forked from mirrors/linux
		
	 2c4885d24e
			
		
	
	
		2c4885d24e
		
	
	
	
	
		
			
			While this is done for all bitmaps, the original use case in mind was for CPU masks and cpulist_parse() as described below. It seems that a common configuration is to use the 1st couple cores for housekeeping tasks. This tends to leave the remaining ones to form a pool of similarly configured cores to take on the real workload of interest to the user. So on machine A - with 32 cores, it could be 0-3 for "system" and then 4-31 being used in boot args like nohz_full=, or rcu_nocbs= as part of setting up the worker pool of CPUs. But then newer machine B is added, and it has 48 cores, and so while the 0-3 part remains unchanged, the pool setup cpu list becomes 4-47. Multiple deployment becomes easier when we can just simply replace 31 and 47 with "N" and let the system substitute in the actual number at boot; a number that it knows better than we do. Cc: Yury Norov <yury.norov@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Suggested-by: Yury Norov <yury.norov@gmail.com> # move it from CPU code Acked-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
		
			
				
	
	
		
			1321 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1321 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * lib/bitmap.c
 | |
|  * Helper functions for bitmap.h.
 | |
|  */
 | |
| #include <linux/export.h>
 | |
| #include <linux/thread_info.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| 
 | |
| #include "kstrtox.h"
 | |
| 
 | |
| /**
 | |
|  * DOC: bitmap introduction
 | |
|  *
 | |
|  * bitmaps provide an array of bits, implemented using an
 | |
|  * array of unsigned longs.  The number of valid bits in a
 | |
|  * given bitmap does _not_ need to be an exact multiple of
 | |
|  * BITS_PER_LONG.
 | |
|  *
 | |
|  * The possible unused bits in the last, partially used word
 | |
|  * of a bitmap are 'don't care'.  The implementation makes
 | |
|  * no particular effort to keep them zero.  It ensures that
 | |
|  * their value will not affect the results of any operation.
 | |
|  * The bitmap operations that return Boolean (bitmap_empty,
 | |
|  * for example) or scalar (bitmap_weight, for example) results
 | |
|  * carefully filter out these unused bits from impacting their
 | |
|  * results.
 | |
|  *
 | |
|  * The byte ordering of bitmaps is more natural on little
 | |
|  * endian architectures.  See the big-endian headers
 | |
|  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 | |
|  * for the best explanations of this ordering.
 | |
|  */
 | |
| 
 | |
| int __bitmap_equal(const unsigned long *bitmap1,
 | |
| 		const unsigned long *bitmap2, unsigned int bits)
 | |
| {
 | |
| 	unsigned int k, lim = bits/BITS_PER_LONG;
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		if (bitmap1[k] != bitmap2[k])
 | |
| 			return 0;
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 | |
| 			return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_equal);
 | |
| 
 | |
| bool __bitmap_or_equal(const unsigned long *bitmap1,
 | |
| 		       const unsigned long *bitmap2,
 | |
| 		       const unsigned long *bitmap3,
 | |
| 		       unsigned int bits)
 | |
| {
 | |
| 	unsigned int k, lim = bits / BITS_PER_LONG;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	for (k = 0; k < lim; ++k) {
 | |
| 		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	if (!(bits % BITS_PER_LONG))
 | |
| 		return true;
 | |
| 
 | |
| 	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
 | |
| 	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
 | |
| }
 | |
| 
 | |
| void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
 | |
| {
 | |
| 	unsigned int k, lim = BITS_TO_LONGS(bits);
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		dst[k] = ~src[k];
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_complement);
 | |
| 
 | |
| /**
 | |
|  * __bitmap_shift_right - logical right shift of the bits in a bitmap
 | |
|  *   @dst : destination bitmap
 | |
|  *   @src : source bitmap
 | |
|  *   @shift : shift by this many bits
 | |
|  *   @nbits : bitmap size, in bits
 | |
|  *
 | |
|  * Shifting right (dividing) means moving bits in the MS -> LS bit
 | |
|  * direction.  Zeros are fed into the vacated MS positions and the
 | |
|  * LS bits shifted off the bottom are lost.
 | |
|  */
 | |
| void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 | |
| 			unsigned shift, unsigned nbits)
 | |
| {
 | |
| 	unsigned k, lim = BITS_TO_LONGS(nbits);
 | |
| 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 | |
| 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 | |
| 	for (k = 0; off + k < lim; ++k) {
 | |
| 		unsigned long upper, lower;
 | |
| 
 | |
| 		/*
 | |
| 		 * If shift is not word aligned, take lower rem bits of
 | |
| 		 * word above and make them the top rem bits of result.
 | |
| 		 */
 | |
| 		if (!rem || off + k + 1 >= lim)
 | |
| 			upper = 0;
 | |
| 		else {
 | |
| 			upper = src[off + k + 1];
 | |
| 			if (off + k + 1 == lim - 1)
 | |
| 				upper &= mask;
 | |
| 			upper <<= (BITS_PER_LONG - rem);
 | |
| 		}
 | |
| 		lower = src[off + k];
 | |
| 		if (off + k == lim - 1)
 | |
| 			lower &= mask;
 | |
| 		lower >>= rem;
 | |
| 		dst[k] = lower | upper;
 | |
| 	}
 | |
| 	if (off)
 | |
| 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_shift_right);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * __bitmap_shift_left - logical left shift of the bits in a bitmap
 | |
|  *   @dst : destination bitmap
 | |
|  *   @src : source bitmap
 | |
|  *   @shift : shift by this many bits
 | |
|  *   @nbits : bitmap size, in bits
 | |
|  *
 | |
|  * Shifting left (multiplying) means moving bits in the LS -> MS
 | |
|  * direction.  Zeros are fed into the vacated LS bit positions
 | |
|  * and those MS bits shifted off the top are lost.
 | |
|  */
 | |
| 
 | |
| void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 | |
| 			unsigned int shift, unsigned int nbits)
 | |
| {
 | |
| 	int k;
 | |
| 	unsigned int lim = BITS_TO_LONGS(nbits);
 | |
| 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 | |
| 	for (k = lim - off - 1; k >= 0; --k) {
 | |
| 		unsigned long upper, lower;
 | |
| 
 | |
| 		/*
 | |
| 		 * If shift is not word aligned, take upper rem bits of
 | |
| 		 * word below and make them the bottom rem bits of result.
