forked from mirrors/linux
		
	 d67790ddf0
			
		
	
	
		d67790ddf0
		
	
	
	
	
		
			
			While struct_size() is normally used in situations where the structure
type already has a pointer instance, there are places where no variable
is available. In the past, this has been worked around by using a typed
NULL first argument, but this is a bit ugly. Add a helper to do this,
and replace the handful of instances of the code pattern with it.
Instances were found with this Coccinelle script:
@struct_size_t@
identifier STRUCT, MEMBER;
expression COUNT;
@@
-       struct_size((struct STRUCT *)\(0\|NULL\),
+       struct_size_t(struct STRUCT,
                MEMBER, COUNT)
Suggested-by: Christoph Hellwig <hch@infradead.org>
Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
Cc: Tony Nguyen <anthony.l.nguyen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: James Smart <james.smart@broadcom.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: HighPoint Linux Team <linux@highpoint-tech.com>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Kashyap Desai <kashyap.desai@broadcom.com>
Cc: Sumit Saxena <sumit.saxena@broadcom.com>
Cc: Shivasharan S <shivasharan.srikanteshwara@broadcom.com>
Cc: Don Brace <don.brace@microchip.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Guo Xuenan <guoxuenan@huawei.com>
Cc: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: intel-wired-lan@lists.osuosl.org
Cc: netdev@vger.kernel.org
Cc: linux-nvme@lists.infradead.org
Cc: linux-scsi@vger.kernel.org
Cc: megaraidlinux.pdl@broadcom.com
Cc: storagedev@microchip.com
Cc: linux-xfs@vger.kernel.org
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Link: https://lore.kernel.org/r/20230522211810.never.421-kees@kernel.org
		
	
			
		
			
				
	
	
		
