forked from mirrors/linux
		
	 15ea59a0e9
			
		
	
	
		15ea59a0e9
		
	
	
	
	
		
			
			Use actual CPU number instead of hardcoded value to decide the size of 'cpu_used_mask' in 'struct sw_flow'. Below is the reason. 'struct cpumask cpu_used_mask' is embedded in struct sw_flow. Its size is hardcoded to CONFIG_NR_CPUS bits, which can be 8192 by default, it costs memory and slows down ovs_flow_alloc. To address this: Redefine cpu_used_mask to pointer. Append cpumask_size() bytes after 'stat' to hold cpumask. Initialization cpu_used_mask right after stats_last_writer. APIs like cpumask_next and cpumask_set_cpu never access bits beyond cpu count, cpumask_size() bytes of memory is enough. Signed-off-by: Eddy Tao <taoyuan_eddy@hotmail.com> Acked-by: Eelco Chaudron <echaudro@redhat.com> Link: https://lore.kernel.org/r/OS3P286MB229570CCED618B20355D227AF5D59@OS3P286MB2295.JPNP286.PROD.OUTLOOK.COM Signed-off-by: Jakub Kicinski <kuba@kernel.org>
		
			
				
	
	
		
			1118 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1118 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (c) 2007-2014 Nicira, Inc.
 | |
|  */
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <net/llc_pdu.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/llc.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/ipv6.h>
 | |
| #include <linux/mpls.h>
 | |
| #include <linux/sctp.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/udp.h>
 | |
| #include <linux/icmp.h>
 | |
| #include <linux/icmpv6.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/ip_tunnels.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/mpls.h>
 | |
| #include <net/ndisc.h>
 | |
| #include <net/nsh.h>
 | |
| #include <net/pkt_cls.h>
 | |
| #include <net/netfilter/nf_conntrack_zones.h>
 | |
| 
 | |
| #include "conntrack.h"
 | |
| #include "datapath.h"
 | |
| #include "flow.h"
 | |
| #include "flow_netlink.h"
 | |
| #include "vport.h"
 | |
| 
 | |
| u64 ovs_flow_used_time(unsigned long flow_jiffies)
 | |
| {
 | |
| 	struct timespec64 cur_ts;
 | |
| 	u64 cur_ms, idle_ms;
 | |
| 
 | |
| 	ktime_get_ts64(&cur_ts);
 | |
| 	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
 | |
| 	cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
 | |
| 		 cur_ts.tv_nsec / NSEC_PER_MSEC;
 | |
| 
 | |
| 	return cur_ms - idle_ms;
 | |
| }
 | |
| 
 | |
| #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
 | |
| 
 | |
| void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
 | |
| 			   const struct sk_buff *skb)
 | |
| {
 | |
| 	struct sw_flow_stats *stats;
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
 | |
| 
 | |
| 	stats = rcu_dereference(flow->stats[cpu]);
 | |
| 
 | |
| 	/* Check if already have CPU-specific stats. */
 | |
| 	if (likely(stats)) {
 | |
| 		spin_lock(&stats->lock);
 | |
| 		/* Mark if we write on the pre-allocated stats. */
 | |
| 		if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
 | |
| 			flow->stats_last_writer = cpu;
 | |
| 	} else {
 | |
| 		stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
 | |
| 		spin_lock(&stats->lock);
 | |
| 
 | |
| 		/* If the current CPU is the only writer on the
 | |
| 		 * pre-allocated stats keep using them.
 | |
| 		 */
 | |
| 		if (unlikely(flow->stats_last_writer != cpu)) {
 | |
| 			/* A previous locker may have already allocated the
 | |
| 			 * stats, so we need to check again.  If CPU-specific
 | |
| 			 * stats were already allocated, we update the pre-
 | |
| 			 * allocated stats as we have already locked them.
 | |
| 			 */
 | |
| 			if (likely(flow->stats_last_writer != -1) &&
 | |
| 			    likely(!rcu_access_pointer(flow->stats[cpu]))) {
 | |
| 				/* Try to allocate CPU-specific stats. */
 | |
| 				struct sw_flow_stats *new_stats;
 | |
| 
 | |
| 				new_stats =
 | |
| 					kmem_cache_alloc_node(flow_stats_cache,
 | |
| 							      GFP_NOWAIT |
 | |
| 							      __GFP_THISNODE |
 | |
| 							      __GFP_NOWARN |
 | |
| 							      __GFP_NOMEMALLOC,
 | |
| 							      numa_node_id());
 | |
| 				if (likely(new_stats)) {
 | |
| 					new_stats->used = jiffies;
 | |
| 					new_stats->packet_count = 1;
 | |
| 					new_stats->byte_count = len;
 | |
| 					new_stats->tcp_flags = tcp_flags;
 | |
| 					spin_lock_init(&new_stats->lock);
 | |
| 
 | |
| 					rcu_assign_pointer(flow->stats[cpu],
 | |
| 							   new_stats);
 | |
| 					cpumask_set_cpu(cpu,
 | |
| 							flow->cpu_used_mask);
 | |
| 					goto unlock;
 | |
| 				}
 | |
| 			}
 | |
| 			flow->stats_last_writer = cpu;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	stats->used = jiffies;
 | |
| 	stats->packet_count++;
 | |
| 	stats->byte_count += len;
 | |
| 	stats->tcp_flags |= tcp_flags;
 | |
| unlock:
 | |
| 	spin_unlock(&stats->lock);
 | |
| }
 | |
| 
 | |
| /* Must be called with rcu_read_lock or ovs_mutex. */
 | |
| void ovs_flow_stats_get(const struct sw_flow *flow,
 | |
| 			struct ovs_flow_stats *ovs_stats,
 | |
| 			unsigned long *used, __be16 *tcp_flags)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	*used = 0;
 | |
| 	*tcp_flags = 0;
 | |
| 	memset(ovs_stats, 0, sizeof(*ovs_stats));
 | |
| 
 | |
| 	/* We open code this to make sure cpu 0 is always considered */
 | |
| 	for (cpu = 0; cpu < nr_cpu_ids;
 | |
| 	     cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
 | |
| 		struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
 | |
| 
 | |
| 		if (stats) {
 | |
| 			/* Local CPU may write on non-local stats, so we must
 | |
| 			 * block bottom-halves here.
