forked from mirrors/linux
		
	 c6cd2e0116
			
		
	
	
		c6cd2e0116
		
	
	
	
	
		
			
			smp_read_barrier_depends() doesn't exist any more, so reword the two comments that mention it to refer to "dependency ordering" instead. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Will Deacon <will@kernel.org>
		
			
				
	
	
		
			674 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			674 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0-or-later */
 | |
| /*
 | |
|  *	Definitions for the 'struct ptr_ring' datastructure.
 | |
|  *
 | |
|  *	Author:
 | |
|  *		Michael S. Tsirkin <mst@redhat.com>
 | |
|  *
 | |
|  *	Copyright (C) 2016 Red Hat, Inc.
 | |
|  *
 | |
|  *	This is a limited-size FIFO maintaining pointers in FIFO order, with
 | |
|  *	one CPU producing entries and another consuming entries from a FIFO.
 | |
|  *
 | |
|  *	This implementation tries to minimize cache-contention when there is a
 | |
|  *	single producer and a single consumer CPU.
 | |
|  */
 | |
| 
 | |
| #ifndef _LINUX_PTR_RING_H
 | |
| #define _LINUX_PTR_RING_H 1
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mm.h>
 | |
| #include <asm/errno.h>
 | |
| #endif
 | |
| 
 | |
| struct ptr_ring {
 | |
| 	int producer ____cacheline_aligned_in_smp;
 | |
| 	spinlock_t producer_lock;
 | |
| 	int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
 | |
| 	int consumer_tail; /* next entry to invalidate */
 | |
| 	spinlock_t consumer_lock;
 | |
| 	/* Shared consumer/producer data */
 | |
| 	/* Read-only by both the producer and the consumer */
 | |
| 	int size ____cacheline_aligned_in_smp; /* max entries in queue */
 | |
| 	int batch; /* number of entries to consume in a batch */
 | |
| 	void **queue;
 | |
| };
 | |
| 
 | |
| /* Note: callers invoking this in a loop must use a compiler barrier,
 | |
|  * for example cpu_relax().
 | |
|  *
 | |
|  * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock:
 | |
|  * see e.g. ptr_ring_full.
 | |
|  */
 | |
| static inline bool __ptr_ring_full(struct ptr_ring *r)
 | |
| {
 | |
| 	return r->queue[r->producer];
 | |
| }
 | |
| 
 | |
| static inline bool ptr_ring_full(struct ptr_ring *r)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock(&r->producer_lock);
 | |
| 	ret = __ptr_ring_full(r);
 | |
| 	spin_unlock(&r->producer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool ptr_ring_full_irq(struct ptr_ring *r)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock_irq(&r->producer_lock);
 | |
| 	ret = __ptr_ring_full(r);
 | |
| 	spin_unlock_irq(&r->producer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool ptr_ring_full_any(struct ptr_ring *r)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&r->producer_lock, flags);
 | |
| 	ret = __ptr_ring_full(r);
 | |
| 	spin_unlock_irqrestore(&r->producer_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool ptr_ring_full_bh(struct ptr_ring *r)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock_bh(&r->producer_lock);
 | |
| 	ret = __ptr_ring_full(r);
 | |
| 	spin_unlock_bh(&r->producer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Note: callers invoking this in a loop must use a compiler barrier,
 | |
|  * for example cpu_relax(). Callers must hold producer_lock.
 | |
|  * Callers are responsible for making sure pointer that is being queued
 | |
|  * points to a valid data.
 | |
|  */
 | |
| static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
 | |
| {
 | |
| 	if (unlikely(!r->size) || r->queue[r->producer])
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/* Make sure the pointer we are storing points to a valid data. */
 | |
| 	/* Pairs with the dependency ordering in __ptr_ring_consume. */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	WRITE_ONCE(r->queue[r->producer++], ptr);
 | |
| 	if (unlikely(r->producer >= r->size))
 | |
| 		r->producer = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: resize (below) nests producer lock within consumer lock, so if you
 | |
