forked from mirrors/linux
		
	 ebc5d83d04
			
		
	
	
		ebc5d83d04
		
	
	
	
	
		
			
			Use common names from vmstat array when possible. This gives not much difference in code size for now, but should help in keeping interfaces consistent. add/remove: 0/2 grow/shrink: 2/0 up/down: 70/-72 (-2) Function old new delta memory_stat_format 984 1050 +66 memcg_stat_show 957 961 +4 memcg1_event_names 32 - -32 mem_cgroup_lru_names 40 - -40 Total: Before=14485337, After=14485335, chg -0.00% Link: http://lkml.kernel.org/r/157113012508.453.80391533767219371.stgit@buzz Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			7189 lines
		
	
	
	
		
			186 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7189 lines
		
	
	
	
		
			186 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /* memcontrol.c - Memory Controller
 | |
|  *
 | |
|  * Copyright IBM Corporation, 2007
 | |
|  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 | |
|  *
 | |
|  * Copyright 2007 OpenVZ SWsoft Inc
 | |
|  * Author: Pavel Emelianov <xemul@openvz.org>
 | |
|  *
 | |
|  * Memory thresholds
 | |
|  * Copyright (C) 2009 Nokia Corporation
 | |
|  * Author: Kirill A. Shutemov
 | |
|  *
 | |
|  * Kernel Memory Controller
 | |
|  * Copyright (C) 2012 Parallels Inc. and Google Inc.
 | |
|  * Authors: Glauber Costa and Suleiman Souhlal
 | |
|  *
 | |
|  * Native page reclaim
 | |
|  * Charge lifetime sanitation
 | |
|  * Lockless page tracking & accounting
 | |
|  * Unified hierarchy configuration model
 | |
|  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 | |
|  */
 | |
| 
 | |
| #include <linux/page_counter.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/pagewalk.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/vm_event_item.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/limits.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/eventfd.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/vmpressure.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/swap_cgroup.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/tracehook.h>
 | |
| #include <linux/psi.h>
 | |
| #include <linux/seq_buf.h>
 | |
| #include "internal.h"
 | |
| #include <net/sock.h>
 | |
| #include <net/ip.h>
 | |
| #include "slab.h"
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <trace/events/vmscan.h>
 | |
| 
 | |
| struct cgroup_subsys memory_cgrp_subsys __read_mostly;
 | |
| EXPORT_SYMBOL(memory_cgrp_subsys);
 | |
| 
 | |
| struct mem_cgroup *root_mem_cgroup __read_mostly;
 | |
| 
 | |
| #define MEM_CGROUP_RECLAIM_RETRIES	5
 | |
| 
 | |
| /* Socket memory accounting disabled? */
 | |
| static bool cgroup_memory_nosocket;
 | |
| 
 | |
| /* Kernel memory accounting disabled? */
 | |
| static bool cgroup_memory_nokmem;
 | |
| 
 | |
| /* Whether the swap controller is active */
 | |
| #ifdef CONFIG_MEMCG_SWAP
 | |
| int do_swap_account __read_mostly;
 | |
| #else
 | |
| #define do_swap_account		0
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
 | |
| #endif
 | |
| 
 | |
| /* Whether legacy memory+swap accounting is active */
 | |
| static bool do_memsw_account(void)
 | |
| {
 | |
| 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
 | |
| }
 | |
| 
 | |
| #define THRESHOLDS_EVENTS_TARGET 128
 | |
| #define SOFTLIMIT_EVENTS_TARGET 1024
 | |
| 
 | |
| /*
 | |
|  * Cgroups above their limits are maintained in a RB-Tree, independent of
 | |
|  * their hierarchy representation
 | |
|  */
 | |
| 
 | |
| struct mem_cgroup_tree_per_node {
 | |
| 	struct rb_root rb_root;
 | |
| 	struct rb_node *rb_rightmost;
 | |
| 	spinlock_t lock;
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_tree {
 | |
| 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 | |
| };
 | |
| 
 | |
| static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 | |
| 
 | |
| /* for OOM */
 | |
| struct mem_cgroup_eventfd_list {
 | |
| 	struct list_head list;
 | |
| 	struct eventfd_ctx *eventfd;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * cgroup_event represents events which userspace want to receive.
 | |
|  */
 | |
| struct mem_cgroup_event {
 | |
| 	/*
 | |
| 	 * memcg which the event belongs to.
 | |
| 	 */
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	/*
 | |
| 	 * eventfd to signal userspace about the event.
 | |
| 	 */
 | |
| 	struct eventfd_ctx *eventfd;
 | |
| 	/*
 | |
| 	 * Each of these stored in a list by the cgroup.
 | |
| 	 */
 | |
| 	struct list_head list;
 | |
| 	/*
 | |
| 	 * register_event() callback will be used to add new userspace
 | |
| 	 * waiter for changes related to this event.  Use eventfd_signal()
 | |
| 	 * on eventfd to send notification to userspace.
 | |
| 	 */
 | |
| 	int (*register_event)(struct mem_cgroup *memcg,
 | |
| 			      struct eventfd_ctx *eventfd, const char *args);
 | |
| 	/*
 | |
| 	 * unregister_event() callback will be called when userspace closes
 | |
| 	 * the eventfd or on cgroup removing.  This callback must be set,
 | |
| 	 * if you want provide notification functionality.
 | |
| 	 */
 | |
| 	void (*unregister_event)(struct mem_cgroup *memcg,
 | |
| 				 struct eventfd_ctx *eventfd);
 | |
| 	/*
 | |
| 	 * All fields below needed to unregister event when
 | |
| 	 * userspace closes eventfd.
 | |
| 	 */
 | |
| 	poll_table pt;
 | |
| 	wait_queue_head_t *wqh;
 | |
| 	wait_queue_entry_t wait;
 | |
| 	struct work_struct remove;
 | |
| };
 | |
| 
 | |
| static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 | |
| static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 | |
| 
 | |
| /* Stuffs for move charges at task migration. */
 | |
| /*
 | |
|  * Types of charges to be moved.
 | |
|  */
 | |
| #define MOVE_ANON	0x1U
 | |
| #define MOVE_FILE	0x2U
 | |
| #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 | |
| 
 | |
| /* "mc" and its members are protected by cgroup_mutex */
 | |
| static struct move_charge_struct {
 | |
| 	spinlock_t	  lock; /* for from, to */
 | |
| 	struct mm_struct  *mm;
 | |
| 	struct mem_cgroup *from;
 | |
| 	struct mem_cgroup *to;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long precharge;
 | |
| 	unsigned long moved_charge;
 | |
| 	unsigned long moved_swap;
 | |
| 	struct task_struct *moving_task;	/* a task moving charges */
 | |
| 	wait_queue_head_t waitq;		/* a waitq for other context */
 | |
| } mc = {
 | |
| 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 | |
| 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 | |
|  * limit reclaim to prevent infinite loops, if they ever occur.
 | |
|  */
 | |
| #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 | |
| #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 | |
| 
 | |
| enum charge_type {
 | |
| 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 | |
| 	MEM_CGROUP_CHARGE_TYPE_ANON,
 | |
| 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 | |
| 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 | |
| 	NR_CHARGE_TYPE,
 | |
| };
 | |
| 
 | |
| /* for encoding cft->private value on file */
 | |
| enum res_type {
 | |
| 	_MEM,
 | |
| 	_MEMSWAP,
 | |
| 	_OOM_TYPE,
 | |
| 	_KMEM,
 | |
| 	_TCP,
 | |
| };
 | |
| 
 | |
| #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 | |
| #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 | |
| #define MEMFILE_ATTR(val)	((val) & 0xffff)
 | |
| /* Used for OOM nofiier */
 | |
| #define OOM_CONTROL		(0)
 | |
| 
 | |
| /*
 | |
|  * Iteration constructs for visiting all cgroups (under a tree).  If
 | |
|  * loops are exited prematurely (break), mem_cgroup_iter_break() must
 | |
|  * be used for reference counting.
 | |
|  */
 | |
| #define for_each_mem_cgroup_tree(iter, root)		\
 | |
| 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 | |
| 	     iter != NULL;				\
 | |
| 	     iter = mem_cgroup_iter(root, iter, NULL))
 | |
| 
 | |
| #define for_each_mem_cgroup(iter)			\
 | |
| 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 | |
| 	     iter != NULL;				\
 | |
| 	     iter = mem_cgroup_iter(NULL, iter, NULL))
 | |
| 
 | |
| static inline bool should_force_charge(void)
 | |
| {
 | |
| 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 | |
| 		(current->flags & PF_EXITING);
 | |
| }
 | |
| 
 | |
| /* Some nice accessors for the vmpressure. */
 | |
| struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	if (!memcg)
 | |
| 		memcg = root_mem_cgroup;
 | |
| 	return &memcg->vmpressure;
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 | |
| {
 | |
| 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| /*
 | |
|  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 | |
|  * The main reason for not using cgroup id for this:
 | |
|  *  this works better in sparse environments, where we have a lot of memcgs,
 | |
|  *  but only a few kmem-limited. Or also, if we have, for instance, 200
 | |
|  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 | |
|  *  200 entry array for that.
 | |
|  *
 | |
|  * The current size of the caches array is stored in memcg_nr_cache_ids. It
 | |
|  * will double each time we have to increase it.
 | |
|  */
 | |
| static DEFINE_IDA(memcg_cache_ida);
 | |
| int memcg_nr_cache_ids;
 | |
| 
 | |
| /* Protects memcg_nr_cache_ids */
 | |
| static DECLARE_RWSEM(memcg_cache_ids_sem);
 | |
| 
 | |
| void memcg_get_cache_ids(void)
 | |
| {
 | |
| 	down_read(&memcg_cache_ids_sem);
 | |
| }
 | |
| 
 | |
| void memcg_put_cache_ids(void)
 | |
| {
 | |
| 	up_read(&memcg_cache_ids_sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MIN_SIZE is different than 1, because we would like to avoid going through
 | |
|  * the alloc/free process all the time. In a small machine, 4 kmem-limited
 | |
|  * cgroups is a reasonable guess. In the future, it could be a parameter or
 | |
|  * tunable, but that is strictly not necessary.