			312 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 OR MIT */
 | |
| #ifndef __LINUX_OVERFLOW_H
 | |
| #define __LINUX_OVERFLOW_H
 | |
| 
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/limits.h>
 | |
| #include <linux/const.h>
 | |
| 
 | |
| /*
 | |
|  * We need to compute the minimum and maximum values representable in a given
 | |
|  * type. These macros may also be useful elsewhere. It would seem more obvious
 | |
|  * to do something like:
 | |
|  *
 | |
|  * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0)
 | |
|  * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0)
 | |
|  *
 | |
|  * Unfortunately, the middle expressions, strictly speaking, have
 | |
|  * undefined behaviour, and at least some versions of gcc warn about
 | |
|  * the type_max expression (but not if -fsanitize=undefined is in
 | |
|  * effect; in that case, the warning is deferred to runtime...).
 | |
|  *
 | |
|  * The slightly excessive casting in type_min is to make sure the
 | |
|  * macros also produce sensible values for the exotic type _Bool. [The
 | |
|  * overflow checkers only almost work for _Bool, but that's
 | |
|  * a-feature-not-a-bug, since people shouldn't be doing arithmetic on
 | |
|  * _Bools. Besides, the gcc builtins don't allow _Bool* as third
 | |
|  * argument.]
 | |
|  *
 | |
|  * Idea stolen from
 | |
|  * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html -
 | |
|  * credit to Christian Biere.
 | |
|  */
 | |
| #define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type)))
 | |
| #define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T)))
 | |
| #define type_min(T) ((T)((T)-type_max(T)-(T)1))
 | |
| 
 | |
| /*
 | |
|  * Avoids triggering -Wtype-limits compilation warning,
 | |
|  * while using unsigned data types to check a < 0.
 | |
|  */
 | |
| #define is_non_negative(a) ((a) > 0 || (a) == 0)
 | |
| #define is_negative(a) (!(is_non_negative(a)))
 | |
| 
 | |
| /*
 | |
|  * Allows for effectively applying __must_check to a macro so we can have
 | |
|  * both the type-agnostic benefits of the macros while also being able to
 | |
|  * enforce that the return value is, in fact, checked.
 | |
|  */
 | |
| static inline bool __must_check __must_check_overflow(bool overflow)
 | |
| {
 | |
| 	return unlikely(overflow);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_add_overflow() - Calculate addition with overflow checking
 | |
|  * @a: first addend
 | |
|  * @b: second addend
 | |
|  * @d: pointer to store sum
 | |
|  *
 | |
|  * Returns 0 on success.
 | |
|  *
 | |
|  * *@d holds the results of the attempted addition, but is not considered
 | |
|  * "safe for use" on a non-zero return value, which indicates that the
 | |
|  * sum has overflowed or been truncated.
 | |
|  */
 | |
| #define check_add_overflow(a, b, d)	\
 | |
| 	__must_check_overflow(__builtin_add_overflow(a, b, d))
 | |
| 
 | |
| /**
 | |
|  * check_sub_overflow() - Calculate subtraction with overflow checking
 | |
|  * @a: minuend; value to subtract from
 | |
|  * @b: subtrahend; value to subtract from @a
 | |
|  * @d: pointer to store difference
 | |
|  *
 | |
|  * Returns 0 on success.
 | |
|  *
 | |
|  * *@d holds the results of the attempted subtraction, but is not considered
 | |
|  * "safe for use" on a non-zero return value, which indicates that the
 | |
|  * difference has underflowed or been truncated.
 | |
|  */
 | |
| #define check_sub_overflow(a, b, d)	\
 | |
| 	__must_check_overflow(__builtin_sub_overflow(a, b, d))
 | |
| 
 | |
| /**
 | |
|  * check_mul_overflow() - Calculate multiplication with overflow checking
 | |
|  * @a: first factor
 | |
|  * @b: second factor
 | |
|  * @d: pointer to store product
 | |
|  *
 | |
|  * Returns 0 on success.
 | |
|  *
 | |
|  * *@d holds the results of the attempted multiplication, but is not
 | |
|  * considered "safe for use" on a non-zero return value, which indicates
 | |
|  * that the product has overflowed or been truncated.
 | |
|  */
 | |
| #define check_mul_overflow(a, b, d)	\
 | |
| 	__must_check_overflow(__builtin_mul_overflow(a, b, d))
 | |
| 
 | |
| /**
 | |
|  * check_shl_overflow() - Calculate a left-shifted value and check overflow
