forked from mirrors/linux
		
	 7fa8a8ee94
			
		
	
	
		7fa8a8ee94
		
	
	
	
	
		
			
			switching from a user process to a kernel thread.
 
 - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
 
 - zsmalloc performance improvements from Sergey Senozhatsky.
 
 - Yue Zhao has found and fixed some data race issues around the
   alteration of memcg userspace tunables.
 
 - VFS rationalizations from Christoph Hellwig:
 
   - removal of most of the callers of write_one_page().
 
   - make __filemap_get_folio()'s return value more useful
 
 - Luis Chamberlain has changed tmpfs so it no longer requires swap
   backing.  Use `mount -o noswap'.
 
 - Qi Zheng has made the slab shrinkers operate locklessly, providing
   some scalability benefits.
 
 - Keith Busch has improved dmapool's performance, making part of its
   operations O(1) rather than O(n).
 
 - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
   permitting userspace to wr-protect anon memory unpopulated ptes.
 
 - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
   than exclusive, and has fixed a bunch of errors which were caused by its
   unintuitive meaning.
 
 - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
   which causes minor faults to install a write-protected pte.
 
 - Vlastimil Babka has done some maintenance work on vma_merge():
   cleanups to the kernel code and improvements to our userspace test
   harness.
 
 - Cleanups to do_fault_around() by Lorenzo Stoakes.
 
 - Mike Rapoport has moved a lot of initialization code out of various
   mm/ files and into mm/mm_init.c.
 
 - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
   DRM, but DRM doesn't use it any more.
 
 - Lorenzo has also coverted read_kcore() and vread() to use iterators
   and has thereby removed the use of bounce buffers in some cases.
 
 - Lorenzo has also contributed further cleanups of vma_merge().
 
 - Chaitanya Prakash provides some fixes to the mmap selftesting code.
 
 - Matthew Wilcox changes xfs and afs so they no longer take sleeping
   locks in ->map_page(), a step towards RCUification of pagefaults.
 
 - Suren Baghdasaryan has improved mmap_lock scalability by switching to
   per-VMA locking.
 
 - Frederic Weisbecker has reworked the percpu cache draining so that it
   no longer causes latency glitches on cpu isolated workloads.
 
 - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
   logic.
 
 - Liu Shixin has changed zswap's initialization so we no longer waste a
   chunk of memory if zswap is not being used.
 
 - Yosry Ahmed has improved the performance of memcg statistics flushing.
 
 - David Stevens has fixed several issues involving khugepaged,
   userfaultfd and shmem.
 
 - Christoph Hellwig has provided some cleanup work to zram's IO-related
   code paths.
 
 - David Hildenbrand has fixed up some issues in the selftest code's
   testing of our pte state changing.
 
 - Pankaj Raghav has made page_endio() unneeded and has removed it.
 
 - Peter Xu contributed some rationalizations of the userfaultfd
   selftests.
 
 - Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
 
 - Chaitanya Prakash has fixed some arm-related issues in the
   selftests/mm code.
 
 - Longlong Xia has improved the way in which KSM handles hwpoisoned
   pages.
 
 - Peter Xu fixes a few issues with uffd-wp at fork() time.
 