 | |
|  *
 | |
|  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 | |
|  * this constant directly from cgroup, but it is understandable that this is
 | |
|  * better kept as an internal representation in cgroup.c. In any case, the
 | |
|  * cgrp_id space is not getting any smaller, and we don't have to necessarily
 | |
|  * increase ours as well if it increases.
 | |
|  */
 | |
| #define MEMCG_CACHES_MIN_SIZE 4
 | |
| #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 | |
| 
 | |
| /*
 | |
|  * A lot of the calls to the cache allocation functions are expected to be
 | |
|  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 | |
|  * conditional to this static branch, we'll have to allow modules that does
 | |
|  * kmem_cache_alloc and the such to see this symbol as well
 | |
|  */
 | |
| DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 | |
| EXPORT_SYMBOL(memcg_kmem_enabled_key);
 | |
| 
 | |
| struct workqueue_struct *memcg_kmem_cache_wq;
 | |
| #endif
 | |
| 
 | |
| static int memcg_shrinker_map_size;
 | |
| static DEFINE_MUTEX(memcg_shrinker_map_mutex);
 | |
| 
 | |
| static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
 | |
| }
 | |
| 
 | |
| static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
 | |
| 					 int size, int old_size)
 | |
| {
 | |
| 	struct memcg_shrinker_map *new, *old;
 | |
| 	int nid;
 | |
| 
 | |
| 	lockdep_assert_held(&memcg_shrinker_map_mutex);
 | |
| 
 | |
| 	for_each_node(nid) {
 | |
| 		old = rcu_dereference_protected(
 | |
| 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
 | |
| 		/* Not yet online memcg */
 | |
| 		if (!old)
 | |
| 			return 0;
 | |
| 
 | |
| 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
 | |
| 		if (!new)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/* Set all old bits, clear all new bits */
 | |
| 		memset(new->map, (int)0xff, old_size);
 | |
| 		memset((void *)new->map + old_size, 0, size - old_size);
 | |
| 
 | |
| 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
 | |
| 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 	struct memcg_shrinker_map *map;
 | |
| 	int nid;
 | |
| 
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_node(nid) {
 | |
| 		pn = mem_cgroup_nodeinfo(memcg, nid);
 | |
| 		map = rcu_dereference_protected(pn->shrinker_map, true);
 | |
| 		if (map)
 | |
| 			kvfree(map);
 | |
| 		rcu_assign_pointer(pn->shrinker_map, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct memcg_shrinker_map *map;
 | |
| 	int nid, size, ret = 0;
 | |
| 
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&memcg_shrinker_map_mutex);
 | |
| 	size = memcg_shrinker_map_size;
 | |
| 	for_each_node(nid) {
 | |
| 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
 | |
| 		if (!map) {
 | |
| 			memcg_free_shrinker_maps(memcg);
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
 | |
| 	}
 | |
| 	mutex_unlock(&memcg_shrinker_map_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int memcg_expand_shrinker_maps(int new_id)
 | |
| {
 | |
| 	int size, old_size, ret = 0;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
 | |
| 	old_size = memcg_shrinker_map_size;
 | |
| 	if (size <= old_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&memcg_shrinker_map_mutex);
 | |
| 	if (!root_mem_cgroup)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	for_each_mem_cgroup(memcg) {
 | |
| 		if (mem_cgroup_is_root(memcg))
 | |
| 			continue;
 | |
| 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
 | |
| 		if (ret)
 | |
| 			goto unlock;
 | |
| 	}
 | |
| unlock:
 | |
| 	if (!ret)
 | |
| 		memcg_shrinker_map_size = size;
 | |
| 	mutex_unlock(&memcg_shrinker_map_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 | |
| {
 | |
| 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 | |
| 		struct memcg_shrinker_map *map;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
 | |
| 		/* Pairs with smp mb in shrink_slab() */
 | |
| 		smp_mb__before_atomic();
 | |
| 		set_bit(shrinker_id, map->map);
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_css_from_page - css of the memcg associated with a page
 | |
|  * @page: page of interest
 | |
|  *
 | |
|  * If memcg is bound to the default hierarchy, css of the memcg associated
 | |
|  * with @page is returned.  The returned css remains associated with @page
 | |
|  * until it is released.
 | |
|  *
 | |
|  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 | |
|  * is returned.
 | |
|  */
 | |
| struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	memcg = page->mem_cgroup;
 | |
| 
 | |
| 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		memcg = root_mem_cgroup;
 | |
| 
 | |
| 	return &memcg->css;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_cgroup_ino - return inode number of the memcg a page is charged to
 | |
|  * @page: the page
 | |
|  *
 | |
|  * Look up the closest online ancestor of the memory cgroup @page is charged to
 | |
|  * and return its inode number or 0 if @page is not charged to any cgroup. It
 | |
|  * is safe to call this function without holding a reference to @page.
 | |
|  *
 | |
|  * Note, this function is inherently racy, because there is nothing to prevent
 | |
|  * the cgroup inode from getting torn down and potentially reallocated a moment
 | |
|  * after page_cgroup_ino() returns, so it only should be used by callers that
 | |
|  * do not care (such as procfs interfaces).
 | |
|  */
 | |
| ino_t page_cgroup_ino(struct page *page)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned long ino = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (PageSlab(page) && !PageTail(page))
 | |
| 		memcg = memcg_from_slab_page(page);
 | |
| 	else
 | |
| 		memcg = READ_ONCE(page->mem_cgroup);
 | |
| 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 | |
| 		memcg = parent_mem_cgroup(memcg);
 | |
| 	if (memcg)
 | |
| 		ino = cgroup_ino(memcg->css.cgroup);
 | |
| 	rcu_read_unlock();
 | |
| 	return ino;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_node *
 | |
| mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 | |
| {
 | |
| 	int nid = page_to_nid(page);
 | |
| 
 | |
| 	return memcg->nodeinfo[nid];
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_tree_per_node *
 | |
| soft_limit_tree_node(int nid)
 | |
| {
 | |
| 	return soft_limit_tree.rb_tree_per_node[nid];
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_tree_per_node *
 | |
| soft_limit_tree_from_page(struct page *page)
 | |
| {
 | |
| 	int nid = page_to_nid(page);
 | |
| 
 | |
| 	return soft_limit_tree.rb_tree_per_node[nid];
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 | |
| 					 struct mem_cgroup_tree_per_node *mctz,
 | |
| 					 unsigned long new_usage_in_excess)
 | |
| {
 | |
| 	struct rb_node **p = &mctz->rb_root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct mem_cgroup_per_node *mz_node;
 | |
| 	bool rightmost = true;
 | |
| 
 | |
| 	if (mz->on_tree)
 | |
| 		return;
 | |
| 
 | |
| 	mz->usage_in_excess = new_usage_in_excess;
 | |
| 	if (!mz->usage_in_excess)
 | |
| 		return;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 | |
| 					tree_node);
 | |
| 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 | |
| 			p = &(*p)->rb_left;
 | |
| 			rightmost = false;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't avoid mem cgroups that are over their soft
 | |
| 		 * limit by the same amount
 | |
| 		 */
 | |
| 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 | |
| 			p = &(*p)->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	if (rightmost)
 | |
| 		mctz->rb_rightmost = &mz->tree_node;
 | |
| 
 | |
| 	rb_link_node(&mz->tree_node, parent, p);
 | |
| 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 | |
| 	mz->on_tree = true;
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 | |
| 					 struct mem_cgroup_tree_per_node *mctz)
 | |
| {
 | |
| 	if (!mz->on_tree)
 | |
| 		return;
 | |
| 
 | |
| 	if (&mz->tree_node == mctz->rb_rightmost)
 | |
| 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 | |
| 
 | |
| 	rb_erase(&mz->tree_node, &mctz->rb_root);
 | |
| 	mz->on_tree = false;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 | |
| 				       struct mem_cgroup_tree_per_node *mctz)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&mctz->lock, flags);
 | |
| 	__mem_cgroup_remove_exceeded(mz, mctz);
 | |
| 	spin_unlock_irqrestore(&mctz->lock, flags);
 | |
| }
 | |
| 
 | |
| static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long nr_pages = page_counter_read(&memcg->memory);
 | |
| 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 | |
| 	unsigned long excess = 0;
 | |
| 
 | |
| 	if (nr_pages > soft_limit)
 | |
| 		excess = nr_pages - soft_limit;
 | |
| 
 | |
| 	return excess;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 | |
| {
 | |
| 	unsigned long excess;
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 	struct mem_cgroup_tree_per_node *mctz;
 | |
| 
 | |
| 	mctz = soft_limit_tree_from_page(page);
 | |
| 	if (!mctz)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Necessary to update all ancestors when hierarchy is used.
 | |
| 	 * because their event counter is not touched.
 | |
| 	 */
 | |
| 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 | |
| 		mz = mem_cgroup_page_nodeinfo(memcg, page);
 | |
| 		excess = soft_limit_excess(memcg);
 | |
| 		/*
 | |
| 		 * We have to update the tree if mz is on RB-tree or
 | |
| 		 * mem is over its softlimit.
 | |
| 		 */
 | |
| 		if (excess || mz->on_tree) {
 | |
| 			unsigned long flags;
 | |
| 
 | |
| 			spin_lock_irqsave(&mctz->lock, flags);
 | |
| 			/* if on-tree, remove it */
 | |
| 			if (mz->on_tree)
 | |
| 				__mem_cgroup_remove_exceeded(mz, mctz);
 | |
| 			/*
 | |
| 			 * Insert again. mz->usage_in_excess will be updated.
