | |
| 						maxpages, &span);
 | |
| 	if (unlikely(nr_extents < 0)) {
 | |
| 		error = nr_extents;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
 | |
| 	 * be above MAX_PAGE_ORDER incase of a large swap file.
 | |
| 	 */
 | |
| 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
 | |
| 				    GFP_KERNEL | __GFP_ZERO);
 | |
| 	if (!zeromap) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 
 | |
| 	if (si->bdev && bdev_stable_writes(si->bdev))
 | |
| 		si->flags |= SWP_STABLE_WRITES;
 | |
| 
 | |
| 	if (si->bdev && bdev_synchronous(si->bdev))
 | |
| 		si->flags |= SWP_SYNCHRONOUS_IO;
 | |
| 
 | |
| 	if (si->bdev && bdev_nonrot(si->bdev)) {
 | |
| 		si->flags |= SWP_SOLIDSTATE;
 | |
| 	} else {
 | |
| 		atomic_inc(&nr_rotate_swap);
 | |
| 		inced_nr_rotate_swap = true;
 | |
| 	}
 | |
| 
 | |
| 	cluster_info = setup_clusters(si, swap_header, maxpages);
 | |
| 	if (IS_ERR(cluster_info)) {
 | |
| 		error = PTR_ERR(cluster_info);
 | |
| 		cluster_info = NULL;
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 	}
 | |
| 
 | |
| 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
 | |
| 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
 | |
| 		/*
 | |
| 		 * When discard is enabled for swap with no particular
 | |
| 		 * policy flagged, we set all swap discard flags here in
 | |
| 		 * order to sustain backward compatibility with older
 | |
| 		 * swapon(8) releases.
 | |
| 		 */
 | |
| 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
 | |
| 			     SWP_PAGE_DISCARD);
 | |
| 
 | |
| 		/*
 | |
| 		 * By flagging sys_swapon, a sysadmin can tell us to
 | |
| 		 * either do single-time area discards only, or to just
 | |
| 		 * perform discards for released swap page-clusters.
 | |
| 		 * Now it's time to adjust the p->flags accordingly.
 | |
| 		 */
 | |
| 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
 | |
| 			si->flags &= ~SWP_PAGE_DISCARD;
 | |
| 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
 | |
| 			si->flags &= ~SWP_AREA_DISCARD;
 | |
| 
 | |
| 		/* issue a swapon-time discard if it's still required */
 | |
| 		if (si->flags & SWP_AREA_DISCARD) {
 | |
| 			int err = discard_swap(si);
 | |
| 			if (unlikely(err))
 | |
| 				pr_err("swapon: discard_swap(%p): %d\n",
 | |
| 					si, err);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	error = init_swap_address_space(si->type, maxpages);
 | |
| 	if (error)
 | |
| 		goto bad_swap_unlock_inode;
 | |
| 
 | |
| 	error = zswap_swapon(si->type, maxpages);
 | |
| 	if (error)
 | |
| 		goto free_swap_address_space;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush any pending IO and dirty mappings before we start using this
 | |
| 	 * swap device.
 | |
| 	 */
 | |
| 	inode->i_flags |= S_SWAPFILE;
 | |
| 	error = inode_drain_writes(inode);
 | |
| 	if (error) {
 | |
| 		inode->i_flags &= ~S_SWAPFILE;
 | |
| 		goto free_swap_zswap;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 	prio = -1;
 | |
| 	if (swap_flags & SWAP_FLAG_PREFER)
 | |
| 		prio =
 | |
| 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
 | |
| 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
 | |
| 
 | |
| 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
 | |
| 		K(si->pages), name->name, si->prio, nr_extents,
 | |
| 		K((unsigned long long)span),
 | |
| 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
 | |
| 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
 | |
| 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
 | |
| 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
 | |
| 
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| 	atomic_inc(&proc_poll_event);
 | |
| 	wake_up_interruptible(&proc_poll_wait);
 | |
| 
 | |
| 	error = 0;
 | |
| 	goto out;
 | |
| free_swap_zswap:
 | |
| 	zswap_swapoff(si->type);
 | |
| free_swap_address_space:
 | |
| 	exit_swap_address_space(si->type);
 | |
| bad_swap_unlock_inode:
 | |
| 	inode_unlock(inode);
 | |
| bad_swap:
 | |
| 	free_percpu(si->percpu_cluster);
 | |
| 	si->percpu_cluster = NULL;
 | |
| 	kfree(si->global_cluster);
 | |
| 	si->global_cluster = NULL;
 | |
| 	inode = NULL;
 | |
| 	destroy_swap_extents(si);
 | |
| 	swap_cgroup_swapoff(si->type);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	si->swap_file = NULL;
 | |
| 	si->flags = 0;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	vfree(swap_map);
 | |
| 	kvfree(zeromap);
 | |
| 	kvfree(cluster_info);
 | |
| 	if (inced_nr_rotate_swap)
 | |
| 		atomic_dec(&nr_rotate_swap);
 | |
| 	if (swap_file)
 | |
| 		filp_close(swap_file, NULL);
 | |
| out:
 | |
| 	if (!IS_ERR_OR_NULL(folio))
 | |
| 		folio_release_kmap(folio, swap_header);
 | |
| 	if (name)
 | |
| 		putname(name);
 | |
| 	if (inode)
 | |
| 		inode_unlock(inode);
 | |
| 	if (!error)
 | |
| 		enable_swap_slots_cache();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void si_swapinfo(struct sysinfo *val)
 | |
| {
 | |
| 	unsigned int type;
 | |
| 	unsigned long nr_to_be_unused = 0;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		struct swap_info_struct *si = swap_info[type];
 | |
| 
 | |
| 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
 | |
| 			nr_to_be_unused += swap_usage_in_pages(si);
 | |
| 	}
 | |
| 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
 | |
| 	val->totalswap = total_swap_pages + nr_to_be_unused;
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that nr swap entries are valid and increment their swap map counts.
