forked from mirrors/linux
		
	 2a598d0b28
			
		
	
	
		2a598d0b28
		
	
	
	
	
		
			
			As lib/mpi is mostly used by crypto code, move it under lib/crypto so that patches touching it get directed to the right mailing list. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Reviewed-by: Mimi Zohar <zohar@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			517 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			517 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /* mpihelp-div.c  -  MPI helper functions
 | |
|  *	Copyright (C) 1994, 1996 Free Software Foundation, Inc.
 | |
|  *	Copyright (C) 1998, 1999 Free Software Foundation, Inc.
 | |
|  *
 | |
|  * This file is part of GnuPG.
 | |
|  *
 | |
|  * Note: This code is heavily based on the GNU MP Library.
 | |
|  *	 Actually it's the same code with only minor changes in the
 | |
|  *	 way the data is stored; this is to support the abstraction
 | |
|  *	 of an optional secure memory allocation which may be used
 | |
|  *	 to avoid revealing of sensitive data due to paging etc.
 | |
|  *	 The GNU MP Library itself is published under the LGPL;
 | |
|  *	 however I decided to publish this code under the plain GPL.
 | |
|  */
 | |
| 
 | |
| #include "mpi-internal.h"
 | |
| #include "longlong.h"
 | |
| 
 | |
| #ifndef UMUL_TIME
 | |
| #define UMUL_TIME 1
 | |
| #endif
 | |
| #ifndef UDIV_TIME
 | |
| #define UDIV_TIME UMUL_TIME
 | |
| #endif
 | |
| 
 | |
| 
 | |
| mpi_limb_t
 | |
| mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
 | |
| 			mpi_limb_t divisor_limb)
 | |
| {
 | |
| 	mpi_size_t i;
 | |
| 	mpi_limb_t n1, n0, r;
 | |
| 	mpi_limb_t dummy __maybe_unused;
 | |
| 
 | |
| 	/* Botch: Should this be handled at all?  Rely on callers?	*/
 | |
| 	if (!dividend_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If multiplication is much faster than division, and the
 | |
| 	 * dividend is large, pre-invert the divisor, and use
 | |
| 	 * only multiplications in the inner loop.
 | |
| 	 *
 | |
| 	 * This test should be read:
 | |
| 	 *	 Does it ever help to use udiv_qrnnd_preinv?
 | |
| 	 *	   && Does what we save compensate for the inversion overhead?
 | |
| 	 */
 | |
| 	if (UDIV_TIME > (2 * UMUL_TIME + 6)
 | |
| 			&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
 | |
| 		int normalization_steps;
 | |
| 
 | |
| 		normalization_steps = count_leading_zeros(divisor_limb);
 | |
| 		if (normalization_steps) {
 | |
| 			mpi_limb_t divisor_limb_inverted;
 | |
| 
 | |
| 			divisor_limb <<= normalization_steps;
 | |
| 
 | |
| 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
 | |
| 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
 | |
| 			 * most significant bit (with weight 2**N) implicit.
 | |
| 			 *
 | |
| 			 * Special case for DIVISOR_LIMB == 100...000.
 | |
| 			 */
 | |
| 			if (!(divisor_limb << 1))
 | |
| 				divisor_limb_inverted = ~(mpi_limb_t)0;
 | |
| 			else
 | |
| 				udiv_qrnnd(divisor_limb_inverted, dummy,
 | |
| 						-divisor_limb, 0, divisor_limb);
 | |
| 
 | |
| 			n1 = dividend_ptr[dividend_size - 1];
 | |
| 			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
 | |
| 
 | |
| 			/* Possible optimization:
 | |
| 			 * if (r == 0
 | |
| 			 * && divisor_limb > ((n1 << normalization_steps)
 | |
| 			 *		       | (dividend_ptr[dividend_size - 2] >> ...)))
 | |
| 			 * ...one division less...
 | |
| 			 */
 | |
| 			for (i = dividend_size - 2; i >= 0; i--) {
 | |
| 				n0 = dividend_ptr[i];
 | |
| 				UDIV_QRNND_PREINV(dummy, r, r,
 | |
| 						((n1 << normalization_steps)
 | |
| 						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
 | |
| 						divisor_limb, divisor_limb_inverted);
 | |
| 				n1 = n0;
 | |
| 			}
 | |
| 			UDIV_QRNND_PREINV(dummy, r, r,
 | |
| 					n1 << normalization_steps,
 | |
| 					divisor_limb, divisor_limb_inverted);
 | |
| 			return r >> normalization_steps;
 | |
| 		} else {
 | |
| 			mpi_limb_t divisor_limb_inverted;
 | |
| 
 | |
| 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
 | |
| 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
 | |
| 			 * most significant bit (with weight 2**N) implicit.
