forked from mirrors/linux
		
	 99c2913363
			
		
	
	
		99c2913363
		
	
	
	
	
		
			
			s390 can do more fine-grained handling of spurious TLB protection faults, when there also is the PTE pointer available. Therefore, pass on the PTE pointer to flush_tlb_fix_spurious_fault() as an additional parameter. This will add no functional change to other architectures, but those with private flush_tlb_fix_spurious_fault() implementations need to be made aware of the new parameter. Link: https://lkml.kernel.org/r/20230306161548.661740-1-gerald.schaefer@linux.ibm.com Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: David Hildenbrand <david@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			1712 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1712 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_PGTABLE_H
 | |
| #define _LINUX_PGTABLE_H
 | |
| 
 | |
| #include <linux/pfn.h>
 | |
| #include <asm/pgtable.h>
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/errno.h>
 | |
| #include <asm-generic/pgtable_uffd.h>
 | |
| #include <linux/page_table_check.h>
 | |
| 
 | |
| #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
 | |
| 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
 | |
| #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On almost all architectures and configurations, 0 can be used as the
 | |
|  * upper ceiling to free_pgtables(): on many architectures it has the same
 | |
|  * effect as using TASK_SIZE.  However, there is one configuration which
 | |
|  * must impose a more careful limit, to avoid freeing kernel pgtables.
 | |
|  */
 | |
| #ifndef USER_PGTABLES_CEILING
 | |
| #define USER_PGTABLES_CEILING	0UL
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This defines the first usable user address. Platforms
 | |
|  * can override its value with custom FIRST_USER_ADDRESS
 | |
|  * defined in their respective <asm/pgtable.h>.
 | |
|  */
 | |
| #ifndef FIRST_USER_ADDRESS
 | |
| #define FIRST_USER_ADDRESS	0UL
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This defines the generic helper for accessing PMD page
 | |
|  * table page. Although platforms can still override this
 | |
|  * via their respective <asm/pgtable.h>.
 | |
|  */
 | |
| #ifndef pmd_pgtable
 | |
| #define pmd_pgtable(pmd) pmd_page(pmd)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
 | |
|  *
 | |
|  * The pXx_index() functions return the index of the entry in the page
 | |
|  * table page which would control the given virtual address
 | |
|  *
 | |
|  * As these functions may be used by the same code for different levels of
 | |
|  * the page table folding, they are always available, regardless of
 | |
|  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
 | |
|  * because in such cases PTRS_PER_PxD equals 1.
 | |
|  */
 | |
| 
 | |
| static inline unsigned long pte_index(unsigned long address)
 | |
| {
 | |
| 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
 | |
| }
 | |
| #define pte_index pte_index
 | |
| 
 | |
| #ifndef pmd_index
 | |
| static inline unsigned long pmd_index(unsigned long address)
 | |
| {
 | |
| 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
 | |
| }
 | |
| #define pmd_index pmd_index
 | |
| #endif
 | |
| 
 | |
| #ifndef pud_index
 | |
| static inline unsigned long pud_index(unsigned long address)
 | |
| {
 | |
| 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
 | |
| }
 | |
| #define pud_index pud_index
 | |
| #endif
 | |
| 
 | |
| #ifndef pgd_index
 | |
| /* Must be a compile-time constant, so implement it as a macro */
 | |
| #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
 | |
| #endif
 | |
| 
 | |
| #ifndef pte_offset_kernel
 | |
| static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
 | |
| {
 | |
| 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
 | |
| }
 | |
| #define pte_offset_kernel pte_offset_kernel
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_HIGHPTE)
 | |
| #define pte_offset_map(dir, address)				\
 | |
| 	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
 | |
| 	 pte_index((address)))
 | |
| #define pte_unmap(pte) kunmap_atomic((pte))
 | |
| #else
 | |
| #define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
 | |
| #define pte_unmap(pte) ((void)(pte))	/* NOP */
 | |
| #endif
 | |
| 
 | |
| /* Find an entry in the second-level page table.. */
 | |
| #ifndef pmd_offset
 | |
| static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
 | |
| {
 | |
| 	return pud_pgtable(*pud) + pmd_index(address);
 | |
| }
 | |
| #define pmd_offset pmd_offset
 | |
| #endif
 | |
| 
 | |
| #ifndef pud_offset
 | |
| static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
 | |
| {
 | |
| 	return p4d_pgtable(*p4d) + pud_index(address);
 | |
| }
 | |
| #define pud_offset pud_offset
 | |
| #endif
 | |
| 
 | |
| static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
 | |
| {
 | |
| 	return (pgd + pgd_index(address));
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * a shortcut to get a pgd_t in a given mm
 | |
|  */
 | |
| #ifndef pgd_offset
 | |
| #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * a shortcut which implies the use of the kernel's pgd, instead
 | |
|  * of a process's
 | |
|  */
 | |
| #ifndef pgd_offset_k
 | |
| #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * In many cases it is known that a virtual address is mapped at PMD or PTE
 | |
|  * level, so instead of traversing all the page table levels, we can get a
 | |
|  * pointer to the PMD entry in user or kernel page table or translate a virtual
 | |
|  * address to the pointer in the PTE in the kernel page tables with simple
 | |
|  * helpers.