 | |
|  *
 | |
|  * Returns error code in following case.
 | |
|  * - success -> 0
 | |
|  * - swp_entry is invalid -> EINVAL
 | |
|  * - swp_entry is migration entry -> EINVAL
 | |
|  * - swap-cache reference is requested but there is already one. -> EEXIST
 | |
|  * - swap-cache reference is requested but the entry is not used. -> ENOENT
 | |
|  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
 | |
|  */
 | |
| static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	unsigned long offset;
 | |
| 	unsigned char count;
 | |
| 	unsigned char has_cache;
 | |
| 	int err, i;
 | |
| 
 | |
| 	si = swp_swap_info(entry);
 | |
| 	if (WARN_ON_ONCE(!si)) {
 | |
| 		pr_err("%s%08lx\n", Bad_file, entry.val);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	offset = swp_offset(entry);
 | |
| 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
 | |
| 	VM_WARN_ON(usage == 1 && nr > 1);
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 
 | |
| 	err = 0;
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		count = si->swap_map[offset + i];
 | |
| 
 | |
| 		/*
 | |
| 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
 | |
| 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
 | |
| 		 */
 | |
| 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
 | |
| 			err = -ENOENT;
 | |
| 			goto unlock_out;
 | |
| 		}
 | |
| 
 | |
| 		has_cache = count & SWAP_HAS_CACHE;
 | |
| 		count &= ~SWAP_HAS_CACHE;
 | |
| 
 | |
| 		if (!count && !has_cache) {
 | |
| 			err = -ENOENT;
 | |
| 		} else if (usage == SWAP_HAS_CACHE) {
 | |
| 			if (has_cache)
 | |
| 				err = -EEXIST;
 | |
| 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
 | |
| 			err = -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (err)
 | |
| 			goto unlock_out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		count = si->swap_map[offset + i];
 | |
| 		has_cache = count & SWAP_HAS_CACHE;
 | |
| 		count &= ~SWAP_HAS_CACHE;
 | |
| 
 | |
| 		if (usage == SWAP_HAS_CACHE)
 | |
| 			has_cache = SWAP_HAS_CACHE;
 | |
| 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
 | |
| 			count += usage;
 | |
| 		else if (swap_count_continued(si, offset + i, count))
 | |
| 			count = COUNT_CONTINUED;
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * Don't need to rollback changes, because if
 | |
| 			 * usage == 1, there must be nr == 1.
 | |
| 			 */
 | |
| 			err = -ENOMEM;
 | |
| 			goto unlock_out;
 | |
| 		}
 | |
| 
 | |
| 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
 | |
| 	}
 | |
| 
 | |
| unlock_out:
 | |
| 	unlock_cluster(ci);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
 | |
|  * (in which case its reference count is never incremented).
 | |
|  */
 | |
| void swap_shmem_alloc(swp_entry_t entry, int nr)
 | |
| {
 | |
| 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increase reference count of swap entry by 1.
 | |
|  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
 | |
|  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
 | |
|  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
 | |
|  * might occur if a page table entry has got corrupted.
 | |
|  */
 | |
| int swap_duplicate(swp_entry_t entry)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
 | |
| 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @entry: first swap entry from which we allocate nr swap cache.
 | |
|  *
 | |
|  * Called when allocating swap cache for existing swap entries,
 | |
|  * This can return error codes. Returns 0 at success.
 | |
|  * -EEXIST means there is a swap cache.
 | |
|  * Note: return code is different from swap_duplicate().
 | |
|  */
 | |
| int swapcache_prepare(swp_entry_t entry, int nr)
 | |
| {
 | |
| 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
 | |
| }
 | |
| 
 | |
| void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
 | |
| {
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 
 | |
| 	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
 | |
| }
 | |
| 
 | |
| struct swap_info_struct *swp_swap_info(swp_entry_t entry)
 | |
| {
 | |
| 	return swap_type_to_swap_info(swp_type(entry));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * out-of-line methods to avoid include hell.
 | |
|  */
 | |
| struct address_space *swapcache_mapping(struct folio *folio)
 | |
| {
 | |
| 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(swapcache_mapping);
 | |
| 
 | |
| pgoff_t __folio_swap_cache_index(struct folio *folio)
 | |
| {
 | |
| 	return swap_cache_index(folio->swap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
 | |
| 
 | |
| /*
 | |
|  * add_swap_count_continuation - called when a swap count is duplicated
 | |
|  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
 | |
|  * page of the original vmalloc'ed swap_map, to hold the continuation count
 | |
|  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
 | |
|  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
 | |
|  *
 | |
|  * These continuation pages are seldom referenced: the common paths all work
 | |
|  * on the original swap_map, only referring to a continuation page when the
 | |
|  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
 | |
|  *
 | |
|  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
 | |
|  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
 | |
|  * can be called after dropping locks.
 | |
|  */
 | |
| int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	struct swap_cluster_info *ci;
 | |
| 	struct page *head;
 | |
| 	struct page *page;
 | |
| 	struct page *list_page;
 | |
| 	pgoff_t offset;
 | |
| 	unsigned char count;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
 | |
| 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
 | |
| 	 */
 | |
| 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
 | |
| 
 | |
| 	si = get_swap_device(entry);
 | |
| 	if (!si) {
 | |
| 		/*
 | |
| 		 * An acceptable race has occurred since the failing
 | |
| 		 * __swap_duplicate(): the swap device may be swapoff
 | |
| 		 */
 | |
| 		goto outer;
 | |
| 	}
 | |
| 
 | |
| 	offset = swp_offset(entry);
 | |
| 
 | |
| 	ci = lock_cluster(si, offset);
 | |
| 
 | |
| 	count = swap_count(si->swap_map[offset]);
 | |
| 
 | |
| 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
 | |
| 		/*
 | |
| 		 * The higher the swap count, the more likely it is that tasks
 | |
| 		 * will race to add swap count continuation: we need to avoid
 | |
| 		 * over-provisioning.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!page) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	head = vmalloc_to_page(si->swap_map + offset);
 | |
| 	offset &= ~PAGE_MASK;
 | |
| 
 | |
| 	spin_lock(&si->cont_lock);
 | |
| 	/*
 | |
| 	 * Page allocation does not initialize the page's lru field,
 | |
| 	 * but it does always reset its private field.
 | |
| 	 */
 | |
| 	if (!page_private(head)) {
 | |
| 		BUG_ON(count & COUNT_CONTINUED);
 | |
| 		INIT_LIST_HEAD(&head->lru);
 | |
| 		set_page_private(head, SWP_CONTINUED);
 | |
| 		si->flags |= SWP_CONTINUED;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(list_page, &head->lru, lru) {
 | |
| 		unsigned char *map;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the previous map said no continuation, but we've found
 | |
| 		 * a continuation page, free our allocation and use this one.
 | |
| 		 */
 | |
| 		if (!(count & COUNT_CONTINUED))
 | |
| 			goto out_unlock_cont;
 | |
| 
 | |
| 		map = kmap_local_page(list_page) + offset;
 | |
| 		count = *map;
 | |
| 		kunmap_local(map);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this continuation count now has some space in it,
 | |
| 		 * free our allocation and use this one.
 | |
| 		 */
 | |
| 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
 | |
| 			goto out_unlock_cont;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&page->lru, &head->lru);
 | |
| 	page = NULL;			/* now it's attached, don't free it */
 | |
| out_unlock_cont:
 | |
| 	spin_unlock(&si->cont_lock);
 | |
| out:
 | |
| 	unlock_cluster(ci);
 | |
| 	put_swap_device(si);
 | |
| outer:
 | |
| 	if (page)
 | |
| 		__free_page(page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swap_count_continued - when the original swap_map count is incremented
 | |
|  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
 | |
|  * into, carry if so, or else fail until a new continuation page is allocated;
 | |
|  * when the original swap_map count is decremented from 0 with continuation,
 | |
|  * borrow from the continuation and report whether it still holds more.
 | |
|  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
 | |
|  * lock.