 | |
| 			 */
 | |
| 			spin_lock_bh(&stats->lock);
 | |
| 			if (!*used || time_after(stats->used, *used))
 | |
| 				*used = stats->used;
 | |
| 			*tcp_flags |= stats->tcp_flags;
 | |
| 			ovs_stats->n_packets += stats->packet_count;
 | |
| 			ovs_stats->n_bytes += stats->byte_count;
 | |
| 			spin_unlock_bh(&stats->lock);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Called with ovs_mutex. */
 | |
| void ovs_flow_stats_clear(struct sw_flow *flow)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* We open code this to make sure cpu 0 is always considered */
 | |
| 	for (cpu = 0; cpu < nr_cpu_ids;
 | |
| 	     cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
 | |
| 		struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
 | |
| 
 | |
| 		if (stats) {
 | |
| 			spin_lock_bh(&stats->lock);
 | |
| 			stats->used = 0;
 | |
| 			stats->packet_count = 0;
 | |
| 			stats->byte_count = 0;
 | |
| 			stats->tcp_flags = 0;
 | |
| 			spin_unlock_bh(&stats->lock);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int check_header(struct sk_buff *skb, int len)
 | |
| {
 | |
| 	if (unlikely(skb->len < len))
 | |
| 		return -EINVAL;
 | |
| 	if (unlikely(!pskb_may_pull(skb, len)))
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool arphdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	return pskb_may_pull(skb, skb_network_offset(skb) +
 | |
| 				  sizeof(struct arp_eth_header));
 | |
| }
 | |
| 
 | |
| static int check_iphdr(struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int nh_ofs = skb_network_offset(skb);
 | |
| 	unsigned int ip_len;
 | |
| 	int err;
 | |
| 
 | |
| 	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	ip_len = ip_hdrlen(skb);
 | |
| 	if (unlikely(ip_len < sizeof(struct iphdr) ||
 | |
| 		     skb->len < nh_ofs + ip_len))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	skb_set_transport_header(skb, nh_ofs + ip_len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool tcphdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	int th_ofs = skb_transport_offset(skb);
 | |
| 	int tcp_len;
 | |
| 
 | |
| 	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
 | |
| 		return false;
 | |
| 
 | |
| 	tcp_len = tcp_hdrlen(skb);
 | |
| 	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
 | |
| 		     skb->len < th_ofs + tcp_len))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool udphdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	return pskb_may_pull(skb, skb_transport_offset(skb) +
 | |
| 				  sizeof(struct udphdr));
 | |
| }
 | |
| 
 | |
| static bool sctphdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	return pskb_may_pull(skb, skb_transport_offset(skb) +
 | |
| 				  sizeof(struct sctphdr));
 | |
| }
 | |
| 
 | |
| static bool icmphdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	return pskb_may_pull(skb, skb_transport_offset(skb) +
 | |
| 				  sizeof(struct icmphdr));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags.
 | |
|  *
 | |
|  * @skb: buffer where extension header data starts in packet
 | |
|  * @nh: ipv6 header
 | |
|  * @ext_hdrs: flags are stored here
 | |
|  *
 | |
|  * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header
 | |
|  * is unexpectedly encountered. (Two destination options headers may be
 | |
|  * expected and would not cause this bit to be set.)