 | |
| 		 */
 | |
| 		if (rem && k > 0)
 | |
| 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
 | |
| 		else
 | |
| 			lower = 0;
 | |
| 		upper = src[k] << rem;
 | |
| 		dst[k + off] = lower | upper;
 | |
| 	}
 | |
| 	if (off)
 | |
| 		memset(dst, 0, off*sizeof(unsigned long));
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_shift_left);
 | |
| 
 | |
| /**
 | |
|  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
 | |
|  * @dst: destination bitmap, might overlap with src
 | |
|  * @src: source bitmap
 | |
|  * @first: start bit of region to be removed
 | |
|  * @cut: number of bits to remove
 | |
|  * @nbits: bitmap size, in bits
 | |
|  *
 | |
|  * Set the n-th bit of @dst iff the n-th bit of @src is set and
 | |
|  * n is less than @first, or the m-th bit of @src is set for any
 | |
|  * m such that @first <= n < nbits, and m = n + @cut.
 | |
|  *
 | |
|  * In pictures, example for a big-endian 32-bit architecture:
 | |
|  *
 | |
|  * The @src bitmap is::
 | |
|  *
 | |
|  *   31                                   63
 | |
|  *   |                                    |
 | |
|  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
 | |
|  *                   |  |              |                                    |
 | |
|  *                  16  14             0                                   32
 | |
|  *
 | |
|  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
 | |
|  *
 | |
|  *   31                                   63
 | |
|  *   |                                    |
 | |
|  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
 | |
|  *                      |              |                                    |
 | |
|  *                      14 (bit 17     0                                   32
 | |
|  *                          from @src)
 | |
|  *
 | |
|  * Note that @dst and @src might overlap partially or entirely.
 | |
|  *
 | |
|  * This is implemented in the obvious way, with a shift and carry
 | |
|  * step for each moved bit. Optimisation is left as an exercise
 | |
|  * for the compiler.
 | |
|  */
 | |
| void bitmap_cut(unsigned long *dst, const unsigned long *src,
 | |
| 		unsigned int first, unsigned int cut, unsigned int nbits)
 | |
| {
 | |
| 	unsigned int len = BITS_TO_LONGS(nbits);
 | |
| 	unsigned long keep = 0, carry;
 | |
| 	int i;
 | |
| 
 | |
| 	if (first % BITS_PER_LONG) {
 | |
| 		keep = src[first / BITS_PER_LONG] &
 | |
| 		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
 | |
| 	}
 | |
| 
 | |
| 	memmove(dst, src, len * sizeof(*dst));
 | |
| 
 | |
| 	while (cut--) {
 | |
| 		for (i = first / BITS_PER_LONG; i < len; i++) {
 | |
| 			if (i < len - 1)
 | |
| 				carry = dst[i + 1] & 1UL;
 | |
| 			else
 | |
| 				carry = 0;
 | |
| 
 | |
| 			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
 | |
| 	dst[first / BITS_PER_LONG] |= keep;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_cut);
 | |
| 
 | |
| int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, unsigned int bits)
 | |
| {
 | |
| 	unsigned int k;
 | |
| 	unsigned int lim = bits/BITS_PER_LONG;
 | |
| 	unsigned long result = 0;
 | |
| 
 | |
| 	for (k = 0; k < lim; k++)
 | |
| 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 | |
| 			   BITMAP_LAST_WORD_MASK(bits));
 | |
| 	return result != 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_and);
 | |
| 
 | |
| void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, unsigned int bits)
 | |
| {
 | |
| 	unsigned int k;
 | |
| 	unsigned int nr = BITS_TO_LONGS(bits);
 | |
| 
 | |
| 	for (k = 0; k < nr; k++)
 | |
| 		dst[k] = bitmap1[k] | bitmap2[k];
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_or);
 | |
| 
 | |
| void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, unsigned int bits)
 | |
| {
 | |
| 	unsigned int k;
 | |
| 	unsigned int nr = BITS_TO_LONGS(bits);
 | |
| 
 | |
| 	for (k = 0; k < nr; k++)
 | |
| 		dst[k] = bitmap1[k] ^ bitmap2[k];
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_xor);
 | |
| 
 | |
| int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, unsigned int bits)
 | |
| {
 | |
| 	unsigned int k;
 | |
| 	unsigned int lim = bits/BITS_PER_LONG;
 | |
| 	unsigned long result = 0;
 | |
| 
 | |
| 	for (k = 0; k < lim; k++)
 | |
| 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 | |
| 			   BITMAP_LAST_WORD_MASK(bits));
 | |
| 	return result != 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_andnot);
 | |
| 
 | |
| void __bitmap_replace(unsigned long *dst,
 | |
| 		      const unsigned long *old, const unsigned long *new,
 | |
| 		      const unsigned long *mask, unsigned int nbits)
 | |
| {
 | |
| 	unsigned int k;
 | |
| 	unsigned int nr = BITS_TO_LONGS(nbits);
 | |
| 
 | |
| 	for (k = 0; k < nr; k++)
 | |
| 		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_replace);
 | |
| 
 | |
| int __bitmap_intersects(const unsigned long *bitmap1,
 | |
| 			const unsigned long *bitmap2, unsigned int bits)
 | |
| {
 | |
| 	unsigned int k, lim = bits/BITS_PER_LONG;
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		if (bitmap1[k] & bitmap2[k])
 | |
| 			return 1;
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 | |
| 			return 1;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_intersects);
 | |
| 
 | |
| int __bitmap_subset(const unsigned long *bitmap1,
 | |
| 		    const unsigned long *bitmap2, unsigned int bits)
 | |
| {
 | |
| 	unsigned int k, lim = bits/BITS_PER_LONG;
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		if (bitmap1[k] & ~bitmap2[k])
 | |
| 			return 0;
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_subset);
 | |
| 
 | |
| int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 | |
| {
 | |
| 	unsigned int k, lim = bits/BITS_PER_LONG;
 | |
| 	int w = 0;
 | |
| 
 | |
| 	for (k = 0; k < lim; k++)
 | |
| 		w += hweight_long(bitmap[k]);
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 | |
| 
 | |
| 	return w;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_weight);
 | |
| 
 | |
| void __bitmap_set(unsigned long *map, unsigned int start, int len)
 | |
| {
 | |
| 	unsigned long *p = map + BIT_WORD(start);
 | |
| 	const unsigned int size = start + len;
 | |
| 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 | |
| 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 | |
| 
 | |
| 	while (len - bits_to_set >= 0) {
 | |
| 		*p |= mask_to_set;
 | |
