forked from mirrors/linux
		
	 1567b85eb8
			
		
	
	
		1567b85eb8
		
	
	
	
	
		
			
			As pointed out by David Miller the current page_pool implementation stores dma_addr_t in page->private. This won't work on 32-bit platforms with 64-bit DMA addresses since the page->private is an unsigned long and the dma_addr_t a u64. A previous patch is adding dma_addr_t on struct page to accommodate this. This patch adapts the page_pool related functions to use the newly added struct for storing and retrieving DMA addresses from network drivers. Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			322 lines
		
	
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			322 lines
		
	
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0
 | |
|  *
 | |
|  * page_pool.c
 | |
|  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
 | |
|  *	Copyright (C) 2016 Red Hat, Inc.
 | |
|  */
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <net/page_pool.h>
 | |
| #include <linux/dma-direction.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/mm.h> /* for __put_page() */
 | |
| 
 | |
| static int page_pool_init(struct page_pool *pool,
 | |
| 			  const struct page_pool_params *params)
 | |
| {
 | |
| 	unsigned int ring_qsize = 1024; /* Default */
 | |
| 
 | |
| 	memcpy(&pool->p, params, sizeof(pool->p));
 | |
| 
 | |
| 	/* Validate only known flags were used */
 | |
| 	if (pool->p.flags & ~(PP_FLAG_ALL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pool->p.pool_size)
 | |
| 		ring_qsize = pool->p.pool_size;
 | |
| 
 | |
| 	/* Sanity limit mem that can be pinned down */
 | |
| 	if (ring_qsize > 32768)
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
 | |
| 	 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
 | |
| 	 * which is the XDP_TX use-case.
 | |
| 	 */
 | |
| 	if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
 | |
| 	    (pool->p.dma_dir != DMA_BIDIRECTIONAL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct page_pool *page_pool_create(const struct page_pool_params *params)
 | |
| {
 | |
| 	struct page_pool *pool;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
 | |
| 	if (!pool)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	err = page_pool_init(pool, params);
 | |
| 	if (err < 0) {
 | |
| 		pr_warn("%s() gave up with errno %d\n", __func__, err);
 | |
| 		kfree(pool);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 	return pool;
 | |
| }
 | |
| EXPORT_SYMBOL(page_pool_create);
 | |
| 
 | |
| /* fast path */
 | |
| static struct page *__page_pool_get_cached(struct page_pool *pool)
 | |
| {
 | |
| 	struct ptr_ring *r = &pool->ring;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/* Quicker fallback, avoid locks when ring is empty */
 | |
| 	if (__ptr_ring_empty(r))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Test for safe-context, caller should provide this guarantee */
 | |
| 	if (likely(in_serving_softirq())) {
 | |
| 		if (likely(pool->alloc.count)) {
 | |
| 			/* Fast-path */
 | |
| 			page = pool->alloc.cache[--pool->alloc.count];
 | |
| 			return page;
 | |
| 		}
 | |
| 		/* Slower-path: Alloc array empty, time to refill
 | |
| 		 *
 | |
| 		 * Open-coded bulk ptr_ring consumer.
 | |
| 		 *
 | |
| 		 * Discussion: the ring consumer lock is not really
 | |
| 		 * needed due to the softirq/NAPI protection, but
 | |
| 		 * later need the ability to reclaim pages on the
 | |
| 		 * ring. Thus, keeping the locks.
 | |
| 		 */
 | |
| 		spin_lock(&r->consumer_lock);
 | |
| 		while ((page = __ptr_ring_consume(r))) {
 | |
| 			if (pool->alloc.count == PP_ALLOC_CACHE_REFILL)
 | |
| 				break;
 | |
| 			pool->alloc.cache[pool->alloc.count++] = page;
 | |
| 		}
 | |
| 		spin_unlock(&r->consumer_lock);
 | |
| 		return page;
 | |
| 	}
 | |