 - Stefan Roesch has changed KSM so that it may now be used on a
   per-process and per-cgroup basis.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
 jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
 eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
 =J+Dj
 -----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
 - Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
   switching from a user process to a kernel thread.
 - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
   Raghav.
 - zsmalloc performance improvements from Sergey Senozhatsky.
 - Yue Zhao has found and fixed some data race issues around the
   alteration of memcg userspace tunables.
 - VFS rationalizations from Christoph Hellwig:
     - removal of most of the callers of write_one_page()
     - make __filemap_get_folio()'s return value more useful
 - Luis Chamberlain has changed tmpfs so it no longer requires swap
   backing. Use `mount -o noswap'.
 - Qi Zheng has made the slab shrinkers operate locklessly, providing
   some scalability benefits.
 - Keith Busch has improved dmapool's performance, making part of its
   operations O(1) rather than O(n).
 - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
   permitting userspace to wr-protect anon memory unpopulated ptes.
 - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
   rather than exclusive, and has fixed a bunch of errors which were
   caused by its unintuitive meaning.
 - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
   which causes minor faults to install a write-protected pte.
 - Vlastimil Babka has done some maintenance work on vma_merge():
   cleanups to the kernel code and improvements to our userspace test
   harness.
 - Cleanups to do_fault_around() by Lorenzo Stoakes.
 - Mike Rapoport has moved a lot of initialization code out of various
   mm/ files and into mm/mm_init.c.
 - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
   DRM, but DRM doesn't use it any more.
 - Lorenzo has also coverted read_kcore() and vread() to use iterators
   and has thereby removed the use of bounce buffers in some cases.
 - Lorenzo has also contributed further cleanups of vma_merge().
 - Chaitanya Prakash provides some fixes to the mmap selftesting code.
 - Matthew Wilcox changes xfs and afs so they no longer take sleeping
   locks in ->map_page(), a step towards RCUification of pagefaults.
 - Suren Baghdasaryan has improved mmap_lock scalability by switching to
   per-VMA locking.
 - Frederic Weisbecker has reworked the percpu cache draining so that it
   no longer causes latency glitches on cpu isolated workloads.
 - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
   logic.
 - Liu Shixin has changed zswap's initialization so we no longer waste a
   chunk of memory if zswap is not being used.
 - Yosry Ahmed has improved the performance of memcg statistics
   flushing.
 - David Stevens has fixed several issues involving khugepaged,
   userfaultfd and shmem.
 - Christoph Hellwig has provided some cleanup work to zram's IO-related
   code paths.
 - David Hildenbrand has fixed up some issues in the selftest code's
   testing of our pte state changing.
 - Pankaj Raghav has made page_endio() unneeded and has removed it.
 - Peter Xu contributed some rationalizations of the userfaultfd
   selftests.
 - Yosry Ahmed has fixed an issue around memcg's page recalim
   accounting.
 - Chaitanya Prakash has fixed some arm-related issues in the
   selftests/mm code.
 - Longlong Xia has improved the way in which KSM handles hwpoisoned
   pages.
 - Peter Xu fixes a few issues with uffd-wp at fork() time.
 - Stefan Roesch has changed KSM so that it may now be used on a
   per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
  mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
  shmem: restrict noswap option to initial user namespace
  mm/khugepaged: fix conflicting mods to collapse_file()
  sparse: remove unnecessary 0 values from rc
  mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
  hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
  maple_tree: fix allocation in mas_sparse_area()
  mm: do not increment pgfault stats when page fault handler retries
  zsmalloc: allow only one active pool compaction context
  selftests/mm: add new selftests for KSM
  mm: add new KSM process and sysfs knobs
  mm: add new api to enable ksm per process
  mm: shrinkers: fix debugfs file permissions
  mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
  migrate_pages_batch: fix statistics for longterm pin retry
  userfaultfd: use helper function range_in_vma()
  lib/show_mem.c: use for_each_populated_zone() simplify code
  mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
  fs/buffer: convert create_page_buffers to folio_create_buffers
  fs/buffer: add folio_create_empty_buffers helper
  ...
		
	
			
		
			
				
	
	
		