| 		len -= bits_to_set;
 | |
| 		bits_to_set = BITS_PER_LONG;
 | |
| 		mask_to_set = ~0UL;
 | |
| 		p++;
 | |
| 	}
 | |
| 	if (len) {
 | |
| 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 | |
| 		*p |= mask_to_set;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_set);
 | |
| 
 | |
| void __bitmap_clear(unsigned long *map, unsigned int start, int len)
 | |
| {
 | |
| 	unsigned long *p = map + BIT_WORD(start);
 | |
| 	const unsigned int size = start + len;
 | |
| 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 | |
| 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 | |
| 
 | |
| 	while (len - bits_to_clear >= 0) {
 | |
| 		*p &= ~mask_to_clear;
 | |
| 		len -= bits_to_clear;
 | |
| 		bits_to_clear = BITS_PER_LONG;
 | |
| 		mask_to_clear = ~0UL;
 | |
| 		p++;
 | |
| 	}
 | |
| 	if (len) {
 | |
| 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 | |
| 		*p &= ~mask_to_clear;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_clear);
 | |
| 
 | |
| /**
 | |
|  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 | |
|  * @map: The address to base the search on
 | |
|  * @size: The bitmap size in bits
 | |
|  * @start: The bitnumber to start searching at
 | |
|  * @nr: The number of zeroed bits we're looking for
 | |
|  * @align_mask: Alignment mask for zero area
 | |
|  * @align_offset: Alignment offset for zero area.
 | |
|  *
 | |
|  * The @align_mask should be one less than a power of 2; the effect is that
 | |
|  * the bit offset of all zero areas this function finds plus @align_offset
 | |
|  * is multiple of that power of 2.
 | |
|  */
 | |
| unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 | |
| 					     unsigned long size,
 | |
| 					     unsigned long start,
 | |
| 					     unsigned int nr,
 | |
| 					     unsigned long align_mask,
 | |
| 					     unsigned long align_offset)
 | |
| {
 | |
| 	unsigned long index, end, i;
 | |
| again:
 | |
| 	index = find_next_zero_bit(map, size, start);
 | |
| 
 | |
| 	/* Align allocation */
 | |
| 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 | |
| 
 | |
| 	end = index + nr;
 | |
| 	if (end > size)
 | |
| 		return end;
 | |
| 	i = find_next_bit(map, end, index);
 | |
| 	if (i < end) {
 | |
| 		start = i + 1;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return index;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 | |
| 
 | |
| /*
 | |
|  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 | |
|  * second version by Paul Jackson, third by Joe Korty.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 | |
|  *
 | |
|  * @ubuf: pointer to user buffer containing string.
 | |
|  * @ulen: buffer size in bytes.  If string is smaller than this
 | |
|  *    then it must be terminated with a \0.
 | |
|  * @maskp: pointer to bitmap array that will contain result.
 | |
|  * @nmaskbits: size of bitmap, in bits.
 | |
|  */
 | |
| int bitmap_parse_user(const char __user *ubuf,
 | |
| 			unsigned int ulen, unsigned long *maskp,
 | |
| 			int nmaskbits)
 | |
| {
 | |
| 	char *buf;
 | |
| 	int ret;
 | |
| 
 | |
| 	buf = memdup_user_nul(ubuf, ulen);
 | |
| 	if (IS_ERR(buf))
 | |
| 		return PTR_ERR(buf);
 | |
| 
 | |
| 	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
 | |
| 
 | |
| 	kfree(buf);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_parse_user);
 | |
| 
 | |
| /**
 | |
|  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 | |
|  * @list: indicates whether the bitmap must be list
 | |
|  * @buf: page aligned buffer into which string is placed
 | |
|  * @maskp: pointer to bitmap to convert
 | |
|  * @nmaskbits: size of bitmap, in bits
 | |
|  *
 | |
|  * Output format is a comma-separated list of decimal numbers and
 | |
|  * ranges if list is specified or hex digits grouped into comma-separated
 | |
|  * sets of 8 digits/set. Returns the number of characters written to buf.
 | |
|  *
 | |
|  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
 | |
|  * area and that sufficient storage remains at @buf to accommodate the
 | |
|  * bitmap_print_to_pagebuf() output. Returns the number of characters
 | |
|  * actually printed to @buf, excluding terminating '\0'.
 | |
|  */
 | |
| int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 | |
| 			    int nmaskbits)
 | |
| {
 | |
| 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
 | |
| 
 | |
| 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 | |
| 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 | |
| 
 | |
| /*
 | |
|  * Region 9-38:4/10 describes the following bitmap structure:
 | |
|  * 0	   9  12    18			38	     N
 | |
|  * .........****......****......****..................
 | |
|  *	    ^  ^     ^			 ^	     ^
 | |
|  *      start  off   group_len	       end	 nbits
 | |
|  */
 | |
| struct region {
 | |
| 	unsigned int start;
 | |
| 	unsigned int off;
 | |
| 	unsigned int group_len;
 | |
| 	unsigned int end;
 | |
| 	unsigned int nbits;
 | |
| };
 | |
| 
 | |
| static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
 | |
| {
 | |
| 	unsigned int start;
 | |
| 
 | |
| 	for (start = r->start; start <= r->end; start += r->group_len)
 | |
| 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
 | |
| }
 | |
| 
 | |
| static int bitmap_check_region(const struct region *r)
 | |
| {
 | |
| 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (r->end >= r->nbits)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const char *bitmap_getnum(const char *str, unsigned int *num,
 | |
| 				 unsigned int lastbit)
 | |
| {
 | |
| 	unsigned long long n;
 | |
| 	unsigned int len;
 | |
| 
 | |
| 	if (str[0] == 'N') {
 | |
| 		*num = lastbit;
 | |
| 		return str + 1;
 | |
| 	}
 | |
| 
 | |
| 	len = _parse_integer(str, 10, &n);
 | |
| 	if (!len)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
 | |
| 		return ERR_PTR(-EOVERFLOW);
 | |
| 
 | |
| 	*num = n;
 | |
| 	return str + len;
 | |
| }
 | |
| 
 | |
| static inline bool end_of_str(char c)
 | |
| {
 | |
| 	return c == '\0' || c == '\n';
 | |
| }
 | |
| 
 | |
| static inline bool __end_of_region(char c)
 | |
| {
 | |
| 	return isspace(c) || c == ',';
 | |
| }
 | |
| 
 | |
| static inline bool end_of_region(char c)
 | |
| {
 | |
| 	return __end_of_region(c) || end_of_str(c);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The format allows commas and whitespaces at the beginning
 | |
|  * of the region.
