forked from mirrors/linux
		
	 112e43e9fd
			
		
	
	
		112e43e9fd
		
	
	
	
	
		
			
			This reverts commit36f5f026df, reversing changes made to43a7eec035. Thomas says: "I just noticed that for some incomprehensible reason, probably sheer incompetemce when trying to utilize b4, I managed to merge an outdated _and_ buggy version of that series. Can you please revert that merge completely?" Done. Requested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			428 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			428 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_CLEANUP_H
 | |
| #define _LINUX_CLEANUP_H
 | |
| 
 | |
| #include <linux/compiler.h>
 | |
| 
 | |
| /**
 | |
|  * DOC: scope-based cleanup helpers
 | |
|  *
 | |
|  * The "goto error" pattern is notorious for introducing subtle resource
 | |
|  * leaks. It is tedious and error prone to add new resource acquisition
 | |
|  * constraints into code paths that already have several unwind
 | |
|  * conditions. The "cleanup" helpers enable the compiler to help with
 | |
|  * this tedium and can aid in maintaining LIFO (last in first out)
 | |
|  * unwind ordering to avoid unintentional leaks.
 | |
|  *
 | |
|  * As drivers make up the majority of the kernel code base, here is an
 | |
|  * example of using these helpers to clean up PCI drivers. The target of
 | |
|  * the cleanups are occasions where a goto is used to unwind a device
 | |
|  * reference (pci_dev_put()), or unlock the device (pci_dev_unlock())
 | |
|  * before returning.
 | |
|  *
 | |
|  * The DEFINE_FREE() macro can arrange for PCI device references to be
 | |
|  * dropped when the associated variable goes out of scope::
 | |
|  *
 | |
|  *	DEFINE_FREE(pci_dev_put, struct pci_dev *, if (_T) pci_dev_put(_T))
 | |
|  *	...
 | |
|  *	struct pci_dev *dev __free(pci_dev_put) =
 | |
|  *		pci_get_slot(parent, PCI_DEVFN(0, 0));
 | |
|  *
 | |
|  * The above will automatically call pci_dev_put() if @dev is non-NULL
 | |
|  * when @dev goes out of scope (automatic variable scope). If a function
 | |
|  * wants to invoke pci_dev_put() on error, but return @dev (i.e. without
 | |
|  * freeing it) on success, it can do::
 | |
|  *
 | |
|  *	return no_free_ptr(dev);
 | |
|  *
 | |
|  * ...or::
 | |
|  *
 | |
|  *	return_ptr(dev);
 | |
|  *
 | |
|  * The DEFINE_GUARD() macro can arrange for the PCI device lock to be
 | |
|  * dropped when the scope where guard() is invoked ends::
 | |
|  *
 | |
|  *	DEFINE_GUARD(pci_dev, struct pci_dev *, pci_dev_lock(_T), pci_dev_unlock(_T))
 | |
|  *	...
 | |
|  *	guard(pci_dev)(dev);
 | |
|  *
 | |
|  * The lifetime of the lock obtained by the guard() helper follows the
 | |
|  * scope of automatic variable declaration. Take the following example::
 | |
|  *
 | |
|  *	func(...)
 | |
|  *	{
 | |
|  *		if (...) {
 | |
|  *			...
 | |
|  *			guard(pci_dev)(dev); // pci_dev_lock() invoked here
 | |
|  *			...
 | |
|  *		} // <- implied pci_dev_unlock() triggered here
 | |
|  *	}
 | |
|  *
 | |
|  * Observe the lock is held for the remainder of the "if ()" block not
 | |
|  * the remainder of "func()".
 | |
|  *
 | |
|  * Now, when a function uses both __free() and guard(), or multiple
 | |
|  * instances of __free(), the LIFO order of variable definition order
 | |
|  * matters. GCC documentation says:
 | |
|  *
 | |
|  * "When multiple variables in the same scope have cleanup attributes,
 | |
|  * at exit from the scope their associated cleanup functions are run in
 | |
|  * reverse order of definition (last defined, first cleanup)."