 | |
| 			 *
 | |
| 			 * Special case for DIVISOR_LIMB == 100...000.
 | |
| 			 */
 | |
| 			if (!(divisor_limb << 1))
 | |
| 				divisor_limb_inverted = ~(mpi_limb_t)0;
 | |
| 			else
 | |
| 				udiv_qrnnd(divisor_limb_inverted, dummy,
 | |
| 						-divisor_limb, 0, divisor_limb);
 | |
| 
 | |
| 			i = dividend_size - 1;
 | |
| 			r = dividend_ptr[i];
 | |
| 
 | |
| 			if (r >= divisor_limb)
 | |
| 				r = 0;
 | |
| 			else
 | |
| 				i--;
 | |
| 
 | |
| 			for ( ; i >= 0; i--) {
 | |
| 				n0 = dividend_ptr[i];
 | |
| 				UDIV_QRNND_PREINV(dummy, r, r,
 | |
| 						n0, divisor_limb, divisor_limb_inverted);
 | |
| 			}
 | |
| 			return r;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (UDIV_NEEDS_NORMALIZATION) {
 | |
| 			int normalization_steps;
 | |
| 
 | |
| 			normalization_steps = count_leading_zeros(divisor_limb);
 | |
| 			if (normalization_steps) {
 | |
| 				divisor_limb <<= normalization_steps;
 | |
| 
 | |
| 				n1 = dividend_ptr[dividend_size - 1];
 | |
| 				r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
 | |
| 
 | |
| 				/* Possible optimization:
 | |
| 				 * if (r == 0
 | |
| 				 * && divisor_limb > ((n1 << normalization_steps)
 | |
| 				 *		   | (dividend_ptr[dividend_size - 2] >> ...)))
 | |
| 				 * ...one division less...
 | |
| 				 */
 | |
| 				for (i = dividend_size - 2; i >= 0; i--) {
 | |
| 					n0 = dividend_ptr[i];
 | |
| 					udiv_qrnnd(dummy, r, r,
 | |
| 						((n1 << normalization_steps)
 | |
| 						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
 | |
| 						divisor_limb);
 | |
| 					n1 = n0;
 | |
| 				}
 | |
| 				udiv_qrnnd(dummy, r, r,
 | |
| 						n1 << normalization_steps,
 | |
| 						divisor_limb);
 | |
| 				return r >> normalization_steps;
 | |
| 			}
 | |
| 		}
 | |
| 		/* No normalization needed, either because udiv_qrnnd doesn't require
 | |
| 		 * it, or because DIVISOR_LIMB is already normalized.
 | |
| 		 */
 | |
| 		i = dividend_size - 1;
 | |
| 		r = dividend_ptr[i];
 | |
| 
 | |
| 		if (r >= divisor_limb)
 | |
| 			r = 0;
 | |
| 		else
 | |
| 			i--;
 | |
| 
 | |
| 		for (; i >= 0; i--) {
 | |
| 			n0 = dividend_ptr[i];
 | |
| 			udiv_qrnnd(dummy, r, r, n0, divisor_limb);
 | |
| 		}
 | |
| 		return r;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
 | |
|  * the NSIZE-DSIZE least significant quotient limbs at QP
 | |
|  * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is
 | |
|  * non-zero, generate that many fraction bits and append them after the
 | |
|  * other quotient limbs.
 | |
|  * Return the most significant limb of the quotient, this is always 0 or 1.
 | |
|  *
 | |
|  * Preconditions:
 | |
|  * 0. NSIZE >= DSIZE.
 | |
|  * 1. The most significant bit of the divisor must be set.
 | |
|  * 2. QP must either not overlap with the input operands at all, or
 | |
|  *    QP + DSIZE >= NP must hold true.	(This means that it's
 | |
|  *    possible to put the quotient in the high part of NUM, right after the
 | |
|  *    remainder in NUM.