 | |
|  */
 | |
| static const char *bitmap_find_region(const char *str)
 | |
| {
 | |
| 	while (__end_of_region(*str))
 | |
| 		str++;
 | |
| 
 | |
| 	return end_of_str(*str) ? NULL : str;
 | |
| }
 | |
| 
 | |
| static const char *bitmap_find_region_reverse(const char *start, const char *end)
 | |
| {
 | |
| 	while (start <= end && __end_of_region(*end))
 | |
| 		end--;
 | |
| 
 | |
| 	return end;
 | |
| }
 | |
| 
 | |
| static const char *bitmap_parse_region(const char *str, struct region *r)
 | |
| {
 | |
| 	unsigned int lastbit = r->nbits - 1;
 | |
| 
 | |
| 	str = bitmap_getnum(str, &r->start, lastbit);
 | |
| 	if (IS_ERR(str))
 | |
| 		return str;
 | |
| 
 | |
| 	if (end_of_region(*str))
 | |
| 		goto no_end;
 | |
| 
 | |
| 	if (*str != '-')
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	str = bitmap_getnum(str + 1, &r->end, lastbit);
 | |
| 	if (IS_ERR(str))
 | |
| 		return str;
 | |
| 
 | |
| 	if (end_of_region(*str))
 | |
| 		goto no_pattern;
 | |
| 
 | |
| 	if (*str != ':')
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	str = bitmap_getnum(str + 1, &r->off, lastbit);
 | |
| 	if (IS_ERR(str))
 | |
| 		return str;
 | |
| 
 | |
| 	if (*str != '/')
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	return bitmap_getnum(str + 1, &r->group_len, lastbit);
 | |
| 
 | |
| no_end:
 | |
| 	r->end = r->start;
 | |
| no_pattern:
 | |
| 	r->off = r->end + 1;
 | |
| 	r->group_len = r->end + 1;
 | |
| 
 | |
| 	return end_of_str(*str) ? NULL : str;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_parselist - convert list format ASCII string to bitmap
 | |
|  * @buf: read user string from this buffer; must be terminated
 | |
|  *    with a \0 or \n.
 | |
|  * @maskp: write resulting mask here
 | |
|  * @nmaskbits: number of bits in mask to be written
 | |
|  *
 | |
|  * Input format is a comma-separated list of decimal numbers and
 | |
|  * ranges.  Consecutively set bits are shown as two hyphen-separated
 | |
|  * decimal numbers, the smallest and largest bit numbers set in
 | |
|  * the range.
 | |
|  * Optionally each range can be postfixed to denote that only parts of it
 | |
|  * should be set. The range will divided to groups of specific size.
 | |
|  * From each group will be used only defined amount of bits.
 | |
|  * Syntax: range:used_size/group_size
 | |
|  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 | |
|  * The value 'N' can be used as a dynamically substituted token for the
 | |
|  * maximum allowed value; i.e (nmaskbits - 1).  Keep in mind that it is
 | |
|  * dynamic, so if system changes cause the bitmap width to change, such
 | |
|  * as more cores in a CPU list, then any ranges using N will also change.
 | |
|  *
 | |
|  * Returns: 0 on success, -errno on invalid input strings. Error values:
 | |
|  *
 | |
|  *   - ``-EINVAL``: wrong region format
 | |
|  *   - ``-EINVAL``: invalid character in string
 | |
|  *   - ``-ERANGE``: bit number specified too large for mask
 | |
|  *   - ``-EOVERFLOW``: integer overflow in the input parameters
 | |
|  */
 | |
| int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
 | |
| {
 | |
| 	struct region r;
 | |
| 	long ret;
 | |
| 
 | |
| 	r.nbits = nmaskbits;
 | |
| 	bitmap_zero(maskp, r.nbits);
 | |
| 
 | |
| 	while (buf) {
 | |
| 		buf = bitmap_find_region(buf);
 | |
| 		if (buf == NULL)
 | |
| 			return 0;
 | |
| 
 | |
| 		buf = bitmap_parse_region(buf, &r);
 | |
| 		if (IS_ERR(buf))
 | |
| 			return PTR_ERR(buf);
 | |
| 
 | |
| 		ret = bitmap_check_region(&r);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		bitmap_set_region(&r, maskp);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_parselist);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * bitmap_parselist_user()
 | |
|  *
 | |
|  * @ubuf: pointer to user buffer containing string.
 | |
|  * @ulen: buffer size in bytes.  If string is smaller than this
 | |
|  *    then it must be terminated with a \0.
 | |
|  * @maskp: pointer to bitmap array that will contain result.
 | |
|  * @nmaskbits: size of bitmap, in bits.
 | |
|  *
 | |
|  * Wrapper for bitmap_parselist(), providing it with user buffer.