 | |
| 			 * If excess is 0, no tree ops.
 | |
| 			 */
 | |
| 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 | |
| 			spin_unlock_irqrestore(&mctz->lock, flags);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup_tree_per_node *mctz;
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 	int nid;
 | |
| 
 | |
| 	for_each_node(nid) {
 | |
| 		mz = mem_cgroup_nodeinfo(memcg, nid);
 | |
| 		mctz = soft_limit_tree_node(nid);
 | |
| 		if (mctz)
 | |
| 			mem_cgroup_remove_exceeded(mz, mctz);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_node *
 | |
| __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 
 | |
| retry:
 | |
| 	mz = NULL;
 | |
| 	if (!mctz->rb_rightmost)
 | |
| 		goto done;		/* Nothing to reclaim from */
 | |
| 
 | |
| 	mz = rb_entry(mctz->rb_rightmost,
 | |
| 		      struct mem_cgroup_per_node, tree_node);
 | |
| 	/*
 | |
| 	 * Remove the node now but someone else can add it back,
 | |
| 	 * we will to add it back at the end of reclaim to its correct
 | |
| 	 * position in the tree.
 | |
| 	 */
 | |
| 	__mem_cgroup_remove_exceeded(mz, mctz);
 | |
| 	if (!soft_limit_excess(mz->memcg) ||
 | |
| 	    !css_tryget_online(&mz->memcg->css))
 | |
| 		goto retry;
 | |
| done:
 | |
| 	return mz;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_node *
 | |
| mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 
 | |
| 	spin_lock_irq(&mctz->lock);
 | |
| 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 | |
| 	spin_unlock_irq(&mctz->lock);
 | |
| 	return mz;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __mod_memcg_state - update cgroup memory statistics
 | |
|  * @memcg: the memory cgroup
 | |
|  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 | |
|  * @val: delta to add to the counter, can be negative
 | |
|  */
 | |
| void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 | |
| {
 | |
| 	long x;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
 | |
| 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 | |
| 		struct mem_cgroup *mi;
 | |
| 
 | |
| 		/*
 | |
| 		 * Batch local counters to keep them in sync with
 | |
| 		 * the hierarchical ones.
 | |
| 		 */
 | |
| 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
 | |
| 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 | |
| 			atomic_long_add(x, &mi->vmstats[idx]);
 | |
| 		x = 0;
 | |
| 	}
 | |
| 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_node *
 | |
| parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 | |
| {
 | |
| 	struct mem_cgroup *parent;
 | |
| 
 | |
| 	parent = parent_mem_cgroup(pn->memcg);
 | |
| 	if (!parent)
 | |
| 		return NULL;
 | |
| 	return mem_cgroup_nodeinfo(parent, nid);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __mod_lruvec_state - update lruvec memory statistics
 | |
|  * @lruvec: the lruvec
 | |
|  * @idx: the stat item
 | |
|  * @val: delta to add to the counter, can be negative
 | |
|  *
 | |
|  * The lruvec is the intersection of the NUMA node and a cgroup. This
 | |
|  * function updates the all three counters that are affected by a
 | |
|  * change of state at this level: per-node, per-cgroup, per-lruvec.
 | |
|  */
 | |
| void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 | |
| 			int val)
 | |
| {
 | |
| 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	long x;
 | |
| 
 | |
| 	/* Update node */
 | |
| 	__mod_node_page_state(pgdat, idx, val);
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 | |
| 	memcg = pn->memcg;
 | |
| 
 | |
| 	/* Update memcg */
 | |
| 	__mod_memcg_state(memcg, idx, val);
 | |
| 
 | |
| 	/* Update lruvec */
 | |
| 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 | |
| 
 | |
| 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 | |
| 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 | |
| 		struct mem_cgroup_per_node *pi;
 | |
| 
 | |
| 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 | |
| 			atomic_long_add(x, &pi->lruvec_stat[idx]);
 | |
| 		x = 0;
 | |
| 	}
 | |
| 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 | |
| }
 | |
| 
 | |
| void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
 | |
| {
 | |
| 	struct page *page = virt_to_head_page(p);
 | |
| 	pg_data_t *pgdat = page_pgdat(page);
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct lruvec *lruvec;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = memcg_from_slab_page(page);
 | |
| 
 | |
| 	/* Untracked pages have no memcg, no lruvec. Update only the node */
 | |
| 	if (!memcg || memcg == root_mem_cgroup) {
 | |
| 		__mod_node_page_state(pgdat, idx, val);
 | |
| 	} else {
 | |
| 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 | |
| 		__mod_lruvec_state(lruvec, idx, val);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __count_memcg_events - account VM events in a cgroup
 | |
|  * @memcg: the memory cgroup
 | |
|  * @idx: the event item
 | |
|  * @count: the number of events that occured
 | |
|  */
 | |
| void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 | |
| 			  unsigned long count)
 | |
| {
 | |
| 	unsigned long x;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
 | |
| 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
 | |
| 		struct mem_cgroup *mi;
 | |
| 
 | |
| 		/*
 | |
| 		 * Batch local counters to keep them in sync with
 | |
| 		 * the hierarchical ones.
 | |
| 		 */
 | |
| 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
 | |
| 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 | |
| 			atomic_long_add(x, &mi->vmevents[idx]);
 | |
| 		x = 0;
 | |
| 	}
 | |
| 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
 | |
| }
 | |
| 
 | |
| static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 | |
| {
 | |
| 	return atomic_long_read(&memcg->vmevents[event]);
 | |
| }
 | |
| 
 | |
| static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 | |
| {
 | |
| 	long x = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 | |
| 					 struct page *page,
 | |
| 					 bool compound, int nr_pages)
 | |
| {
 | |
| 	/*
 | |
| 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 | |
| 	 * counted as CACHE even if it's on ANON LRU.
 | |
| 	 */
 | |
| 	if (PageAnon(page))
 | |
| 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
 | |
| 	else {
 | |
| 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
 | |
| 		if (PageSwapBacked(page))
 | |
| 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
 | |
| 	}
 | |
| 
 | |
| 	if (compound) {
 | |
| 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 | |
| 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
 | |
| 	}
 | |
| 
 | |
| 	/* pagein of a big page is an event. So, ignore page size */
 | |
| 	if (nr_pages > 0)
 | |
| 		__count_memcg_events(memcg, PGPGIN, 1);
 | |
| 	else {
 | |
| 		__count_memcg_events(memcg, PGPGOUT, 1);
 | |
| 		nr_pages = -nr_pages; /* for event */
 | |
| 	}
 | |
| 
 | |
| 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 | |
| }
 | |
| 
 | |
| static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 | |
| 				       enum mem_cgroup_events_target target)
 | |
| {
 | |
| 	unsigned long val, next;
 | |
| 
 | |
| 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 | |
| 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 | |
| 	/* from time_after() in jiffies.h */
 | |
| 	if ((long)(next - val) < 0) {
 | |
| 		switch (target) {
 | |
| 		case MEM_CGROUP_TARGET_THRESH:
 | |
| 			next = val + THRESHOLDS_EVENTS_TARGET;
 | |
| 			break;
 | |
| 		case MEM_CGROUP_TARGET_SOFTLIMIT:
 | |
| 			next = val + SOFTLIMIT_EVENTS_TARGET;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check events in order.
 | |
|  *
 | |
|  */
 | |
| static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 | |
| {
 | |
| 	/* threshold event is triggered in finer grain than soft limit */
 | |
| 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 | |
| 						MEM_CGROUP_TARGET_THRESH))) {
 | |
| 		bool do_softlimit;
 | |
| 
 | |
| 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 | |
| 						MEM_CGROUP_TARGET_SOFTLIMIT);
 | |
| 		mem_cgroup_threshold(memcg);
 | |
| 		if (unlikely(do_softlimit))
 | |
| 			mem_cgroup_update_tree(memcg, page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * mm_update_next_owner() may clear mm->owner to NULL
 | |
| 	 * if it races with swapoff, page migration, etc.
 | |
| 	 * So this can be called with p == NULL.
 | |
| 	 */
 | |
| 	if (unlikely(!p))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 | |
| }
 | |
| EXPORT_SYMBOL(mem_cgroup_from_task);
 | |
| 
 | |
| /**
 | |
|  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 | |
|  * @mm: mm from which memcg should be extracted. It can be NULL.
 | |
|  *
 | |
|  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 | |
|  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 | |
|  * returned.
 | |
|  */
 | |
| struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Page cache insertions can happen withou an
 | |
| 		 * actual mm context, e.g. during disk probing
 | |
| 		 * on boot, loopback IO, acct() writes etc.
 | |
| 		 */
 | |
| 		if (unlikely(!mm))
 | |
| 			memcg = root_mem_cgroup;
 | |
| 		else {
 | |
| 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | |
| 			if (unlikely(!memcg))
 | |
| 				memcg = root_mem_cgroup;
 | |
| 		}
 | |
| 	} while (!css_tryget(&memcg->css));
 | |
| 	rcu_read_unlock();
 | |
| 	return memcg;
 | |
| }
 | |
| EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 | |
| 
 | |
| /**
 | |
|  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 | |
|  * @page: page from which memcg should be extracted.
 | |
|  *
 | |
|  * Obtain a reference on page->memcg and returns it if successful. Otherwise
 | |
|  * root_mem_cgroup is returned.
