forked from mirrors/linux
		
	Rationale: Reduces attack surface on kernel devs opening the links for MITM as HTTPS traffic is much harder to manipulate. Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Coly Li <colyli@suse.de> [crc64.c] Link: http://lkml.kernel.org/r/20200726112154.16510-1-grandmaster@al2klimov.de Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			630 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			630 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
  Red Black Trees
 | 
						|
  (C) 1999  Andrea Arcangeli <andrea@suse.de>
 | 
						|
  (C) 2002  David Woodhouse <dwmw2@infradead.org>
 | 
						|
  (C) 2012  Michel Lespinasse <walken@google.com>
 | 
						|
 | 
						|
 | 
						|
  linux/lib/rbtree.c
 | 
						|
*/
 | 
						|
 | 
						|
#include <linux/rbtree_augmented.h>
 | 
						|
#include <linux/export.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * red-black trees properties:  https://en.wikipedia.org/wiki/Rbtree
 | 
						|
 *
 | 
						|
 *  1) A node is either red or black
 | 
						|
 *  2) The root is black
 | 
						|
 *  3) All leaves (NULL) are black
 | 
						|
 *  4) Both children of every red node are black
 | 
						|
 *  5) Every simple path from root to leaves contains the same number
 | 
						|
 *     of black nodes.
 | 
						|
 *
 | 
						|
 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 | 
						|
 *  consecutive red nodes in a path and every red node is therefore followed by
 | 
						|
 *  a black. So if B is the number of black nodes on every simple path (as per
 | 
						|
 *  5), then the longest possible path due to 4 is 2B.
 | 
						|
 *
 | 
						|
 *  We shall indicate color with case, where black nodes are uppercase and red
 | 
						|
 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 | 
						|
 *  parentheses and have some accompanying text comment.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Notes on lockless lookups:
 | 
						|
 *
 | 
						|
 * All stores to the tree structure (rb_left and rb_right) must be done using
 | 
						|
 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
 | 
						|
 * tree structure as seen in program order.
 | 
						|
 *
 | 
						|
 * These two requirements will allow lockless iteration of the tree -- not
 | 
						|
 * correct iteration mind you, tree rotations are not atomic so a lookup might
 | 
						|
 * miss entire subtrees.
 | 
						|
 *
 | 
						|
 * But they do guarantee that any such traversal will only see valid elements
 | 
						|
 * and that it will indeed complete -- does not get stuck in a loop.
 | 
						|
 *
 | 
						|
 * It also guarantees that if the lookup returns an element it is the 'correct'
 | 
						|
 * one. But not returning an element does _NOT_ mean it's not present.
 | 
						|
 *
 | 
						|
 * NOTE:
 | 
						|
 *
 | 
						|
 * Stores to __rb_parent_color are not important for simple lookups so those
 | 
						|
 * are left undone as of now. Nor did I check for loops involving parent
 | 
						|
 * pointers.
 | 
						|
 */
 | 
						|
 | 
						|
static inline void rb_set_black(struct rb_node *rb)
 | 
						|
{
 | 
						|
	rb->__rb_parent_color |= RB_BLACK;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rb_node *rb_red_parent(struct rb_node *red)
 | 
						|
{
 | 
						|
	return (struct rb_node *)red->__rb_parent_color;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for rotations:
 | 
						|
 * - old's parent and color get assigned to new
 | 
						|
 * - old gets assigned new as a parent and 'color' as a color.
 | 
						|
 */
 | 
						|
static inline void
 | 
						|
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
 | 
						|
			struct rb_root *root, int color)
 | 
						|
{
 | 
						|
	struct rb_node *parent = rb_parent(old);
 | 
						|
	new->__rb_parent_color = old->__rb_parent_color;
 | 
						|
	rb_set_parent_color(old, new, color);
 | 
						|
	__rb_change_child(old, new, parent, root);
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline void
 | 
						|
__rb_insert(struct rb_node *node, struct rb_root *root,
 | 
						|
	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 | 
						|
{
 | 
						|
	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
 | 
						|
 | 
						|
	while (true) {
 | 
						|
		/*
 | 
						|
		 * Loop invariant: node is red.
 | 
						|
		 */
 | 
						|
		if (unlikely(!parent)) {
 | 
						|
			/*
 | 
						|
			 * The inserted node is root. Either this is the
 | 
						|
			 * first node, or we recursed at Case 1 below and
 | 
						|
			 * are no longer violating 4).