 | |
|  *
 | |
|  * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order
 | |
|  * preferred (but not required) by RFC 2460:
 | |
|  *
 | |
|  * When more than one extension header is used in the same packet, it is
 | |
|  * recommended that those headers appear in the following order:
 | |
|  *      IPv6 header
 | |
|  *      Hop-by-Hop Options header
 | |
|  *      Destination Options header
 | |
|  *      Routing header
 | |
|  *      Fragment header
 | |
|  *      Authentication header
 | |
|  *      Encapsulating Security Payload header
 | |
|  *      Destination Options header
 | |
|  *      upper-layer header
 | |
|  */
 | |
| static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh,
 | |
| 			      u16 *ext_hdrs)
 | |
| {
 | |
| 	u8 next_type = nh->nexthdr;
 | |
| 	unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr);
 | |
| 	int dest_options_header_count = 0;
 | |
| 
 | |
| 	*ext_hdrs = 0;
 | |
| 
 | |
| 	while (ipv6_ext_hdr(next_type)) {
 | |
| 		struct ipv6_opt_hdr _hdr, *hp;
 | |
| 
 | |
| 		switch (next_type) {
 | |
| 		case IPPROTO_NONE:
 | |
| 			*ext_hdrs |= OFPIEH12_NONEXT;
 | |
| 			/* stop parsing */
 | |
| 			return;
 | |
| 
 | |
| 		case IPPROTO_ESP:
 | |
| 			if (*ext_hdrs & OFPIEH12_ESP)
 | |
| 				*ext_hdrs |= OFPIEH12_UNREP;
 | |
| 			if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST |
 | |
| 					   OFPIEH12_ROUTER | IPPROTO_FRAGMENT |
 | |
| 					   OFPIEH12_AUTH | OFPIEH12_UNREP)) ||
 | |
| 			    dest_options_header_count >= 2) {
 | |
| 				*ext_hdrs |= OFPIEH12_UNSEQ;
 | |
| 			}
 | |
| 			*ext_hdrs |= OFPIEH12_ESP;
 | |
| 			break;
 | |
| 
 | |
| 		case IPPROTO_AH:
 | |
| 			if (*ext_hdrs & OFPIEH12_AUTH)
 | |
| 				*ext_hdrs |= OFPIEH12_UNREP;
 | |
| 			if ((*ext_hdrs &
 | |
| 			     ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER |
 | |
| 			       IPPROTO_FRAGMENT | OFPIEH12_UNREP)) ||
 | |
| 			    dest_options_header_count >= 2) {
 | |
| 				*ext_hdrs |= OFPIEH12_UNSEQ;
 | |
| 			}
 | |
| 			*ext_hdrs |= OFPIEH12_AUTH;
 | |
| 			break;
 | |
| 
 | |
| 		case IPPROTO_DSTOPTS:
 | |
| 			if (dest_options_header_count == 0) {
 | |
| 				if (*ext_hdrs &
 | |
| 				    ~(OFPIEH12_HOP | OFPIEH12_UNREP))
 | |
| 					*ext_hdrs |= OFPIEH12_UNSEQ;
 | |
| 				*ext_hdrs |= OFPIEH12_DEST;
 | |
| 			} else if (dest_options_header_count == 1) {
 | |
| 				if (*ext_hdrs &
 | |
| 				    ~(OFPIEH12_HOP | OFPIEH12_DEST |
 | |
| 				      OFPIEH12_ROUTER | OFPIEH12_FRAG |
 | |
| 				      OFPIEH12_AUTH | OFPIEH12_ESP |
 | |
| 				      OFPIEH12_UNREP)) {
 | |
| 					*ext_hdrs |= OFPIEH12_UNSEQ;
 | |
| 				}
 | |
| 			} else {
 | |
| 				*ext_hdrs |= OFPIEH12_UNREP;
 | |
| 			}
 | |
| 			dest_options_header_count++;
 | |
| 			break;
 | |
| 
 | |
| 		case IPPROTO_FRAGMENT:
 | |
| 			if (*ext_hdrs & OFPIEH12_FRAG)
 | |
| 				*ext_hdrs |= OFPIEH12_UNREP;
 | |
| 			if ((*ext_hdrs & ~(OFPIEH12_HOP |
 | |
| 					   OFPIEH12_DEST |
 | |
| 					   OFPIEH12_ROUTER |
 | |
| 					   OFPIEH12_UNREP)) ||
 | |
| 			    dest_options_header_count >= 2) {
 | |
| 				*ext_hdrs |= OFPIEH12_UNSEQ;
 | |
| 			}
 | |
| 			*ext_hdrs |= OFPIEH12_FRAG;
 | |
| 			break;
 | |
| 
 | |
| 		case IPPROTO_ROUTING:
 | |
| 			if (*ext_hdrs & OFPIEH12_ROUTER)
 | |
| 				*ext_hdrs |= OFPIEH12_UNREP;
 | |
| 			if ((*ext_hdrs & ~(OFPIEH12_HOP |
 | |
| 					   OFPIEH12_DEST |
 | |
| 					   OFPIEH12_UNREP)) ||
 | |
| 			    dest_options_header_count >= 2) {
 | |
| 				*ext_hdrs |= OFPIEH12_UNSEQ;
 | |
| 			}
 | |
| 			*ext_hdrs |= OFPIEH12_ROUTER;
 | |
| 			break;
 | |
| 
 | |
| 		case IPPROTO_HOPOPTS:
 | |
| 			if (*ext_hdrs & OFPIEH12_HOP)
 | |
| 				*ext_hdrs |= OFPIEH12_UNREP;
 | |
| 			/* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6
 | |
| 			 * extension header is present as the first
 | |
| 			 * extension header in the packet.
 | |
| 			 */
 | |
| 			if (*ext_hdrs == 0)
 | |
| 				*ext_hdrs |= OFPIEH12_HOP;
 | |
| 			else
 | |
| 				*ext_hdrs |= OFPIEH12_UNSEQ;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr);
 | |
| 		if (!hp)
 | |
| 			break;
 | |
| 		next_type = hp->nexthdr;
 | |
| 		start += ipv6_optlen(hp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	unsigned short frag_off;
 | |
| 	unsigned int payload_ofs = 0;
 | |
| 	unsigned int nh_ofs = skb_network_offset(skb);
 | |
| 	unsigned int nh_len;
 | |
| 	struct ipv6hdr *nh;
 | |
| 	int err, nexthdr, flags = 0;
 | |
| 
 | |
| 	err = check_header(skb, nh_ofs + sizeof(*nh));
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	nh = ipv6_hdr(skb);
 | |
| 
 | |
| 	get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs);
 | |
| 
 | |
| 	key->ip.proto = NEXTHDR_NONE;
 | |
| 	key->ip.tos = ipv6_get_dsfield(nh);
 | |
| 	key->ip.ttl = nh->hop_limit;
 | |
| 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 | |
| 	key->ipv6.addr.src = nh->saddr;
 | |
| 	key->ipv6.addr.dst = nh->daddr;
 | |
| 
 | |
| 	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
 | |
| 	if (flags & IP6_FH_F_FRAG) {
 | |
| 		if (frag_off) {
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_LATER;
 | |
| 			key->ip.proto = NEXTHDR_FRAGMENT;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		key->ip.frag = OVS_FRAG_TYPE_FIRST;
 | |
| 	} else {
 | |
| 		key->ip.frag = OVS_FRAG_TYPE_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* Delayed handling of error in ipv6_find_hdr() as it
 | |
| 	 * always sets flags and frag_off to a valid value which may be
 | |
| 	 * used to set key->ip.frag above.