|  * consume in interrupt or BH context, you must disable interrupts/BH when
 | |
|  * calling this.
 | |
|  */
 | |
| static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&r->producer_lock);
 | |
| 	ret = __ptr_ring_produce(r, ptr);
 | |
| 	spin_unlock(&r->producer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irq(&r->producer_lock);
 | |
| 	ret = __ptr_ring_produce(r, ptr);
 | |
| 	spin_unlock_irq(&r->producer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&r->producer_lock, flags);
 | |
| 	ret = __ptr_ring_produce(r, ptr);
 | |
| 	spin_unlock_irqrestore(&r->producer_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_bh(&r->producer_lock);
 | |
| 	ret = __ptr_ring_produce(r, ptr);
 | |
| 	spin_unlock_bh(&r->producer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void *__ptr_ring_peek(struct ptr_ring *r)
 | |
| {
 | |
| 	if (likely(r->size))
 | |
| 		return READ_ONCE(r->queue[r->consumer_head]);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test ring empty status without taking any locks.
 | |
|  *
 | |
|  * NB: This is only safe to call if ring is never resized.
 | |
|  *
 | |
|  * However, if some other CPU consumes ring entries at the same time, the value
 | |
|  * returned is not guaranteed to be correct.
 | |
|  *
 | |
|  * In this case - to avoid incorrectly detecting the ring
 | |
|  * as empty - the CPU consuming the ring entries is responsible
 | |
|  * for either consuming all ring entries until the ring is empty,
 | |
|  * or synchronizing with some other CPU and causing it to
 | |
|  * re-test __ptr_ring_empty and/or consume the ring enteries
 | |
|  * after the synchronization point.
 | |
|  *
 | |
|  * Note: callers invoking this in a loop must use a compiler barrier,
 | |
|  * for example cpu_relax().
 | |
|  */
 | |
| static inline bool __ptr_ring_empty(struct ptr_ring *r)
 | |
| {
 | |
| 	if (likely(r->size))
 | |
| 		return !r->queue[READ_ONCE(r->consumer_head)];
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool ptr_ring_empty(struct ptr_ring *r)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock(&r->consumer_lock);
 | |
| 	ret = __ptr_ring_empty(r);
 | |
| 	spin_unlock(&r->consumer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock_irq(&r->consumer_lock);
 | |
| 	ret = __ptr_ring_empty(r);
 | |
| 	spin_unlock_irq(&r->consumer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool ptr_ring_empty_any(struct ptr_ring *r)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&r->consumer_lock, flags);
 | |
| 	ret = __ptr_ring_empty(r);
 | |
| 	spin_unlock_irqrestore(&r->consumer_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock_bh(&r->consumer_lock);
 | |
| 	ret = __ptr_ring_empty(r);
 | |
| 	spin_unlock_bh(&r->consumer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Must only be called after __ptr_ring_peek returned !NULL */
 | |
| static inline void __ptr_ring_discard_one(struct ptr_ring *r)
 | |
| {
 | |
| 	/* Fundamentally, what we want to do is update consumer
 | |
| 	 * index and zero out the entry so producer can reuse it.
 | |
| 	 * Doing it naively at each consume would be as simple as:
 | |
| 	 *       consumer = r->consumer;
 | |
| 	 *       r->queue[consumer++] = NULL;
 | |
| 	 *       if (unlikely(consumer >= r->size))
 | |
| 	 *               consumer = 0;
 | |
| 	 *       r->consumer = consumer;
 | |
| 	 * but that is suboptimal when the ring is full as producer is writing
 | |
| 	 * out new entries in the same cache line.  Defer these updates until a
 | |
| 	 * batch of entries has been consumed.
 | |
| 	 */
 | |
| 	/* Note: we must keep consumer_head valid at all times for __ptr_ring_empty
 | |
| 	 * to work correctly.
 | |
| 	 */
 | |
| 	int consumer_head = r->consumer_head;
 | |
| 	int head = consumer_head++;
 | |
| 
 | |
| 	/* Once we have processed enough entries invalidate them in
 | |
| 	 * the ring all at once so producer can reuse their space in the ring.
 | |
| 	 * We also do this when we reach end of the ring - not mandatory