 | |
|  *
 | |
|  * When the unwind order matters it requires that variables be defined
 | |
|  * mid-function scope rather than at the top of the file.  Take the
 | |
|  * following example and notice the bug highlighted by "!!"::
 | |
|  *
 | |
|  *	LIST_HEAD(list);
 | |
|  *	DEFINE_MUTEX(lock);
 | |
|  *
 | |
|  *	struct object {
 | |
|  *	        struct list_head node;
 | |
|  *	};
 | |
|  *
 | |
|  *	static struct object *alloc_add(void)
 | |
|  *	{
 | |
|  *	        struct object *obj;
 | |
|  *
 | |
|  *	        lockdep_assert_held(&lock);
 | |
|  *	        obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 | |
|  *	        if (obj) {
 | |
|  *	                LIST_HEAD_INIT(&obj->node);
 | |
|  *	                list_add(obj->node, &list):
 | |
|  *	        }
 | |
|  *	        return obj;
 | |
|  *	}
 | |
|  *
 | |
|  *	static void remove_free(struct object *obj)
 | |
|  *	{
 | |
|  *	        lockdep_assert_held(&lock);
 | |
|  *	        list_del(&obj->node);
 | |
|  *	        kfree(obj);
 | |
|  *	}
 | |
|  *
 | |
|  *	DEFINE_FREE(remove_free, struct object *, if (_T) remove_free(_T))
 | |
|  *	static int init(void)
 | |
|  *	{
 | |
|  *	        struct object *obj __free(remove_free) = NULL;
 | |
|  *	        int err;
 | |
|  *
 | |
|  *	        guard(mutex)(&lock);
 | |
|  *	        obj = alloc_add();
 | |
|  *
 | |
|  *	        if (!obj)
 | |
|  *	                return -ENOMEM;
 | |
|  *
 | |
|  *	        err = other_init(obj);
 | |
|  *	        if (err)
 | |
|  *	                return err; // remove_free() called without the lock!!
 | |
|  *
 | |
|  *	        no_free_ptr(obj);
 | |
|  *	        return 0;
 | |
|  *	}
 | |
|  *
 | |
|  * That bug is fixed by changing init() to call guard() and define +
 | |
|  * initialize @obj in this order::
 | |
|  *
 | |
|  *	guard(mutex)(&lock);
 | |
|  *	struct object *obj __free(remove_free) = alloc_add();
 | |
|  *
 | |
|  * Given that the "__free(...) = NULL" pattern for variables defined at
 | |
|  * the top of the function poses this potential interdependency problem
 | |
|  * the recommendation is to always define and assign variables in one
 | |
|  * statement and not group variable definitions at the top of the
 | |
|  * function when __free() is used.
 | |
|  *
 | |
|  * Lastly, given that the benefit of cleanup helpers is removal of
 | |
|  * "goto", and that the "goto" statement can jump between scopes, the
 | |
|  * expectation is that usage of "goto" and cleanup helpers is never
 | |
|  * mixed in the same function. I.e. for a given routine, convert all
 | |
|  * resources that need a "goto" cleanup to scope-based cleanup, or
 | |
|  * convert none of them.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * DEFINE_FREE(name, type, free):
 | |
|  *	simple helper macro that defines the required wrapper for a __free()
 | |
|  *	based cleanup function. @free is an expression using '_T' to access the
 | |
|  *	variable. @free should typically include a NULL test before calling a
 | |
|  *	function, see the example below.
 | |
|  *
 | |
|  * __free(name):
 | |
|  *	variable attribute to add a scoped based cleanup to the variable.
 | |
|  *
 | |
|  * no_free_ptr(var):
 | |
|  *	like a non-atomic xchg(var, NULL), such that the cleanup function will
 | |
|  *	be inhibited -- provided it sanely deals with a NULL value.
 | |
|  *
 | |
|  *	NOTE: this has __must_check semantics so that it is harder to accidentally
 | |
|  *	leak the resource.
 | |
|  *
 | |
|  * return_ptr(p):
 | |
|  *	returns p while inhibiting the __free().
 | |
|  *
 | |
|  * Ex.
 | |
|  *
 | |
|  * DEFINE_FREE(kfree, void *, if (_T) kfree(_T))
 | |
|  *
 | |
|  * void *alloc_obj(...)
 | |
|  * {
 | |
|  *	struct obj *p __free(kfree) = kmalloc(...);
 | |
|  *	if (!p)
 | |
|  *		return NULL;
 | |
|  *
 | |
|  *	if (!init_obj(p))
 | |
|  *		return NULL;
 | |
|  *
 | |
|  *	return_ptr(p);
 | |
|  * }
 | |
|  *
 | |
|  * NOTE: the DEFINE_FREE()'s @free expression includes a NULL test even though
 | |
|  * kfree() is fine to be called with a NULL value. This is on purpose. This way
 | |
|  * the compiler sees the end of our alloc_obj() function as:
 | |
|  *
 | |
|  *	tmp = p;
 | |
|  *	p = NULL;
 | |
|  *	if (p)
 | |
|  *		kfree(p);
 | |
|  *	return tmp;
 | |
|  *
 | |
|  * And through the magic of value-propagation and dead-code-elimination, it
 | |
|  * eliminates the actual cleanup call and compiles into:
 | |
|  *
 | |
|  *	return p;
 | |
|  *
 | |
|  * Without the NULL test it turns into a mess and the compiler can't help us.