 | |
|  * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
 | |
|  */
 | |
| 
 | |
| mpi_limb_t
 | |
| mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
 | |
| 	       mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
 | |
| {
 | |
| 	mpi_limb_t most_significant_q_limb = 0;
 | |
| 
 | |
| 	switch (dsize) {
 | |
| 	case 0:
 | |
| 		/* We are asked to divide by zero, so go ahead and do it!  (To make
 | |
| 		   the compiler not remove this statement, return the value.)  */
 | |
| 		/*
 | |
| 		 * existing clients of this function have been modified
 | |
| 		 * not to call it with dsize == 0, so this should not happen
 | |
| 		 */
 | |
| 		return 1 / dsize;
 | |
| 
 | |
| 	case 1:
 | |
| 		{
 | |
| 			mpi_size_t i;
 | |
| 			mpi_limb_t n1;
 | |
| 			mpi_limb_t d;
 | |
| 
 | |
| 			d = dp[0];
 | |
| 			n1 = np[nsize - 1];
 | |
| 
 | |
| 			if (n1 >= d) {
 | |
| 				n1 -= d;
 | |
| 				most_significant_q_limb = 1;
 | |
| 			}
 | |
| 
 | |
| 			qp += qextra_limbs;
 | |
| 			for (i = nsize - 2; i >= 0; i--)
 | |
| 				udiv_qrnnd(qp[i], n1, n1, np[i], d);
 | |
| 			qp -= qextra_limbs;
 | |
| 
 | |
| 			for (i = qextra_limbs - 1; i >= 0; i--)
 | |
| 				udiv_qrnnd(qp[i], n1, n1, 0, d);
 | |
| 
 | |
| 			np[0] = n1;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 2:
 | |
| 		{
 | |
| 			mpi_size_t i;
 | |
| 			mpi_limb_t n1, n0, n2;
 | |
| 			mpi_limb_t d1, d0;
 | |
| 
 | |
| 			np += nsize - 2;
 | |
| 			d1 = dp[1];
 | |
| 			d0 = dp[0];
 | |
| 			n1 = np[1];
 | |
| 			n0 = np[0];
 | |
| 
 | |
| 			if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
 | |
| 				sub_ddmmss(n1, n0, n1, n0, d1, d0);
 | |
| 				most_significant_q_limb = 1;
 | |
| 			}
 | |
| 
 | |
| 			for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
 | |
| 				mpi_limb_t q;
 | |
| 				mpi_limb_t r;
 | |
| 
 | |
| 				if (i >= qextra_limbs)
 | |
| 					np--;
 | |
| 				else
 | |
| 					np[0] = 0;
 | |
| 
 | |
| 				if (n1 == d1) {
 | |
| 					/* Q should be either 111..111 or 111..110.  Need special
 | |
| 					 * treatment of this rare case as normal division would
 | |
| 					 * give overflow.  */
 | |
| 					q = ~(mpi_limb_t) 0;
 | |
| 
 | |
| 					r = n0 + d1;
 | |
| 					if (r < d1) {	/* Carry in the addition? */
 | |
| 						add_ssaaaa(n1, n0, r - d0,
 | |
| 							   np[0], 0, d0);
 | |
| 						qp[i] = q;
 | |
| 						continue;
 | |
| 					}
 | |
| 					n1 = d0 - (d0 != 0 ? 1 : 0);
 | |
| 					n0 = -d0;
 | |
| 				} else {
 | |
| 					udiv_qrnnd(q, r, n1, n0, d1);
 | |
| 					umul_ppmm(n1, n0, d0, q);
 | |
| 				}
 | |
| 
 | |
| 				n2 = np[0];
 | |
| q_test:
 | |
| 				if (n1 > r || (n1 == r && n0 > n2)) {
 | |
| 					/* The estimated Q was too large.  */
 | |
| 					q--;
 | |
| 					sub_ddmmss(n1, n0, n1, n0, 0, d0);
 | |
| 					r += d1;
 | |
| 					if (r >= d1)	/* If not carry, test Q again.  */
 | |
| 						goto q_test;
 | |
| 				}
 | |
| 
 | |
| 				qp[i] = q;
 | |
| 				sub_ddmmss(n1, n0, r, n2, n1, n0);
 | |
| 			}
 | |
| 			np[1] = n1;
 | |
| 			np[0] = n0;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		{
 | |
| 			mpi_size_t i;
 | |
| 			mpi_limb_t dX, d1, n0;
 | |
| 
 | |
| 			np += nsize - dsize;
 | |
| 			dX = dp[dsize - 1];
 | |
| 			d1 = dp[dsize - 2];
 | |
| 			n0 = np[dsize - 1];
 | |
| 
 | |
| 			if (n0 >= dX) {
 | |
| 				if (n0 > dX
 | |
| 				    || mpihelp_cmp(np, dp, dsize - 1) >= 0) {
 | |
| 					mpihelp_sub_n(np, np, dp, dsize);
 | |
| 					n0 = np[dsize - 1];
 | |
| 					most_significant_q_limb = 1;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
 | |
| 				mpi_limb_t q;
 | |
| 				mpi_limb_t n1, n2;
 | |
| 				mpi_limb_t cy_limb;
 | |
| 
 | |
| 				if (i >= qextra_limbs) {
 | |
| 					np--;
 | |
| 					n2 = np[dsize];
 | |
| 				} else {
 | |
| 					n2 = np[dsize - 1];
 | |
| 					MPN_COPY_DECR(np + 1, np, dsize - 1);
 | |
| 					np[0] = 0;
 | |
| 				}
 | |
| 
 | |
| 				if (n0 == dX) {
 | |
| 					/* This might over-estimate q, but it's probably not worth
 | |
| 					 * the extra code here to find out.  */
 | |
| 					q = ~(mpi_limb_t) 0;
 | |
| 				} else {
 | |
| 					mpi_limb_t r;
 | |
| 
 | |
| 					udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
 | |
| 					umul_ppmm(n1, n0, d1, q);
 | |
| 
 | |
| 					while (n1 > r
 | |
| 					       || (n1 == r
 | |
| 						   && n0 > np[dsize - 2])) {
 | |
| 						q--;
 | |
| 						r += dX;
 | |
| 						if (r < dX)	/* I.e. "carry in previous addition?" */
 | |
| 							break;
 | |
| 						n1 -= n0 < d1;
 | |
| 						n0 -= d1;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				/* Possible optimization: We already have (q * n0) and (1 * n1)
 | |
| 				 * after the calculation of q.  Taking advantage of that, we
 | |
| 				 * could make this loop make two iterations less.  */
 | |
| 				cy_limb = mpihelp_submul_1(np, dp, dsize, q);
 | |
| 
 | |
| 				if (n2 != cy_limb) {
 | |
| 					mpihelp_add_n(np, np, dp, dsize);
 | |
| 					q--;
 | |
| 				}
 | |
| 
 | |
| 				qp[i] = q;
 | |
| 				n0 = np[dsize - 1];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return most_significant_q_limb;
 | |
| }
 | |
| 
 | |
| /****************
 | |
|  * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
 | |
|  * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
 | |
|  * Return the single-limb remainder.
 | |
|  * There are no constraints on the value of the divisor.
 | |
|  *
 | |
|  * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
 | |
|  */
 | |
| 
 | |
| mpi_limb_t
 | |
| mpihelp_divmod_1(mpi_ptr_t quot_ptr,
 | |
| 		mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
 | |
| 		mpi_limb_t divisor_limb)
 | |
| {
 | |
| 	mpi_size_t i;
 | |
| 	mpi_limb_t n1, n0, r;
 | |
| 	mpi_limb_t dummy __maybe_unused;
 | |
| 
 | |
| 	if (!dividend_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If multiplication is much faster than division, and the
 | |
| 	 * dividend is large, pre-invert the divisor, and use
 | |
| 	 * only multiplications in the inner loop.
 | |
| 	 *
 | |
| 	 * This test should be read:
 | |
| 	 * Does it ever help to use udiv_qrnnd_preinv?
 | |
| 	 * && Does what we save compensate for the inversion overhead?
 | |
| 	 */
 | |
| 	if (UDIV_TIME > (2 * UMUL_TIME + 6)
 | |
| 			&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
 | |
| 		int normalization_steps;
 | |
| 
 | |
| 		normalization_steps = count_leading_zeros(divisor_limb);
 | |
| 		if (normalization_steps) {
 | |
| 			mpi_limb_t divisor_limb_inverted;
 | |
| 
 | |
| 			divisor_limb <<= normalization_steps;
 | |
| 
 | |
| 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
 | |
| 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
 | |
| 			 * most significant bit (with weight 2**N) implicit.
 | |
| 			 */
 | |
| 			/* Special case for DIVISOR_LIMB == 100...000.  */
 | |
| 			if (!(divisor_limb << 1))
 | |
| 				divisor_limb_inverted = ~(mpi_limb_t)0;
 | |
| 			else
 | |
| 				udiv_qrnnd(divisor_limb_inverted, dummy,
 | |
| 						-divisor_limb, 0, divisor_limb);
 | |
| 
 | |
| 			n1 = dividend_ptr[dividend_size - 1];
 | |
| 			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
 | |
| 
 | |
| 			/* Possible optimization:
 | |
| 			 * if (r == 0
 | |
| 			 * && divisor_limb > ((n1 << normalization_steps)
 | |
| 			 *		       | (dividend_ptr[dividend_size - 2] >> ...)))