 | |
| 	 */
 | |
| 	if (unlikely(nexthdr < 0))
 | |
| 		return -EPROTO;
 | |
| 
 | |
| 	nh_len = payload_ofs - nh_ofs;
 | |
| 	skb_set_transport_header(skb, nh_ofs + nh_len);
 | |
| 	key->ip.proto = nexthdr;
 | |
| 	return nh_len;
 | |
| }
 | |
| 
 | |
| static bool icmp6hdr_ok(struct sk_buff *skb)
 | |
| {
 | |
| 	return pskb_may_pull(skb, skb_transport_offset(skb) +
 | |
| 				  sizeof(struct icmp6hdr));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * parse_vlan_tag - Parse vlan tag from vlan header.
 | |
|  * @skb: skb containing frame to parse
 | |
|  * @key_vh: pointer to parsed vlan tag
 | |
|  * @untag_vlan: should the vlan header be removed from the frame
 | |
|  *
 | |
|  * Return: ERROR on memory error.
 | |
|  * %0 if it encounters a non-vlan or incomplete packet.
 | |
|  * %1 after successfully parsing vlan tag.
 | |
|  */
 | |
| static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
 | |
| 			  bool untag_vlan)
 | |
| {
 | |
| 	struct vlan_head *vh = (struct vlan_head *)skb->data;
 | |
| 
 | |
| 	if (likely(!eth_type_vlan(vh->tpid)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
 | |
| 				 sizeof(__be16))))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	vh = (struct vlan_head *)skb->data;
 | |
| 	key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
 | |
| 	key_vh->tpid = vh->tpid;
 | |
| 
 | |
| 	if (unlikely(untag_vlan)) {
 | |
| 		int offset = skb->data - skb_mac_header(skb);
 | |
| 		u16 tci;
 | |
| 		int err;
 | |
| 
 | |
| 		__skb_push(skb, offset);
 | |
| 		err = __skb_vlan_pop(skb, &tci);
 | |
| 		__skb_pull(skb, offset);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
 | |
| 	} else {
 | |
| 		__skb_pull(skb, sizeof(struct vlan_head));
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void clear_vlan(struct sw_flow_key *key)
 | |
| {
 | |
| 	key->eth.vlan.tci = 0;
 | |
| 	key->eth.vlan.tpid = 0;
 | |
| 	key->eth.cvlan.tci = 0;
 | |
| 	key->eth.cvlan.tpid = 0;
 | |
| }
 | |
| 
 | |
| static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	int res;
 | |
| 
 | |
| 	if (skb_vlan_tag_present(skb)) {
 | |
| 		key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
 | |
| 		key->eth.vlan.tpid = skb->vlan_proto;
 | |
| 	} else {
 | |
| 		/* Parse outer vlan tag in the non-accelerated case. */
 | |
| 		res = parse_vlan_tag(skb, &key->eth.vlan, true);
 | |
| 		if (res <= 0)
 | |
| 			return res;
 | |
| 	}
 | |
| 
 | |
| 	/* Parse inner vlan tag. */
 | |
| 	res = parse_vlan_tag(skb, &key->eth.cvlan, false);
 | |
| 	if (res <= 0)
 | |
| 		return res;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __be16 parse_ethertype(struct sk_buff *skb)
 | |
| {
 | |
| 	struct llc_snap_hdr {
 | |
| 		u8  dsap;  /* Always 0xAA */
 | |
| 		u8  ssap;  /* Always 0xAA */
 | |
| 		u8  ctrl;
 | |
| 		u8  oui[3];
 | |
| 		__be16 ethertype;
 | |
| 	};
 | |
| 	struct llc_snap_hdr *llc;
 | |
| 	__be16 proto;
 | |
| 
 | |
| 	proto = *(__be16 *) skb->data;
 | |
| 	__skb_pull(skb, sizeof(__be16));
 | |
| 
 | |
| 	if (eth_proto_is_802_3(proto))
 | |
| 		return proto;
 | |
| 
 | |
| 	if (skb->len < sizeof(struct llc_snap_hdr))
 | |
| 		return htons(ETH_P_802_2);
 | |
| 
 | |
| 	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
 | |
| 		return htons(0);
 | |
| 
 | |
| 	llc = (struct llc_snap_hdr *) skb->data;
 | |
| 	if (llc->dsap != LLC_SAP_SNAP ||
 | |
| 	    llc->ssap != LLC_SAP_SNAP ||
 | |
| 	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
 | |
| 		return htons(ETH_P_802_2);
 | |
| 
 | |
| 	__skb_pull(skb, sizeof(struct llc_snap_hdr));
 | |
| 
 | |
| 	if (eth_proto_is_802_3(llc->ethertype))
 | |
| 		return llc->ethertype;
 | |
| 
 | |
| 	return htons(ETH_P_802_2);
 | |
| }
 | |
| 
 | |
| static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
 | |
| 			int nh_len)
 | |
| {
 | |
| 	struct icmp6hdr *icmp = icmp6_hdr(skb);
 | |
| 
 | |
| 	/* The ICMPv6 type and code fields use the 16-bit transport port
 | |
| 	 * fields, so we need to store them in 16-bit network byte order.