 | 
						|
			 */
 | 
						|
			rb_set_parent_color(node, NULL, RB_BLACK);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there is a black parent, we are done.
 | 
						|
		 * Otherwise, take some corrective action as,
 | 
						|
		 * per 4), we don't want a red root or two
 | 
						|
		 * consecutive red nodes.
 | 
						|
		 */
 | 
						|
		if(rb_is_black(parent))
 | 
						|
			break;
 | 
						|
 | 
						|
		gparent = rb_red_parent(parent);
 | 
						|
 | 
						|
		tmp = gparent->rb_right;
 | 
						|
		if (parent != tmp) {	/* parent == gparent->rb_left */
 | 
						|
			if (tmp && rb_is_red(tmp)) {
 | 
						|
				/*
 | 
						|
				 * Case 1 - node's uncle is red (color flips).
 | 
						|
				 *
 | 
						|
				 *       G            g
 | 
						|
				 *      / \          / \
 | 
						|
				 *     p   u  -->   P   U
 | 
						|
				 *    /            /
 | 
						|
				 *   n            n
 | 
						|
				 *
 | 
						|
				 * However, since g's parent might be red, and
 | 
						|
				 * 4) does not allow this, we need to recurse
 | 
						|
				 * at g.
 | 
						|
				 */
 | 
						|
				rb_set_parent_color(tmp, gparent, RB_BLACK);
 | 
						|
				rb_set_parent_color(parent, gparent, RB_BLACK);
 | 
						|
				node = gparent;
 | 
						|
				parent = rb_parent(node);
 | 
						|
				rb_set_parent_color(node, parent, RB_RED);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			tmp = parent->rb_right;
 | 
						|
			if (node == tmp) {
 | 
						|
				/*
 | 
						|
				 * Case 2 - node's uncle is black and node is
 | 
						|
				 * the parent's right child (left rotate at parent).
 | 
						|
				 *
 | 
						|
				 *      G             G
 | 
						|
				 *     / \           / \
 | 
						|
				 *    p   U  -->    n   U
 | 
						|
				 *     \           /
 | 
						|
				 *      n         p
 | 
						|
				 *
 | 
						|
				 * This still leaves us in violation of 4), the
 | 
						|
				 * continuation into Case 3 will fix that.
 | 
						|
				 */
 | 
						|
				tmp = node->rb_left;
 | 
						|
				WRITE_ONCE(parent->rb_right, tmp);
 | 
						|
				WRITE_ONCE(node->rb_left, parent);
 | 
						|
				if (tmp)
 | 
						|
					rb_set_parent_color(tmp, parent,
 | 
						|
							    RB_BLACK);
 | 
						|
				rb_set_parent_color(parent, node, RB_RED);
 | 
						|
				augment_rotate(parent, node);
 | 
						|
				parent = node;
 | 
						|
				tmp = node->rb_right;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Case 3 - node's uncle is black and node is
 | 
						|
			 * the parent's left child (right rotate at gparent).
 | 
						|
			 *
 | 
						|
			 *        G           P
 | 
						|
			 *       / \         / \
 | 
						|
			 *      p   U  -->  n   g
 | 
						|
			 *     /                 \
 | 
						|
			 *    n                   U
 | 
						|
			 */
 | 
						|
			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
 | 
						|
			WRITE_ONCE(parent->rb_right, gparent);
 | 
						|
			if (tmp)
 | 
						|
				rb_set_parent_color(tmp, gparent, RB_BLACK);
 | 
						|
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
 | 
						|
			augment_rotate(gparent, parent);
 | 
						|
			break;
 | 
						|
		} else {
 | 
						|
			tmp = gparent->rb_left;
 | 
						|
			if (tmp && rb_is_red(tmp)) {
 | 
						|
				/* Case 1 - color flips */
 | 
						|
				rb_set_parent_color(tmp, gparent, RB_BLACK);
 | 
						|
				rb_set_parent_color(parent, gparent, RB_BLACK);
 | 
						|
				node = gparent;
 | 
						|
				parent = rb_parent(node);
 | 
						|
				rb_set_parent_color(node, parent, RB_RED);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			tmp = parent->rb_left;
 | 
						|
			if (node == tmp) {
 | 
						|
				/* Case 2 - right rotate at parent */
 | 
						|
				tmp = node->rb_right;
 | 
						|
				WRITE_ONCE(parent->rb_left, tmp);
 | 
						|
				WRITE_ONCE(node->rb_right, parent);
 | 
						|
				if (tmp)
 | 
						|
					rb_set_parent_color(tmp, parent,
 | 
						|
							    RB_BLACK);
 | 
						|
				rb_set_parent_color(parent, node, RB_RED);
 | 
						|
				augment_rotate(parent, node);
 | 
						|
				parent = node;
 | 
						|
				tmp = node->rb_left;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Case 3 - left rotate at gparent */
 | 
						|
			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
 | 
						|
			WRITE_ONCE(parent->rb_left, gparent);
 | 
						|
			if (tmp)
 | 
						|
				rb_set_parent_color(tmp, gparent, RB_BLACK);
 | 
						|
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
 | 
						|
			augment_rotate(gparent, parent);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Inline version for rb_erase() use - we want to be able to inline
 | 
						|
 * and eliminate the dummy_rotate callback there
 | 
						|
 */
 | 
						|
static __always_inline void
 | 
						|
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
 | 
						|
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 | 
						|
{
 | 
						|
	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
 | 
						|
 | 
						|
	while (true) {
 | 
						|
		/*
 | 
						|
		 * Loop invariants:
 | 
						|
		 * - node is black (or NULL on first iteration)
 | 
						|
		 * - node is not the root (parent is not NULL)
 | 
						|
		 * - All leaf paths going through parent and node have a
 | 
						|
		 *   black node count that is 1 lower than other leaf paths.