| 
 | |
| 	/* Slow-path: Get page from locked ring queue */
 | |
| 	page = ptr_ring_consume(&pool->ring);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /* slow path */
 | |
| noinline
 | |
| static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
 | |
| 						 gfp_t _gfp)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	gfp_t gfp = _gfp;
 | |
| 	dma_addr_t dma;
 | |
| 
 | |
| 	/* We could always set __GFP_COMP, and avoid this branch, as
 | |
| 	 * prep_new_page() can handle order-0 with __GFP_COMP.
 | |
| 	 */
 | |
| 	if (pool->p.order)
 | |
| 		gfp |= __GFP_COMP;
 | |
| 
 | |
| 	/* FUTURE development:
 | |
| 	 *
 | |
| 	 * Current slow-path essentially falls back to single page
 | |
| 	 * allocations, which doesn't improve performance.  This code
 | |
| 	 * need bulk allocation support from the page allocator code.
 | |
| 	 */
 | |
| 
 | |
| 	/* Cache was empty, do real allocation */
 | |
| 	page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!(pool->p.flags & PP_FLAG_DMA_MAP))
 | |
| 		goto skip_dma_map;
 | |
| 
 | |
| 	/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
 | |
| 	 * since dma_addr_t can be either 32 or 64 bits and does not always fit
 | |
| 	 * into page private data (i.e 32bit cpu with 64bit DMA caps)
 | |
| 	 * This mapping is kept for lifetime of page, until leaving pool.
 | |
| 	 */
 | |
| 	dma = dma_map_page(pool->p.dev, page, 0,
 | |
| 			   (PAGE_SIZE << pool->p.order),
 | |
| 			   pool->p.dma_dir);
 | |
| 	if (dma_mapping_error(pool->p.dev, dma)) {
 | |
| 		put_page(page);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	page->dma_addr = dma;
 | |
| 
 | |
| skip_dma_map:
 | |
| 	/* When page just alloc'ed is should/must have refcnt 1. */
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /* For using page_pool replace: alloc_pages() API calls, but provide
 | |
|  * synchronization guarantee for allocation side.
 | |
|  */
 | |
| struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/* Fast-path: Get a page from cache */
 | |
| 	page = __page_pool_get_cached(pool);
 | |
| 	if (page)
 | |
| 		return page;
 | |
| 
 | |
| 	/* Slow-path: cache empty, do real allocation */
 | |
| 	page = __page_pool_alloc_pages_slow(pool, gfp);
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(page_pool_alloc_pages);
 | |
| 
 | |
| /* Cleanup page_pool state from page */
 | |
| static void __page_pool_clean_page(struct page_pool *pool,
 | |
| 				   struct page *page)
 | |
| {
 | |
| 	dma_addr_t dma;
 | |
| 
 | |
| 	if (!(pool->p.flags & PP_FLAG_DMA_MAP))
 | |
| 		return;
 | |
| 
 | |
| 	dma = page->dma_addr;
 | |
| 	/* DMA unmap */
 | |
| 	dma_unmap_page(pool->p.dev, dma,
 | |
| 		       PAGE_SIZE << pool->p.order, pool->p.dma_dir);
 | |
| 	page->dma_addr = 0;
 | |
| }
 | |
| 
 | |
| /* Return a page to the page allocator, cleaning up our state */
 | |
| static void __page_pool_return_page(struct page_pool *pool, struct page *page)
 | |
| {
 | |
| 	__page_pool_clean_page(pool, page);
 | |
| 	put_page(page);
 | |
| 	/* An optimization would be to call __free_pages(page, pool->p.order)
 | |
| 	 * knowing page is not part of page-cache (thus avoiding a
 | |
| 	 * __page_cache_release() call).
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static bool __page_pool_recycle_into_ring(struct page_pool *pool,
 | |
| 				   struct page *page)
 | |
| {
 | |
| 	int ret;
 | |
| 	/* BH protection not needed if current is serving softirq */
 | |
| 	if (in_serving_softirq())
 | |
| 		ret = ptr_ring_produce(&pool->ring, page);
 | |
| 	else
 | |
| 		ret = ptr_ring_produce_bh(&pool->ring, page);
 | |
| 
 | |
| 	return (ret == 0) ? true : false;
 | |
| }
 | |
| 
 | |
| /* Only allow direct recycling in special circumstances, into the
 | |