 | |
|  */
 | |
| static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
 | |
| {
 | |
| 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
 | |
| }
 | |
| 
 | |
| static inline pmd_t *pmd_off_k(unsigned long va)
 | |
| {
 | |
| 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
 | |
| }
 | |
| 
 | |
| static inline pte_t *virt_to_kpte(unsigned long vaddr)
 | |
| {
 | |
| 	pmd_t *pmd = pmd_off_k(vaddr);
 | |
| 
 | |
| 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
 | |
| }
 | |
| 
 | |
| #ifndef pmd_young
 | |
| static inline int pmd_young(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 | |
| extern int ptep_set_access_flags(struct vm_area_struct *vma,
 | |
| 				 unsigned long address, pte_t *ptep,
 | |
| 				 pte_t entry, int dirty);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 | |
| 				 unsigned long address, pmd_t *pmdp,
 | |
| 				 pmd_t entry, int dirty);
 | |
| extern int pudp_set_access_flags(struct vm_area_struct *vma,
 | |
| 				 unsigned long address, pud_t *pudp,
 | |
| 				 pud_t entry, int dirty);
 | |
| #else
 | |
| static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
 | |
| 					unsigned long address, pmd_t *pmdp,
 | |
| 					pmd_t entry, int dirty)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pudp_set_access_flags(struct vm_area_struct *vma,
 | |
| 					unsigned long address, pud_t *pudp,
 | |
| 					pud_t entry, int dirty)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 | |
| 					    unsigned long address,
 | |
| 					    pte_t *ptep)
 | |
| {
 | |
| 	pte_t pte = *ptep;
 | |
| 	int r = 1;
 | |
| 	if (!pte_young(pte))
 | |
| 		r = 0;
 | |
| 	else
 | |
| 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 | |
| 	return r;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 | |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
 | |
| static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | |
| 					    unsigned long address,
 | |
| 					    pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t pmd = *pmdp;
 | |
| 	int r = 1;
 | |
| 	if (!pmd_young(pmd))
 | |
| 		r = 0;
 | |
| 	else
 | |
| 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 | |
| 	return r;
 | |
| }
 | |
| #else
 | |
| static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | |
| 					    unsigned long address,
 | |
| 					    pmd_t *pmdp)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 | |
| int ptep_clear_flush_young(struct vm_area_struct *vma,
 | |
| 			   unsigned long address, pte_t *ptep);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 | |
| 				  unsigned long address, pmd_t *pmdp);
 | |
| #else
 | |
| /*
 | |
|  * Despite relevant to THP only, this API is called from generic rmap code
 | |
|  * under PageTransHuge(), hence needs a dummy implementation for !THP
 | |
|  */
 | |
| static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 | |
| 					 unsigned long address, pmd_t *pmdp)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| #endif
 | |
| 
 | |
| #ifndef arch_has_hw_nonleaf_pmd_young
 | |
| /*
 | |
|  * Return whether the accessed bit in non-leaf PMD entries is supported on the
 | |
|  * local CPU.
 | |
|  */
 | |
| static inline bool arch_has_hw_nonleaf_pmd_young(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef arch_has_hw_pte_young
 | |
| /*
 | |
|  * Return whether the accessed bit is supported on the local CPU.
 | |
|  *
 | |
|  * This stub assumes accessing through an old PTE triggers a page fault.
 | |
|  * Architectures that automatically set the access bit should overwrite it.
 | |
|  */
 | |
| static inline bool arch_has_hw_pte_young(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 | |
| 				       unsigned long address,
 | |
| 				       pte_t *ptep)
 | |
| {
 | |
| 	pte_t pte = *ptep;
 | |
| 	pte_clear(mm, address, ptep);
 | |
| 	page_table_check_pte_clear(mm, address, pte);
 | |
| 	return pte;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
 | |
| 			      pte_t *ptep)
 | |
| {
 | |
| 	ptep_get_and_clear(mm, addr, ptep);
 | |
| }
 | |
| 
 | |
| #ifndef ptep_get
 | |
| static inline pte_t ptep_get(pte_t *ptep)
 | |
| {
 | |
| 	return READ_ONCE(*ptep);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef pmdp_get
 | |
| static inline pmd_t pmdp_get(pmd_t *pmdp)
 | |
| {
 | |
| 	return READ_ONCE(*pmdp);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
 | |
| /*
 | |
|  * For walking the pagetables without holding any locks.  Some architectures
 | |
|  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
 | |
|  * instructions.  We are guaranteed that a PTE will only either go from not
 | |
|  * present to present, or present to not present -- it will not switch to a
 | |
|  * completely different present page without a TLB flush inbetween; which we
 | |
|  * are blocking by holding interrupts off.
 | |
|  *
 | |
|  * Setting ptes from not present to present goes:
 | |
|  *
 | |
|  *   ptep->pte_high = h;
 | |
|  *   smp_wmb();
 | |
|  *   ptep->pte_low = l;
 | |
|  *
 | |
|  * And present to not present goes:
 | |
|  *
 | |
|  *   ptep->pte_low = 0;
 | |
|  *   smp_wmb();
 | |
|  *   ptep->pte_high = 0;
 | |
|  *
 | |
|  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 | |
|  * We load pte_high *after* loading pte_low, which ensures we don't see an older
 | |
|  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 | |
|  * picked up a changed pte high. We might have gotten rubbish values from
 | |
|  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 | |
|  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 | |
|  * operates on present ptes we're safe.
 | |
|  */
 | |
| static inline pte_t ptep_get_lockless(pte_t *ptep)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 
 | |
| 	do {
 | |
| 		pte.pte_low = ptep->pte_low;
 | |
| 		smp_rmb();
 | |
| 		pte.pte_high = ptep->pte_high;
 | |
| 		smp_rmb();
 | |
| 	} while (unlikely(pte.pte_low != ptep->pte_low));
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| #define ptep_get_lockless ptep_get_lockless
 | |
| 
 | |
| #if CONFIG_PGTABLE_LEVELS > 2
 | |
| static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t pmd;
 | |
| 
 | |
| 	do {
 | |
| 		pmd.pmd_low = pmdp->pmd_low;
 | |
| 		smp_rmb();
 | |
| 		pmd.pmd_high = pmdp->pmd_high;
 | |
| 		smp_rmb();
 | |
| 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
 | |
| 
 | |
| 	return pmd;
 | |
| }
 | |
| #define pmdp_get_lockless pmdp_get_lockless
 | |
| #endif /* CONFIG_PGTABLE_LEVELS > 2 */
 | |
| #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
 | |
| 
 | |
| /*
 | |
|  * We require that the PTE can be read atomically.
 | |
|  */
 | |
| #ifndef ptep_get_lockless
 | |
| static inline pte_t ptep_get_lockless(pte_t *ptep)
 | |
| {
 | |
| 	return ptep_get(ptep);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef pmdp_get_lockless
 | |
| static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
 | |
| {
 | |
| 	return pmdp_get(pmdp);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 | |
| static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 | |
| 					    unsigned long address,
 | |
| 					    pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t pmd = *pmdp;
 | |
| 
 | |
| 	pmd_clear(pmdp);
 | |
| 	page_table_check_pmd_clear(mm, address, pmd);
 | |
| 
 | |
| 	return pmd;
 | |
| }
 | |
| #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 | |
| #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 | |
| static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 | |
| 					    unsigned long address,
 | |
| 					    pud_t *pudp)
 | |
| {
 | |
| 	pud_t pud = *pudp;
 | |
| 
 | |
| 	pud_clear(pudp);
 | |
| 	page_table_check_pud_clear(mm, address, pud);
 | |
| 
 | |
| 	return pud;
 | |
| }
 | |
| #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 | |
| static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
 | |
| 					    unsigned long address, pmd_t *pmdp,
 | |
| 					    int full)
 | |
| {
 | |
| 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 | |
| static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 | |
| 					    unsigned long address, pud_t *pudp,
 | |
| 					    int full)
 | |
| {
 | |
| 	return pudp_huge_get_and_clear(mm, address, pudp);
 | |
| }
 | |
| #endif
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 | |
| static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 | |
| 					    unsigned long address, pte_t *ptep,
 | |
| 					    int full)
 | |
| {
 | |
| 	return ptep_get_and_clear(mm, address, ptep);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * If two threads concurrently fault at the same page, the thread that
 | |
|  * won the race updates the PTE and its local TLB/Cache. The other thread
 | |
|  * gives up, simply does nothing, and continues; on architectures where
 | |
|  * software can update TLB,  local TLB can be updated here to avoid next page
 | |
|  * fault. This function updates TLB only, do nothing with cache or others.
 | |
|  * It is the difference with function update_mmu_cache.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
 | |
| static inline void update_mmu_tlb(struct vm_area_struct *vma,
 | |
| 				unsigned long address, pte_t *ptep)
 | |
| {
 | |
| }
 | |
| #define __HAVE_ARCH_UPDATE_MMU_TLB
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some architectures may be able to avoid expensive synchronization
 | |
|  * primitives when modifications are made to PTE's which are already
 | |
|  * not present, or in the process of an address space destruction.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 | |
| static inline void pte_clear_not_present_full(struct mm_struct *mm,
 | |
| 					      unsigned long address,
 | |
| 					      pte_t *ptep,
 | |
| 					      int full)
 | |
| {
 | |
| 	pte_clear(mm, address, ptep);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 | |
| extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 | |
| 			      unsigned long address,
 | |
| 			      pte_t *ptep);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 | |
| extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 | |
| 			      unsigned long address,
 | |
| 			      pmd_t *pmdp);
 | |
| extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 | |
| 			      unsigned long address,
 | |
| 			      pud_t *pudp);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 | |
| struct mm_struct;
 | |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 | |
| {
 | |
| 	pte_t old_pte = *ptep;
 | |
| 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On some architectures hardware does not set page access bit when accessing
 | |
|  * memory page, it is responsibility of software setting this bit. It brings
 | |
|  * out extra page fault penalty to track page access bit. For optimization page
 | |
|  * access bit can be set during all page fault flow on these arches.
 | |
|  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
 | |
|  * where software maintains page access bit.
 | |
|  */
 | |
| #ifndef pte_sw_mkyoung
 | |
| static inline pte_t pte_sw_mkyoung(pte_t pte)
 | |
| {
 | |
| 	return pte;
 | |
| }
 | |
| #define pte_sw_mkyoung	pte_sw_mkyoung
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 | |
| 				      unsigned long address, pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t old_pmd = *pmdp;
 | |
| 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 | |
| }
 | |
| #else
 | |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 | |
| 				      unsigned long address, pmd_t *pmdp)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| #endif
 | |
| #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 | |
| #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 | |
| static inline void pudp_set_wrprotect(struct mm_struct *mm,
 | |
| 				      unsigned long address, pud_t *pudp)
 | |
| {
 | |
| 	pud_t old_pud = *pudp;
 | |
| 
 | |
| 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 | |
| }
 | |
| #else
 | |
| static inline void pudp_set_wrprotect(struct mm_struct *mm,
 | |
| 				      unsigned long address, pud_t *pudp)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| }
 | |
| #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 | |
| #endif
 | |
| 
 | |
| #ifndef pmdp_collapse_flush
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 | |
| 				 unsigned long address, pmd_t *pmdp);
 | |
| #else
 | |
| static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 | |
| 					unsigned long address,
 | |
| 					pmd_t *pmdp)
 | |
| {
 | |
| 	BUILD_BUG();
 | |
| 	return *pmdp;
 | |
| }
 | |
| #define pmdp_collapse_flush pmdp_collapse_flush
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 | |
| extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 | |
| 				       pgtable_t pgtable);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 | |
| extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| /*
 | |
|  * This is an implementation of pmdp_establish() that is only suitable for an
 | |
|  * architecture that doesn't have hardware dirty/accessed bits. In this case we
 | |
|  * can't race with CPU which sets these bits and non-atomic approach is fine.
 | |
|  */
 | |
| static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 | |
| 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
 | |
| {
 | |
| 	pmd_t old_pmd = *pmdp;
 | |
| 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 | |
| 	return old_pmd;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_INVALIDATE
 | |
| extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 | |
| 			    pmd_t *pmdp);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
 | |
| 
 | |
| /*
 | |
|  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
 | |
|  * hugepage mapping in the page tables. This function is similar to
 | |
|  * pmdp_invalidate(), but should only be used if the access and dirty bits would
 | |
|  * not be cleared by the software in the new PMD value. The function ensures
 | |
|  * that hardware changes of the access and dirty bits updates would not be lost.
 | |
|  *
 | |
|  * Doing so can allow in certain architectures to avoid a TLB flush in most
 | |
|  * cases. Yet, another TLB flush might be necessary later if the PMD update
 | |
|  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
 | |
|  * even when a TLB flush is needed because of the update, the caller may be able
 | |
|  * to batch these TLB flushing operations, so fewer TLB flush operations are
 | |
|  * needed.
 | |
|  */
 | |
| extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
 | |
| 				unsigned long address, pmd_t *pmdp);
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTE_SAME
 | |
| static inline int pte_same(pte_t pte_a, pte_t pte_b)
 | |
| {
 | |
| 	return pte_val(pte_a) == pte_val(pte_b);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTE_UNUSED
 | |
| /*
 | |
|  * Some architectures provide facilities to virtualization guests
 | |
|  * so that they can flag allocated pages as unused. This allows the
 | |
|  * host to transparently reclaim unused pages. This function returns
 | |
|  * whether the pte's page is unused.
 | |
|  */
 | |
| static inline int pte_unused(pte_t pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef pte_access_permitted
 | |
| #define pte_access_permitted(pte, write) \
 | |
| 	(pte_present(pte) && (!(write) || pte_write(pte)))
 | |
| #endif
 | |
| 
 | |
| #ifndef pmd_access_permitted
 | |
| #define pmd_access_permitted(pmd, write) \
 | |
| 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 | |
| #endif
 | |
| 
 | |
| #ifndef pud_access_permitted
 | |
| #define pud_access_permitted(pud, write) \
 | |
| 	(pud_present(pud) && (!(write) || pud_write(pud)))
 | |
| #endif
 | |
| 
 | |
| #ifndef p4d_access_permitted
 | |
| #define p4d_access_permitted(p4d, write) \
 | |
| 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 | |
| #endif
 | |
| 
 | |
| #ifndef pgd_access_permitted
 | |
| #define pgd_access_permitted(pgd, write) \
 | |
| 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PMD_SAME
 | |
| static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 | |
| {
 | |
| 	return pmd_val(pmd_a) == pmd_val(pmd_b);
 | |
| }
 | |
| 
 | |
| static inline int pud_same(pud_t pud_a, pud_t pud_b)
 | |
| {
 | |
| 	return pud_val(pud_a) == pud_val(pud_b);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_P4D_SAME
 | |
| static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
 | |
| {
 | |
| 	return p4d_val(p4d_a) == p4d_val(p4d_b);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PGD_SAME
 | |
| static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
 | |
| {
 | |
| 	return pgd_val(pgd_a) == pgd_val(pgd_b);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 | |
|  * TLB flush will be required as a result of the "set". For example, use
 | |
|  * in scenarios where it is known ahead of time that the routine is
 | |
|  * setting non-present entries, or re-setting an existing entry to the
 | |
|  * same value. Otherwise, use the typical "set" helpers and flush the
 | |
|  * TLB.
 | |
|  */
 | |
| #define set_pte_safe(ptep, pte) \
 | |
| ({ \
 | |
| 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
 | |
| 	set_pte(ptep, pte); \
 | |
| })
 | |
| 
 | |
| #define set_pmd_safe(pmdp, pmd) \
 | |
| ({ \
 | |
| 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
 | |
| 	set_pmd(pmdp, pmd); \
 | |
| })
 | |
| 
 | |
| #define set_pud_safe(pudp, pud) \
 | |
| ({ \
 | |
| 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
 | |
| 	set_pud(pudp, pud); \
 | |
| })
 | |
| 
 | |
| #define set_p4d_safe(p4dp, p4d) \
 | |
| ({ \
 | |
| 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
 | |
| 	set_p4d(p4dp, p4d); \
 | |
| })
 | |
| 
 | |
| #define set_pgd_safe(pgdp, pgd) \
 | |
| ({ \
 | |
| 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
 | |
| 	set_pgd(pgdp, pgd); \
 | |
| })
 | |
| 
 | |
| #ifndef __HAVE_ARCH_DO_SWAP_PAGE
 | |
| /*
 | |
|  * Some architectures support metadata associated with a page. When a
 | |
|  * page is being swapped out, this metadata must be saved so it can be
 | |
|  * restored when the page is swapped back in. SPARC M7 and newer
 | |
|  * processors support an ADI (Application Data Integrity) tag for the
 | |
|  * page as metadata for the page. arch_do_swap_page() can restore this
 | |
|  * metadata when a page is swapped back in.
 | |
|  */
 | |
| static inline void arch_do_swap_page(struct mm_struct *mm,
 | |
| 				     struct vm_area_struct *vma,
 | |
| 				     unsigned long addr,
 | |
| 				     pte_t pte, pte_t oldpte)
 | |
| {
 | |
| 
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_UNMAP_ONE
 | |
| /*
 | |
|  * Some architectures support metadata associated with a page. When a
 | |
|  * page is being swapped out, this metadata must be saved so it can be
 | |
|  * restored when the page is swapped back in. SPARC M7 and newer
 | |
|  * processors support an ADI (Application Data Integrity) tag for the
 | |
|  * page as metadata for the page. arch_unmap_one() can save this
 | |
|  * metadata on a swap-out of a page.
 | |
|  */
 | |
| static inline int arch_unmap_one(struct mm_struct *mm,
 | |
| 				  struct vm_area_struct *vma,
 | |
| 				  unsigned long addr,
 | |
| 				  pte_t orig_pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Allow architectures to preserve additional metadata associated with
 | |
|  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
 | |
|  * prototypes must be defined in the arch-specific asm/pgtable.h file.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
 | |
| static inline int arch_prepare_to_swap(struct page *page)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_SWAP_INVALIDATE
 | |
| static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void arch_swap_invalidate_area(int type)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_SWAP_RESTORE
 | |
| static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 | |
| #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_MOVE_PTE
 | |
| #define move_pte(pte, prot, old_addr, new_addr)	(pte)
 | |
| #endif
 | |
| 
 | |
| #ifndef pte_accessible
 | |
| # define pte_accessible(mm, pte)	((void)(pte), 1)
 | |
| #endif
 | |
| 
 | |
| #ifndef flush_tlb_fix_spurious_fault
 | |
| #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When walking page tables, get the address of the next boundary,
 | |
|  * or the end address of the range if that comes earlier.  Although no
 | |
|  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 | |
|  */
 | |
| 
 | |
| #define pgd_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| 
 | |
| #ifndef p4d_addr_end
 | |
| #define p4d_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef pud_addr_end
 | |
| #define pud_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef pmd_addr_end
 | |
| #define pmd_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When walking page tables, we usually want to skip any p?d_none entries;
 | |
|  * and any p?d_bad entries - reporting the error before resetting to none.
 | |
|  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 | |
|  */
 | |
| void pgd_clear_bad(pgd_t *);
 | |
| 
 | |
| #ifndef __PAGETABLE_P4D_FOLDED
 | |
| void p4d_clear_bad(p4d_t *);
 | |
| #else
 | |
| #define p4d_clear_bad(p4d)        do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __PAGETABLE_PUD_FOLDED
 | |
| void pud_clear_bad(pud_t *);
 | |
| #else
 | |
| #define pud_clear_bad(p4d)        do { } while (0)
 | |
| #endif
 | |
| 
 | |
| void pmd_clear_bad(pmd_t *);
 | |
| 
 | |
| static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 | |
| {
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return 1;
 | |
| 	if (unlikely(pgd_bad(*pgd))) {
 | |
| 		pgd_clear_bad(pgd);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 | |
| {
 | |
| 	if (p4d_none(*p4d))
 | |
| 		return 1;
 | |
| 	if (unlikely(p4d_bad(*p4d))) {
 | |
| 		p4d_clear_bad(p4d);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int pud_none_or_clear_bad(pud_t *pud)
 | |
| {
 | |
| 	if (pud_none(*pud))
 | |
| 		return 1;
 | |
| 	if (unlikely(pud_bad(*pud))) {
 | |
| 		pud_clear_bad(pud);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 | |
| {
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return 1;
 | |
| 	if (unlikely(pmd_bad(*pmd))) {
 | |
| 		pmd_clear_bad(pmd);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
 | |
| 					     unsigned long addr,
 | |
| 					     pte_t *ptep)
 | |
| {
 | |
| 	/*
 | |
| 	 * Get the current pte state, but zero it out to make it
 | |
| 	 * non-present, preventing the hardware from asynchronously
 | |
| 	 * updating it.
 | |
| 	 */
 | |
| 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
 | |
| }
 | |
| 
 | |
| static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
 | |
| 					     unsigned long addr,
 | |
| 					     pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	/*
 | |
| 	 * The pte is non-present, so there's no hardware state to
 | |
| 	 * preserve.
 | |
| 	 */
 | |
| 	set_pte_at(vma->vm_mm, addr, ptep, pte);
 | |
| }
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 | |
| /*
 | |
|  * Start a pte protection read-modify-write transaction, which
 | |
|  * protects against asynchronous hardware modifications to the pte.
 | |
|  * The intention is not to prevent the hardware from making pte
 | |
|  * updates, but to prevent any updates it may make from being lost.
 | |
|  *
 | |
|  * This does not protect against other software modifications of the
 | |
|  * pte; the appropriate pte lock must be held over the transaction.
 | |
|  *
 | |
|  * Note that this interface is intended to be batchable, meaning that
 | |
|  * ptep_modify_prot_commit may not actually update the pte, but merely
 | |
|  * queue the update to be done at some later time.  The update must be
 | |
|  * actually committed before the pte lock is released, however.
 | |
|  */
 | |
| static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
 | |
| 					   unsigned long addr,
 | |
| 					   pte_t *ptep)
 | |
| {
 | |
| 	return __ptep_modify_prot_start(vma, addr, ptep);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit an update to a pte, leaving any hardware-controlled bits in
 | |
|  * the PTE unmodified.
 | |
|  */
 | |
| static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
 | |
| 					   unsigned long addr,
 | |
| 					   pte_t *ptep, pte_t old_pte, pte_t pte)
 | |
| {
 | |
| 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
 | |
| }
 | |
| #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| /*
 | |
|  * No-op macros that just return the current protection value. Defined here
 | |
|  * because these macros can be used even if CONFIG_MMU is not defined.
 | |
|  */
 | |
| 
 | |
| #ifndef pgprot_nx
 | |
| #define pgprot_nx(prot)	(prot)
 | |
| #endif
 | |
| 
 | |
| #ifndef pgprot_noncached
 | |
| #define pgprot_noncached(prot)	(prot)
 | |
| #endif
 | |
| 
 | |
| #ifndef pgprot_writecombine
 | |
| #define pgprot_writecombine pgprot_noncached
 | |
| #endif
 | |
| 
 | |
| #ifndef pgprot_writethrough
 | |
| #define pgprot_writethrough pgprot_noncached
 | |
| #endif
 | |
| 
 | |
| #ifndef pgprot_device
 | |
| #define pgprot_device pgprot_noncached
 | |
| #endif
 | |
| 
 | |
| #ifndef pgprot_mhp
 | |
| #define pgprot_mhp(prot)	(prot)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| #ifndef pgprot_modify
 | |
| #define pgprot_modify pgprot_modify
 | |
| static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 | |
| {
 | |
| 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 | |
| 		newprot = pgprot_noncached(newprot);
 | |
| 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 | |
| 		newprot = pgprot_writecombine(newprot);
 | |
| 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 | |
| 		newprot = pgprot_device(newprot);
 | |
| 	return newprot;
 | |
| }
 | |
| #endif
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| #ifndef pgprot_encrypted
 | |
| #define pgprot_encrypted(prot)	(prot)
 | |
| #endif
 | |
| 
 | |
| #ifndef pgprot_decrypted
 | |
| #define pgprot_decrypted(prot)	(prot)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * A facility to provide lazy MMU batching.  This allows PTE updates and
 | |
|  * page invalidations to be delayed until a call to leave lazy MMU mode
 | |
|  * is issued.  Some architectures may benefit from doing this, and it is
 | |
|  * beneficial for both shadow and direct mode hypervisors, which may batch
 | |
|  * the PTE updates which happen during this window.  Note that using this
 | |
|  * interface requires that read hazards be removed from the code.  A read
 | |
|  * hazard could result in the direct mode hypervisor case, since the actual
 | |
|  * write to the page tables may not yet have taken place, so reads though
 | |
|  * a raw PTE pointer after it has been modified are not guaranteed to be
 | |
|  * up to date.  This mode can only be entered and left under the protection of
 | |
|  * the page table locks for all page tables which may be modified.  In the UP
 | |
|  * case, this is required so that preemption is disabled, and in the SMP case,
 | |
|  * it must synchronize the delayed page table writes properly on other CPUs.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 | |
| #define arch_enter_lazy_mmu_mode()	do {} while (0)
 | |
| #define arch_leave_lazy_mmu_mode()	do {} while (0)
 | |
| #define arch_flush_lazy_mmu_mode()	do {} while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * A facility to provide batching of the reload of page tables and
 | |
|  * other process state with the actual context switch code for
 | |
|  * paravirtualized guests.  By convention, only one of the batched
 | |
|  * update (lazy) modes (CPU, MMU) should be active at any given time,
 | |
|  * entry should never be nested, and entry and exits should always be
 | |
|  * paired.  This is for sanity of maintaining and reasoning about the
 | |
|  * kernel code.  In this case, the exit (end of the context switch) is
 | |
|  * in architecture-specific code, and so doesn't need a generic
 | |
|  * definition.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 | |