 | |
|  */
 | |
| struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = page->mem_cgroup;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!memcg || !css_tryget_online(&memcg->css))
 | |
| 		memcg = root_mem_cgroup;
 | |
| 	rcu_read_unlock();
 | |
| 	return memcg;
 | |
| }
 | |
| EXPORT_SYMBOL(get_mem_cgroup_from_page);
 | |
| 
 | |
| /**
 | |
|  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 | |
|  */
 | |
| static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
 | |
| {
 | |
| 	if (unlikely(current->active_memcg)) {
 | |
| 		struct mem_cgroup *memcg = root_mem_cgroup;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		if (css_tryget_online(¤t->active_memcg->css))
 | |
| 			memcg = current->active_memcg;
 | |
| 		rcu_read_unlock();
 | |
| 		return memcg;
 | |
| 	}
 | |
| 	return get_mem_cgroup_from_mm(current->mm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_iter - iterate over memory cgroup hierarchy
 | |
|  * @root: hierarchy root
 | |
|  * @prev: previously returned memcg, NULL on first invocation
 | |
|  * @reclaim: cookie for shared reclaim walks, NULL for full walks
 | |
|  *
 | |
|  * Returns references to children of the hierarchy below @root, or
 | |
|  * @root itself, or %NULL after a full round-trip.
 | |
|  *
 | |
|  * Caller must pass the return value in @prev on subsequent
 | |
|  * invocations for reference counting, or use mem_cgroup_iter_break()
 | |
|  * to cancel a hierarchy walk before the round-trip is complete.
 | |
|  *
 | |
|  * Reclaimers can specify a node and a priority level in @reclaim to
 | |
|  * divide up the memcgs in the hierarchy among all concurrent
 | |
|  * reclaimers operating on the same node and priority.
 | |
|  */
 | |
| struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 | |
| 				   struct mem_cgroup *prev,
 | |
| 				   struct mem_cgroup_reclaim_cookie *reclaim)
 | |
| {
 | |
| 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 | |
| 	struct cgroup_subsys_state *css = NULL;
 | |
| 	struct mem_cgroup *memcg = NULL;
 | |
| 	struct mem_cgroup *pos = NULL;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!root)
 | |
| 		root = root_mem_cgroup;
 | |
| 
 | |
| 	if (prev && !reclaim)
 | |
| 		pos = prev;
 | |
| 
 | |
| 	if (!root->use_hierarchy && root != root_mem_cgroup) {
 | |
| 		if (prev)
 | |
| 			goto out;
 | |
| 		return root;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	if (reclaim) {
 | |
| 		struct mem_cgroup_per_node *mz;
 | |
| 
 | |
| 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
 | |
| 		iter = &mz->iter;
 | |
| 
 | |
| 		if (prev && reclaim->generation != iter->generation)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		while (1) {
 | |
| 			pos = READ_ONCE(iter->position);
 | |
| 			if (!pos || css_tryget(&pos->css))
 | |
| 				break;
 | |
| 			/*
 | |
| 			 * css reference reached zero, so iter->position will
 | |
| 			 * be cleared by ->css_released. However, we should not
 | |
| 			 * rely on this happening soon, because ->css_released
 | |
| 			 * is called from a work queue, and by busy-waiting we
 | |
| 			 * might block it. So we clear iter->position right
 | |
| 			 * away.
 | |
| 			 */
 | |
| 			(void)cmpxchg(&iter->position, pos, NULL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pos)
 | |
| 		css = &pos->css;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		css = css_next_descendant_pre(css, &root->css);
 | |
| 		if (!css) {
 | |
| 			/*
 | |
| 			 * Reclaimers share the hierarchy walk, and a
 | |
| 			 * new one might jump in right at the end of
 | |
| 			 * the hierarchy - make sure they see at least
 | |
| 			 * one group and restart from the beginning.
 | |
| 			 */
 | |
| 			if (!prev)
 | |
| 				continue;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Verify the css and acquire a reference.  The root
 | |
| 		 * is provided by the caller, so we know it's alive
 | |
| 		 * and kicking, and don't take an extra reference.
 | |
| 		 */
 | |
| 		memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 		if (css == &root->css)
 | |
| 			break;
 | |
| 
 | |
| 		if (css_tryget(css))
 | |
| 			break;
 | |
| 
 | |
| 		memcg = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (reclaim) {
 | |
| 		/*
 | |
| 		 * The position could have already been updated by a competing
 | |
| 		 * thread, so check that the value hasn't changed since we read
 | |
| 		 * it to avoid reclaiming from the same cgroup twice.
 | |
| 		 */
 | |
| 		(void)cmpxchg(&iter->position, pos, memcg);
 | |
| 
 | |
| 		if (pos)
 | |
| 			css_put(&pos->css);
 | |
| 
 | |
| 		if (!memcg)
 | |
| 			iter->generation++;
 | |
| 		else if (!prev)
 | |
| 			reclaim->generation = iter->generation;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| out:
 | |
| 	if (prev && prev != root)
 | |
| 		css_put(&prev->css);
 | |
| 
 | |
| 	return memcg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 | |
|  * @root: hierarchy root
 | |
|  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 | |
|  */
 | |
| void mem_cgroup_iter_break(struct mem_cgroup *root,
 | |
| 			   struct mem_cgroup *prev)
 | |
| {
 | |
| 	if (!root)
 | |
| 		root = root_mem_cgroup;
 | |
| 	if (prev && prev != root)
 | |
| 		css_put(&prev->css);
 | |
| }
 | |
| 
 | |
| static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
 | |
| 					struct mem_cgroup *dead_memcg)
 | |
| {
 | |
| 	struct mem_cgroup_reclaim_iter *iter;
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 	int nid;
 | |
| 
 | |
| 	for_each_node(nid) {
 | |
| 		mz = mem_cgroup_nodeinfo(from, nid);
 | |
| 		iter = &mz->iter;
 | |
| 		cmpxchg(&iter->position, dead_memcg, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = dead_memcg;
 | |
| 	struct mem_cgroup *last;
 | |
| 
 | |
| 	do {
 | |
| 		__invalidate_reclaim_iterators(memcg, dead_memcg);
 | |
| 		last = memcg;
 | |
| 	} while ((memcg = parent_mem_cgroup(memcg)));
 | |
| 
 | |
| 	/*
 | |
| 	 * When cgruop1 non-hierarchy mode is used,
 | |
| 	 * parent_mem_cgroup() does not walk all the way up to the
 | |
| 	 * cgroup root (root_mem_cgroup). So we have to handle
 | |
| 	 * dead_memcg from cgroup root separately.
 | |
| 	 */
 | |
| 	if (last != root_mem_cgroup)
 | |
| 		__invalidate_reclaim_iterators(root_mem_cgroup,
 | |
| 						dead_memcg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 | |
|  * @memcg: hierarchy root
 | |
|  * @fn: function to call for each task
 | |
|  * @arg: argument passed to @fn
 | |
|  *
 | |
|  * This function iterates over tasks attached to @memcg or to any of its
 | |
|  * descendants and calls @fn for each task. If @fn returns a non-zero
 | |
|  * value, the function breaks the iteration loop and returns the value.
 | |
|  * Otherwise, it will iterate over all tasks and return 0.
 | |
|  *
 | |
|  * This function must not be called for the root memory cgroup.
 | |
|  */
 | |
| int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
 | |
| 			  int (*fn)(struct task_struct *, void *), void *arg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(memcg == root_mem_cgroup);
 | |
| 
 | |
| 	for_each_mem_cgroup_tree(iter, memcg) {
 | |
| 		struct css_task_iter it;
 | |
| 		struct task_struct *task;
 | |
| 
 | |
| 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
 | |
| 		while (!ret && (task = css_task_iter_next(&it)))
 | |
| 			ret = fn(task, arg);
 | |
| 		css_task_iter_end(&it);
 | |
| 		if (ret) {
 | |
| 			mem_cgroup_iter_break(memcg, iter);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 | |
|  * @page: the page
 | |
|  * @pgdat: pgdat of the page
 | |
|  *
 | |
|  * This function is only safe when following the LRU page isolation
 | |
|  * and putback protocol: the LRU lock must be held, and the page must
 | |
|  * either be PageLRU() or the caller must have isolated/allocated it.
 | |
|  */
 | |
| struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct lruvec *lruvec;
 | |
| 
 | |
| 	if (mem_cgroup_disabled()) {
 | |
| 		lruvec = &pgdat->__lruvec;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	memcg = page->mem_cgroup;
 | |
| 	/*
 | |
| 	 * Swapcache readahead pages are added to the LRU - and
 | |
| 	 * possibly migrated - before they are charged.
 | |
| 	 */
 | |
| 	if (!memcg)
 | |
| 		memcg = root_mem_cgroup;
 | |
| 
 | |
| 	mz = mem_cgroup_page_nodeinfo(memcg, page);
 | |
| 	lruvec = &mz->lruvec;
 | |
| out:
 | |
| 	/*
 | |
| 	 * Since a node can be onlined after the mem_cgroup was created,
 | |
| 	 * we have to be prepared to initialize lruvec->zone here;
 | |
| 	 * and if offlined then reonlined, we need to reinitialize it.
 | |
| 	 */
 | |
| 	if (unlikely(lruvec->pgdat != pgdat))
 | |
| 		lruvec->pgdat = pgdat;
 | |
| 	return lruvec;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_update_lru_size - account for adding or removing an lru page
 | |
|  * @lruvec: mem_cgroup per zone lru vector
 | |
|  * @lru: index of lru list the page is sitting on
 | |
|  * @zid: zone id of the accounted pages
 | |
|  * @nr_pages: positive when adding or negative when removing
 | |
|  *
 | |
|  * This function must be called under lru_lock, just before a page is added
 | |
|  * to or just after a page is removed from an lru list (that ordering being
 | |
|  * so as to allow it to check that lru_size 0 is consistent with list_empty).
 | |
|  */
 | |
| void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 | |
| 				int zid, int nr_pages)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *mz;
 | |
| 	unsigned long *lru_size;
 | |
| 	long size;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 | |
| 	lru_size = &mz->lru_zone_size[zid][lru];
 | |
| 
 | |
| 	if (nr_pages < 0)
 | |
| 		*lru_size += nr_pages;
 | |
| 
 | |
| 	size = *lru_size;
 | |
| 	if (WARN_ONCE(size < 0,
 | |
| 		"%s(%p, %d, %d): lru_size %ld\n",
 | |
| 		__func__, lruvec, lru, nr_pages, size)) {
 | |
| 		VM_BUG_ON(1);
 | |
| 		*lru_size = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (nr_pages > 0)
 | |
| 		*lru_size += nr_pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 | |
|  * @memcg: the memory cgroup
 | |
|  *
 | |
|  * Returns the maximum amount of memory @mem can be charged with, in
 | |
|  * pages.
 | |
|  */
 | |
| static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long margin = 0;
 | |
| 	unsigned long count;
 | |
| 	unsigned long limit;
 | |
| 
 | |
| 	count = page_counter_read(&memcg->memory);
 | |
| 	limit = READ_ONCE(memcg->memory.max);
 | |
| 	if (count < limit)
 | |
| 		margin = limit - count;
 | |
| 
 | |
| 	if (do_memsw_account()) {
 | |
| 		count = page_counter_read(&memcg->memsw);
 | |
| 		limit = READ_ONCE(memcg->memsw.max);
 | |
| 		if (count <= limit)
 | |
| 			margin = min(margin, limit - count);
 | |
| 		else
 | |
| 			margin = 0;
 | |
| 	}
 | |
| 
 | |
| 	return margin;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A routine for checking "mem" is under move_account() or not.
 | |
|  *
 | |
|  * Checking a cgroup is mc.from or mc.to or under hierarchy of
 | |
|  * moving cgroups. This is for waiting at high-memory pressure
 | |
|  * caused by "move".
 | |
|  */
 | |
| static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *from;
 | |
| 	struct mem_cgroup *to;
 | |
| 	bool ret = false;
 | |
| 	/*
 | |
| 	 * Unlike task_move routines, we access mc.to, mc.from not under
 | |
| 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
 | |
| 	 */
 | |
| 	spin_lock(&mc.lock);
 | |
| 	from = mc.from;
 | |
| 	to = mc.to;
 | |
| 	if (!from)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	ret = mem_cgroup_is_descendant(from, memcg) ||
 | |
| 		mem_cgroup_is_descendant(to, memcg);
 | |
| unlock:
 | |
| 	spin_unlock(&mc.lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	if (mc.moving_task && current != mc.moving_task) {
 | |
| 		if (mem_cgroup_under_move(memcg)) {
 | |
| 			DEFINE_WAIT(wait);
 | |
| 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
 | |
| 			/* moving charge context might have finished. */
 | |
| 			if (mc.moving_task)
 | |
| 				schedule();
 | |
| 			finish_wait(&mc.waitq, &wait);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static char *memory_stat_format(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct seq_buf s;
 | |
| 	int i;
 | |
| 
 | |
| 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
 | |
| 	if (!s.buffer)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Provide statistics on the state of the memory subsystem as
 | |
| 	 * well as cumulative event counters that show past behavior.
 | |
| 	 *
 | |
| 	 * This list is ordered following a combination of these gradients:
 | |
| 	 * 1) generic big picture -> specifics and details
 | |
| 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
 | |
| 	 *
 | |
| 	 * Current memory state:
 | |
| 	 */
 | |
| 
 | |
| 	seq_buf_printf(&s, "anon %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
 | |
| 		       PAGE_SIZE);
 | |
| 	seq_buf_printf(&s, "file %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
 | |
| 		       PAGE_SIZE);
 | |
| 	seq_buf_printf(&s, "kernel_stack %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
 | |
| 		       1024);
 | |
| 	seq_buf_printf(&s, "slab %llu\n",
 | |
| 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
 | |
| 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
 | |
| 		       PAGE_SIZE);
 | |
| 	seq_buf_printf(&s, "sock %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
 | |
| 		       PAGE_SIZE);
 | |
| 
 | |
| 	seq_buf_printf(&s, "shmem %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
 | |
| 		       PAGE_SIZE);
 | |
| 	seq_buf_printf(&s, "file_mapped %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
 | |
| 		       PAGE_SIZE);
 | |
| 	seq_buf_printf(&s, "file_dirty %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
 | |
| 		       PAGE_SIZE);
 | |
| 	seq_buf_printf(&s, "file_writeback %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
 | |
| 		       PAGE_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
 | |
| 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
 | |
| 	 * arse because it requires migrating the work out of rmap to a place
 | |
| 	 * where the page->mem_cgroup is set up and stable.
 | |
| 	 */
 | |
| 	seq_buf_printf(&s, "anon_thp %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
 | |
| 		       PAGE_SIZE);
 | |
| 
 | |
| 	for (i = 0; i < NR_LRU_LISTS; i++)
 | |
| 		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
 | |
| 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
 | |
| 			       PAGE_SIZE);
 | |
| 
 | |
| 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
 | |
| 		       PAGE_SIZE);
 | |
| 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
 | |
| 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
 | |
| 		       PAGE_SIZE);
 | |
| 
 | |
| 	/* Accumulated memory events */
 | |
| 
 | |
| 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
 | |
| 		       memcg_events(memcg, PGFAULT));
 | |
| 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
 | |
| 		       memcg_events(memcg, PGMAJFAULT));
 | |
| 
 | |
| 	seq_buf_printf(&s, "workingset_refault %lu\n",
 | |
| 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
 | |
| 	seq_buf_printf(&s, "workingset_activate %lu\n",
 | |
| 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
 | |
| 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
 | |
| 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
 | |
| 
 | |
| 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
 | |
| 		       memcg_events(memcg, PGREFILL));
 | |
| 	seq_buf_printf(&s, "pgscan %lu\n",
 | |
| 		       memcg_events(memcg, PGSCAN_KSWAPD) +
 | |
| 		       memcg_events(memcg, PGSCAN_DIRECT));
 | |
| 	seq_buf_printf(&s, "pgsteal %lu\n",
 | |
| 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
 | |
| 		       memcg_events(memcg, PGSTEAL_DIRECT));
 | |
| 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
 | |
| 		       memcg_events(memcg, PGACTIVATE));
 | |
| 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
 | |
| 		       memcg_events(memcg, PGDEACTIVATE));
 | |
| 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
 | |
| 		       memcg_events(memcg, PGLAZYFREE));
 | |
| 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
 | |
| 		       memcg_events(memcg, PGLAZYFREED));
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
 | |
| 		       memcg_events(memcg, THP_FAULT_ALLOC));
 | |
| 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
 | |
| 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| 	/* The above should easily fit into one page */
 | |
| 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
 | |
| 
 | |
| 	return s.buffer;
 | |
| }
 | |
| 
 | |
| #define K(x) ((x) << (PAGE_SHIFT-10))
 | |
| /**
 | |
|  * mem_cgroup_print_oom_context: Print OOM information relevant to
 | |
|  * memory controller.
 | |
|  * @memcg: The memory cgroup that went over limit
 | |
|  * @p: Task that is going to be killed
 | |
|  *
 | |
|  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 | |
|  * enabled
 | |
|  */
 | |
| void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
 | |
| {
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	if (memcg) {
 | |
| 		pr_cont(",oom_memcg=");
 | |
| 		pr_cont_cgroup_path(memcg->css.cgroup);
 | |
| 	} else
 | |
| 		pr_cont(",global_oom");
 | |
| 	if (p) {
 | |
| 		pr_cont(",task_memcg=");
 | |
| 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 | |
|  * memory controller.
 | |
|  * @memcg: The memory cgroup that went over limit
 | |
|  */
 | |
| void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	char *buf;
 | |
| 
 | |
| 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
 | |
| 		K((u64)page_counter_read(&memcg->memory)),
 | |
| 		K((u64)memcg->memory.max), memcg->memory.failcnt);
 | |
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
 | |
| 			K((u64)page_counter_read(&memcg->swap)),
 | |
| 			K((u64)memcg->swap.max), memcg->swap.failcnt);
 | |
| 	else {
 | |
| 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
 | |
| 			K((u64)page_counter_read(&memcg->memsw)),
 | |
| 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
 | |
| 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
 | |
| 			K((u64)page_counter_read(&memcg->kmem)),
 | |
| 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Memory cgroup stats for ");
 | |
| 	pr_cont_cgroup_path(memcg->css.cgroup);
 | |
| 	pr_cont(":");
 | |
| 	buf = memory_stat_format(memcg);
 | |
| 	if (!buf)
 | |
| 		return;
 | |
| 	pr_info("%s", buf);
 | |
| 	kfree(buf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the memory (and swap, if configured) limit for a memcg.
 | |
|  */
 | |
| unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long max;
 | |
| 
 | |
| 	max = memcg->memory.max;
 | |
| 	if (mem_cgroup_swappiness(memcg)) {
 | |
| 		unsigned long memsw_max;
 | |
| 		unsigned long swap_max;
 | |
| 
 | |
| 		memsw_max = memcg->memsw.max;
 | |
| 		swap_max = memcg->swap.max;
 | |
| 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
 | |
| 		max = min(max + swap_max, memsw_max);
 | |
| 	}
 | |
| 	return max;
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	return page_counter_read(&memcg->memory);
 | |
| }
 | |
| 
 | |
| static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
 | |
| 				     int order)
 | |
| {
 | |
| 	struct oom_control oc = {
 | |
| 		.zonelist = NULL,
 | |
| 		.nodemask = NULL,
 | |
| 		.memcg = memcg,
 | |
| 		.gfp_mask = gfp_mask,
 | |
| 		.order = order,
 | |
| 	};
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (mutex_lock_killable(&oom_lock))
 | |
| 		return true;
 | |
| 	/*
 | |
| 	 * A few threads which were not waiting at mutex_lock_killable() can
 | |
| 	 * fail to bail out. Therefore, check again after holding oom_lock.
 | |
| 	 */
 | |
| 	ret = should_force_charge() || out_of_memory(&oc);
 | |
| 	mutex_unlock(&oom_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
 | |
| 				   pg_data_t *pgdat,
 | |
| 				   gfp_t gfp_mask,
 | |
| 				   unsigned long *total_scanned)
 | |
| {
 | |
| 	struct mem_cgroup *victim = NULL;
 | |
| 	int total = 0;
 | |
| 	int loop = 0;
 | |
| 	unsigned long excess;
 | |
| 	unsigned long nr_scanned;
 | |
| 	struct mem_cgroup_reclaim_cookie reclaim = {
 | |
| 		.pgdat = pgdat,
 | |
| 	};
 | |
| 
 | |
| 	excess = soft_limit_excess(root_memcg);
 | |
| 
 | |
| 	while (1) {
 | |
| 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
 | |
| 		if (!victim) {
 | |
| 			loop++;
 | |
| 			if (loop >= 2) {
 | |
| 				/*
 | |
| 				 * If we have not been able to reclaim
 | |
| 				 * anything, it might because there are
 | |
| 				 * no reclaimable pages under this hierarchy
 | |
| 				 */
 | |
| 				if (!total)
 | |
| 					break;
 | |
| 				/*
 | |
| 				 * We want to do more targeted reclaim.
 | |
| 				 * excess >> 2 is not to excessive so as to
 | |
| 				 * reclaim too much, nor too less that we keep
 | |
| 				 * coming back to reclaim from this cgroup
 | |
| 				 */
 | |
| 				if (total >= (excess >> 2) ||
 | |
| 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
 | |
| 					break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
 | |
| 					pgdat, &nr_scanned);
 | |
| 		*total_scanned += nr_scanned;
 | |
| 		if (!soft_limit_excess(root_memcg))
 | |
| 			break;
 | |
| 	}
 | |
| 	mem_cgroup_iter_break(root_memcg, victim);
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| static struct lockdep_map memcg_oom_lock_dep_map = {
 | |
| 	.name = "memcg_oom_lock",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static DEFINE_SPINLOCK(memcg_oom_lock);
 | |
| 
 | |
| /*
 | |
|  * Check OOM-Killer is already running under our hierarchy.
 | |
|  * If someone is running, return false.
 | |
|  */
 | |
| static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter, *failed = NULL;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 
 | |
| 	for_each_mem_cgroup_tree(iter, memcg) {
 | |
| 		if (iter->oom_lock) {
 | |
| 			/*
 | |
| 			 * this subtree of our hierarchy is already locked
 | |
| 			 * so we cannot give a lock.
 | |
| 			 */
 | |
| 			failed = iter;
 | |
| 			mem_cgroup_iter_break(memcg, iter);
 | |
| 			break;
 | |
| 		} else
 | |
| 			iter->oom_lock = true;
 | |
| 	}
 | |
| 
 | |
| 	if (failed) {
 | |
| 		/*
 | |
| 		 * OK, we failed to lock the whole subtree so we have
 | |
| 		 * to clean up what we set up to the failing subtree
 | |
| 		 */
 | |
| 		for_each_mem_cgroup_tree(iter, memcg) {
 | |
| 			if (iter == failed) {
 | |
| 				mem_cgroup_iter_break(memcg, iter);
 | |
| 				break;
 | |
| 			}
 | |
| 			iter->oom_lock = false;
 | |
| 		}
 | |
| 	} else
 | |
| 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
 | |
| 
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| 
 | |
| 	return !failed;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
 | |
| 	for_each_mem_cgroup_tree(iter, memcg)
 | |
| 		iter->oom_lock = false;
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 	for_each_mem_cgroup_tree(iter, memcg)
 | |
| 		iter->under_oom++;
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 
 | |
| 	/*
 | |
| 	 * When a new child is created while the hierarchy is under oom,
 | |
| 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
 | |
| 	 */
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 	for_each_mem_cgroup_tree(iter, memcg)
 | |
| 		if (iter->under_oom > 0)
 | |
| 			iter->under_oom--;
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| }
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
 | |
| 
 | |
| struct oom_wait_info {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	wait_queue_entry_t	wait;
 | |
| };
 | |
| 
 | |
| static int memcg_oom_wake_function(wait_queue_entry_t *wait,
 | |
| 	unsigned mode, int sync, void *arg)
 | |
| {
 | |
| 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
 | |
| 	struct mem_cgroup *oom_wait_memcg;
 | |
| 	struct oom_wait_info *oom_wait_info;
 | |
| 
 | |
| 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
 | |
| 	oom_wait_memcg = oom_wait_info->memcg;
 | |
| 
 | |
| 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
 | |
| 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
 | |
| 		return 0;
 | |
| 	return autoremove_wake_function(wait, mode, sync, arg);
 | |
| }
 | |
| 
 | |
| static void memcg_oom_recover(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	/*
 | |
| 	 * For the following lockless ->under_oom test, the only required
 | |
| 	 * guarantee is that it must see the state asserted by an OOM when
 | |
| 	 * this function is called as a result of userland actions
 | |
| 	 * triggered by the notification of the OOM.  This is trivially
 | |
| 	 * achieved by invoking mem_cgroup_mark_under_oom() before
 | |
| 	 * triggering notification.
 | |
| 	 */
 | |
| 	if (memcg && memcg->under_oom)
 | |
| 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
 | |
| }
 | |
| 
 | |
| enum oom_status {
 | |
| 	OOM_SUCCESS,
 | |
| 	OOM_FAILED,
 | |
| 	OOM_ASYNC,
 | |
| 	OOM_SKIPPED
 | |
| };
 | |
| 
 | |
| static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
 | |
| {
 | |
| 	enum oom_status ret;
 | |
| 	bool locked;
 | |
| 
 | |
| 	if (order > PAGE_ALLOC_COSTLY_ORDER)
 | |
| 		return OOM_SKIPPED;
 | |
| 
 | |
| 	memcg_memory_event(memcg, MEMCG_OOM);
 | |
| 
 | |
| 	/*
 | |
| 	 * We are in the middle of the charge context here, so we
 | |
| 	 * don't want to block when potentially sitting on a callstack
 | |
| 	 * that holds all kinds of filesystem and mm locks.
 | |
| 	 *
 | |
| 	 * cgroup1 allows disabling the OOM killer and waiting for outside
 | |
| 	 * handling until the charge can succeed; remember the context and put
 | |
| 	 * the task to sleep at the end of the page fault when all locks are
 | |
| 	 * released.
 | |
| 	 *
 | |
| 	 * On the other hand, in-kernel OOM killer allows for an async victim
 | |
| 	 * memory reclaim (oom_reaper) and that means that we are not solely
 | |
| 	 * relying on the oom victim to make a forward progress and we can
 | |
| 	 * invoke the oom killer here.
 | |
| 	 *
 | |
| 	 * Please note that mem_cgroup_out_of_memory might fail to find a
 | |
| 	 * victim and then we have to bail out from the charge path.
 | |
| 	 */
 | |
| 	if (memcg->oom_kill_disable) {
 | |
| 		if (!current->in_user_fault)
 | |
| 			return OOM_SKIPPED;
 | |
| 		css_get(&memcg->css);
 | |
| 		current->memcg_in_oom = memcg;
 | |
| 		current->memcg_oom_gfp_mask = mask;
 | |
| 		current->memcg_oom_order = order;
 | |
| 
 | |
| 		return OOM_ASYNC;
 | |
| 	}
 | |
| 
 | |
| 	mem_cgroup_mark_under_oom(memcg);
 | |
| 
 | |
| 	locked = mem_cgroup_oom_trylock(memcg);
 | |
| 
 | |
| 	if (locked)
 | |
| 		mem_cgroup_oom_notify(memcg);
 | |
| 
 | |
| 	mem_cgroup_unmark_under_oom(memcg);
 | |
| 	if (mem_cgroup_out_of_memory(memcg, mask, order))
 | |
| 		ret = OOM_SUCCESS;
 | |
| 	else
 | |
| 		ret = OOM_FAILED;
 | |
| 
 | |
| 	if (locked)
 | |
| 		mem_cgroup_oom_unlock(memcg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_oom_synchronize - complete memcg OOM handling
 | |
|  * @handle: actually kill/wait or just clean up the OOM state
 | |
|  *
 | |
|  * This has to be called at the end of a page fault if the memcg OOM
 | |
|  * handler was enabled.
 | |
|  *
 | |
|  * Memcg supports userspace OOM handling where failed allocations must
 | |
|  * sleep on a waitqueue until the userspace task resolves the
 | |
|  * situation.  Sleeping directly in the charge context with all kinds
 | |
|  * of locks held is not a good idea, instead we remember an OOM state
 | |
|  * in the task and mem_cgroup_oom_synchronize() has to be called at
 | |
|  * the end of the page fault to complete the OOM handling.
 | |
|  *
 | |
|  * Returns %true if an ongoing memcg OOM situation was detected and
 | |
|  * completed, %false otherwise.
 | |
|  */
 | |
| bool mem_cgroup_oom_synchronize(bool handle)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = current->memcg_in_oom;
 | |
| 	struct oom_wait_info owait;
 | |
| 	bool locked;
 | |
| 
 | |
| 	/* OOM is global, do not handle */
 | |
| 	if (!memcg)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!handle)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	owait.memcg = memcg;
 | |
| 	owait.wait.flags = 0;
 | |
| 	owait.wait.func = memcg_oom_wake_function;
 | |
| 	owait.wait.private = current;
 | |
| 	INIT_LIST_HEAD(&owait.wait.entry);
 | |
| 
 | |
| 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
 | |
| 	mem_cgroup_mark_under_oom(memcg);
 | |
| 
 | |
| 	locked = mem_cgroup_oom_trylock(memcg);
 | |
| 
 | |
| 	if (locked)
 | |
| 		mem_cgroup_oom_notify(memcg);
 | |
| 
 | |
| 	if (locked && !memcg->oom_kill_disable) {
 | |
| 		mem_cgroup_unmark_under_oom(memcg);
 | |
| 		finish_wait(&memcg_oom_waitq, &owait.wait);
 | |
| 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
 | |
| 					 current->memcg_oom_order);
 | |
| 	} else {
 | |
| 		schedule();
 | |
| 		mem_cgroup_unmark_under_oom(memcg);
 | |
| 		finish_wait(&memcg_oom_waitq, &owait.wait);
 | |
| 	}
 | |
| 
 | |
| 	if (locked) {
 | |
| 		mem_cgroup_oom_unlock(memcg);
 | |
| 		/*
 | |
| 		 * There is no guarantee that an OOM-lock contender
 | |
| 		 * sees the wakeups triggered by the OOM kill
 | |
| 		 * uncharges.  Wake any sleepers explicitely.
 | |
| 		 */
 | |
| 		memcg_oom_recover(memcg);
 | |
| 	}
 | |
| cleanup:
 | |
| 	current->memcg_in_oom = NULL;
 | |
| 	css_put(&memcg->css);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 | |
|  * @victim: task to be killed by the OOM killer
 | |
|  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 | |
|  *
 | |
|  * Returns a pointer to a memory cgroup, which has to be cleaned up
 | |
|  * by killing all belonging OOM-killable tasks.
 | |
|  *
 | |
|  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 | |
|  */
 | |
| struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
 | |
| 					    struct mem_cgroup *oom_domain)
 | |
| {
 | |
| 	struct mem_cgroup *oom_group = NULL;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!oom_domain)
 | |
| 		oom_domain = root_mem_cgroup;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	memcg = mem_cgroup_from_task(victim);
 | |
| 	if (memcg == root_mem_cgroup)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Traverse the memory cgroup hierarchy from the victim task's
 | |
| 	 * cgroup up to the OOMing cgroup (or root) to find the
 | |
| 	 * highest-level memory cgroup with oom.group set.
 | |
| 	 */
 | |
| 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 | |
| 		if (memcg->oom_group)
 | |
| 			oom_group = memcg;
 | |
| 
 | |
| 		if (memcg == oom_domain)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (oom_group)
 | |
| 		css_get(&oom_group->css);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return oom_group;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	pr_info("Tasks in ");
 | |
| 	pr_cont_cgroup_path(memcg->css.cgroup);
 | |
| 	pr_cont(" are going to be killed due to memory.oom.group set\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * lock_page_memcg - lock a page->mem_cgroup binding
 | |
|  * @page: the page
 | |
|  *
 | |
|  * This function protects unlocked LRU pages from being moved to
 | |
|  * another cgroup.
 | |
|  *
 | |
|  * It ensures lifetime of the returned memcg. Caller is responsible
 | |
|  * for the lifetime of the page; __unlock_page_memcg() is available
 | |
|  * when @page might get freed inside the locked section.
 | |
|  */
 | |
| struct mem_cgroup *lock_page_memcg(struct page *page)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * The RCU lock is held throughout the transaction.  The fast
 | |
| 	 * path can get away without acquiring the memcg->move_lock
 | |
| 	 * because page moving starts with an RCU grace period.
 | |
| 	 *
 | |
| 	 * The RCU lock also protects the memcg from being freed when
 | |
| 	 * the page state that is going to change is the only thing
 | |
| 	 * preventing the page itself from being freed. E.g. writeback
 | |
| 	 * doesn't hold a page reference and relies on PG_writeback to
 | |
| 	 * keep off truncation, migration and so forth.
 | |
|          */
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| again:
 | |
| 	memcg = page->mem_cgroup;
 | |
| 	if (unlikely(!memcg))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (atomic_read(&memcg->moving_account) <= 0)
 | |
| 		return memcg;
 | |
| 
 | |
| 	spin_lock_irqsave(&memcg->move_lock, flags);
 | |
| 	if (memcg != page->mem_cgroup) {
 | |
| 		spin_unlock_irqrestore(&memcg->move_lock, flags);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When charge migration first begins, we can have locked and
 | |
| 	 * unlocked page stat updates happening concurrently.  Track
 | |
| 	 * the task who has the lock for unlock_page_memcg().
 | |
| 	 */
 | |
| 	memcg->move_lock_task = current;
 | |
| 	memcg->move_lock_flags = flags;
 | |
| 
 | |
| 	return memcg;
 | |
| }
 | |
| EXPORT_SYMBOL(lock_page_memcg);
 | |
| 
 | |
| /**
 | |
|  * __unlock_page_memcg - unlock and unpin a memcg
 | |
|  * @memcg: the memcg
 | |
|  *
 | |
|  * Unlock and unpin a memcg returned by lock_page_memcg().
 | |
|  */
 | |
| void __unlock_page_memcg(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	if (memcg && memcg->move_lock_task == current) {
 | |
| 		unsigned long flags = memcg->move_lock_flags;
 | |
| 
 | |
| 		memcg->move_lock_task = NULL;
 | |
| 		memcg->move_lock_flags = 0;
 | |
| 
 | |
| 		spin_unlock_irqrestore(&memcg->move_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unlock_page_memcg - unlock a page->mem_cgroup binding
 | |
|  * @page: the page
 | |
|  */
 | |
| void unlock_page_memcg(struct page *page)
 | |
| {
 | |
| 	__unlock_page_memcg(page->mem_cgroup);
 | |
| }
 | |
| EXPORT_SYMBOL(unlock_page_memcg);
 | |
| 
 | |
| struct memcg_stock_pcp {
 | |
| 	struct mem_cgroup *cached; /* this never be root cgroup */
 | |
| 	unsigned int nr_pages;
 | |
| 	struct work_struct work;
 | |
| 	unsigned long flags;
 | |
| #define FLUSHING_CACHED_CHARGE	0
 | |
| };
 | |
| static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
 | |
| static DEFINE_MUTEX(percpu_charge_mutex);
 | |
| 
 | |
| /**
 | |
|  * consume_stock: Try to consume stocked charge on this cpu.
 | |
|  * @memcg: memcg to consume from.
 | |
|  * @nr_pages: how many pages to charge.
 | |
|  *
 | |
|  * The charges will only happen if @memcg matches the current cpu's memcg
 | |
|  * stock, and at least @nr_pages are available in that stock.  Failure to
 | |
|  * service an allocation will refill the stock.
 | |
|  *
 | |
|  * returns true if successful, false otherwise.
 | |
|  */
 | |
| static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock;
 | |
| 	unsigned long flags;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if (nr_pages > MEMCG_CHARGE_BATCH)
 | |
| 		return ret;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	stock = this_cpu_ptr(&memcg_stock);
 | |
| 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
 | |
| 		stock->nr_pages -= nr_pages;
 | |
| 		ret = true;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns stocks cached in percpu and reset cached information.
 | |
|  */
 | |
| static void drain_stock(struct memcg_stock_pcp *stock)
 | |
| {
 | |
| 	struct mem_cgroup *old = stock->cached;
 | |
| 
 | |
| 	if (stock->nr_pages) {
 | |
| 		page_counter_uncharge(&old->memory, stock->nr_pages);
 | |
| 		if (do_memsw_account())
 | |
| 			page_counter_uncharge(&old->memsw, stock->nr_pages);
 | |
| 		css_put_many(&old->css, stock->nr_pages);
 | |
| 		stock->nr_pages = 0;
 | |
| 	}
 | |
| 	stock->cached = NULL;
 | |
| }
 | |
| 
 | |
| static void drain_local_stock(struct work_struct *dummy)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * The only protection from memory hotplug vs. drain_stock races is
 | |
| 	 * that we always operate on local CPU stock here with IRQ disabled
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	stock = this_cpu_ptr(&memcg_stock);
 | |
| 	drain_stock(stock);
 | |
| 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cache charges(val) to local per_cpu area.
 | |
|  * This will be consumed by consume_stock() function, later.
 | |
|  */
 | |
| static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	stock = this_cpu_ptr(&memcg_stock);
 | |
| 	if (stock->cached != memcg) { /* reset if necessary */
 | |
| 		drain_stock(stock);
 | |
| 		stock->cached = memcg;
 | |
| 	}
 | |
| 	stock->nr_pages += nr_pages;
 | |
| 
 | |
| 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
 | |
| 		drain_stock(stock);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drains all per-CPU charge caches for given root_memcg resp. subtree
 | |
|  * of the hierarchy under it.