 | |
|  */
 | |
| int bitmap_parselist_user(const char __user *ubuf,
 | |
| 			unsigned int ulen, unsigned long *maskp,
 | |
| 			int nmaskbits)
 | |
| {
 | |
| 	char *buf;
 | |
| 	int ret;
 | |
| 
 | |
| 	buf = memdup_user_nul(ubuf, ulen);
 | |
| 	if (IS_ERR(buf))
 | |
| 		return PTR_ERR(buf);
 | |
| 
 | |
| 	ret = bitmap_parselist(buf, maskp, nmaskbits);
 | |
| 
 | |
| 	kfree(buf);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_parselist_user);
 | |
| 
 | |
| static const char *bitmap_get_x32_reverse(const char *start,
 | |
| 					const char *end, u32 *num)
 | |
| {
 | |
| 	u32 ret = 0;
 | |
| 	int c, i;
 | |
| 
 | |
| 	for (i = 0; i < 32; i += 4) {
 | |
| 		c = hex_to_bin(*end--);
 | |
| 		if (c < 0)
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 		ret |= c << i;
 | |
| 
 | |
| 		if (start > end || __end_of_region(*end))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (hex_to_bin(*end--) >= 0)
 | |
| 		return ERR_PTR(-EOVERFLOW);
 | |
| out:
 | |
| 	*num = ret;
 | |
| 	return end;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_parse - convert an ASCII hex string into a bitmap.
 | |
|  * @start: pointer to buffer containing string.
 | |
|  * @buflen: buffer size in bytes.  If string is smaller than this
 | |
|  *    then it must be terminated with a \0 or \n. In that case,
 | |
|  *    UINT_MAX may be provided instead of string length.
 | |
|  * @maskp: pointer to bitmap array that will contain result.
 | |
|  * @nmaskbits: size of bitmap, in bits.
 | |
|  *
 | |
|  * Commas group hex digits into chunks.  Each chunk defines exactly 32
 | |
|  * bits of the resultant bitmask.  No chunk may specify a value larger
 | |
|  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 | |
|  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 | |
|  * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
 | |
|  * Leading, embedded and trailing whitespace accepted.
 | |
|  */
 | |
| int bitmap_parse(const char *start, unsigned int buflen,
 | |
| 		unsigned long *maskp, int nmaskbits)
 | |
| {
 | |
| 	const char *end = strnchrnul(start, buflen, '\n') - 1;
 | |
| 	int chunks = BITS_TO_U32(nmaskbits);
 | |
| 	u32 *bitmap = (u32 *)maskp;
 | |
| 	int unset_bit;
 | |
| 	int chunk;
 | |
| 
 | |
| 	for (chunk = 0; ; chunk++) {
 | |
| 		end = bitmap_find_region_reverse(start, end);
 | |
| 		if (start > end)
 | |
| 			break;
 | |
| 
 | |
| 		if (!chunks--)
 | |
| 			return -EOVERFLOW;
 | |
| 
 | |
| #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
 | |
| 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
 | |
| #else
 | |
| 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
 | |
| #endif
 | |
| 		if (IS_ERR(end))
 | |
| 			return PTR_ERR(end);
 | |
| 	}
 | |
| 
 | |
| 	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
 | |
| 	if (unset_bit < nmaskbits) {
 | |
| 		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_parse);
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /**
 | |
|  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 | |
|  *	@buf: pointer to a bitmap
 | |
|  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
 | |
|  *	@nbits: number of valid bit positions in @buf
 | |
|  *
 | |
|  * Map the bit at position @pos in @buf (of length @nbits) to the
 | |
|  * ordinal of which set bit it is.  If it is not set or if @pos
 | |
|  * is not a valid bit position, map to -1.
 | |
|  *
 | |
|  * If for example, just bits 4 through 7 are set in @buf, then @pos
 | |
|  * values 4 through 7 will get mapped to 0 through 3, respectively,
 | |
|  * and other @pos values will get mapped to -1.  When @pos value 7
 | |
|  * gets mapped to (returns) @ord value 3 in this example, that means
 | |
|  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 | |
|  *
 | |
|  * The bit positions 0 through @bits are valid positions in @buf.
 | |
|  */
 | |
| static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 | |
| {
 | |
| 	if (pos >= nbits || !test_bit(pos, buf))
 | |
| 		return -1;
 | |
| 
 | |
| 	return __bitmap_weight(buf, pos);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 | |
|  *	@buf: pointer to bitmap
 | |
|  *	@ord: ordinal bit position (n-th set bit, n >= 0)
 | |
|  *	@nbits: number of valid bit positions in @buf
 | |
|  *
 | |
|  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 | |
|  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 | |
|  * >= weight(buf), returns @nbits.
 | |
|  *
 | |
|  * If for example, just bits 4 through 7 are set in @buf, then @ord
 | |
|  * values 0 through 3 will get mapped to 4 through 7, respectively,
 | |
|  * and all other @ord values returns @nbits.  When @ord value 3
 | |
|  * gets mapped to (returns) @pos value 7 in this example, that means
 | |
|  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 | |
|  *
 | |
|  * The bit positions 0 through @nbits-1 are valid positions in @buf.
 | |
|  */
 | |
| unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
 | |
| {
 | |
| 	unsigned int pos;
 | |
| 
 | |
| 	for (pos = find_first_bit(buf, nbits);
 | |
| 	     pos < nbits && ord;
 | |
| 	     pos = find_next_bit(buf, nbits, pos + 1))
 | |
| 		ord--;
 | |
| 
 | |
| 	return pos;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 | |
|  *	@dst: remapped result
 | |
|  *	@src: subset to be remapped
 | |
|  *	@old: defines domain of map
 | |
|  *	@new: defines range of map
 | |
|  *	@nbits: number of bits in each of these bitmaps
 | |
|  *
 | |
|  * Let @old and @new define a mapping of bit positions, such that
 | |
|  * whatever position is held by the n-th set bit in @old is mapped
 | |
|  * to the n-th set bit in @new.  In the more general case, allowing
 | |
|  * for the possibility that the weight 'w' of @new is less than the
 | |
|  * weight of @old, map the position of the n-th set bit in @old to
 | |
|  * the position of the m-th set bit in @new, where m == n % w.
 | |
|  *
 | |
|  * If either of the @old and @new bitmaps are empty, or if @src and
 | |
|  * @dst point to the same location, then this routine copies @src
 | |
|  * to @dst.
 | |
|  *
 | |
|  * The positions of unset bits in @old are mapped to themselves
 | |
|  * (the identify map).
 | |
|  *
 | |
|  * Apply the above specified mapping to @src, placing the result in
 | |
|  * @dst, clearing any bits previously set in @dst.