 | |
| 	 */
 | |
| 	key->tp.src = htons(icmp->icmp6_type);
 | |
| 	key->tp.dst = htons(icmp->icmp6_code);
 | |
| 	memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
 | |
| 
 | |
| 	if (icmp->icmp6_code == 0 &&
 | |
| 	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 | |
| 	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 | |
| 		int icmp_len = skb->len - skb_transport_offset(skb);
 | |
| 		struct nd_msg *nd;
 | |
| 		int offset;
 | |
| 
 | |
| 		/* In order to process neighbor discovery options, we need the
 | |
| 		 * entire packet.
 | |
| 		 */
 | |
| 		if (unlikely(icmp_len < sizeof(*nd)))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (unlikely(skb_linearize(skb)))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		nd = (struct nd_msg *)skb_transport_header(skb);
 | |
| 		key->ipv6.nd.target = nd->target;
 | |
| 
 | |
| 		icmp_len -= sizeof(*nd);
 | |
| 		offset = 0;
 | |
| 		while (icmp_len >= 8) {
 | |
| 			struct nd_opt_hdr *nd_opt =
 | |
| 				 (struct nd_opt_hdr *)(nd->opt + offset);
 | |
| 			int opt_len = nd_opt->nd_opt_len * 8;
 | |
| 
 | |
| 			if (unlikely(!opt_len || opt_len > icmp_len))
 | |
| 				return 0;
 | |
| 
 | |
| 			/* Store the link layer address if the appropriate
 | |
| 			 * option is provided.  It is considered an error if
 | |
| 			 * the same link layer option is specified twice.
 | |
| 			 */
 | |
| 			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
 | |
| 			    && opt_len == 8) {
 | |
| 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
 | |
| 					goto invalid;
 | |
| 				ether_addr_copy(key->ipv6.nd.sll,
 | |
| 						&nd->opt[offset+sizeof(*nd_opt)]);
 | |
| 			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
 | |
| 				   && opt_len == 8) {
 | |
| 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
 | |
| 					goto invalid;
 | |
| 				ether_addr_copy(key->ipv6.nd.tll,
 | |
| 						&nd->opt[offset+sizeof(*nd_opt)]);
 | |
| 			}
 | |
| 
 | |
| 			icmp_len -= opt_len;
 | |
| 			offset += opt_len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| invalid:
 | |
| 	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
 | |
| 	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
 | |
| 	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	struct nshhdr *nh;
 | |
| 	unsigned int nh_ofs = skb_network_offset(skb);
 | |
| 	u8 version, length;
 | |
| 	int err;
 | |
| 
 | |
| 	err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	nh = nsh_hdr(skb);
 | |
| 	version = nsh_get_ver(nh);
 | |
| 	length = nsh_hdr_len(nh);
 | |
| 
 | |
| 	if (version != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = check_header(skb, nh_ofs + length);
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	nh = nsh_hdr(skb);
 | |
| 	key->nsh.base.flags = nsh_get_flags(nh);
 | |
| 	key->nsh.base.ttl = nsh_get_ttl(nh);
 | |
| 	key->nsh.base.mdtype = nh->mdtype;
 | |
| 	key->nsh.base.np = nh->np;
 | |
| 	key->nsh.base.path_hdr = nh->path_hdr;
 | |
| 	switch (key->nsh.base.mdtype) {
 | |
| 	case NSH_M_TYPE1:
 | |
| 		if (length != NSH_M_TYPE1_LEN)
 | |
| 			return -EINVAL;
 | |
| 		memcpy(key->nsh.context, nh->md1.context,
 | |
| 		       sizeof(nh->md1));
 | |
| 		break;
 | |
| 	case NSH_M_TYPE2:
 | |
| 		memset(key->nsh.context, 0,
 | |
| 		       sizeof(nh->md1));
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * key_extract_l3l4 - extracts L3/L4 header information.
 | |
|  * @skb: sk_buff that contains the frame, with skb->data pointing to the
 | |
|  *       L3 header
 | |
|  * @key: output flow key
 | |
|  *
 | |
|  * Return: %0 if successful, otherwise a negative errno value.