| #define arch_start_context_switch(prev)	do {} while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 | |
| #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | |
| static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 | |
| {
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| static inline int pmd_swp_soft_dirty(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 | |
| {
 | |
| 	return pmd;
 | |
| }
 | |
| #endif
 | |
| #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
 | |
| static inline int pte_soft_dirty(pte_t pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int pmd_soft_dirty(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mksoft_dirty(pte_t pte)
 | |
| {
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 | |
| {
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_clear_soft_dirty(pte_t pte)
 | |
| {
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 | |
| {
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 | |
| {
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline int pte_swp_soft_dirty(pte_t pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 | |
| {
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 | |
| {
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| static inline int pmd_swp_soft_dirty(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 | |
| {
 | |
| 	return pmd;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_PFNMAP_TRACKING
 | |
| /*
 | |
|  * Interfaces that can be used by architecture code to keep track of
 | |
|  * memory type of pfn mappings specified by the remap_pfn_range,
 | |
|  * vmf_insert_pfn.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * track_pfn_remap is called when a _new_ pfn mapping is being established
 | |
|  * by remap_pfn_range() for physical range indicated by pfn and size.
 | |
|  */
 | |
| static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 | |
| 				  unsigned long pfn, unsigned long addr,
 | |
| 				  unsigned long size)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * track_pfn_insert is called when a _new_ single pfn is established
 | |
|  * by vmf_insert_pfn().
 | |
|  */
 | |
| static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 | |
| 				    pfn_t pfn)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * track_pfn_copy is called when vma that is covering the pfnmap gets
 | |
|  * copied through copy_page_range().
 | |
|  */
 | |
| static inline int track_pfn_copy(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * untrack_pfn is called while unmapping a pfnmap for a region.
 | |
|  * untrack can be called for a specific region indicated by pfn and size or
 | |
|  * can be for the entire vma (in which case pfn, size are zero).
 | |
|  */
 | |
| static inline void untrack_pfn(struct vm_area_struct *vma,
 | |
| 			       unsigned long pfn, unsigned long size,
 | |
| 			       bool mm_wr_locked)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
 | |
|  * or fails to copy pgtable during duplicate vm area.
 | |
|  */
 | |
| static inline void untrack_pfn_clear(struct vm_area_struct *vma)
 | |
| {
 | |
| }
 | |
| #else
 | |
| extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 | |
| 			   unsigned long pfn, unsigned long addr,
 | |
| 			   unsigned long size);
 | |
| extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 | |
| 			     pfn_t pfn);
 | |
| extern int track_pfn_copy(struct vm_area_struct *vma);
 | |
| extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 | |
| 			unsigned long size, bool mm_wr_locked);
 | |
| extern void untrack_pfn_clear(struct vm_area_struct *vma);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| #ifdef __HAVE_COLOR_ZERO_PAGE
 | |
| static inline int is_zero_pfn(unsigned long pfn)
 | |
| {
 | |
| 	extern unsigned long zero_pfn;
 | |
| 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
 | |
| 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
 | |
| 
 | |
| #else
 | |
| static inline int is_zero_pfn(unsigned long pfn)
 | |
| {
 | |
| 	extern unsigned long zero_pfn;
 | |
| 	return pfn == zero_pfn;
 | |
| }
 | |
| 
 | |
| static inline unsigned long my_zero_pfn(unsigned long addr)
 | |
| {
 | |
| 	extern unsigned long zero_pfn;
 | |
| 	return zero_pfn;
 | |
| }
 | |
| #endif
 | |
| #else
 | |
| static inline int is_zero_pfn(unsigned long pfn)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned long my_zero_pfn(unsigned long addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| #ifndef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static inline int pmd_trans_huge(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #ifndef pmd_write
 | |
| static inline int pmd_write(pmd_t pmd)
 | |
| {
 | |
| 	BUG();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* pmd_write */
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| #ifndef pud_write
 | |
| static inline int pud_write(pud_t pud)
 | |
| {
 | |
| 	BUG();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* pud_write */
 | |
| 
 | |
| #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| static inline int pmd_devmap(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pud_devmap(pud_t pud)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pgd_devmap(pgd_t pgd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
 | |
| 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 | |
| static inline int pud_trans_huge(pud_t pud)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
 | |
| static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
 | |
| {
 | |
| 	pud_t pudval = READ_ONCE(*pud);
 | |
| 
 | |
| 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
 | |
| 		return 1;
 | |
| 	if (unlikely(pud_bad(pudval))) {
 | |
| 		pud_clear_bad(pud);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* See pmd_trans_unstable for discussion. */
 | |
| static inline int pud_trans_unstable(pud_t *pud)
 | |
| {
 | |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
 | |
| 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 | |
| 	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef arch_needs_pgtable_deposit
 | |
| #define arch_needs_pgtable_deposit() (false)
 | |
| #endif
 | |
| /*
 | |
|  * This function is meant to be used by sites walking pagetables with
 | |
|  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
 | |
|  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 | |
|  * into a null pmd and the transhuge page fault can convert a null pmd
 | |
|  * into an hugepmd or into a regular pmd (if the hugepage allocation
 | |
|  * fails). While holding the mmap_lock in read mode the pmd becomes
 | |
|  * stable and stops changing under us only if it's not null and not a
 | |
|  * transhuge pmd. When those races occurs and this function makes a
 | |
|  * difference vs the standard pmd_none_or_clear_bad, the result is
 | |
|  * undefined so behaving like if the pmd was none is safe (because it
 | |
|  * can return none anyway). The compiler level barrier() is critically
 | |
|  * important to compute the two checks atomically on the same pmdval.