 | |
|  *
 | |
|  * For example, lets say that @old has bits 4 through 7 set, and
 | |
|  * @new has bits 12 through 15 set.  This defines the mapping of bit
 | |
|  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 | |
|  * bit positions unchanged.  So if say @src comes into this routine
 | |
|  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 | |
|  * 13 and 15 set.
 | |
|  */
 | |
| void bitmap_remap(unsigned long *dst, const unsigned long *src,
 | |
| 		const unsigned long *old, const unsigned long *new,
 | |
| 		unsigned int nbits)
 | |
| {
 | |
| 	unsigned int oldbit, w;
 | |
| 
 | |
| 	if (dst == src)		/* following doesn't handle inplace remaps */
 | |
| 		return;
 | |
| 	bitmap_zero(dst, nbits);
 | |
| 
 | |
| 	w = bitmap_weight(new, nbits);
 | |
| 	for_each_set_bit(oldbit, src, nbits) {
 | |
| 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
 | |
| 
 | |
| 		if (n < 0 || w == 0)
 | |
| 			set_bit(oldbit, dst);	/* identity map */
 | |
| 		else
 | |
| 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 | |
|  *	@oldbit: bit position to be mapped
 | |
|  *	@old: defines domain of map
 | |
|  *	@new: defines range of map
 | |
|  *	@bits: number of bits in each of these bitmaps
 | |
|  *
 | |
|  * Let @old and @new define a mapping of bit positions, such that
 | |
|  * whatever position is held by the n-th set bit in @old is mapped
 | |
|  * to the n-th set bit in @new.  In the more general case, allowing
 | |
|  * for the possibility that the weight 'w' of @new is less than the
 | |
|  * weight of @old, map the position of the n-th set bit in @old to
 | |
|  * the position of the m-th set bit in @new, where m == n % w.
 | |
|  *
 | |
|  * The positions of unset bits in @old are mapped to themselves
 | |
|  * (the identify map).
 | |
|  *
 | |
|  * Apply the above specified mapping to bit position @oldbit, returning
 | |
|  * the new bit position.
 | |
|  *
 | |
|  * For example, lets say that @old has bits 4 through 7 set, and
 | |
|  * @new has bits 12 through 15 set.  This defines the mapping of bit
 | |
|  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 | |
|  * bit positions unchanged.  So if say @oldbit is 5, then this routine
 | |
|  * returns 13.
 | |
|  */
 | |
| int bitmap_bitremap(int oldbit, const unsigned long *old,
 | |
| 				const unsigned long *new, int bits)
 | |
| {
 | |
| 	int w = bitmap_weight(new, bits);
 | |
| 	int n = bitmap_pos_to_ord(old, oldbit, bits);
 | |
| 	if (n < 0 || w == 0)
 | |
| 		return oldbit;
 | |
| 	else
 | |
| 		return bitmap_ord_to_pos(new, n % w, bits);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_onto - translate one bitmap relative to another
 | |
|  *	@dst: resulting translated bitmap
 | |
|  * 	@orig: original untranslated bitmap
 | |
|  * 	@relmap: bitmap relative to which translated
 | |
|  *	@bits: number of bits in each of these bitmaps
 | |
|  *
 | |
|  * Set the n-th bit of @dst iff there exists some m such that the
 | |
|  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 | |
|  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 | |
|  * (If you understood the previous sentence the first time your
 | |
|  * read it, you're overqualified for your current job.)
 | |
|  *
 | |
|  * In other words, @orig is mapped onto (surjectively) @dst,
 | |
|  * using the map { <n, m> | the n-th bit of @relmap is the
 | |
|  * m-th set bit of @relmap }.
 | |
|  *
 | |
|  * Any set bits in @orig above bit number W, where W is the
 | |
|  * weight of (number of set bits in) @relmap are mapped nowhere.
 | |
|  * In particular, if for all bits m set in @orig, m >= W, then
 | |
|  * @dst will end up empty.  In situations where the possibility
 | |
|  * of such an empty result is not desired, one way to avoid it is
 | |
|  * to use the bitmap_fold() operator, below, to first fold the
 | |
|  * @orig bitmap over itself so that all its set bits x are in the
 | |
|  * range 0 <= x < W.  The bitmap_fold() operator does this by
 | |
|  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 | |
|  *
 | |
|  * Example [1] for bitmap_onto():
 | |
|  *  Let's say @relmap has bits 30-39 set, and @orig has bits
 | |
|  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 | |
|  *  @dst will have bits 31, 33, 35, 37 and 39 set.
 | |
|  *
 | |
|  *  When bit 0 is set in @orig, it means turn on the bit in
 | |
|  *  @dst corresponding to whatever is the first bit (if any)
 | |
|  *  that is turned on in @relmap.  Since bit 0 was off in the
 | |
|  *  above example, we leave off that bit (bit 30) in @dst.
 | |
|  *
 | |
|  *  When bit 1 is set in @orig (as in the above example), it
 | |
|  *  means turn on the bit in @dst corresponding to whatever
 | |
|  *  is the second bit that is turned on in @relmap.  The second
 | |
|  *  bit in @relmap that was turned on in the above example was
 | |
|  *  bit 31, so we turned on bit 31 in @dst.
 | |
|  *
 | |
|  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 | |
|  *  because they were the 4th, 6th, 8th and 10th set bits
 | |
|  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 | |
|  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 | |
|  *
 | |
|  *  When bit 11 is set in @orig, it means turn on the bit in
 | |
|  *  @dst corresponding to whatever is the twelfth bit that is
 | |
|  *  turned on in @relmap.  In the above example, there were
 | |
|  *  only ten bits turned on in @relmap (30..39), so that bit
 | |
|  *  11 was set in @orig had no affect on @dst.
 | |
|  *
 | |
|  * Example [2] for bitmap_fold() + bitmap_onto():
 | |
|  *  Let's say @relmap has these ten bits set::
 | |
|  *
 | |
|  *		40 41 42 43 45 48 53 61 74 95
 | |
|  *
 | |
|  *  (for the curious, that's 40 plus the first ten terms of the
 | |
|  *  Fibonacci sequence.)