			756 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			756 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| /*
 | |
|  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 | |
|  *
 | |
|  * (C) SGI 2006, Christoph Lameter
 | |
|  * 	Cleaned up and restructured to ease the addition of alternative
 | |
|  * 	implementations of SLAB allocators.
 | |
|  * (C) Linux Foundation 2008-2013
 | |
|  *      Unified interface for all slab allocators
 | |
|  */
 | |
| 
 | |
| #ifndef _LINUX_SLAB_H
 | |
| #define	_LINUX_SLAB_H
 | |
| 
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/overflow.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/percpu-refcount.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Flags to pass to kmem_cache_create().
 | |
|  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
 | |
|  */
 | |
| /* DEBUG: Perform (expensive) checks on alloc/free */
 | |
| #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
 | |
| /* DEBUG: Red zone objs in a cache */
 | |
| #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
 | |
| /* DEBUG: Poison objects */
 | |
| #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
 | |
| /* Indicate a kmalloc slab */
 | |
| #define SLAB_KMALLOC		((slab_flags_t __force)0x00001000U)
 | |
| /* Align objs on cache lines */
 | |
| #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
 | |
| /* Use GFP_DMA memory */
 | |
| #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
 | |
| /* Use GFP_DMA32 memory */
 | |
| #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
 | |
| /* DEBUG: Store the last owner for bug hunting */
 | |
| #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
 | |
| /* Panic if kmem_cache_create() fails */
 | |
| #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
 | |
| /*
 | |
|  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
 | |
|  *
 | |
|  * This delays freeing the SLAB page by a grace period, it does _NOT_
 | |
|  * delay object freeing. This means that if you do kmem_cache_free()
 | |
|  * that memory location is free to be reused at any time. Thus it may
 | |
|  * be possible to see another object there in the same RCU grace period.
 | |
|  *
 | |
|  * This feature only ensures the memory location backing the object
 | |
|  * stays valid, the trick to using this is relying on an independent
 | |
|  * object validation pass. Something like:
 | |
|  *
 | |
|  *  rcu_read_lock()
 | |
|  * again:
 | |
|  *  obj = lockless_lookup(key);
 | |
|  *  if (obj) {
 | |
|  *    if (!try_get_ref(obj)) // might fail for free objects
 | |
|  *      goto again;
 | |
|  *
 | |
|  *    if (obj->key != key) { // not the object we expected
 | |
|  *      put_ref(obj);
 | |
|  *      goto again;
 | |
|  *    }
 | |
|  *  }
 | |
|  *  rcu_read_unlock();
 | |
|  *
 | |
|  * This is useful if we need to approach a kernel structure obliquely,
 | |
|  * from its address obtained without the usual locking. We can lock
 | |
|  * the structure to stabilize it and check it's still at the given address,
 | |
|  * only if we can be sure that the memory has not been meanwhile reused
 | |
|  * for some other kind of object (which our subsystem's lock might corrupt).
 | |
|  *
 | |
|  * rcu_read_lock before reading the address, then rcu_read_unlock after
 | |
|  * taking the spinlock within the structure expected at that address.
 | |
|  *
 | |
|  * Note that it is not possible to acquire a lock within a structure
 | |
|  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
 | |
|  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
 | |
|  * are not zeroed before being given to the slab, which means that any
 | |
|  * locks must be initialized after each and every kmem_struct_alloc().
 | |
|  * Alternatively, make the ctor passed to kmem_cache_create() initialize
 | |
|  * the locks at page-allocation time, as is done in __i915_request_ctor(),
 | |
|  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
 | |
|  * to safely acquire those ctor-initialized locks under rcu_read_lock()
 | |
|  * protection.
 | |
|  *
 | |
|  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
 | |
|  */
 | |
| /* Defer freeing slabs to RCU */
 | |
| #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
 | |
| /* Spread some memory over cpuset */
 | |
| #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
 | |
| /* Trace allocations and frees */
 | |
| #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
 | |
| 
 | |