|  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
 | |
|  *
 | |
|  * Caller must provide appropriate safe context.
 | |
|  */
 | |
| static bool __page_pool_recycle_direct(struct page *page,
 | |
| 				       struct page_pool *pool)
 | |
| {
 | |
| 	if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Caller MUST have verified/know (page_ref_count(page) == 1) */
 | |
| 	pool->alloc.cache[pool->alloc.count++] = page;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void __page_pool_put_page(struct page_pool *pool,
 | |
| 			  struct page *page, bool allow_direct)
 | |
| {
 | |
| 	/* This allocator is optimized for the XDP mode that uses
 | |
| 	 * one-frame-per-page, but have fallbacks that act like the
 | |
| 	 * regular page allocator APIs.
 | |
| 	 *
 | |
| 	 * refcnt == 1 means page_pool owns page, and can recycle it.
 | |
| 	 */
 | |
| 	if (likely(page_ref_count(page) == 1)) {
 | |
| 		/* Read barrier done in page_ref_count / READ_ONCE */
 | |
| 
 | |
| 		if (allow_direct && in_serving_softirq())
 | |
| 			if (__page_pool_recycle_direct(page, pool))
 | |
| 				return;
 | |
| 
 | |
| 		if (!__page_pool_recycle_into_ring(pool, page)) {
 | |
| 			/* Cache full, fallback to free pages */
 | |
| 			__page_pool_return_page(pool, page);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Fallback/non-XDP mode: API user have elevated refcnt.
 | |
| 	 *
 | |
| 	 * Many drivers split up the page into fragments, and some
 | |
| 	 * want to keep doing this to save memory and do refcnt based
 | |
| 	 * recycling. Support this use case too, to ease drivers
 | |
| 	 * switching between XDP/non-XDP.
 | |
| 	 *
 | |
| 	 * In-case page_pool maintains the DMA mapping, API user must
 | |
| 	 * call page_pool_put_page once.  In this elevated refcnt
 | |
| 	 * case, the DMA is unmapped/released, as driver is likely
 | |
| 	 * doing refcnt based recycle tricks, meaning another process
 | |
| 	 * will be invoking put_page.
 | |
| 	 */
 | |
| 	__page_pool_clean_page(pool, page);
 | |
| 	put_page(page);
 | |
| }
 | |
| EXPORT_SYMBOL(__page_pool_put_page);
 | |
| 
 | |
| static void __page_pool_empty_ring(struct page_pool *pool)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/* Empty recycle ring */
 | |
| 	while ((page = ptr_ring_consume_bh(&pool->ring))) {
 | |
| 		/* Verify the refcnt invariant of cached pages */
 | |
| 		if (!(page_ref_count(page) == 1))
 | |
| 			pr_crit("%s() page_pool refcnt %d violation\n",
 | |
| 				__func__, page_ref_count(page));
 | |
| 
 | |
| 		__page_pool_return_page(pool, page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __page_pool_destroy_rcu(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct page_pool *pool;
 | |
| 
 | |
| 	pool = container_of(rcu, struct page_pool, rcu);
 | |
| 
 | |
| 	WARN(pool->alloc.count, "API usage violation");
 | |
| 
 | |
| 	__page_pool_empty_ring(pool);
 | |
| 	ptr_ring_cleanup(&pool->ring, NULL);
 | |
| 	kfree(pool);
 | |
| }
 | |
| 
 | |
| /* Cleanup and release resources */
 | |
| void page_pool_destroy(struct page_pool *pool)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/* Empty alloc cache, assume caller made sure this is
 | |
| 	 * no-longer in use, and page_pool_alloc_pages() cannot be
 | |
| 	 * call concurrently.
 | |
| 	 */
 | |
| 	while (pool->alloc.count) {
 | |
| 		page = pool->alloc.cache[--pool->alloc.count];
 | |
| 		__page_pool_return_page(pool, page);
 | |
| 	}
 | |
| 
 | |
| 	/* No more consumers should exist, but producers could still
 | |
| 	 * be in-flight.
 | |
| 	 */
 | |
| 	__page_pool_empty_ring(pool);
 | |
| 
 | |
| 	/* An xdp_mem_allocator can still ref page_pool pointer */
 | |
| 	call_rcu(&pool->rcu, __page_pool_destroy_rcu);
 | |
| }
 | |
| EXPORT_SYMBOL(page_pool_destroy);
 |