 | |
|  *
 | |
|  *  Further lets say we use the following code, invoking
 | |
|  *  bitmap_fold() then bitmap_onto, as suggested above to
 | |
|  *  avoid the possibility of an empty @dst result::
 | |
|  *
 | |
|  *	unsigned long *tmp;	// a temporary bitmap's bits
 | |
|  *
 | |
|  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 | |
|  *	bitmap_onto(dst, tmp, relmap, bits);
 | |
|  *
 | |
|  *  Then this table shows what various values of @dst would be, for
 | |
|  *  various @orig's.  I list the zero-based positions of each set bit.
 | |
|  *  The tmp column shows the intermediate result, as computed by
 | |
|  *  using bitmap_fold() to fold the @orig bitmap modulo ten
 | |
|  *  (the weight of @relmap):
 | |
|  *
 | |
|  *      =============== ============== =================
 | |
|  *      @orig           tmp            @dst
 | |
|  *      0                0             40
 | |
|  *      1                1             41
 | |
|  *      9                9             95
 | |
|  *      10               0             40 [#f1]_
 | |
|  *      1 3 5 7          1 3 5 7       41 43 48 61
 | |
|  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 | |
|  *      0 9 18 27        0 9 8 7       40 61 74 95
 | |
|  *      0 10 20 30       0             40
 | |
|  *      0 11 22 33       0 1 2 3       40 41 42 43
 | |
|  *      0 12 24 36       0 2 4 6       40 42 45 53
 | |
|  *      78 102 211       1 2 8         41 42 74 [#f1]_
 | |
|  *      =============== ============== =================
 | |
|  *
 | |
|  * .. [#f1]
 | |
|  *
 | |
|  *     For these marked lines, if we hadn't first done bitmap_fold()
 | |
|  *     into tmp, then the @dst result would have been empty.
 | |
|  *
 | |
|  * If either of @orig or @relmap is empty (no set bits), then @dst
 | |
|  * will be returned empty.
 | |
|  *
 | |
|  * If (as explained above) the only set bits in @orig are in positions
 | |
|  * m where m >= W, (where W is the weight of @relmap) then @dst will
 | |
|  * once again be returned empty.
 | |
|  *
 | |
|  * All bits in @dst not set by the above rule are cleared.
 | |
|  */
 | |
| void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 | |
| 			const unsigned long *relmap, unsigned int bits)
 | |
| {
 | |
| 	unsigned int n, m;	/* same meaning as in above comment */
 | |
| 
 | |
| 	if (dst == orig)	/* following doesn't handle inplace mappings */
 | |
| 		return;
 | |
| 	bitmap_zero(dst, bits);
 | |
| 
 | |
| 	/*
 | |
| 	 * The following code is a more efficient, but less
 | |
| 	 * obvious, equivalent to the loop:
 | |
| 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 | |
| 	 *		n = bitmap_ord_to_pos(orig, m, bits);
 | |
| 	 *		if (test_bit(m, orig))
 | |
| 	 *			set_bit(n, dst);
 | |
| 	 *	}
 | |
| 	 */
 | |
| 
 | |
| 	m = 0;
 | |
| 	for_each_set_bit(n, relmap, bits) {
 | |
| 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
 | |
| 		if (test_bit(m, orig))
 | |
| 			set_bit(n, dst);
 | |
| 		m++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 | |
|  *	@dst: resulting smaller bitmap
 | |
|  *	@orig: original larger bitmap
 | |
|  *	@sz: specified size
 | |
|  *	@nbits: number of bits in each of these bitmaps
 | |
|  *
 | |
|  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 | |
|  * Clear all other bits in @dst.  See further the comment and
 | |
|  * Example [2] for bitmap_onto() for why and how to use this.
 | |
|  */
 | |
| void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 | |
| 			unsigned int sz, unsigned int nbits)
 | |
| {
 | |
| 	unsigned int oldbit;
 | |
| 
 | |
| 	if (dst == orig)	/* following doesn't handle inplace mappings */
 | |
| 		return;
 | |
| 	bitmap_zero(dst, nbits);
 | |
| 
 | |
| 	for_each_set_bit(oldbit, orig, nbits)
 | |
| 		set_bit(oldbit % sz, dst);
 | |
| }
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * Common code for bitmap_*_region() routines.
 | |
|  *	bitmap: array of unsigned longs corresponding to the bitmap
 | |
|  *	pos: the beginning of the region
 | |
|  *	order: region size (log base 2 of number of bits)
 | |
|  *	reg_op: operation(s) to perform on that region of bitmap
 | |
|  *
 | |
|  * Can set, verify and/or release a region of bits in a bitmap,
 | |
|  * depending on which combination of REG_OP_* flag bits is set.
 | |
|  *
 | |
|  * A region of a bitmap is a sequence of bits in the bitmap, of
 | |
|  * some size '1 << order' (a power of two), aligned to that same
 | |
|  * '1 << order' power of two.
 | |
|  *
 | |
|  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 | |
|  * Returns 0 in all other cases and reg_ops.
 | |
|  */
 | |
| 
 | |
| enum {
 | |
| 	REG_OP_ISFREE,		/* true if region is all zero bits */
 | |
| 	REG_OP_ALLOC,		/* set all bits in region */
 | |
| 	REG_OP_RELEASE,		/* clear all bits in region */
 | |
| };
 | |
| 
 | |
| static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
 | |
| {
 | |
| 	int nbits_reg;		/* number of bits in region */
 | |
| 	int index;		/* index first long of region in bitmap */
 | |
| 	int offset;		/* bit offset region in bitmap[index] */
 | |
| 	int nlongs_reg;		/* num longs spanned by region in bitmap */
 | |
| 	int nbitsinlong;	/* num bits of region in each spanned long */
 | |
| 	unsigned long mask;	/* bitmask for one long of region */
 | |
| 	int i;			/* scans bitmap by longs */
 | |
| 	int ret = 0;		/* return value */
 | |
| 
 | |
| 	/*
 | |
| 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
 | |
| 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
 | |
| 	 */
 | |
| 	nbits_reg = 1 << order;
 | |
| 	index = pos / BITS_PER_LONG;
 | |
| 	offset = pos - (index * BITS_PER_LONG);
 | |
| 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
 | |
| 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
 | |
| 	 * overflows if nbitsinlong == BITS_PER_LONG.