 | |
|  */
 | |
| static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	/* Network layer. */
 | |
| 	if (key->eth.type == htons(ETH_P_IP)) {
 | |
| 		struct iphdr *nh;
 | |
| 		__be16 offset;
 | |
| 
 | |
| 		error = check_iphdr(skb);
 | |
| 		if (unlikely(error)) {
 | |
| 			memset(&key->ip, 0, sizeof(key->ip));
 | |
| 			memset(&key->ipv4, 0, sizeof(key->ipv4));
 | |
| 			if (error == -EINVAL) {
 | |
| 				skb->transport_header = skb->network_header;
 | |
| 				error = 0;
 | |
| 			}
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		nh = ip_hdr(skb);
 | |
| 		key->ipv4.addr.src = nh->saddr;
 | |
| 		key->ipv4.addr.dst = nh->daddr;
 | |
| 
 | |
| 		key->ip.proto = nh->protocol;
 | |
| 		key->ip.tos = nh->tos;
 | |
| 		key->ip.ttl = nh->ttl;
 | |
| 
 | |
| 		offset = nh->frag_off & htons(IP_OFFSET);
 | |
| 		if (offset) {
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_LATER;
 | |
| 			memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (nh->frag_off & htons(IP_MF) ||
 | |
| 			skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 | |
| 		else
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_NONE;
 | |
| 
 | |
| 		/* Transport layer. */
 | |
| 		if (key->ip.proto == IPPROTO_TCP) {
 | |
| 			if (tcphdr_ok(skb)) {
 | |
| 				struct tcphdr *tcp = tcp_hdr(skb);
 | |
| 				key->tp.src = tcp->source;
 | |
| 				key->tp.dst = tcp->dest;
 | |
| 				key->tp.flags = TCP_FLAGS_BE16(tcp);
 | |
| 			} else {
 | |
| 				memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			}
 | |
| 
 | |
| 		} else if (key->ip.proto == IPPROTO_UDP) {
 | |
| 			if (udphdr_ok(skb)) {
 | |
| 				struct udphdr *udp = udp_hdr(skb);
 | |
| 				key->tp.src = udp->source;
 | |
| 				key->tp.dst = udp->dest;
 | |
| 			} else {
 | |
| 				memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			}
 | |
| 		} else if (key->ip.proto == IPPROTO_SCTP) {
 | |
| 			if (sctphdr_ok(skb)) {
 | |
| 				struct sctphdr *sctp = sctp_hdr(skb);
 | |
| 				key->tp.src = sctp->source;
 | |
| 				key->tp.dst = sctp->dest;
 | |
| 			} else {
 | |
| 				memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			}
 | |
| 		} else if (key->ip.proto == IPPROTO_ICMP) {
 | |
| 			if (icmphdr_ok(skb)) {
 | |
| 				struct icmphdr *icmp = icmp_hdr(skb);
 | |
| 				/* The ICMP type and code fields use the 16-bit
 | |
| 				 * transport port fields, so we need to store
 | |
| 				 * them in 16-bit network byte order. */
 | |
| 				key->tp.src = htons(icmp->type);
 | |
| 				key->tp.dst = htons(icmp->code);
 | |
| 			} else {
 | |
| 				memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} else if (key->eth.type == htons(ETH_P_ARP) ||
 | |
| 		   key->eth.type == htons(ETH_P_RARP)) {
 | |
| 		struct arp_eth_header *arp;
 | |
| 		bool arp_available = arphdr_ok(skb);
 | |
| 
 | |
| 		arp = (struct arp_eth_header *)skb_network_header(skb);
 | |
| 
 | |
| 		if (arp_available &&
 | |
| 		    arp->ar_hrd == htons(ARPHRD_ETHER) &&
 | |
| 		    arp->ar_pro == htons(ETH_P_IP) &&
 | |
| 		    arp->ar_hln == ETH_ALEN &&
 | |
| 		    arp->ar_pln == 4) {
 | |
| 
 | |
| 			/* We only match on the lower 8 bits of the opcode. */
 | |
| 			if (ntohs(arp->ar_op) <= 0xff)
 | |
| 				key->ip.proto = ntohs(arp->ar_op);
 | |
| 			else
 | |
| 				key->ip.proto = 0;
 | |
| 
 | |
| 			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
 | |
| 			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
 | |
| 			ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
 | |
| 			ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
 | |
| 		} else {
 | |
| 			memset(&key->ip, 0, sizeof(key->ip));
 | |
| 			memset(&key->ipv4, 0, sizeof(key->ipv4));
 | |
| 		}
 | |
| 	} else if (eth_p_mpls(key->eth.type)) {
 | |
| 		u8 label_count = 1;
 | |
| 
 | |
| 		memset(&key->mpls, 0, sizeof(key->mpls));
 | |
| 		skb_set_inner_network_header(skb, skb->mac_len);
 | |
| 		while (1) {
 | |
| 			__be32 lse;
 | |
| 
 | |
| 			error = check_header(skb, skb->mac_len +
 | |
| 					     label_count * MPLS_HLEN);
 | |
| 			if (unlikely(error))
 | |
| 				return 0;
 | |
| 
 | |
| 			memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
 | |
| 
 | |
| 			if (label_count <= MPLS_LABEL_DEPTH)
 | |
| 				memcpy(&key->mpls.lse[label_count - 1], &lse,
 | |
| 				       MPLS_HLEN);
 | |
| 
 | |
| 			skb_set_inner_network_header(skb, skb->mac_len +
 | |
| 						     label_count * MPLS_HLEN);
 | |
| 			if (lse & htonl(MPLS_LS_S_MASK))
 | |
| 				break;
 | |
| 
 | |
| 			label_count++;
 | |
| 		}
 | |
| 		if (label_count > MPLS_LABEL_DEPTH)
 | |
| 			label_count = MPLS_LABEL_DEPTH;
 | |
| 
 | |
| 		key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
 | |
| 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 | |
| 		int nh_len;             /* IPv6 Header + Extensions */
 | |
| 
 | |
| 		nh_len = parse_ipv6hdr(skb, key);
 | |