 | |
|  *
 | |
|  * For 32bit kernels with a 64bit large pmd_t this automatically takes
 | |
|  * care of reading the pmd atomically to avoid SMP race conditions
 | |
|  * against pmd_populate() when the mmap_lock is hold for reading by the
 | |
|  * caller (a special atomic read not done by "gcc" as in the generic
 | |
|  * version above, is also needed when THP is disabled because the page
 | |
|  * fault can populate the pmd from under us).
 | |
|  */
 | |
| static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
 | |
| {
 | |
| 	pmd_t pmdval = pmdp_get_lockless(pmd);
 | |
| 	/*
 | |
| 	 * The barrier will stabilize the pmdval in a register or on
 | |
| 	 * the stack so that it will stop changing under the code.
 | |
| 	 *
 | |
| 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
 | |
| 	 * pmdp_get_lockless is allowed to return a not atomic pmdval
 | |
| 	 * (for example pointing to an hugepage that has never been
 | |
| 	 * mapped in the pmd). The below checks will only care about
 | |
| 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
 | |
| 	 * exception of pmd_none(). So the important thing is that if
 | |
| 	 * the low part of the pmd is found null, the high part will
 | |
| 	 * be also null or the pmd_none() check below would be
 | |
| 	 * confused.
 | |
| 	 */
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	barrier();
 | |
| #endif
 | |
| 	/*
 | |
| 	 * !pmd_present() checks for pmd migration entries
 | |
| 	 *
 | |
| 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
 | |
| 	 * But using that requires moving current function and pmd_trans_unstable()
 | |
| 	 * to linux/swapops.h to resolve dependency, which is too much code move.
 | |
| 	 *
 | |
| 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
 | |
| 	 * because !pmd_present() pages can only be under migration not swapped
 | |
| 	 * out.
 | |
| 	 *
 | |
| 	 * pmd_none() is preserved for future condition checks on pmd migration
 | |
| 	 * entries and not confusing with this function name, although it is
 | |
| 	 * redundant with !pmd_present().
 | |
| 	 */
 | |
| 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
 | |
| 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
 | |
| 		return 1;
 | |
| 	if (unlikely(pmd_bad(pmdval))) {
 | |
| 		pmd_clear_bad(pmd);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a noop if Transparent Hugepage Support is not built into
 | |
|  * the kernel. Otherwise it is equivalent to
 | |
|  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
 | |
|  * places that already verified the pmd is not none and they want to
 | |
|  * walk ptes while holding the mmap sem in read mode (write mode don't
 | |
|  * need this). If THP is not enabled, the pmd can't go away under the
 | |
|  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
 | |
|  * run a pmd_trans_unstable before walking the ptes after
 | |
|  * split_huge_pmd returns (because it may have run when the pmd become
 | |
|  * null, but then a page fault can map in a THP and not a regular page).
 | |
|  */
 | |
| static inline int pmd_trans_unstable(pmd_t *pmd)
 | |
| {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the ordering of these checks is important for pmds with _page_devmap set.
 | |
|  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
 | |
|  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
 | |
|  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
 | |
|  */
 | |
| static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
 | |
| {
 | |
| 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NUMA_BALANCING
 | |
| /*
 | |
|  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
 | |
|  * the only case the kernel cares is for NUMA balancing and is only ever set
 | |
|  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
 | |
|  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
 | |
|  * is the responsibility of the caller to distinguish between PROT_NONE
 | |
|  * protections and NUMA hinting fault protections.
 | |
|  */
 | |
| static inline int pte_protnone(pte_t pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int pmd_protnone(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 | |
| 
 | |
| #ifndef __PAGETABLE_P4D_FOLDED
 | |
| int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
 | |
| void p4d_clear_huge(p4d_t *p4d);
 | |
| #else
 | |
| static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void p4d_clear_huge(p4d_t *p4d) { }
 | |
| #endif /* !__PAGETABLE_P4D_FOLDED */
 | |
| 
 | |
| int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
 | |
| int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
 | |
| int pud_clear_huge(pud_t *pud);
 | |
| int pmd_clear_huge(pmd_t *pmd);
 | |
| int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
 | |
| int pud_free_pmd_page(pud_t *pud, unsigned long addr);
 | |
| int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
 | |
| #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
 | |
| static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void p4d_clear_huge(p4d_t *p4d) { }
 | |
| static inline int pud_clear_huge(pud_t *pud)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pmd_clear_huge(pmd_t *pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
 | |
| 
 | |
| #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| /*
 | |
|  * ARCHes with special requirements for evicting THP backing TLB entries can
 | |
|  * implement this. Otherwise also, it can help optimize normal TLB flush in
 | |
|  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
 | |
|  * entire TLB if flush span is greater than a threshold, which will
 | |
|  * likely be true for a single huge page. Thus a single THP flush will
 | |
|  * invalidate the entire TLB which is not desirable.
 | |
|  * e.g. see arch/arc: flush_pmd_tlb_range
 | |
|  */
 | |
| #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
 | |
| #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
 | |
| #else
 | |
| #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
 | |
| #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| struct file;
 | |
| int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 | |
| 			unsigned long size, pgprot_t *vma_prot);
 | |
| 
 | |
| #ifndef CONFIG_X86_ESPFIX64
 | |
| static inline void init_espfix_bsp(void) { }
 | |
| #endif
 | |
| 
 | |
| extern void __init pgtable_cache_init(void);
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
 | |
| static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool arch_has_pfn_modify_check(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
 | |
| 
 | |
| /*
 | |
|  * Architecture PAGE_KERNEL_* fallbacks
 | |
|  *
 | |
|  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
 | |
|  * because they really don't support them, or the port needs to be updated to
 | |
|  * reflect the required functionality. Below are a set of relatively safe
 | |
|  * fallbacks, as best effort, which we can count on in lieu of the architectures
 | |
|  * not defining them on their own yet.