 | |
| 	 * but helps keep the implementation simple.
 | |
| 	 */
 | |
| 	if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
 | |
| 		     consumer_head >= r->size)) {
 | |
| 		/* Zero out entries in the reverse order: this way we touch the
 | |
| 		 * cache line that producer might currently be reading the last;
 | |
| 		 * producer won't make progress and touch other cache lines
 | |
| 		 * besides the first one until we write out all entries.
 | |
| 		 */
 | |
| 		while (likely(head >= r->consumer_tail))
 | |
| 			r->queue[head--] = NULL;
 | |
| 		r->consumer_tail = consumer_head;
 | |
| 	}
 | |
| 	if (unlikely(consumer_head >= r->size)) {
 | |
| 		consumer_head = 0;
 | |
| 		r->consumer_tail = 0;
 | |
| 	}
 | |
| 	/* matching READ_ONCE in __ptr_ring_empty for lockless tests */
 | |
| 	WRITE_ONCE(r->consumer_head, consumer_head);
 | |
| }
 | |
| 
 | |
| static inline void *__ptr_ring_consume(struct ptr_ring *r)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	/* The READ_ONCE in __ptr_ring_peek guarantees that anyone
 | |
| 	 * accessing data through the pointer is up to date. Pairs
 | |
| 	 * with smp_wmb in __ptr_ring_produce.
 | |
| 	 */
 | |
| 	ptr = __ptr_ring_peek(r);
 | |
| 	if (ptr)
 | |
| 		__ptr_ring_discard_one(r);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
 | |
| 					     void **array, int n)
 | |
| {
 | |
| 	void *ptr;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		ptr = __ptr_ring_consume(r);
 | |
| 		if (!ptr)
 | |
| 			break;
 | |
| 		array[i] = ptr;
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: resize (below) nests producer lock within consumer lock, so if you
 | |
|  * call this in interrupt or BH context, you must disable interrupts/BH when
 | |
|  * producing.
 | |
|  */
 | |
| static inline void *ptr_ring_consume(struct ptr_ring *r)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	spin_lock(&r->consumer_lock);
 | |
| 	ptr = __ptr_ring_consume(r);
 | |
| 	spin_unlock(&r->consumer_lock);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	spin_lock_irq(&r->consumer_lock);
 | |
| 	ptr = __ptr_ring_consume(r);
 | |
| 	spin_unlock_irq(&r->consumer_lock);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static inline void *ptr_ring_consume_any(struct ptr_ring *r)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	void *ptr;
 | |
| 
 | |
| 	spin_lock_irqsave(&r->consumer_lock, flags);
 | |
| 	ptr = __ptr_ring_consume(r);
 | |
| 	spin_unlock_irqrestore(&r->consumer_lock, flags);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	spin_lock_bh(&r->consumer_lock);
 | |
| 	ptr = __ptr_ring_consume(r);
 | |
| 	spin_unlock_bh(&r->consumer_lock);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static inline int ptr_ring_consume_batched(struct ptr_ring *r,
 | |
| 					   void **array, int n)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&r->consumer_lock);
 | |
| 	ret = __ptr_ring_consume_batched(r, array, n);
 | |
| 	spin_unlock(&r->consumer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
 | |
| 					       void **array, int n)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irq(&r->consumer_lock);
 | |
| 	ret = __ptr_ring_consume_batched(r, array, n);
 | |
| 	spin_unlock_irq(&r->consumer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
 | |
| 					       void **array, int n)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&r->consumer_lock, flags);
 | |
| 	ret = __ptr_ring_consume_batched(r, array, n);
 | |
| 	spin_unlock_irqrestore(&r->consumer_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
 | |
| 					      void **array, int n)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_bh(&r->consumer_lock);
 | |
| 	ret = __ptr_ring_consume_batched(r, array, n);
 | |
| 	spin_unlock_bh(&r->consumer_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Cast to structure type and call a function without discarding from FIFO.
 | |
|  * Function must return a value.
 | |
|  * Callers must take consumer_lock.
 | |
|  */