| /* Flag to prevent checks on free */
 | |
| #ifdef CONFIG_DEBUG_OBJECTS
 | |
| # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
 | |
| #else
 | |
| # define SLAB_DEBUG_OBJECTS	0
 | |
| #endif
 | |
| 
 | |
| /* Avoid kmemleak tracing */
 | |
| #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
 | |
| 
 | |
| /* Fault injection mark */
 | |
| #ifdef CONFIG_FAILSLAB
 | |
| # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
 | |
| #else
 | |
| # define SLAB_FAILSLAB		0
 | |
| #endif
 | |
| /* Account to memcg */
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
 | |
| #else
 | |
| # define SLAB_ACCOUNT		0
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KASAN_GENERIC
 | |
| #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
 | |
| #else
 | |
| #define SLAB_KASAN		0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Ignore user specified debugging flags.
 | |
|  * Intended for caches created for self-tests so they have only flags
 | |
|  * specified in the code and other flags are ignored.
 | |
|  */
 | |
| #define SLAB_NO_USER_FLAGS	((slab_flags_t __force)0x10000000U)
 | |
| 
 | |
| #ifdef CONFIG_KFENCE
 | |
| #define SLAB_SKIP_KFENCE	((slab_flags_t __force)0x20000000U)
 | |
| #else
 | |
| #define SLAB_SKIP_KFENCE	0
 | |
| #endif
 | |
| 
 | |
| /* The following flags affect the page allocator grouping pages by mobility */
 | |
| /* Objects are reclaimable */
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
 | |
| #else
 | |
| #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0)
 | |
| #endif
 | |
| #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
 | |
| 
 | |
| /*
 | |
|  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 | |
|  *
 | |
|  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 | |
|  *
 | |
|  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 | |
|  * Both make kfree a no-op.
 | |
|  */
 | |
| #define ZERO_SIZE_PTR ((void *)16)
 | |
| 
 | |
| #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
 | |
| 				(unsigned long)ZERO_SIZE_PTR)
 | |
| 
 | |
| #include <linux/kasan.h>
 | |
| 
 | |
| struct list_lru;
 | |
| struct mem_cgroup;
 | |
| /*
 | |
|  * struct kmem_cache related prototypes
 | |
|  */
 | |
| bool slab_is_available(void);
 | |
| 
 | |
| struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
 | |
| 			unsigned int align, slab_flags_t flags,
 | |
| 			void (*ctor)(void *));
 | |
| struct kmem_cache *kmem_cache_create_usercopy(const char *name,
 | |
| 			unsigned int size, unsigned int align,
 | |
| 			slab_flags_t flags,
 | |
| 			unsigned int useroffset, unsigned int usersize,
 | |
| 			void (*ctor)(void *));
 | |
| void kmem_cache_destroy(struct kmem_cache *s);
 | |
| int kmem_cache_shrink(struct kmem_cache *s);
 | |
| 
 | |
| /*
 | |
|  * Please use this macro to create slab caches. Simply specify the
 | |
|  * name of the structure and maybe some flags that are listed above.
 | |
|  *
 | |
|  * The alignment of the struct determines object alignment. If you
 | |
|  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 | |
|  * then the objects will be properly aligned in SMP configurations.
 | |
|  */
 | |
| #define KMEM_CACHE(__struct, __flags)					\
 | |
| 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
 | |
| 			__alignof__(struct __struct), (__flags), NULL)
 | |
| 
 | |
| /*
 | |
|  * To whitelist a single field for copying to/from usercopy, use this
 | |
|  * macro instead for KMEM_CACHE() above.
 | |
|  */
 | |
| #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
 | |
| 		kmem_cache_create_usercopy(#__struct,			\
 | |
| 			sizeof(struct __struct),			\
 | |
| 			__alignof__(struct __struct), (__flags),	\
 | |
| 			offsetof(struct __struct, __field),		\
 | |
| 			sizeof_field(struct __struct, __field), NULL)
 | |
| 
 | |
| /*
 | |
|  * Common kmalloc functions provided by all allocators
 | |
|  */
 | |
| void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2);
 | |
| void kfree(const void *objp);
 | |
| void kfree_sensitive(const void *objp);
 | |
| size_t __ksize(const void *objp);
 | |
| 
 | |
| /**
 | |
|  * ksize - Report actual allocation size of associated object
 | |
|  *
 | |
|  * @objp: Pointer returned from a prior kmalloc()-family allocation.
 | |
|  *
 | |
|  * This should not be used for writing beyond the originally requested
 | |
|  * allocation size. Either use krealloc() or round up the allocation size
 | |
|  * with kmalloc_size_roundup() prior to allocation. If this is used to
 | |