 | |
|  */
 | |
| 
 | |
| #define DEFINE_FREE(_name, _type, _free) \
 | |
| 	static inline void __free_##_name(void *p) { _type _T = *(_type *)p; _free; }
 | |
| 
 | |
| #define __free(_name)	__cleanup(__free_##_name)
 | |
| 
 | |
| #define __get_and_null(p, nullvalue)   \
 | |
| 	({                                  \
 | |
| 		__auto_type __ptr = &(p);   \
 | |
| 		__auto_type __val = *__ptr; \
 | |
| 		*__ptr = nullvalue;         \
 | |
| 		__val;                      \
 | |
| 	})
 | |
| 
 | |
| static inline __must_check
 | |
| const volatile void * __must_check_fn(const volatile void *val)
 | |
| { return val; }
 | |
| 
 | |
| #define no_free_ptr(p) \
 | |
| 	((typeof(p)) __must_check_fn((__force const volatile void *)__get_and_null(p, NULL)))
 | |
| 
 | |
| #define return_ptr(p)	return no_free_ptr(p)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * DEFINE_CLASS(name, type, exit, init, init_args...):
 | |
|  *	helper to define the destructor and constructor for a type.
 | |
|  *	@exit is an expression using '_T' -- similar to FREE above.
 | |
|  *	@init is an expression in @init_args resulting in @type
 | |
|  *
 | |
|  * EXTEND_CLASS(name, ext, init, init_args...):
 | |
|  *	extends class @name to @name@ext with the new constructor
 | |
|  *
 | |
|  * CLASS(name, var)(args...):
 | |
|  *	declare the variable @var as an instance of the named class
 | |
|  *
 | |
|  * Ex.
 | |
|  *
 | |
|  * DEFINE_CLASS(fdget, struct fd, fdput(_T), fdget(fd), int fd)
 | |
|  *
 | |
|  *	CLASS(fdget, f)(fd);
 | |
|  *	if (fd_empty(f))
 | |
|  *		return -EBADF;
 | |
|  *
 | |
|  *	// use 'f' without concern
 | |
|  */
 | |
| 
 | |
| #define DEFINE_CLASS(_name, _type, _exit, _init, _init_args...)		\
 | |
| typedef _type class_##_name##_t;					\
 | |
| static inline void class_##_name##_destructor(_type *p)			\
 | |
| { _type _T = *p; _exit; }						\
 | |
| static inline _type class_##_name##_constructor(_init_args)		\
 | |
| { _type t = _init; return t; }
 | |
| 
 | |
| #define EXTEND_CLASS(_name, ext, _init, _init_args...)			\
 | |
| typedef class_##_name##_t class_##_name##ext##_t;			\
 | |
| static inline void class_##_name##ext##_destructor(class_##_name##_t *p)\
 | |
| { class_##_name##_destructor(p); }					\
 | |
| static inline class_##_name##_t class_##_name##ext##_constructor(_init_args) \
 | |
| { class_##_name##_t t = _init; return t; }
 | |
| 
 | |
| #define CLASS(_name, var)						\
 | |
| 	class_##_name##_t var __cleanup(class_##_name##_destructor) =	\
 | |
| 		class_##_name##_constructor
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * DEFINE_GUARD(name, type, lock, unlock):
 | |
|  *	trivial wrapper around DEFINE_CLASS() above specifically
 | |
|  *	for locks.
 | |
|  *
 | |
|  * DEFINE_GUARD_COND(name, ext, condlock)
 | |
|  *	wrapper around EXTEND_CLASS above to add conditional lock
 | |
|  *	variants to a base class, eg. mutex_trylock() or
 | |
|  *	mutex_lock_interruptible().
 | |
|  *
 | |
|  * guard(name):
 | |
|  *	an anonymous instance of the (guard) class, not recommended for
 | |
|  *	conditional locks.
 | |
|  *
 | |
|  * scoped_guard (name, args...) { }:
 | |
|  *	similar to CLASS(name, scope)(args), except the variable (with the
 | |
|  *	explicit name 'scope') is declard in a for-loop such that its scope is
 | |
|  *	bound to the next (compound) statement.
 | |
|  *
 | |
|  *	for conditional locks the loop body is skipped when the lock is not
 | |
|  *	acquired.
 | |
|  *
 | |
|  * scoped_cond_guard (name, fail, args...) { }:
 | |
|  *      similar to scoped_guard(), except it does fail when the lock
 | |
|  *      acquire fails.
 | |
|  *
 | |
|  *      Only for conditional locks.
 | |
|  */
 | |
| 
 | |
| #define __DEFINE_CLASS_IS_CONDITIONAL(_name, _is_cond)	\
 | |
| static __maybe_unused const bool class_##_name##_is_conditional = _is_cond
 | |
| 
 | |
| #define __DEFINE_GUARD_LOCK_PTR(_name, _exp) \
 | |
| 	static inline void * class_##_name##_lock_ptr(class_##_name##_t *_T) \
 | |
| 	{ return (void *)(__force unsigned long)*(_exp); }
 | |
| 
 | |
| #define DEFINE_CLASS_IS_GUARD(_name) \
 | |
| 	__DEFINE_CLASS_IS_CONDITIONAL(_name, false); \
 | |
| 	__DEFINE_GUARD_LOCK_PTR(_name, _T)
 | |
| 
 | |
| #define DEFINE_CLASS_IS_COND_GUARD(_name) \
 | |
| 	__DEFINE_CLASS_IS_CONDITIONAL(_name, true); \
 | |
| 	__DEFINE_GUARD_LOCK_PTR(_name, _T)
 | |
| 
 | |
| #define DEFINE_GUARD(_name, _type, _lock, _unlock) \
 | |
| 	DEFINE_CLASS(_name, _type, if (_T) { _unlock; }, ({ _lock; _T; }), _type _T); \
 | |
| 	DEFINE_CLASS_IS_GUARD(_name)
 | |
| 
 | |
| #define DEFINE_GUARD_COND(_name, _ext, _condlock) \
 | |
| 	__DEFINE_CLASS_IS_CONDITIONAL(_name##_ext, true); \
 | |
| 	EXTEND_CLASS(_name, _ext, \
 | |
| 		     ({ void *_t = _T; if (_T && !(_condlock)) _t = NULL; _t; }), \
 | |
| 		     class_##_name##_t _T) \
 | |
| 	static inline void * class_##_name##_ext##_lock_ptr(class_##_name##_t *_T) \
 | |
| 	{ return class_##_name##_lock_ptr(_T); }
 | |
| 
 | |
| #define guard(_name) \
 | |
| 	CLASS(_name, __UNIQUE_ID(guard))
 | |
| 
 | |
| #define __guard_ptr(_name) class_##_name##_lock_ptr
 | |
| #define __is_cond_ptr(_name) class_##_name##_is_conditional
 | |
| 
 | |
| /*
 | |
|  * Helper macro for scoped_guard().
 | |
|  *
 | |
|  * Note that the "!__is_cond_ptr(_name)" part of the condition ensures that
 | |
|  * compiler would be sure that for the unconditional locks the body of the
 | |
|  * loop (caller-provided code glued to the else clause) could not be skipped.
 | |
|  * It is needed because the other part - "__guard_ptr(_name)(&scope)" - is too
 | |
|  * hard to deduce (even if could be proven true for unconditional locks).
 | |
|  */
 | |
| #define __scoped_guard(_name, _label, args...)				\
 | |
| 	for (CLASS(_name, scope)(args);					\
 | |
| 	     __guard_ptr(_name)(&scope) || !__is_cond_ptr(_name);	\
 | |
| 	     ({ goto _label; }))					\
 | |
| 		if (0) {						\
 | |
| _label:									\
 | |
| 			break;						\
 | |
| 		} else
 | |
| 
 | |
| #define scoped_guard(_name, args...)	\
 | |
| 	__scoped_guard(_name, __UNIQUE_ID(label), args)
 | |
| 
 | |
| #define __scoped_cond_guard(_name, _fail, _label, args...)		\
 | |
| 	for (CLASS(_name, scope)(args); true; ({ goto _label; }))	\
 | |
| 		if (!__guard_ptr(_name)(&scope)) {			\
 | |
| 			BUILD_BUG_ON(!__is_cond_ptr(_name));		\
 | |
| 			_fail;						\
 | |
| _label:									\
 | |
| 			break;						\
 | |
| 		} else
 | |
| 
 | |
| #define scoped_cond_guard(_name, _fail, args...)	\
 | |
| 	__scoped_cond_guard(_name, _fail, __UNIQUE_ID(label), args)
 | |
| 
 | |
| /*
 | |
|  * Additional helper macros for generating lock guards with types, either for
 | |
|  * locks that don't have a native type (eg. RCU, preempt) or those that need a
 | |
|  * 'fat' pointer (eg. spin_lock_irqsave).
 | |
|  *
 | |
|  * DEFINE_LOCK_GUARD_0(name, lock, unlock, ...)
 | |
|  * DEFINE_LOCK_GUARD_1(name, type, lock, unlock, ...)
 | |
|  * DEFINE_LOCK_GUARD_1_COND(name, ext, condlock)
 | |
|  *
 | |
|  * will result in the following type:
 | |
|  *
 | |
|  *   typedef struct {
 | |
|  *	type *lock;		// 'type := void' for the _0 variant
 | |
|  *	__VA_ARGS__;
 | |
|  *   } class_##name##_t;
 | |
|  *
 | |
|  * As above, both _lock and _unlock are statements, except this time '_T' will
 | |
|  * be a pointer to the above struct.
 | |
|  */
 | |
| 
 | |
| #define __DEFINE_UNLOCK_GUARD(_name, _type, _unlock, ...)		\
 | |
| typedef struct {							\
 | |
| 	_type *lock;							\
 | |
| 	__VA_ARGS__;							\
 | |
| } class_##_name##_t;							\
 | |
| 									\
 | |
| static inline void class_##_name##_destructor(class_##_name##_t *_T)	\
 | |
| {									\
 | |
| 	if (_T->lock) { _unlock; }					\
 | |
| }									\
 | |
| 									\
 | |
| __DEFINE_GUARD_LOCK_PTR(_name, &_T->lock)
 | |
| 
 | |
| #define __DEFINE_LOCK_GUARD_1(_name, _type, _lock)			\
 | |
| static inline class_##_name##_t class_##_name##_constructor(_type *l)	\
 | |
| {									\
 | |
| 	class_##_name##_t _t = { .lock = l }, *_T = &_t;		\
 | |
| 	_lock;								\
 | |
| 	return _t;							\
 | |
| }
 | |
| 
 | |
| #define __DEFINE_LOCK_GUARD_0(_name, _lock)				\
 | |
| static inline class_##_name##_t class_##_name##_constructor(void)	\
 | |
| {									\
 | |
| 	class_##_name##_t _t = { .lock = (void*)1 },			\
 | |
| 			 *_T __maybe_unused = &_t;			\
 | |
| 	_lock;								\
 | |
| 	return _t;							\
 | |
| }
 | |
| 
 | |
| #define DEFINE_LOCK_GUARD_1(_name, _type, _lock, _unlock, ...)		\
 | |
| __DEFINE_CLASS_IS_CONDITIONAL(_name, false);				\
 | |
| __DEFINE_UNLOCK_GUARD(_name, _type, _unlock, __VA_ARGS__)		\
 | |
| __DEFINE_LOCK_GUARD_1(_name, _type, _lock)
 | |
| 
 | |
| #define DEFINE_LOCK_GUARD_0(_name, _lock, _unlock, ...)			\
 | |
| __DEFINE_CLASS_IS_CONDITIONAL(_name, false);				\
 | |
| __DEFINE_UNLOCK_GUARD(_name, void, _unlock, __VA_ARGS__)		\
 | |
| __DEFINE_LOCK_GUARD_0(_name, _lock)
 | |
| 
 | |
| #define DEFINE_LOCK_GUARD_1_COND(_name, _ext, _condlock)		\
 | |
| 	__DEFINE_CLASS_IS_CONDITIONAL(_name##_ext, true);		\
 | |
| 	EXTEND_CLASS(_name, _ext,					\
 | |
| 		     ({ class_##_name##_t _t = { .lock = l }, *_T = &_t;\
 | |
| 		        if (_T->lock && !(_condlock)) _T->lock = NULL;	\
 | |
| 			_t; }),						\
 | |
| 		     typeof_member(class_##_name##_t, lock) l)		\
 | |
| 	static inline void * class_##_name##_ext##_lock_ptr(class_##_name##_t *_T) \
 | |
| 	{ return class_##_name##_lock_ptr(_T); }
 | |
| 
 | |
| 
 | |
| #endif /* _LINUX_CLEANUP_H */
 |