| 		if (unlikely(nh_len < 0)) {
 | |
| 			switch (nh_len) {
 | |
| 			case -EINVAL:
 | |
| 				memset(&key->ip, 0, sizeof(key->ip));
 | |
| 				memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
 | |
| 				fallthrough;
 | |
| 			case -EPROTO:
 | |
| 				skb->transport_header = skb->network_header;
 | |
| 				error = 0;
 | |
| 				break;
 | |
| 			default:
 | |
| 				error = nh_len;
 | |
| 			}
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
 | |
| 			memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 | |
| 			key->ip.frag = OVS_FRAG_TYPE_FIRST;
 | |
| 
 | |
| 		/* Transport layer. */
 | |
| 		if (key->ip.proto == NEXTHDR_TCP) {
 | |
| 			if (tcphdr_ok(skb)) {
 | |
| 				struct tcphdr *tcp = tcp_hdr(skb);
 | |
| 				key->tp.src = tcp->source;
 | |
| 				key->tp.dst = tcp->dest;
 | |
| 				key->tp.flags = TCP_FLAGS_BE16(tcp);
 | |
| 			} else {
 | |
| 				memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			}
 | |
| 		} else if (key->ip.proto == NEXTHDR_UDP) {
 | |
| 			if (udphdr_ok(skb)) {
 | |
| 				struct udphdr *udp = udp_hdr(skb);
 | |
| 				key->tp.src = udp->source;
 | |
| 				key->tp.dst = udp->dest;
 | |
| 			} else {
 | |
| 				memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			}
 | |
| 		} else if (key->ip.proto == NEXTHDR_SCTP) {
 | |
| 			if (sctphdr_ok(skb)) {
 | |
| 				struct sctphdr *sctp = sctp_hdr(skb);
 | |
| 				key->tp.src = sctp->source;
 | |
| 				key->tp.dst = sctp->dest;
 | |
| 			} else {
 | |
| 				memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			}
 | |
| 		} else if (key->ip.proto == NEXTHDR_ICMP) {
 | |
| 			if (icmp6hdr_ok(skb)) {
 | |
| 				error = parse_icmpv6(skb, key, nh_len);
 | |
| 				if (error)
 | |
| 					return error;
 | |
| 			} else {
 | |
| 				memset(&key->tp, 0, sizeof(key->tp));
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (key->eth.type == htons(ETH_P_NSH)) {
 | |
| 		error = parse_nsh(skb, key);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * key_extract - extracts a flow key from an Ethernet frame.
 | |
|  * @skb: sk_buff that contains the frame, with skb->data pointing to the
 | |
|  * Ethernet header
 | |
|  * @key: output flow key
 | |
|  *
 | |
|  * The caller must ensure that skb->len >= ETH_HLEN.
 | |
|  *
 | |
|  * Initializes @skb header fields as follows:
 | |
|  *
 | |
|  *    - skb->mac_header: the L2 header.
 | |
|  *
 | |
|  *    - skb->network_header: just past the L2 header, or just past the
 | |
|  *      VLAN header, to the first byte of the L2 payload.
 | |
|  *
 | |
|  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
 | |
|  *      on output, then just past the IP header, if one is present and
 | |
|  *      of a correct length, otherwise the same as skb->network_header.
 | |
|  *      For other key->eth.type values it is left untouched.
 | |
|  *
 | |
|  *    - skb->protocol: the type of the data starting at skb->network_header.
 | |
|  *      Equals to key->eth.type.
 | |
|  *
 | |
|  * Return: %0 if successful, otherwise a negative errno value.
 | |
|  */
 | |
| static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	struct ethhdr *eth;
 | |
| 
 | |
| 	/* Flags are always used as part of stats */
 | |
| 	key->tp.flags = 0;
 | |
| 
 | |
| 	skb_reset_mac_header(skb);
 | |
| 
 | |
| 	/* Link layer. */
 | |
| 	clear_vlan(key);
 | |
| 	if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
 | |
| 		if (unlikely(eth_type_vlan(skb->protocol)))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		skb_reset_network_header(skb);
 | |
| 		key->eth.type = skb->protocol;
 | |
| 	} else {
 | |
| 		eth = eth_hdr(skb);
 | |
| 		ether_addr_copy(key->eth.src, eth->h_source);
 | |
| 		ether_addr_copy(key->eth.dst, eth->h_dest);
 | |
| 
 | |
| 		__skb_pull(skb, 2 * ETH_ALEN);
 | |
| 		/* We are going to push all headers that we pull, so no need to
 | |
| 		 * update skb->csum here.
 | |
| 		 */
 | |
| 
 | |
| 		if (unlikely(parse_vlan(skb, key)))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		key->eth.type = parse_ethertype(skb);
 | |
| 		if (unlikely(key->eth.type == htons(0)))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/* Multiple tagged packets need to retain TPID to satisfy
 | |
| 		 * skb_vlan_pop(), which will later shift the ethertype into
 | |
| 		 * skb->protocol.
 | |
| 		 */
 | |
| 		if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
 | |
| 			skb->protocol = key->eth.cvlan.tpid;
 | |
| 		else
 | |
| 			skb->protocol = key->eth.type;
 | |
| 
 | |
| 		skb_reset_network_header(skb);
 | |
| 		__skb_push(skb, skb->data - skb_mac_header(skb));
 | |
| 	}
 | |
| 
 | |
| 	skb_reset_mac_len(skb);
 | |
| 
 | |
| 	/* Fill out L3/L4 key info, if any */
 | |
| 	return key_extract_l3l4(skb, key);
 | |
| }
 | |
| 
 | |
| /* In the case of conntrack fragment handling it expects L3 headers,
 | |
|  * add a helper.