|  * access beyond the originally requested allocation size, UBSAN_BOUNDS
 | |
|  * and/or FORTIFY_SOURCE may trip, since they only know about the
 | |
|  * originally allocated size via the __alloc_size attribute.
 | |
|  */
 | |
| size_t ksize(const void *objp);
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| bool kmem_valid_obj(void *object);
 | |
| void kmem_dump_obj(void *object);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 | |
|  * alignment larger than the alignment of a 64-bit integer.
 | |
|  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
 | |
|  */
 | |
| #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
 | |
| #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
 | |
| #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
 | |
| #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
 | |
| #else
 | |
| #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 | |
|  * Intended for arches that get misalignment faults even for 64 bit integer
 | |
|  * aligned buffers.
 | |
|  */
 | |
| #ifndef ARCH_SLAB_MINALIGN
 | |
| #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Arches can define this function if they want to decide the minimum slab
 | |
|  * alignment at runtime. The value returned by the function must be a power
 | |
|  * of two and >= ARCH_SLAB_MINALIGN.
 | |
|  */
 | |
| #ifndef arch_slab_minalign
 | |
| static inline unsigned int arch_slab_minalign(void)
 | |
| {
 | |
| 	return ARCH_SLAB_MINALIGN;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
 | |
|  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
 | |
|  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
 | |
|  */
 | |
| #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
 | |
| #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
 | |
| #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
 | |
| 
 | |
| /*
 | |
|  * Kmalloc array related definitions
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SLAB
 | |
| /*
 | |
|  * SLAB and SLUB directly allocates requests fitting in to an order-1 page
 | |
|  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
 | |
|  */
 | |
| #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
 | |
| #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
 | |
| #ifndef KMALLOC_SHIFT_LOW
 | |
| #define KMALLOC_SHIFT_LOW	5
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB
 | |
| #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
 | |
| #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
 | |
| #ifndef KMALLOC_SHIFT_LOW
 | |
| #define KMALLOC_SHIFT_LOW	3
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* Maximum allocatable size */
 | |
| #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
 | |
| /* Maximum size for which we actually use a slab cache */
 | |
| #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
 | |
| /* Maximum order allocatable via the slab allocator */
 | |
| #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * Kmalloc subsystem.
 | |
|  */
 | |
| #ifndef KMALLOC_MIN_SIZE
 | |
| #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This restriction comes from byte sized index implementation.
 | |
|  * Page size is normally 2^12 bytes and, in this case, if we want to use
 | |
|  * byte sized index which can represent 2^8 entries, the size of the object
 | |
|  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 | |
|  * If minimum size of kmalloc is less than 16, we use it as minimum object
 | |
|  * size and give up to use byte sized index.
 | |
|  */
 | |
| #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
 | |
|                                (KMALLOC_MIN_SIZE) : 16)
 | |
| 
 | |
| /*
 | |
|  * Whenever changing this, take care of that kmalloc_type() and
 | |
|  * create_kmalloc_caches() still work as intended.
 | |
|  *
 | |
|  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
 | |
|  * is for accounted but unreclaimable and non-dma objects. All the other
 | |
|  * kmem caches can have both accounted and unaccounted objects.
 | |
|  */
 | |
| enum kmalloc_cache_type {
 | |
| 	KMALLOC_NORMAL = 0,
 | |
| #ifndef CONFIG_ZONE_DMA
 | |
| 	KMALLOC_DMA = KMALLOC_NORMAL,
 | |
| #endif
 | |
| #ifndef CONFIG_MEMCG_KMEM
 | |
| 	KMALLOC_CGROUP = KMALLOC_NORMAL,
 | |
| #endif
 | |
| #ifdef CONFIG_SLUB_TINY
 | |
| 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
 | |
| #else
 | |
| 	KMALLOC_RECLAIM,
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	KMALLOC_DMA,
 | |
| #endif