 | |
| 			 * ...one division less...
 | |
| 			 */
 | |
| 			for (i = dividend_size - 2; i >= 0; i--) {
 | |
| 				n0 = dividend_ptr[i];
 | |
| 				UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
 | |
| 						((n1 << normalization_steps)
 | |
| 						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
 | |
| 						divisor_limb, divisor_limb_inverted);
 | |
| 				n1 = n0;
 | |
| 			}
 | |
| 			UDIV_QRNND_PREINV(quot_ptr[0], r, r,
 | |
| 					n1 << normalization_steps,
 | |
| 					divisor_limb, divisor_limb_inverted);
 | |
| 			return r >> normalization_steps;
 | |
| 		} else {
 | |
| 			mpi_limb_t divisor_limb_inverted;
 | |
| 
 | |
| 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
 | |
| 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
 | |
| 			 * most significant bit (with weight 2**N) implicit.
 | |
| 			 */
 | |
| 			/* Special case for DIVISOR_LIMB == 100...000.  */
 | |
| 			if (!(divisor_limb << 1))
 | |
| 				divisor_limb_inverted = ~(mpi_limb_t) 0;
 | |
| 			else
 | |
| 				udiv_qrnnd(divisor_limb_inverted, dummy,
 | |
| 						-divisor_limb, 0, divisor_limb);
 | |
| 
 | |
| 			i = dividend_size - 1;
 | |
| 			r = dividend_ptr[i];
 | |
| 
 | |
| 			if (r >= divisor_limb)
 | |
| 				r = 0;
 | |
| 			else
 | |
| 				quot_ptr[i--] = 0;
 | |
| 
 | |
| 			for ( ; i >= 0; i--) {
 | |
| 				n0 = dividend_ptr[i];
 | |
| 				UDIV_QRNND_PREINV(quot_ptr[i], r, r,
 | |
| 						n0, divisor_limb, divisor_limb_inverted);
 | |
| 			}
 | |
| 			return r;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (UDIV_NEEDS_NORMALIZATION) {
 | |
| 			int normalization_steps;
 | |
| 
 | |
| 			normalization_steps = count_leading_zeros(divisor_limb);
 | |
| 			if (normalization_steps) {
 | |
| 				divisor_limb <<= normalization_steps;
 | |
| 
 | |
| 				n1 = dividend_ptr[dividend_size - 1];
 | |
| 				r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
 | |
| 
 | |
| 				/* Possible optimization:
 | |
| 				 * if (r == 0
 | |
| 				 * && divisor_limb > ((n1 << normalization_steps)
 | |
| 				 *		   | (dividend_ptr[dividend_size - 2] >> ...)))
 | |
| 				 * ...one division less...
 | |
| 				 */
 | |
| 				for (i = dividend_size - 2; i >= 0; i--) {
 | |
| 					n0 = dividend_ptr[i];
 | |
| 					udiv_qrnnd(quot_ptr[i + 1], r, r,
 | |
| 						((n1 << normalization_steps)
 | |
| 						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
 | |
| 						divisor_limb);
 | |
| 					n1 = n0;
 | |
| 				}
 | |
| 				udiv_qrnnd(quot_ptr[0], r, r,
 | |
| 						n1 << normalization_steps,
 | |
| 						divisor_limb);
 | |
| 				return r >> normalization_steps;
 | |
| 			}
 | |
| 		}
 | |
| 		/* No normalization needed, either because udiv_qrnnd doesn't require
 | |
| 		 * it, or because DIVISOR_LIMB is already normalized.
 | |
| 		 */
 | |
| 		i = dividend_size - 1;
 | |
| 		r = dividend_ptr[i];
 | |
| 
 | |
| 		if (r >= divisor_limb)
 | |
| 			r = 0;
 | |
| 		else
 | |
| 			quot_ptr[i--] = 0;
 | |
| 
 | |
| 		for (; i >= 0; i--) {
 | |
| 			n0 = dividend_ptr[i];
 | |
| 			udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
 | |
| 		}
 | |
| 		return r;
 | |
| 	}
 | |
| }
 |