 | |
|  */
 | |
| int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	return key_extract_l3l4(skb, key);
 | |
| }
 | |
| 
 | |
| int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	int res;
 | |
| 
 | |
| 	res = key_extract(skb, key);
 | |
| 	if (!res)
 | |
| 		key->mac_proto &= ~SW_FLOW_KEY_INVALID;
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int key_extract_mac_proto(struct sk_buff *skb)
 | |
| {
 | |
| 	switch (skb->dev->type) {
 | |
| 	case ARPHRD_ETHER:
 | |
| 		return MAC_PROTO_ETHERNET;
 | |
| 	case ARPHRD_NONE:
 | |
| 		if (skb->protocol == htons(ETH_P_TEB))
 | |
| 			return MAC_PROTO_ETHERNET;
 | |
| 		return MAC_PROTO_NONE;
 | |
| 	}
 | |
| 	WARN_ON_ONCE(1);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
 | |
| 			 struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
 | |
| 	struct tc_skb_ext *tc_ext;
 | |
| #endif
 | |
| 	bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
 | |
| 	int res, err;
 | |
| 	u16 zone = 0;
 | |
| 
 | |
| 	/* Extract metadata from packet. */
 | |
| 	if (tun_info) {
 | |
| 		key->tun_proto = ip_tunnel_info_af(tun_info);
 | |
| 		memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
 | |
| 
 | |
| 		if (tun_info->options_len) {
 | |
| 			BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
 | |
| 						   8)) - 1
 | |
| 					> sizeof(key->tun_opts));
 | |
| 
 | |
| 			ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
 | |
| 						tun_info);
 | |
| 			key->tun_opts_len = tun_info->options_len;
 | |
| 		} else {
 | |
| 			key->tun_opts_len = 0;
 | |
| 		}
 | |
| 	} else  {
 | |
| 		key->tun_proto = 0;
 | |
| 		key->tun_opts_len = 0;
 | |
| 		memset(&key->tun_key, 0, sizeof(key->tun_key));
 | |
| 	}
 | |
| 
 | |
| 	key->phy.priority = skb->priority;
 | |
| 	key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
 | |
| 	key->phy.skb_mark = skb->mark;
 | |
| 	key->ovs_flow_hash = 0;
 | |
| 	res = key_extract_mac_proto(skb);
 | |
| 	if (res < 0)
 | |
| 		return res;
 | |
| 	key->mac_proto = res;
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
 | |
| 	if (tc_skb_ext_tc_enabled()) {
 | |
| 		tc_ext = skb_ext_find(skb, TC_SKB_EXT);
 | |
| 		key->recirc_id = tc_ext ? tc_ext->chain : 0;
 | |
| 		OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
 | |
| 		post_ct = tc_ext ? tc_ext->post_ct : false;
 | |
| 		post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
 | |
| 		post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
 | |
| 		zone = post_ct ? tc_ext->zone : 0;
 | |
| 	} else {
 | |
| 		key->recirc_id = 0;
 | |
| 	}
 | |
| #else
 | |
| 	key->recirc_id = 0;
 | |
| #endif
 | |
| 
 | |
| 	err = key_extract(skb, key);
 | |
| 	if (!err) {
 | |
| 		ovs_ct_fill_key(skb, key, post_ct);   /* Must be after key_extract(). */
 | |
| 		if (post_ct) {
 | |
| 			if (!skb_get_nfct(skb)) {
 | |
| 				key->ct_zone = zone;
 | |
| 			} else {
 | |
| 				if (!post_ct_dnat)
 | |
| 					key->ct_state &= ~OVS_CS_F_DST_NAT;
 | |
| 				if (!post_ct_snat)
 | |
| 					key->ct_state &= ~OVS_CS_F_SRC_NAT;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
 | |
| 				   struct sk_buff *skb,
 | |
| 				   struct sw_flow_key *key, bool log)
 | |
| {
 | |
| 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 | |
| 	u64 attrs = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	err = parse_flow_nlattrs(attr, a, &attrs, log);
 | |
| 	if (err)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Extract metadata from netlink attributes. */
 | |
| 	err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* key_extract assumes that skb->protocol is set-up for
 | |
| 	 * layer 3 packets which is the case for other callers,
 | |
| 	 * in particular packets received from the network stack.
 | |
| 	 * Here the correct value can be set from the metadata
 | |
| 	 * extracted above.
 | |
| 	 * For L2 packet key eth type would be zero. skb protocol
 | |
| 	 * would be set to correct value later during key-extact.
 | |
| 	 */
 | |
| 
 | |
| 	skb->protocol = key->eth.type;
 | |
| 	err = key_extract(skb, key);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Check that we have conntrack original direction tuple metadata only
 | |
| 	 * for packets for which it makes sense.  Otherwise the key may be
 | |
| 	 * corrupted due to overlapping key fields.
 | |
| 	 */
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
 | |
| 	    key->eth.type != htons(ETH_P_IP))
 | |
| 		return -EINVAL;
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
 | |
| 	    (key->eth.type != htons(ETH_P_IPV6) ||
 | |
| 	     sw_flow_key_is_nd(key)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |