forked from mirrors/linux
		
	MPI library is used by RSA verification implementation. Few files contains functions which are never called. James Morris has asked to remove all of them. Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com> Requested-by: James Morris <james.l.morris@oracle.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
		
			
				
	
	
		
			236 lines
		
	
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			236 lines
		
	
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* mpihelp-div.c  -  MPI helper functions
 | 
						|
 *	Copyright (C) 1994, 1996 Free Software Foundation, Inc.
 | 
						|
 *	Copyright (C) 1998, 1999 Free Software Foundation, Inc.
 | 
						|
 *
 | 
						|
 * This file is part of GnuPG.
 | 
						|
 *
 | 
						|
 * GnuPG is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * GnuPG is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 | 
						|
 *
 | 
						|
 * Note: This code is heavily based on the GNU MP Library.
 | 
						|
 *	 Actually it's the same code with only minor changes in the
 | 
						|
 *	 way the data is stored; this is to support the abstraction
 | 
						|
 *	 of an optional secure memory allocation which may be used
 | 
						|
 *	 to avoid revealing of sensitive data due to paging etc.
 | 
						|
 *	 The GNU MP Library itself is published under the LGPL;
 | 
						|
 *	 however I decided to publish this code under the plain GPL.
 | 
						|
 */
 | 
						|
 | 
						|
#include "mpi-internal.h"
 | 
						|
#include "longlong.h"
 | 
						|
 | 
						|
#ifndef UMUL_TIME
 | 
						|
#define UMUL_TIME 1
 | 
						|
#endif
 | 
						|
#ifndef UDIV_TIME
 | 
						|
#define UDIV_TIME UMUL_TIME
 | 
						|
#endif
 | 
						|
 | 
						|
/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
 | 
						|
 * the NSIZE-DSIZE least significant quotient limbs at QP
 | 
						|
 * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is
 | 
						|
 * non-zero, generate that many fraction bits and append them after the
 | 
						|
 * other quotient limbs.
 | 
						|
 * Return the most significant limb of the quotient, this is always 0 or 1.
 | 
						|
 *
 | 
						|
 * Preconditions:
 | 
						|
 * 0. NSIZE >= DSIZE.
 | 
						|
 * 1. The most significant bit of the divisor must be set.
 | 
						|
 * 2. QP must either not overlap with the input operands at all, or
 | 
						|
 *    QP + DSIZE >= NP must hold true.	(This means that it's
 | 
						|
 *    possible to put the quotient in the high part of NUM, right after the
 | 
						|
 *    remainder in NUM.
 | 
						|
 * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
 | 
						|
 */
 | 
						|
 | 
						|
mpi_limb_t
 | 
						|
mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
 | 
						|
	       mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
 | 
						|
{
 | 
						|
	mpi_limb_t most_significant_q_limb = 0;
 | 
						|
 | 
						|
	switch (dsize) {
 | 
						|
	case 0:
 | 
						|
		/* We are asked to divide by zero, so go ahead and do it!  (To make
 | 
						|
		   the compiler not remove this statement, return the value.)  */
 | 
						|
		/*
 | 
						|
		 * existing clients of this function have been modified
 | 
						|
		 * not to call it with dsize == 0, so this should not happen
 | 
						|
		 */
 | 
						|
		return 1 / dsize;
 | 
						|
 | 
						|
	case 1:
 | 
						|
		{
 | 
						|
			mpi_size_t i;
 | 
						|
			mpi_limb_t n1;
 | 
						|
			mpi_limb_t d;
 | 
						|
 | 
						|
			d = dp[0];
 | 
						|
			n1 = np[nsize - 1];
 | 
						|
 | 
						|
			if (n1 >= d) {
 | 
						|
				n1 -= d;
 | 
						|
				most_significant_q_limb = 1;
 | 
						|
			}
 | 
						|
 | 
						|
			qp += qextra_limbs;
 | 
						|
			for (i = nsize - 2; i >= 0; i--)
 | 
						|
				udiv_qrnnd(qp[i], n1, n1, np[i], d);
 | 
						|
			qp -= qextra_limbs;
 | 
						|
 | 
						|
			for (i = qextra_limbs - 1; i >= 0; i--)
 | 
						|
				udiv_qrnnd(qp[i], n1, n1, 0, d);
 | 
						|
 | 
						|
			np[0] = n1;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
	case 2:
 | 
						|
		{
 | 
						|
			mpi_size_t i;
 | 
						|
			mpi_limb_t n1, n0, n2;
 | 
						|
			mpi_limb_t d1, d0;
 | 
						|
 | 
						|
			np += nsize - 2;
 | 
						|
			d1 = dp[1];
 | 
						|
			d0 = dp[0];
 | 
						|
			n1 = np[1];
 | 
						|
			n0 = np[0];
 | 
						|
 | 
						|
			if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
 | 
						|
				sub_ddmmss(n1, n0, n1, n0, d1, d0);
 | 
						|
				most_significant_q_limb = 1;
 | 
						|
			}
 | 
						|
 | 
						|
			for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
 | 
						|
				mpi_limb_t q;
 | 
						|
				mpi_limb_t r;
 | 
						|
 | 
						|
				if (i >= qextra_limbs)
 | 
						|
					np--;
 | 
						|
				else
 | 
						|
					np[0] = 0;
 | 
						|
 | 
						|
				if (n1 == d1) {
 | 
						|
					/* Q should be either 111..111 or 111..110.  Need special
 | 
						|
					 * treatment of this rare case as normal division would
 | 
						|
					 * give overflow.  */
 | 
						|
					q = ~(mpi_limb_t) 0;
 | 
						|
 | 
						|
					r = n0 + d1;
 | 
						|
					if (r < d1) {	/* Carry in the addition? */
 | 
						|
						add_ssaaaa(n1, n0, r - d0,
 | 
						|
							   np[0], 0, d0);
 | 
						|
						qp[i] = q;
 | 
						|
						continue;
 | 
						|
					}
 | 
						|
					n1 = d0 - (d0 != 0 ? 1 : 0);
 | 
						|
					n0 = -d0;
 | 
						|
				} else {
 | 
						|
					udiv_qrnnd(q, r, n1, n0, d1);
 | 
						|
					umul_ppmm(n1, n0, d0, q);
 | 
						|
				}
 | 
						|
 | 
						|
				n2 = np[0];
 | 
						|
q_test:
 | 
						|
				if (n1 > r || (n1 == r && n0 > n2)) {
 | 
						|
					/* The estimated Q was too large.  */
 | 
						|
					q--;
 | 
						|
					sub_ddmmss(n1, n0, n1, n0, 0, d0);
 | 
						|
					r += d1;
 | 
						|
					if (r >= d1)	/* If not carry, test Q again.  */
 | 
						|
						goto q_test;
 | 
						|
				}
 | 
						|
 | 
						|
				qp[i] = q;
 | 
						|
				sub_ddmmss(n1, n0, r, n2, n1, n0);
 | 
						|
			}
 | 
						|
			np[1] = n1;
 | 
						|
			np[0] = n0;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		{
 | 
						|
			mpi_size_t i;
 | 
						|
			mpi_limb_t dX, d1, n0;
 | 
						|
 | 
						|
			np += nsize - dsize;
 | 
						|
			dX = dp[dsize - 1];
 | 
						|
			d1 = dp[dsize - 2];
 | 
						|
			n0 = np[dsize - 1];
 | 
						|
 | 
						|
			if (n0 >= dX) {
 | 
						|
				if (n0 > dX
 | 
						|
				    || mpihelp_cmp(np, dp, dsize - 1) >= 0) {
 | 
						|
					mpihelp_sub_n(np, np, dp, dsize);
 | 
						|
					n0 = np[dsize - 1];
 | 
						|
					most_significant_q_limb = 1;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
 | 
						|
				mpi_limb_t q;
 | 
						|
				mpi_limb_t n1, n2;
 | 
						|
				mpi_limb_t cy_limb;
 | 
						|
 | 
						|
				if (i >= qextra_limbs) {
 | 
						|
					np--;
 | 
						|
					n2 = np[dsize];
 | 
						|
				} else {
 | 
						|
					n2 = np[dsize - 1];
 | 
						|
					MPN_COPY_DECR(np + 1, np, dsize - 1);
 | 
						|
					np[0] = 0;
 | 
						|
				}
 | 
						|
 | 
						|
				if (n0 == dX) {
 | 
						|
					/* This might over-estimate q, but it's probably not worth
 | 
						|
					 * the extra code here to find out.  */
 | 
						|
					q = ~(mpi_limb_t) 0;
 | 
						|
				} else {
 | 
						|
					mpi_limb_t r;
 | 
						|
 | 
						|
					udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
 | 
						|
					umul_ppmm(n1, n0, d1, q);
 | 
						|
 | 
						|
					while (n1 > r
 | 
						|
					       || (n1 == r
 | 
						|
						   && n0 > np[dsize - 2])) {
 | 
						|
						q--;
 | 
						|
						r += dX;
 | 
						|
						if (r < dX)	/* I.e. "carry in previous addition?" */
 | 
						|
							break;
 | 
						|
						n1 -= n0 < d1;
 | 
						|
						n0 -= d1;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				/* Possible optimization: We already have (q * n0) and (1 * n1)
 | 
						|
				 * after the calculation of q.  Taking advantage of that, we
 | 
						|
				 * could make this loop make two iterations less.  */
 | 
						|
				cy_limb = mpihelp_submul_1(np, dp, dsize, q);
 | 
						|
 | 
						|
				if (n2 != cy_limb) {
 | 
						|
					mpihelp_add_n(np, np, dp, dsize);
 | 
						|
					q--;
 | 
						|
				}
 | 
						|
 | 
						|
				qp[i] = q;
 | 
						|
				n0 = np[dsize - 1];
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return most_significant_q_limb;
 | 
						|
}
 |