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 	KMALLOC_CGROUP,
 | |
| #endif
 | |
| 	NR_KMALLOC_TYPES
 | |
| };
 | |
| 
 | |
| extern struct kmem_cache *
 | |
| kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
 | |
| 
 | |
| /*
 | |
|  * Define gfp bits that should not be set for KMALLOC_NORMAL.
 | |
|  */
 | |
| #define KMALLOC_NOT_NORMAL_BITS					\
 | |
| 	(__GFP_RECLAIMABLE |					\
 | |
| 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
 | |
| 	(IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
 | |
| 
 | |
| static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * The most common case is KMALLOC_NORMAL, so test for it
 | |
| 	 * with a single branch for all the relevant flags.
 | |
| 	 */
 | |
| 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
 | |
| 		return KMALLOC_NORMAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * At least one of the flags has to be set. Their priorities in
 | |
| 	 * decreasing order are:
 | |
| 	 *  1) __GFP_DMA
 | |
| 	 *  2) __GFP_RECLAIMABLE
 | |
| 	 *  3) __GFP_ACCOUNT
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
 | |
| 		return KMALLOC_DMA;
 | |
| 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
 | |
| 		return KMALLOC_RECLAIM;
 | |
| 	else
 | |
| 		return KMALLOC_CGROUP;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Figure out which kmalloc slab an allocation of a certain size
 | |
|  * belongs to.
 | |
|  * 0 = zero alloc
 | |
|  * 1 =  65 .. 96 bytes
 | |
|  * 2 = 129 .. 192 bytes
 | |
|  * n = 2^(n-1)+1 .. 2^n
 | |
|  *
 | |
|  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
 | |
|  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
 | |
|  * Callers where !size_is_constant should only be test modules, where runtime
 | |
|  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
 | |
|  */
 | |
| static __always_inline unsigned int __kmalloc_index(size_t size,
 | |
| 						    bool size_is_constant)
 | |
| {
 | |
| 	if (!size)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (size <= KMALLOC_MIN_SIZE)
 | |
| 		return KMALLOC_SHIFT_LOW;
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 | |
| 		return 1;
 | |
| 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 | |
| 		return 2;
 | |
| 	if (size <=          8) return 3;
 | |
| 	if (size <=         16) return 4;
 | |
| 	if (size <=         32) return 5;
 | |
| 	if (size <=         64) return 6;
 | |
| 	if (size <=        128) return 7;
 | |
| 	if (size <=        256) return 8;
 | |
| 	if (size <=        512) return 9;
 | |
| 	if (size <=       1024) return 10;
 | |
| 	if (size <=   2 * 1024) return 11;
 | |
| 	if (size <=   4 * 1024) return 12;
 | |
| 	if (size <=   8 * 1024) return 13;
 | |
| 	if (size <=  16 * 1024) return 14;
 | |
| 	if (size <=  32 * 1024) return 15;
 | |
| 	if (size <=  64 * 1024) return 16;
 | |
| 	if (size <= 128 * 1024) return 17;
 | |
| 	if (size <= 256 * 1024) return 18;
 | |
| 	if (size <= 512 * 1024) return 19;
 | |
| 	if (size <= 1024 * 1024) return 20;
 | |
| 	if (size <=  2 * 1024 * 1024) return 21;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
 | |
| 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	/* Will never be reached. Needed because the compiler may complain */
 | |
| 	return -1;
 | |
| }
 | |
| static_assert(PAGE_SHIFT <= 20);
 | |
| #define kmalloc_index(s) __kmalloc_index(s, true)
 | |
| 
 | |
| void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_alloc - Allocate an object
 | |
|  * @cachep: The cache to allocate from.
 | |
|  * @flags: See kmalloc().
 | |
|  *
 | |
|  * Allocate an object from this cache.
 | |
|  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
 | |
|  *
 | |
|  * Return: pointer to the new object or %NULL in case of error
 | |
|  */
 | |
| void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc;
 | |
| void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
 | |
| 			   gfp_t gfpflags) __assume_slab_alignment __malloc;
 | |
| void kmem_cache_free(struct kmem_cache *s, void *objp);
 | |
| 
 | |
| /*
 | |
|  * Bulk allocation and freeing operations. These are accelerated in an
 | |
|  * allocator specific way to avoid taking locks repeatedly or building
 | |
|  * metadata structures unnecessarily.
 | |
|  *
 | |
|  * Note that interrupts must be enabled when calling these functions.
 | |
|  */
 | |
| void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
 | |
| int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
 | |
| 
 | |