 | 
						|
		 */
 | 
						|
		sibling = parent->rb_right;
 | 
						|
		if (node != sibling) {	/* node == parent->rb_left */
 | 
						|
			if (rb_is_red(sibling)) {
 | 
						|
				/*
 | 
						|
				 * Case 1 - left rotate at parent
 | 
						|
				 *
 | 
						|
				 *     P               S
 | 
						|
				 *    / \             / \
 | 
						|
				 *   N   s    -->    p   Sr
 | 
						|
				 *      / \         / \
 | 
						|
				 *     Sl  Sr      N   Sl
 | 
						|
				 */
 | 
						|
				tmp1 = sibling->rb_left;
 | 
						|
				WRITE_ONCE(parent->rb_right, tmp1);
 | 
						|
				WRITE_ONCE(sibling->rb_left, parent);
 | 
						|
				rb_set_parent_color(tmp1, parent, RB_BLACK);
 | 
						|
				__rb_rotate_set_parents(parent, sibling, root,
 | 
						|
							RB_RED);
 | 
						|
				augment_rotate(parent, sibling);
 | 
						|
				sibling = tmp1;
 | 
						|
			}
 | 
						|
			tmp1 = sibling->rb_right;
 | 
						|
			if (!tmp1 || rb_is_black(tmp1)) {
 | 
						|
				tmp2 = sibling->rb_left;
 | 
						|
				if (!tmp2 || rb_is_black(tmp2)) {
 | 
						|
					/*
 | 
						|
					 * Case 2 - sibling color flip
 | 
						|
					 * (p could be either color here)
 | 
						|
					 *
 | 
						|
					 *    (p)           (p)
 | 
						|
					 *    / \           / \
 | 
						|
					 *   N   S    -->  N   s
 | 
						|
					 *      / \           / \
 | 
						|
					 *     Sl  Sr        Sl  Sr
 | 
						|
					 *
 | 
						|
					 * This leaves us violating 5) which
 | 
						|
					 * can be fixed by flipping p to black
 | 
						|
					 * if it was red, or by recursing at p.
 | 
						|
					 * p is red when coming from Case 1.