 | |
| #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
 | |
| 
 | |
| #define PTR_RING_PEEK_CALL(r, f) ({ \
 | |
| 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
 | |
| 	\
 | |
| 	spin_lock(&(r)->consumer_lock); \
 | |
| 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
 | |
| 	spin_unlock(&(r)->consumer_lock); \
 | |
| 	__PTR_RING_PEEK_CALL_v; \
 | |
| })
 | |
| 
 | |
| #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
 | |
| 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
 | |
| 	\
 | |
| 	spin_lock_irq(&(r)->consumer_lock); \
 | |
| 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
 | |
| 	spin_unlock_irq(&(r)->consumer_lock); \
 | |
| 	__PTR_RING_PEEK_CALL_v; \
 | |
| })
 | |
| 
 | |
| #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
 | |
| 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
 | |
| 	\
 | |
| 	spin_lock_bh(&(r)->consumer_lock); \
 | |
| 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
 | |
| 	spin_unlock_bh(&(r)->consumer_lock); \
 | |
| 	__PTR_RING_PEEK_CALL_v; \
 | |
| })
 | |
| 
 | |
| #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
 | |
| 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
 | |
| 	unsigned long __PTR_RING_PEEK_CALL_f;\
 | |
| 	\
 | |
| 	spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
 | |
| 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
 | |
| 	spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
 | |
| 	__PTR_RING_PEEK_CALL_v; \
 | |
| })
 | |
| 
 | |
| /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See
 | |
|  * documentation for vmalloc for which of them are legal.
 | |
|  */
 | |
| static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
 | |
| {
 | |
| 	if (size > KMALLOC_MAX_SIZE / sizeof(void *))
 | |
| 		return NULL;
 | |
| 	return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
 | |
| {
 | |
| 	r->size = size;
 | |
| 	r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
 | |
| 	/* We need to set batch at least to 1 to make logic
 | |
| 	 * in __ptr_ring_discard_one work correctly.
 | |
| 	 * Batching too much (because ring is small) would cause a lot of
 | |
| 	 * burstiness. Needs tuning, for now disable batching.
 | |
| 	 */
 | |
| 	if (r->batch > r->size / 2 || !r->batch)
 | |
| 		r->batch = 1;
 | |
| }
 | |
| 
 | |
| static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
 | |
| {
 | |
| 	r->queue = __ptr_ring_init_queue_alloc(size, gfp);
 | |
| 	if (!r->queue)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	__ptr_ring_set_size(r, size);
 | |
| 	r->producer = r->consumer_head = r->consumer_tail = 0;
 | |
| 	spin_lock_init(&r->producer_lock);
 | |
| 	spin_lock_init(&r->consumer_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return entries into ring. Destroy entries that don't fit.
 | |
|  *
 | |
|  * Note: this is expected to be a rare slow path operation.
 | |
|  *
 | |
|  * Note: producer lock is nested within consumer lock, so if you
 | |
|  * resize you must make sure all uses nest correctly.
 | |
|  * In particular if you consume ring in interrupt or BH context, you must
 | |
|  * disable interrupts/BH when doing so.
 | |
|  */
 | |
| static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
 | |
| 				      void (*destroy)(void *))
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int head;
 | |
| 
 | |
| 	spin_lock_irqsave(&r->consumer_lock, flags);
 | |
| 	spin_lock(&r->producer_lock);
 | |
| 
 | |
| 	if (!r->size)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clean out buffered entries (for simplicity). This way following code
 | |
| 	 * can test entries for NULL and if not assume they are valid.
 | |
| 	 */
 | |
| 	head = r->consumer_head - 1;
 | |
| 	while (likely(head >= r->consumer_tail))
 | |
| 		r->queue[head--] = NULL;
 | |
| 	r->consumer_tail = r->consumer_head;
 | |
| 
 | |
| 	/*
 | |
| 	 * Go over entries in batch, start moving head back and copy entries.
 | |
| 	 * Stop when we run into previously unconsumed entries.