| static __always_inline void kfree_bulk(size_t size, void **p)
 | |
| {
 | |
| 	kmem_cache_free_bulk(NULL, size, p);
 | |
| }
 | |
| 
 | |
| void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
 | |
| 							 __alloc_size(1);
 | |
| void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
 | |
| 									 __malloc;
 | |
| 
 | |
| void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
 | |
| 		    __assume_kmalloc_alignment __alloc_size(3);
 | |
| 
 | |
| void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
 | |
| 			 int node, size_t size) __assume_kmalloc_alignment
 | |
| 						__alloc_size(4);
 | |
| void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment
 | |
| 					      __alloc_size(1);
 | |
| 
 | |
| void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment
 | |
| 							     __alloc_size(1);
 | |
| 
 | |
| /**
 | |
|  * kmalloc - allocate kernel memory
 | |
|  * @size: how many bytes of memory are required.
 | |
|  * @flags: describe the allocation context
 | |
|  *
 | |
|  * kmalloc is the normal method of allocating memory
 | |
|  * for objects smaller than page size in the kernel.
 | |
|  *
 | |
|  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
 | |
|  * bytes. For @size of power of two bytes, the alignment is also guaranteed
 | |
|  * to be at least to the size.
 | |
|  *
 | |
|  * The @flags argument may be one of the GFP flags defined at
 | |
|  * include/linux/gfp_types.h and described at
 | |
|  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
 | |
|  *
 | |
|  * The recommended usage of the @flags is described at
 | |
|  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
 | |
|  *
 | |
|  * Below is a brief outline of the most useful GFP flags
 | |
|  *
 | |
|  * %GFP_KERNEL
 | |
|  *	Allocate normal kernel ram. May sleep.
 | |
|  *
 | |
|  * %GFP_NOWAIT
 | |
|  *	Allocation will not sleep.
 | |
|  *
 | |
|  * %GFP_ATOMIC
 | |
|  *	Allocation will not sleep.  May use emergency pools.
 | |
|  *
 | |
|  * Also it is possible to set different flags by OR'ing
 | |
|  * in one or more of the following additional @flags:
 | |
|  *
 | |
|  * %__GFP_ZERO
 | |
|  *	Zero the allocated memory before returning. Also see kzalloc().
 | |
|  *
 | |
|  * %__GFP_HIGH
 | |
|  *	This allocation has high priority and may use emergency pools.
 | |
|  *
 | |
|  * %__GFP_NOFAIL
 | |
|  *	Indicate that this allocation is in no way allowed to fail
 | |
|  *	(think twice before using).
 | |
|  *
 | |
|  * %__GFP_NORETRY
 | |
|  *	If memory is not immediately available,
 | |
|  *	then give up at once.
 | |
|  *
 | |
|  * %__GFP_NOWARN
 | |
|  *	If allocation fails, don't issue any warnings.
 | |
|  *
 | |
|  * %__GFP_RETRY_MAYFAIL
 | |
|  *	Try really hard to succeed the allocation but fail
 | |
|  *	eventually.
 | |
|  */
 | |
| static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	if (__builtin_constant_p(size) && size) {
 | |
| 		unsigned int index;
 | |
| 
 | |
| 		if (size > KMALLOC_MAX_CACHE_SIZE)
 | |
| 			return kmalloc_large(size, flags);
 | |
| 
 | |
| 		index = kmalloc_index(size);
 | |
| 		return kmalloc_trace(
 | |
| 				kmalloc_caches[kmalloc_type(flags)][index],
 | |
| 				flags, size);
 | |
| 	}
 | |
| 	return __kmalloc(size, flags);
 | |
| }
 | |
| 
 | |
| static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	if (__builtin_constant_p(size) && size) {
 | |
| 		unsigned int index;
 | |
| 
 | |
| 		if (size > KMALLOC_MAX_CACHE_SIZE)
 | |
| 			return kmalloc_large_node(size, flags, node);
 | |
| 
 | |
| 		index = kmalloc_index(size);
 | |
| 		return kmalloc_node_trace(
 | |
| 				kmalloc_caches[kmalloc_type(flags)][index],
 | |
| 				flags, node, size);
 | |
| 	}
 | |
| 	return __kmalloc_node(size, flags, node);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmalloc_array - allocate memory for an array.
 | |
|  * @n: number of elements.
 | |
|  * @size: element size.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  */
 | |
| static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | |
| 		return NULL;
 | |
| 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
 | |
| 		return kmalloc(bytes, flags);
 | |
| 	return __kmalloc(bytes, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * krealloc_array - reallocate memory for an array.
 | |
|  * @p: pointer to the memory chunk to reallocate
 | |
|  * @new_n: new number of elements to alloc
 | |
|  * @new_size: new size of a single member of the array
 | |
|  * @flags: the type of memory to allocate (see kmalloc)
 | |
|  */
 | |
| static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p,
 | |
| 								      size_t new_n,
 | |
| 								      size_t new_size,
 | |
| 								      gfp_t flags)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return krealloc(p, bytes, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kcalloc - allocate memory for an array. The memory is set to zero.
 | |
|  * @n: number of elements.
 | |
|  * @size: element size.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  */
 | |
| static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kmalloc_array(n, size, flags | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
 | |
| 				  unsigned long caller) __alloc_size(1);
 | |
| #define kmalloc_node_track_caller(size, flags, node) \
 | |
| 	__kmalloc_node_track_caller(size, flags, node, \
 | |
| 				    _RET_IP_)
 | |
| 
 | |
| /*
 | |
|  * kmalloc_track_caller is a special version of kmalloc that records the
 | |
|  * calling function of the routine calling it for slab leak tracking instead
 | |
|  * of just the calling function (confusing, eh?).
 | |
|  * It's useful when the call to kmalloc comes from a widely-used standard
 | |
|  * allocator where we care about the real place the memory allocation
 | |
|  * request comes from.
 | |
|  */
 | |
| #define kmalloc_track_caller(size, flags) \
 | |
| 	__kmalloc_node_track_caller(size, flags, \
 | |
| 				    NUMA_NO_NODE, _RET_IP_)
 | |
| 
 | |
| static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
 | |
| 							  int node)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | |
| 		return NULL;
 | |
| 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
 | |
| 		return kmalloc_node(bytes, flags, node);
 | |
| 	return __kmalloc_node(bytes, flags, node);
 | |
| }
 | |
| 
 | |
| static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shortcuts
 | |
|  */
 | |
| static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
 | |
| {
 | |
| 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kzalloc - allocate memory. The memory is set to zero.
 | |
|  * @size: how many bytes of memory are required.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  */
 | |
| static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kmalloc(size, flags | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kzalloc_node - allocate zeroed memory from a particular memory node.
 | |
|  * @size: how many bytes of memory are required.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  * @node: memory node from which to allocate
 | |
|  */
 | |
| static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	return kmalloc_node(size, flags | __GFP_ZERO, node);
 | |
| }
 | |
| 
 | |
| extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
 | |
| static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
 | |
| }
 | |
| static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
 | |
| }
 | |
| static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kvmalloc(size, flags | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return kvmalloc(bytes, flags);
 | |
| }
 | |
| 
 | |
| static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
 | |
| 		      __realloc_size(3);
 | |
| extern void kvfree(const void *addr);
 | |
| extern void kvfree_sensitive(const void *addr, size_t len);
 | |
| 
 | |
| unsigned int kmem_cache_size(struct kmem_cache *s);
 | |
| 
 | |
| /**
 | |
|  * kmalloc_size_roundup - Report allocation bucket size for the given size
 | |
|  *
 | |
|  * @size: Number of bytes to round up from.
 | |
|  *
 | |
|  * This returns the number of bytes that would be available in a kmalloc()
 | |
|  * allocation of @size bytes. For example, a 126 byte request would be
 | |
|  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
 | |
|  * for the general-purpose kmalloc()-based allocations, and is not for the
 | |
|  * pre-sized kmem_cache_alloc()-based allocations.)
 | |
|  *
 | |
|  * Use this to kmalloc() the full bucket size ahead of time instead of using
 | |
|  * ksize() to query the size after an allocation.
 | |
|  */
 | |
| size_t kmalloc_size_roundup(size_t size);
 | |
| 
 | |
| void __init kmem_cache_init_late(void);
 | |
| 
 | |
| #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
 | |
| int slab_prepare_cpu(unsigned int cpu);
 | |
| int slab_dead_cpu(unsigned int cpu);
 | |
| #else
 | |
| #define slab_prepare_cpu	NULL
 | |
| #define slab_dead_cpu		NULL
 | |
| #endif
 | |
| 
 | |
| #endif	/* _LINUX_SLAB_H */
 |