 | 
						|
					 */
 | 
						|
					rb_set_parent_color(sibling, parent,
 | 
						|
							    RB_RED);
 | 
						|
					if (rb_is_red(parent))
 | 
						|
						rb_set_black(parent);
 | 
						|
					else {
 | 
						|
						node = parent;
 | 
						|
						parent = rb_parent(node);
 | 
						|
						if (parent)
 | 
						|
							continue;
 | 
						|
					}
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				/*
 | 
						|
				 * Case 3 - right rotate at sibling
 | 
						|
				 * (p could be either color here)
 | 
						|
				 *
 | 
						|
				 *   (p)           (p)
 | 
						|
				 *   / \           / \
 | 
						|
				 *  N   S    -->  N   sl
 | 
						|
				 *     / \             \
 | 
						|
				 *    sl  Sr            S
 | 
						|
				 *                       \
 | 
						|
				 *                        Sr
 | 
						|
				 *
 | 
						|
				 * Note: p might be red, and then both
 | 
						|
				 * p and sl are red after rotation(which
 | 
						|
				 * breaks property 4). This is fixed in
 | 
						|
				 * Case 4 (in __rb_rotate_set_parents()
 | 
						|
				 *         which set sl the color of p
 | 
						|
				 *         and set p RB_BLACK)
 | 
						|
				 *
 | 
						|
				 *   (p)            (sl)
 | 
						|
				 *   / \            /  \
 | 
						|
				 *  N   sl   -->   P    S
 | 
						|
				 *       \        /      \
 | 
						|
				 *        S      N        Sr
 | 
						|
				 *         \
 | 
						|
				 *          Sr
 | 
						|
				 */
 | 
						|
				tmp1 = tmp2->rb_right;
 | 
						|
				WRITE_ONCE(sibling->rb_left, tmp1);
 | 
						|
				WRITE_ONCE(tmp2->rb_right, sibling);
 | 
						|
				WRITE_ONCE(parent->rb_right, tmp2);
 | 
						|
				if (tmp1)
 | 
						|
					rb_set_parent_color(tmp1, sibling,
 | 
						|
							    RB_BLACK);
 | 
						|
				augment_rotate(sibling, tmp2);
 | 
						|
				tmp1 = sibling;
 | 
						|
				sibling = tmp2;
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * Case 4 - left rotate at parent + color flips
 | 
						|
			 * (p and sl could be either color here.
 | 
						|
			 *  After rotation, p becomes black, s acquires
 | 
						|
			 *  p's color, and sl keeps its color)
 | 
						|
			 *
 | 
						|
			 *      (p)             (s)
 | 
						|
			 *      / \             / \
 | 
						|
			 *     N   S     -->   P   Sr
 | 
						|
			 *        / \         / \
 | 
						|
			 *      (sl) sr      N  (sl)
 | 
						|
			 */
 | 
						|
			tmp2 = sibling->rb_left;
 | 
						|
			WRITE_ONCE(parent->rb_right, tmp2);
 | 
						|
			WRITE_ONCE(sibling->rb_left, parent);
 | 
						|
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
 | 
						|
			if (tmp2)
 | 
						|
				rb_set_parent(tmp2, parent);
 | 
						|
			__rb_rotate_set_parents(parent, sibling, root,
 | 
						|
						RB_BLACK);
 | 
						|
			augment_rotate(parent, sibling);
 | 
						|
			break;
 | 
						|
		} else {
 | 
						|
			sibling = parent->rb_left;
 | 
						|
			if (rb_is_red(sibling)) {
 | 
						|
				/* Case 1 - right rotate at parent */
 | 
						|
				tmp1 = sibling->rb_right;
 | 
						|
				WRITE_ONCE(parent->rb_left, tmp1);
 | 
						|
				WRITE_ONCE(sibling->rb_right, parent);
 | 
						|
				rb_set_parent_color(tmp1, parent, RB_BLACK);
 | 
						|
				__rb_rotate_set_parents(parent, sibling, root,
 | 
						|
							RB_RED);
 | 
						|
				augment_rotate(parent, sibling);
 | 
						|
				sibling = tmp1;
 | 
						|
			}
 | 
						|
			tmp1 = sibling->rb_left;
 | 
						|
			if (!tmp1 || rb_is_black(tmp1)) {
 | 
						|
				tmp2 = sibling->rb_right;
 | 
						|
				if (!tmp2 || rb_is_black(tmp2)) {
 | 
						|
					/* Case 2 - sibling color flip */
 | 
						|
					rb_set_parent_color(sibling, parent,
 | 
						|
							    RB_RED);
 | 
						|
					if (rb_is_red(parent))
 | 
						|
						rb_set_black(parent);
 | 
						|
					else {
 | 
						|
						node = parent;
 | 
						|
						parent = rb_parent(node);
 | 
						|
						if (parent)
 | 
						|
							continue;
 | 
						|
					}
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				/* Case 3 - left rotate at sibling */
 | 
						|
				tmp1 = tmp2->rb_left;
 | 
						|
				WRITE_ONCE(sibling->rb_right, tmp1);
 | 
						|
				WRITE_ONCE(tmp2->rb_left, sibling);
 | 
						|
				WRITE_ONCE(parent->rb_left, tmp2);
 | 
						|
				if (tmp1)
 | 
						|
					rb_set_parent_color(tmp1, sibling,
 | 
						|
							    RB_BLACK);
 | 
						|
				augment_rotate(sibling, tmp2);
 | 
						|
				tmp1 = sibling;
 | 
						|
				sibling = tmp2;
 | 
						|
			}
 | 
						|
			/* Case 4 - right rotate at parent + color flips */
 | 
						|
			tmp2 = sibling->rb_right;
 | 
						|
			WRITE_ONCE(parent->rb_left, tmp2);
 | 
						|
			WRITE_ONCE(sibling->rb_right, parent);
 | 
						|
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
 | 
						|
			if (tmp2)
 | 
						|
				rb_set_parent(tmp2, parent);
 | 
						|
			__rb_rotate_set_parents(parent, sibling, root,
 | 
						|
						RB_BLACK);
 | 
						|
			augment_rotate(parent, sibling);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Non-inline version for rb_erase_augmented() use */
 | 
						|
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
 | 
						|
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 | 
						|
{
 | 
						|
	____rb_erase_color(parent, root, augment_rotate);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__rb_erase_color);
 | 
						|
 | 
						|
/*
 | 
						|
 * Non-augmented rbtree manipulation functions.