 | |
| 	 */
 | |
| 	while (n) {
 | |
| 		head = r->consumer_head - 1;
 | |
| 		if (head < 0)
 | |
| 			head = r->size - 1;
 | |
| 		if (r->queue[head]) {
 | |
| 			/* This batch entry will have to be destroyed. */
 | |
| 			goto done;
 | |
| 		}
 | |
| 		r->queue[head] = batch[--n];
 | |
| 		r->consumer_tail = head;
 | |
| 		/* matching READ_ONCE in __ptr_ring_empty for lockless tests */
 | |
| 		WRITE_ONCE(r->consumer_head, head);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	/* Destroy all entries left in the batch. */
 | |
| 	while (n)
 | |
| 		destroy(batch[--n]);
 | |
| 	spin_unlock(&r->producer_lock);
 | |
| 	spin_unlock_irqrestore(&r->consumer_lock, flags);
 | |
| }
 | |
| 
 | |
| static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
 | |
| 					   int size, gfp_t gfp,
 | |
| 					   void (*destroy)(void *))
 | |
| {
 | |
| 	int producer = 0;
 | |
| 	void **old;
 | |
| 	void *ptr;
 | |
| 
 | |
| 	while ((ptr = __ptr_ring_consume(r)))
 | |
| 		if (producer < size)
 | |
| 			queue[producer++] = ptr;
 | |
| 		else if (destroy)
 | |
| 			destroy(ptr);
 | |
| 
 | |
| 	if (producer >= size)
 | |
| 		producer = 0;
 | |
| 	__ptr_ring_set_size(r, size);
 | |
| 	r->producer = producer;
 | |
| 	r->consumer_head = 0;
 | |
| 	r->consumer_tail = 0;
 | |
| 	old = r->queue;
 | |
| 	r->queue = queue;
 | |
| 
 | |
| 	return old;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: producer lock is nested within consumer lock, so if you
 | |
|  * resize you must make sure all uses nest correctly.
 | |
|  * In particular if you consume ring in interrupt or BH context, you must
 | |
|  * disable interrupts/BH when doing so.
 | |
|  */
 | |
| static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
 | |
| 				  void (*destroy)(void *))
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	void **queue = __ptr_ring_init_queue_alloc(size, gfp);
 | |
| 	void **old;
 | |
| 
 | |
| 	if (!queue)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_irqsave(&(r)->consumer_lock, flags);
 | |
| 	spin_lock(&(r)->producer_lock);
 | |
| 
 | |
| 	old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
 | |
| 
 | |
| 	spin_unlock(&(r)->producer_lock);
 | |
| 	spin_unlock_irqrestore(&(r)->consumer_lock, flags);
 | |
| 
 | |
| 	kvfree(old);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: producer lock is nested within consumer lock, so if you
 | |
|  * resize you must make sure all uses nest correctly.
 | |
|  * In particular if you consume ring in interrupt or BH context, you must
 | |
|  * disable interrupts/BH when doing so.
 | |
|  */
 | |
| static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
 | |
| 					   unsigned int nrings,
 | |
| 					   int size,
 | |
| 					   gfp_t gfp, void (*destroy)(void *))
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	void ***queues;
 | |
| 	int i;
 | |
| 
 | |
| 	queues = kmalloc_array(nrings, sizeof(*queues), gfp);
 | |
| 	if (!queues)
 | |
| 		goto noqueues;
 | |
| 
 | |
| 	for (i = 0; i < nrings; ++i) {
 | |
| 		queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
 | |
| 		if (!queues[i])
 | |
| 			goto nomem;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nrings; ++i) {
 | |
| 		spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
 | |
| 		spin_lock(&(rings[i])->producer_lock);
 | |
| 		queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
 | |
| 						  size, gfp, destroy);
 | |
| 		spin_unlock(&(rings[i])->producer_lock);
 | |
| 		spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nrings; ++i)
 | |
| 		kvfree(queues[i]);
 | |
| 
 | |
| 	kfree(queues);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nomem:
 | |
| 	while (--i >= 0)
 | |
| 		kvfree(queues[i]);
 | |
| 
 | |
| 	kfree(queues);
 | |
| 
 | |
| noqueues:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (destroy)
 | |
| 		while ((ptr = ptr_ring_consume(r)))
 | |
| 			destroy(ptr);
 | |
| 	kvfree(r->queue);
 | |
| }
 | |
| 
 | |
| #endif /* _LINUX_PTR_RING_H  */
 |