 | |
|  */
 | |
| 
 | |
| #ifndef PAGE_KERNEL_RO
 | |
| # define PAGE_KERNEL_RO PAGE_KERNEL
 | |
| #endif
 | |
| 
 | |
| #ifndef PAGE_KERNEL_EXEC
 | |
| # define PAGE_KERNEL_EXEC PAGE_KERNEL
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Page Table Modification bits for pgtbl_mod_mask.
 | |
|  *
 | |
|  * These are used by the p?d_alloc_track*() set of functions an in the generic
 | |
|  * vmalloc/ioremap code to track at which page-table levels entries have been
 | |
|  * modified. Based on that the code can better decide when vmalloc and ioremap
 | |
|  * mapping changes need to be synchronized to other page-tables in the system.
 | |
|  */
 | |
| #define		__PGTBL_PGD_MODIFIED	0
 | |
| #define		__PGTBL_P4D_MODIFIED	1
 | |
| #define		__PGTBL_PUD_MODIFIED	2
 | |
| #define		__PGTBL_PMD_MODIFIED	3
 | |
| #define		__PGTBL_PTE_MODIFIED	4
 | |
| 
 | |
| #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
 | |
| #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
 | |
| #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
 | |
| #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
 | |
| #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
 | |
| 
 | |
| /* Page-Table Modification Mask */
 | |
| typedef unsigned int pgtbl_mod_mask;
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
 | |
| #ifdef CONFIG_PHYS_ADDR_T_64BIT
 | |
| /*
 | |
|  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
 | |
|  * with physical address space extension, but falls back to
 | |
|  * BITS_PER_LONG otherwise.
 | |
|  */
 | |
| #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
 | |
| #else
 | |
| #define MAX_POSSIBLE_PHYSMEM_BITS 32
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef has_transparent_hugepage
 | |
| #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On some architectures it depends on the mm if the p4d/pud or pmd
 | |
|  * layer of the page table hierarchy is folded or not.
 | |
|  */
 | |
| #ifndef mm_p4d_folded
 | |
| #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
 | |
| #endif
 | |
| 
 | |
| #ifndef mm_pud_folded
 | |
| #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
 | |
| #endif
 | |
| 
 | |
| #ifndef mm_pmd_folded
 | |
| #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
 | |
| #endif
 | |
| 
 | |
| #ifndef p4d_offset_lockless
 | |
| #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
 | |
| #endif
 | |
| #ifndef pud_offset_lockless
 | |
| #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
 | |
| #endif
 | |
| #ifndef pmd_offset_lockless
 | |
| #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * p?d_leaf() - true if this entry is a final mapping to a physical address.
 | |
|  * This differs from p?d_huge() by the fact that they are always available (if
 | |
|  * the architecture supports large pages at the appropriate level) even
 | |
|  * if CONFIG_HUGETLB_PAGE is not defined.
 | |
|  * Only meaningful when called on a valid entry.
 | |
|  */
 | |
| #ifndef pgd_leaf
 | |
| #define pgd_leaf(x)	0
 | |
| #endif
 | |
| #ifndef p4d_leaf
 | |
| #define p4d_leaf(x)	0
 | |
| #endif
 | |
| #ifndef pud_leaf
 | |
| #define pud_leaf(x)	0
 | |
| #endif
 | |
| #ifndef pmd_leaf
 | |
| #define pmd_leaf(x)	0
 | |
| #endif
 | |
| 
 | |
| #ifndef pgd_leaf_size
 | |
| #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
 | |
| #endif
 | |
| #ifndef p4d_leaf_size
 | |
| #define p4d_leaf_size(x) P4D_SIZE
 | |
| #endif
 | |
| #ifndef pud_leaf_size
 | |
| #define pud_leaf_size(x) PUD_SIZE
 | |
| #endif
 | |
| #ifndef pmd_leaf_size
 | |
| #define pmd_leaf_size(x) PMD_SIZE
 | |
| #endif
 | |
| #ifndef pte_leaf_size
 | |
| #define pte_leaf_size(x) PAGE_SIZE
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some architectures have MMUs that are configurable or selectable at boot
 | |
|  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
 | |
|  * helps to have a static maximum value.
 | |
|  */
 | |
| 
 | |
| #ifndef MAX_PTRS_PER_PTE
 | |
| #define MAX_PTRS_PER_PTE PTRS_PER_PTE
 | |
| #endif
 | |
| 
 | |
| #ifndef MAX_PTRS_PER_PMD
 | |
| #define MAX_PTRS_PER_PMD PTRS_PER_PMD
 | |
| #endif
 | |
| 
 | |
| #ifndef MAX_PTRS_PER_PUD
 | |
| #define MAX_PTRS_PER_PUD PTRS_PER_PUD
 | |
| #endif
 | |
| 
 | |
| #ifndef MAX_PTRS_PER_P4D
 | |
| #define MAX_PTRS_PER_P4D PTRS_PER_P4D
 | |
| #endif
 | |
| 
 | |
| /* description of effects of mapping type and prot in current implementation.
 | |
|  * this is due to the limited x86 page protection hardware.  The expected
 | |
|  * behavior is in parens:
 | |
|  *
 | |
|  * map_type	prot
 | |
|  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
 | |
|  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
 | |
|  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
 | |
|  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
 | |
|  *
 | |
|  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
 | |
|  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
 | |
|  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
 | |
|  *
 | |
|  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
 | |
|  * MAP_PRIVATE (with Enhanced PAN supported):
 | |
|  *								r: (no) no
 | |
|  *								w: (no) no
 | |
|  *								x: (yes) yes
 | |
|  */
 | |
| #define DECLARE_VM_GET_PAGE_PROT					\
 | |
| pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
 | |
| {									\
 | |
| 		return protection_map[vm_flags &			\
 | |
| 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
 | |
| }									\
 | |
| EXPORT_SYMBOL(vm_get_page_prot);
 | |
| 
 | |
| #endif /* _LINUX_PGTABLE_H */
 |