 | |
|  */
 | |
| static bool swap_count_continued(struct swap_info_struct *si,
 | |
| 				 pgoff_t offset, unsigned char count)
 | |
| {
 | |
| 	struct page *head;
 | |
| 	struct page *page;
 | |
| 	unsigned char *map;
 | |
| 	bool ret;
 | |
| 
 | |
| 	head = vmalloc_to_page(si->swap_map + offset);
 | |
| 	if (page_private(head) != SWP_CONTINUED) {
 | |
| 		BUG_ON(count & COUNT_CONTINUED);
 | |
| 		return false;		/* need to add count continuation */
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&si->cont_lock);
 | |
| 	offset &= ~PAGE_MASK;
 | |
| 	page = list_next_entry(head, lru);
 | |
| 	map = kmap_local_page(page) + offset;
 | |
| 
 | |
| 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
 | |
| 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
 | |
| 
 | |
| 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
 | |
| 		/*
 | |
| 		 * Think of how you add 1 to 999
 | |
| 		 */
 | |
| 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
 | |
| 			kunmap_local(map);
 | |
| 			page = list_next_entry(page, lru);
 | |
| 			BUG_ON(page == head);
 | |
| 			map = kmap_local_page(page) + offset;
 | |
| 		}
 | |
| 		if (*map == SWAP_CONT_MAX) {
 | |
| 			kunmap_local(map);
 | |
| 			page = list_next_entry(page, lru);
 | |
| 			if (page == head) {
 | |
| 				ret = false;	/* add count continuation */
 | |
| 				goto out;
 | |
| 			}
 | |
| 			map = kmap_local_page(page) + offset;
 | |
| init_map:		*map = 0;		/* we didn't zero the page */
 | |
| 		}
 | |
| 		*map += 1;
 | |
| 		kunmap_local(map);
 | |
| 		while ((page = list_prev_entry(page, lru)) != head) {
 | |
| 			map = kmap_local_page(page) + offset;
 | |
| 			*map = COUNT_CONTINUED;
 | |
| 			kunmap_local(map);
 | |
| 		}
 | |
| 		ret = true;			/* incremented */
 | |
| 
 | |
| 	} else {				/* decrementing */
 | |
| 		/*
 | |
| 		 * Think of how you subtract 1 from 1000
 | |
| 		 */
 | |
| 		BUG_ON(count != COUNT_CONTINUED);
 | |
| 		while (*map == COUNT_CONTINUED) {
 | |
| 			kunmap_local(map);
 | |
| 			page = list_next_entry(page, lru);
 | |
| 			BUG_ON(page == head);
 | |
| 			map = kmap_local_page(page) + offset;
 | |
| 		}
 | |
| 		BUG_ON(*map == 0);
 | |
| 		*map -= 1;
 | |
| 		if (*map == 0)
 | |
| 			count = 0;
 | |
| 		kunmap_local(map);
 | |
| 		while ((page = list_prev_entry(page, lru)) != head) {
 | |
| 			map = kmap_local_page(page) + offset;
 | |
| 			*map = SWAP_CONT_MAX | count;
 | |
| 			count = COUNT_CONTINUED;
 | |
| 			kunmap_local(map);
 | |
| 		}
 | |
| 		ret = count == COUNT_CONTINUED;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&si->cont_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free_swap_count_continuations - swapoff free all the continuation pages
 | |
|  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
 | |
|  */
 | |
| static void free_swap_count_continuations(struct swap_info_struct *si)
 | |
| {
 | |
| 	pgoff_t offset;
 | |
| 
 | |
| 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
 | |
| 		struct page *head;
 | |
| 		head = vmalloc_to_page(si->swap_map + offset);
 | |
| 		if (page_private(head)) {
 | |
| 			struct page *page, *next;
 | |
| 
 | |
| 			list_for_each_entry_safe(page, next, &head->lru, lru) {
 | |
| 				list_del(&page->lru);
 | |
| 				__free_page(page);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
 | |
| void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
 | |
| {
 | |
| 	struct swap_info_struct *si, *next;
 | |
| 	int nid = folio_nid(folio);
 | |
| 
 | |
| 	if (!(gfp & __GFP_IO))
 | |
| 		return;
 | |
| 
 | |
| 	if (!__has_usable_swap())
 | |
| 		return;
 | |
| 
 | |
| 	if (!blk_cgroup_congested())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We've already scheduled a throttle, avoid taking the global swap
 | |
| 	 * lock.
 | |
| 	 */
 | |
| 	if (current->throttle_disk)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&swap_avail_lock);
 | |
| 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
 | |
| 				  avail_lists[nid]) {
 | |
| 		if (si->bdev) {
 | |
| 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&swap_avail_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int __init swapfile_init(void)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
 | |
| 					 GFP_KERNEL);
 | |
| 	if (!swap_avail_heads) {
 | |
| 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node(nid)
 | |
| 		plist_head_init(&swap_avail_heads[nid]);
 | |
| 
 | |
| 	swapfile_maximum_size = arch_max_swapfile_size();
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
 | |
| 		swap_migration_ad_supported = true;
 | |
| #endif	/* CONFIG_MIGRATION */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(swapfile_init);
 |