 | |
| 	 */
 | |
| 	mask = (1UL << (nbitsinlong - 1));
 | |
| 	mask += mask - 1;
 | |
| 	mask <<= offset;
 | |
| 
 | |
| 	switch (reg_op) {
 | |
| 	case REG_OP_ISFREE:
 | |
| 		for (i = 0; i < nlongs_reg; i++) {
 | |
| 			if (bitmap[index + i] & mask)
 | |
| 				goto done;
 | |
| 		}
 | |
| 		ret = 1;	/* all bits in region free (zero) */
 | |
| 		break;
 | |
| 
 | |
| 	case REG_OP_ALLOC:
 | |
| 		for (i = 0; i < nlongs_reg; i++)
 | |
| 			bitmap[index + i] |= mask;
 | |
| 		break;
 | |
| 
 | |
| 	case REG_OP_RELEASE:
 | |
| 		for (i = 0; i < nlongs_reg; i++)
 | |
| 			bitmap[index + i] &= ~mask;
 | |
| 		break;
 | |
| 	}
 | |
| done:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_find_free_region - find a contiguous aligned mem region
 | |
|  *	@bitmap: array of unsigned longs corresponding to the bitmap
 | |
|  *	@bits: number of bits in the bitmap
 | |
|  *	@order: region size (log base 2 of number of bits) to find
 | |
|  *
 | |
|  * Find a region of free (zero) bits in a @bitmap of @bits bits and
 | |
|  * allocate them (set them to one).  Only consider regions of length
 | |
|  * a power (@order) of two, aligned to that power of two, which
 | |
|  * makes the search algorithm much faster.
 | |
|  *
 | |
|  * Return the bit offset in bitmap of the allocated region,
 | |
|  * or -errno on failure.
 | |
|  */
 | |
| int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
 | |
| {
 | |
| 	unsigned int pos, end;		/* scans bitmap by regions of size order */
 | |
| 
 | |
| 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
 | |
| 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 | |
| 			continue;
 | |
| 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
 | |
| 		return pos;
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_find_free_region);
 | |
| 
 | |
| /**
 | |
|  * bitmap_release_region - release allocated bitmap region
 | |
|  *	@bitmap: array of unsigned longs corresponding to the bitmap
 | |
|  *	@pos: beginning of bit region to release
 | |
|  *	@order: region size (log base 2 of number of bits) to release
 | |
|  *
 | |
|  * This is the complement to __bitmap_find_free_region() and releases
 | |
|  * the found region (by clearing it in the bitmap).
 | |
|  *
 | |
|  * No return value.
 | |
|  */
 | |
| void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
 | |
| {
 | |
| 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_release_region);
 | |
| 
 | |
| /**
 | |
|  * bitmap_allocate_region - allocate bitmap region
 | |
|  *	@bitmap: array of unsigned longs corresponding to the bitmap
 | |
|  *	@pos: beginning of bit region to allocate
 | |
|  *	@order: region size (log base 2 of number of bits) to allocate
 | |
|  *
 | |
|  * Allocate (set bits in) a specified region of a bitmap.
 | |
|  *
 | |
|  * Return 0 on success, or %-EBUSY if specified region wasn't
 | |
|  * free (not all bits were zero).
 | |
|  */
 | |
| int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
 | |
| {
 | |
| 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 | |
| 		return -EBUSY;
 | |
| 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_allocate_region);
 | |
| 
 | |
| /**
 | |
|  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
 | |
|  * @dst:   destination buffer
 | |
|  * @src:   bitmap to copy
 | |
|  * @nbits: number of bits in the bitmap
 | |
|  *
 | |
|  * Require nbits % BITS_PER_LONG == 0.
 | |
|  */
 | |
| #ifdef __BIG_ENDIAN
 | |
| void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
 | |
| 		if (BITS_PER_LONG == 64)
 | |
| 			dst[i] = cpu_to_le64(src[i]);
 | |
| 		else
 | |
| 			dst[i] = cpu_to_le32(src[i]);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_copy_le);
 | |
| #endif
 | |
| 
 | |
| unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
 | |
| {
 | |
| 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
 | |
| 			     flags);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_alloc);
 | |
| 
 | |
| unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
 | |
| {
 | |
| 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_zalloc);
 | |
| 
 | |
| void bitmap_free(const unsigned long *bitmap)
 | |
| {
 | |
| 	kfree(bitmap);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_free);
 | |
| 
 | |
| #if BITS_PER_LONG == 64
 | |
| /**
 | |
|  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
 | |
|  *	@bitmap: array of unsigned longs, the destination bitmap
 | |
|  *	@buf: array of u32 (in host byte order), the source bitmap
 | |
|  *	@nbits: number of bits in @bitmap
 | |
|  */
 | |
| void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
 | |
| {
 | |
| 	unsigned int i, halfwords;
 | |
| 
 | |
| 	halfwords = DIV_ROUND_UP(nbits, 32);
 | |
| 	for (i = 0; i < halfwords; i++) {
 | |
| 		bitmap[i/2] = (unsigned long) buf[i];
 | |
| 		if (++i < halfwords)
 | |
| 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear tail bits in last word beyond nbits. */
 | |
| 	if (nbits % BITS_PER_LONG)
 | |
| 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_from_arr32);
 | |
| 
 | |
| /**
 | |
|  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
 | |
|  *	@buf: array of u32 (in host byte order), the dest bitmap
 | |
|  *	@bitmap: array of unsigned longs, the source bitmap
 | |
|  *	@nbits: number of bits in @bitmap
 | |
|  */
 | |
| void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
 | |
| {
 | |
| 	unsigned int i, halfwords;
 | |
| 
 | |
| 	halfwords = DIV_ROUND_UP(nbits, 32);
 | |
| 	for (i = 0; i < halfwords; i++) {
 | |
| 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
 | |
| 		if (++i < halfwords)
 | |
| 			buf[i] = (u32) (bitmap[i/2] >> 32);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear tail bits in last element of array beyond nbits. */
 | |
| 	if (nbits % BITS_PER_LONG)
 | |
| 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_to_arr32);
 | |
| 
 | |
| #endif
 |