 | |
|  * @a: Value to be shifted
 | |
|  * @s: How many bits left to shift
 | |
|  * @d: Pointer to where to store the result
 | |
|  *
 | |
|  * Computes *@d = (@a << @s)
 | |
|  *
 | |
|  * Returns true if '*@d' cannot hold the result or when '@a << @s' doesn't
 | |
|  * make sense. Example conditions:
 | |
|  *
 | |
|  * - '@a << @s' causes bits to be lost when stored in *@d.
 | |
|  * - '@s' is garbage (e.g. negative) or so large that the result of
 | |
|  *   '@a << @s' is guaranteed to be 0.
 | |
|  * - '@a' is negative.
 | |
|  * - '@a << @s' sets the sign bit, if any, in '*@d'.
 | |
|  *
 | |
|  * '*@d' will hold the results of the attempted shift, but is not
 | |
|  * considered "safe for use" if true is returned.
 | |
|  */
 | |
| #define check_shl_overflow(a, s, d) __must_check_overflow(({		\
 | |
| 	typeof(a) _a = a;						\
 | |
| 	typeof(s) _s = s;						\
 | |
| 	typeof(d) _d = d;						\
 | |
| 	u64 _a_full = _a;						\
 | |
| 	unsigned int _to_shift =					\
 | |
| 		is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0;	\
 | |
| 	*_d = (_a_full << _to_shift);					\
 | |
| 	(_to_shift != _s || is_negative(*_d) || is_negative(_a) ||	\
 | |
| 	(*_d >> _to_shift) != _a);					\
 | |
| }))
 | |
| 
 | |
| #define __overflows_type_constexpr(x, T) (			\
 | |
| 	is_unsigned_type(typeof(x)) ?				\
 | |
| 		(x) > type_max(typeof(T)) :			\
 | |
| 	is_unsigned_type(typeof(T)) ?				\
 | |
| 		(x) < 0 || (x) > type_max(typeof(T)) :		\
 | |
| 	(x) < type_min(typeof(T)) || (x) > type_max(typeof(T)))
 | |
| 
 | |
| #define __overflows_type(x, T)		({	\
 | |
| 	typeof(T) v = 0;			\
 | |
| 	check_add_overflow((x), v, &v);		\
 | |
| })
 | |
| 
 | |
| /**
 | |
|  * overflows_type - helper for checking the overflows between value, variables,
 | |
|  *		    or data type
 | |
|  *
 | |
|  * @n: source constant value or variable to be checked
 | |
|  * @T: destination variable or data type proposed to store @x
 | |
|  *
 | |
|  * Compares the @x expression for whether or not it can safely fit in
 | |
|  * the storage of the type in @T. @x and @T can have different types.
 | |
|  * If @x is a constant expression, this will also resolve to a constant
 | |
|  * expression.
 | |
|  *
 | |
|  * Returns: true if overflow can occur, false otherwise.
 | |
|  */
 | |
| #define overflows_type(n, T)					\
 | |
| 	__builtin_choose_expr(__is_constexpr(n),		\
 | |
| 			      __overflows_type_constexpr(n, T),	\
 | |
| 			      __overflows_type(n, T))
 | |
| 
 | |
| /**
 | |
|  * castable_to_type - like __same_type(), but also allows for casted literals
 | |
|  *
 | |
|  * @n: variable or constant value
 | |
|  * @T: variable or data type
 | |
|  *
 | |
|  * Unlike the __same_type() macro, this allows a constant value as the
 | |
|  * first argument. If this value would not overflow into an assignment
 | |
|  * of the second argument's type, it returns true. Otherwise, this falls
 | |
|  * back to __same_type().
 | |
|  */
 | |
| #define castable_to_type(n, T)						\
 | |
| 	__builtin_choose_expr(__is_constexpr(n),			\
 | |
| 			      !__overflows_type_constexpr(n, T),	\
 | |
| 			      __same_type(n, T))
 | |
| 
 | |
| /**
 | |
|  * size_mul() - Calculate size_t multiplication with saturation at SIZE_MAX
 | |
|  * @factor1: first factor
 | |
|  * @factor2: second factor
 | |
|  *
 | |
|  * Returns: calculate @factor1 * @factor2, both promoted to size_t,
 | |
|  * with any overflow causing the return value to be SIZE_MAX. The
 | |
|  * lvalue must be size_t to avoid implicit type conversion.
 | |
|  */
 | |
| static inline size_t __must_check size_mul(size_t factor1, size_t factor2)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (check_mul_overflow(factor1, factor2, &bytes))
 | |
| 		return SIZE_MAX;
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * size_add() - Calculate size_t addition with saturation at SIZE_MAX
 | |
|  * @addend1: first addend
 | |
|  * @addend2: second addend
 | |
|  *
 | |
|  * Returns: calculate @addend1 + @addend2, both promoted to size_t,
 | |
|  * with any overflow causing the return value to be SIZE_MAX. The
 | |
|  * lvalue must be size_t to avoid implicit type conversion.
 | |
|  */
 | |