 | 
						|
 *
 | 
						|
 * We use dummy augmented callbacks here, and have the compiler optimize them
 | 
						|
 * out of the rb_insert_color() and rb_erase() function definitions.
 | 
						|
 */
 | 
						|
 | 
						|
static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
 | 
						|
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
 | 
						|
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
 | 
						|
 | 
						|
static const struct rb_augment_callbacks dummy_callbacks = {
 | 
						|
	.propagate = dummy_propagate,
 | 
						|
	.copy = dummy_copy,
 | 
						|
	.rotate = dummy_rotate
 | 
						|
};
 | 
						|
 | 
						|
void rb_insert_color(struct rb_node *node, struct rb_root *root)
 | 
						|
{
 | 
						|
	__rb_insert(node, root, dummy_rotate);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_insert_color);
 | 
						|
 | 
						|
void rb_erase(struct rb_node *node, struct rb_root *root)
 | 
						|
{
 | 
						|
	struct rb_node *rebalance;
 | 
						|
	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
 | 
						|
	if (rebalance)
 | 
						|
		____rb_erase_color(rebalance, root, dummy_rotate);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_erase);
 | 
						|
 | 
						|
/*
 | 
						|
 * Augmented rbtree manipulation functions.
 | 
						|
 *
 | 
						|
 * This instantiates the same __always_inline functions as in the non-augmented
 | 
						|
 * case, but this time with user-defined callbacks.
 | 
						|
 */
 | 
						|
 | 
						|
void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
 | 
						|
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 | 
						|
{
 | 
						|
	__rb_insert(node, root, augment_rotate);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__rb_insert_augmented);
 | 
						|
 | 
						|
/*
 | 
						|
 * This function returns the first node (in sort order) of the tree.
 | 
						|
 */
 | 
						|
struct rb_node *rb_first(const struct rb_root *root)
 | 
						|
{
 | 
						|
	struct rb_node	*n;
 | 
						|
 | 
						|
	n = root->rb_node;
 | 
						|
	if (!n)
 | 
						|
		return NULL;
 | 
						|
	while (n->rb_left)
 | 
						|
		n = n->rb_left;
 | 
						|
	return n;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_first);
 | 
						|
 | 
						|
struct rb_node *rb_last(const struct rb_root *root)
 | 
						|
{
 | 
						|
	struct rb_node	*n;
 | 
						|
 | 
						|
	n = root->rb_node;
 | 
						|
	if (!n)
 | 
						|
		return NULL;
 | 
						|
	while (n->rb_right)
 | 
						|
		n = n->rb_right;
 | 
						|
	return n;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_last);
 | 
						|
 | 
						|
struct rb_node *rb_next(const struct rb_node *node)
 | 
						|
{
 | 
						|
	struct rb_node *parent;
 | 
						|
 | 
						|
	if (RB_EMPTY_NODE(node))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have a right-hand child, go down and then left as far
 | 
						|
	 * as we can.
 | 
						|
	 */
 | 
						|
	if (node->rb_right) {
 | 
						|
		node = node->rb_right;
 | 
						|
		while (node->rb_left)
 | 
						|
			node = node->rb_left;
 | 
						|
		return (struct rb_node *)node;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No right-hand children. Everything down and left is smaller than us,
 | 
						|
	 * so any 'next' node must be in the general direction of our parent.
 | 
						|
	 * Go up the tree; any time the ancestor is a right-hand child of its
 | 
						|
	 * parent, keep going up. First time it's a left-hand child of its
 | 
						|
	 * parent, said parent is our 'next' node.
 | 
						|
	 */
 | 
						|
	while ((parent = rb_parent(node)) && node == parent->rb_right)
 | 
						|
		node = parent;
 | 
						|
 | 
						|
	return parent;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_next);
 | 
						|
 | 
						|
struct rb_node *rb_prev(const struct rb_node *node)
 | 
						|
{
 | 
						|
	struct rb_node *parent;
 | 
						|
 | 
						|
	if (RB_EMPTY_NODE(node))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have a left-hand child, go down and then right as far
 | 
						|
	 * as we can.
 | 
						|
	 */
 | 
						|
	if (node->rb_left) {
 | 
						|
		node = node->rb_left;
 | 
						|
		while (node->rb_right)
 | 
						|
			node = node->rb_right;
 | 
						|
		return (struct rb_node *)node;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No left-hand children. Go up till we find an ancestor which
 | 
						|
	 * is a right-hand child of its parent.
 | 
						|
	 */
 | 
						|
	while ((parent = rb_parent(node)) && node == parent->rb_left)
 | 
						|
		node = parent;
 | 
						|
 | 
						|
	return parent;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_prev);
 | 
						|
 | 
						|
void rb_replace_node(struct rb_node *victim, struct rb_node *new,
 | 
						|
		     struct rb_root *root)
 | 
						|
{
 | 
						|
	struct rb_node *parent = rb_parent(victim);
 | 
						|
 | 
						|
	/* Copy the pointers/colour from the victim to the replacement */
 | 
						|
	*new = *victim;
 | 
						|
 | 
						|
	/* Set the surrounding nodes to point to the replacement */
 | 
						|
	if (victim->rb_left)
 | 
						|
		rb_set_parent(victim->rb_left, new);
 | 
						|
	if (victim->rb_right)
 | 
						|
		rb_set_parent(victim->rb_right, new);
 | 
						|
	__rb_change_child(victim, new, parent, root);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_replace_node);
 | 
						|
 | 
						|
void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
 | 
						|
			 struct rb_root *root)
 | 
						|
{
 | 
						|
	struct rb_node *parent = rb_parent(victim);
 | 
						|
 | 
						|
	/* Copy the pointers/colour from the victim to the replacement */
 | 
						|
	*new = *victim;
 | 
						|
 | 
						|
	/* Set the surrounding nodes to point to the replacement */
 | 
						|
	if (victim->rb_left)
 | 
						|
		rb_set_parent(victim->rb_left, new);
 | 
						|
	if (victim->rb_right)
 | 
						|
		rb_set_parent(victim->rb_right, new);
 | 
						|
 | 
						|
	/* Set the parent's pointer to the new node last after an RCU barrier
 | 
						|
	 * so that the pointers onwards are seen to be set correctly when doing
 | 
						|
	 * an RCU walk over the tree.
 | 
						|
	 */
 | 
						|
	__rb_change_child_rcu(victim, new, parent, root);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_replace_node_rcu);
 | 
						|
 | 
						|
static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
 | 
						|
{
 | 
						|
	for (;;) {
 | 
						|
		if (node->rb_left)
 | 
						|
			node = node->rb_left;
 | 
						|
		else if (node->rb_right)
 | 
						|
			node = node->rb_right;
 | 
						|
		else
 | 
						|
			return (struct rb_node *)node;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct rb_node *rb_next_postorder(const struct rb_node *node)
 | 
						|
{
 | 
						|
	const struct rb_node *parent;
 | 
						|
	if (!node)
 | 
						|
		return NULL;
 | 
						|
	parent = rb_parent(node);
 | 
						|
 | 
						|
	/* If we're sitting on node, we've already seen our children */
 | 
						|
	if (parent && node == parent->rb_left && parent->rb_right) {
 | 
						|
		/* If we are the parent's left node, go to the parent's right
 | 
						|
		 * node then all the way down to the left */
 | 
						|
		return rb_left_deepest_node(parent->rb_right);
 | 
						|
	} else
 | 
						|
		/* Otherwise we are the parent's right node, and the parent
 | 
						|
		 * should be next */
 | 
						|
		return (struct rb_node *)parent;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_next_postorder);
 | 
						|
 | 
						|
struct rb_node *rb_first_postorder(const struct rb_root *root)
 | 
						|
{
 | 
						|
	if (!root->rb_node)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return rb_left_deepest_node(root->rb_node);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(rb_first_postorder);
 |