| static inline size_t __must_check size_add(size_t addend1, size_t addend2)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (check_add_overflow(addend1, addend2, &bytes))
 | |
| 		return SIZE_MAX;
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * size_sub() - Calculate size_t subtraction with saturation at SIZE_MAX
 | |
|  * @minuend: value to subtract from
 | |
|  * @subtrahend: value to subtract from @minuend
 | |
|  *
 | |
|  * Returns: calculate @minuend - @subtrahend, both promoted to size_t,
 | |
|  * with any overflow causing the return value to be SIZE_MAX. For
 | |
|  * composition with the size_add() and size_mul() helpers, neither
 | |
|  * argument may be SIZE_MAX (or the result with be forced to SIZE_MAX).
 | |
|  * The lvalue must be size_t to avoid implicit type conversion.
 | |
|  */
 | |
| static inline size_t __must_check size_sub(size_t minuend, size_t subtrahend)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (minuend == SIZE_MAX || subtrahend == SIZE_MAX ||
 | |
| 	    check_sub_overflow(minuend, subtrahend, &bytes))
 | |
| 		return SIZE_MAX;
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * array_size() - Calculate size of 2-dimensional array.
 | |
|  * @a: dimension one
 | |
|  * @b: dimension two
 | |
|  *
 | |
|  * Calculates size of 2-dimensional array: @a * @b.
 | |
|  *
 | |
|  * Returns: number of bytes needed to represent the array or SIZE_MAX on
 | |
|  * overflow.
 | |
|  */
 | |
| #define array_size(a, b)	size_mul(a, b)
 | |
| 
 | |
| /**
 | |
|  * array3_size() - Calculate size of 3-dimensional array.
 | |
|  * @a: dimension one
 | |
|  * @b: dimension two
 | |
|  * @c: dimension three
 | |
|  *
 | |
|  * Calculates size of 3-dimensional array: @a * @b * @c.
 | |
|  *
 | |
|  * Returns: number of bytes needed to represent the array or SIZE_MAX on
 | |
|  * overflow.
 | |
|  */
 | |
| #define array3_size(a, b, c)	size_mul(size_mul(a, b), c)
 | |
| 
 | |
| /**
 | |
|  * flex_array_size() - Calculate size of a flexible array member
 | |
|  *                     within an enclosing structure.
 | |
|  * @p: Pointer to the structure.
 | |
|  * @member: Name of the flexible array member.
 | |
|  * @count: Number of elements in the array.
 | |
|  *
 | |
|  * Calculates size of a flexible array of @count number of @member
 | |
|  * elements, at the end of structure @p.
 | |
|  *
 | |
|  * Return: number of bytes needed or SIZE_MAX on overflow.
 | |
|  */
 | |
| #define flex_array_size(p, member, count)				\
 | |
| 	__builtin_choose_expr(__is_constexpr(count),			\
 | |
| 		(count) * sizeof(*(p)->member) + __must_be_array((p)->member),	\
 | |
| 		size_mul(count, sizeof(*(p)->member) + __must_be_array((p)->member)))
 | |
| 
 | |
| /**
 | |
|  * struct_size() - Calculate size of structure with trailing flexible array.
 | |
|  * @p: Pointer to the structure.
 | |
|  * @member: Name of the array member.
 | |
|  * @count: Number of elements in the array.
 | |
|  *
 | |
|  * Calculates size of memory needed for structure of @p followed by an
 | |
|  * array of @count number of @member elements.
 | |
|  *
 | |
|  * Return: number of bytes needed or SIZE_MAX on overflow.
 | |
|  */
 | |
| #define struct_size(p, member, count)					\
 | |
| 	__builtin_choose_expr(__is_constexpr(count),			\
 | |
| 		sizeof(*(p)) + flex_array_size(p, member, count),	\
 | |
| 		size_add(sizeof(*(p)), flex_array_size(p, member, count)))
 | |
| 
 | |
| /**
 | |
|  * struct_size_t() - Calculate size of structure with trailing flexible array
 | |
|  * @type: structure type name.
 | |
|  * @member: Name of the array member.
 | |
|  * @count: Number of elements in the array.
 | |
|  *
 | |
|  * Calculates size of memory needed for structure @type followed by an
 | |
|  * array of @count number of @member elements. Prefer using struct_size()
 | |
|  * when possible instead, to keep calculations associated with a specific
 | |
|  * instance variable of type @type.
 | |
|  *
 | |
|  * Return: number of bytes needed or SIZE_MAX on overflow.
 | |
|  */
 | |
| #define struct_size_t(type, member, count)					\
 | |
| 	struct_size((type *)NULL, member, count)
 | |
| 
 | |
| #endif /* __LINUX_OVERFLOW_H */
 |