 | |
|  */
 | |
| static void drain_all_stock(struct mem_cgroup *root_memcg)
 | |
| {
 | |
| 	int cpu, curcpu;
 | |
| 
 | |
| 	/* If someone's already draining, avoid adding running more workers. */
 | |
| 	if (!mutex_trylock(&percpu_charge_mutex))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Notify other cpus that system-wide "drain" is running
 | |
| 	 * We do not care about races with the cpu hotplug because cpu down
 | |
| 	 * as well as workers from this path always operate on the local
 | |
| 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
 | |
| 	 */
 | |
| 	curcpu = get_cpu();
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
 | |
| 		struct mem_cgroup *memcg;
 | |
| 		bool flush = false;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		memcg = stock->cached;
 | |
| 		if (memcg && stock->nr_pages &&
 | |
| 		    mem_cgroup_is_descendant(memcg, root_memcg))
 | |
| 			flush = true;
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		if (flush &&
 | |
| 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 | |
| 			if (cpu == curcpu)
 | |
| 				drain_local_stock(&stock->work);
 | |
| 			else
 | |
| 				schedule_work_on(cpu, &stock->work);
 | |
| 		}
 | |
| 	}
 | |
| 	put_cpu();
 | |
| 	mutex_unlock(&percpu_charge_mutex);
 | |
| }
 | |
| 
 | |
| static int memcg_hotplug_cpu_dead(unsigned int cpu)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock;
 | |
| 	struct mem_cgroup *memcg, *mi;
 | |
| 
 | |
| 	stock = &per_cpu(memcg_stock, cpu);
 | |
| 	drain_stock(stock);
 | |
| 
 | |
| 	for_each_mem_cgroup(memcg) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < MEMCG_NR_STAT; i++) {
 | |
| 			int nid;
 | |
| 			long x;
 | |
| 
 | |
| 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
 | |
| 			if (x)
 | |
| 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 | |
| 					atomic_long_add(x, &memcg->vmstats[i]);
 | |
| 
 | |
| 			if (i >= NR_VM_NODE_STAT_ITEMS)
 | |
| 				continue;
 | |
| 
 | |
| 			for_each_node(nid) {
 | |
| 				struct mem_cgroup_per_node *pn;
 | |
| 
 | |
| 				pn = mem_cgroup_nodeinfo(memcg, nid);
 | |
| 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
 | |
| 				if (x)
 | |
| 					do {
 | |
| 						atomic_long_add(x, &pn->lruvec_stat[i]);
 | |
| 					} while ((pn = parent_nodeinfo(pn, nid)));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
 | |
| 			long x;
 | |
| 
 | |
| 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
 | |
| 			if (x)
 | |
| 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 | |
| 					atomic_long_add(x, &memcg->vmevents[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void reclaim_high(struct mem_cgroup *memcg,
 | |
| 			 unsigned int nr_pages,
 | |
| 			 gfp_t gfp_mask)
 | |
| {
 | |
| 	do {
 | |
| 		if (page_counter_read(&memcg->memory) <= memcg->high)
 | |
| 			continue;
 | |
| 		memcg_memory_event(memcg, MEMCG_HIGH);
 | |
| 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
 | |
| 	} while ((memcg = parent_mem_cgroup(memcg)));
 | |
| }
 | |
| 
 | |
| static void high_work_func(struct work_struct *work)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	memcg = container_of(work, struct mem_cgroup, high_work);
 | |
| 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 | |
|  * enough to still cause a significant slowdown in most cases, while still
 | |
|  * allowing diagnostics and tracing to proceed without becoming stuck.
 | |
|  */
 | |
| #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
 | |
| 
 | |
| /*
 | |
|  * When calculating the delay, we use these either side of the exponentiation to
 | |
|  * maintain precision and scale to a reasonable number of jiffies (see the table
 | |
|  * below.
 | |
|  *
 | |
|  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 | |
|  *   overage ratio to a delay.
 | |
|  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 | |
|  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 | |
|  *   to produce a reasonable delay curve.
 | |
|  *
 | |
|  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 | |
|  * reasonable delay curve compared to precision-adjusted overage, not
 | |
|  * penalising heavily at first, but still making sure that growth beyond the
 | |
|  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 | |
|  * example, with a high of 100 megabytes:
 | |
|  *
 | |
|  *  +-------+------------------------+
 | |
|  *  | usage | time to allocate in ms |
 | |
|  *  +-------+------------------------+
 | |
|  *  | 100M  |                      0 |
 | |
|  *  | 101M  |                      6 |
 | |
|  *  | 102M  |                     25 |
 | |
|  *  | 103M  |                     57 |
 | |
|  *  | 104M  |                    102 |
 | |
|  *  | 105M  |                    159 |
 | |
|  *  | 106M  |                    230 |
 | |
|  *  | 107M  |                    313 |
 | |
|  *  | 108M  |                    409 |
 | |
|  *  | 109M  |                    518 |
 | |
|  *  | 110M  |                    639 |
 | |
|  *  | 111M  |                    774 |
 | |
|  *  | 112M  |                    921 |
 | |
|  *  | 113M  |                   1081 |
 | |
|  *  | 114M  |                   1254 |
 | |
|  *  | 115M  |                   1439 |
 | |
|  *  | 116M  |                   1638 |
 | |
|  *  | 117M  |                   1849 |
 | |
|  *  | 118M  |                   2000 |
 | |
|  *  | 119M  |                   2000 |
 | |
|  *  | 120M  |                   2000 |
 | |
|  *  +-------+------------------------+
 | |
|  */
 | |
|  #define MEMCG_DELAY_PRECISION_SHIFT 20
 | |
|  #define MEMCG_DELAY_SCALING_SHIFT 14
 | |
| 
 | |
| /*
 | |
|  * Scheduled by try_charge() to be executed from the userland return path
 | |
|  * and reclaims memory over the high limit.
 | |
|  */
 | |
| void mem_cgroup_handle_over_high(void)
 | |
| {
 | |
| 	unsigned long usage, high, clamped_high;
 | |
| 	unsigned long pflags;
 | |
| 	unsigned long penalty_jiffies, overage;
 | |
| 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (likely(!nr_pages))
 | |
| 		return;
 | |
| 
 | |
| 	memcg = get_mem_cgroup_from_mm(current->mm);
 | |
| 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
 | |
| 	current->memcg_nr_pages_over_high = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * memory.high is breached and reclaim is unable to keep up. Throttle
 | |
| 	 * allocators proactively to slow down excessive growth.
 | |
| 	 *
 | |
| 	 * We use overage compared to memory.high to calculate the number of
 | |
| 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
 | |
| 	 * fairly lenient on small overages, and increasingly harsh when the
 | |
| 	 * memcg in question makes it clear that it has no intention of stopping
 | |
| 	 * its crazy behaviour, so we exponentially increase the delay based on
 | |
| 	 * overage amount.
 | |
| 	 */
 | |
| 
 | |
| 	usage = page_counter_read(&memcg->memory);
 | |
| 	high = READ_ONCE(memcg->high);
 | |
| 
 | |
| 	if (usage <= high)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent division by 0 in overage calculation by acting as if it was a
 | |
| 	 * threshold of 1 page
 | |
| 	 */
 | |
| 	clamped_high = max(high, 1UL);
 | |
| 
 | |
| 	overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
 | |
| 			  clamped_high);
 | |
| 
 | |
| 	penalty_jiffies = ((u64)overage * overage * HZ)
 | |
| 		>> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Factor in the task's own contribution to the overage, such that four
 | |
| 	 * N-sized allocations are throttled approximately the same as one
 | |
| 	 * 4N-sized allocation.
 | |
| 	 *
 | |
| 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
 | |
| 	 * larger the current charge patch is than that.
 | |
| 	 */
 | |
| 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clamp the max delay per usermode return so as to still keep the
 | |
| 	 * application moving forwards and also permit diagnostics, albeit
 | |
| 	 * extremely slowly.
 | |
| 	 */
 | |
| 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
 | |
| 	 * that it's not even worth doing, in an attempt to be nice to those who
 | |
| 	 * go only a small amount over their memory.high value and maybe haven't
 | |
| 	 * been aggressively reclaimed enough yet.
 | |
| 	 */
 | |
| 	if (penalty_jiffies <= HZ / 100)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we exit early, we're guaranteed to die (since
 | |
| 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
 | |
| 	 * need to account for any ill-begotten jiffies to pay them off later.
 | |
| 	 */
 | |
| 	psi_memstall_enter(&pflags);
 | |
| 	schedule_timeout_killable(penalty_jiffies);
 | |
| 	psi_memstall_leave(&pflags);
 | |
| 
 | |
| out:
 | |
| 	css_put(&memcg->css);
 | |
| }
 | |
| 
 | |
| static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
 | |
| 		      unsigned int nr_pages)
 | |
| {
 | |
| 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
 | |
| 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	struct mem_cgroup *mem_over_limit;
 | |
| 	struct page_counter *counter;
 | |
| 	unsigned long nr_reclaimed;
 | |
| 	bool may_swap = true;
 | |
| 	bool drained = false;
 | |
| 	enum oom_status oom_status;
 | |
| 
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		return 0;
 | |
| retry:
 | |
| 	if (consume_stock(memcg, nr_pages))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!do_memsw_account() ||
 | |
| 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
 | |
| 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
 | |
| 			goto done_restock;
 | |
| 		if (do_memsw_account())
 | |
| 			page_counter_uncharge(&memcg->memsw, batch);
 | |
| 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
 | |
| 	} else {
 | |
| 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
 | |
| 		may_swap = false;
 | |
| 	}
 | |
| 
 | |
| 	if (batch > nr_pages) {
 | |
| 		batch = nr_pages;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Memcg doesn't have a dedicated reserve for atomic
 | |
| 	 * allocations. But like the global atomic pool, we need to
 | |
| 	 * put the burden of reclaim on regular allocation requests
 | |
| 	 * and let these go through as privileged allocations.
 | |
| 	 */
 | |
| 	if (gfp_mask & __GFP_ATOMIC)
 | |
| 		goto force;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlike in global OOM situations, memcg is not in a physical
 | |
| 	 * memory shortage.  Allow dying and OOM-killed tasks to
 | |
| 	 * bypass the last charges so that they can exit quickly and
 | |
| 	 * free their memory.
 | |
| 	 */
 | |
| 	if (unlikely(should_force_charge()))
 | |
| 		goto force;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent unbounded recursion when reclaim operations need to
 | |
| 	 * allocate memory. This might exceed the limits temporarily,
 | |
| 	 * but we prefer facilitating memory reclaim and getting back
 | |
| 	 * under the limit over triggering OOM kills in these cases.
 | |
| 	 */
 | |
| 	if (unlikely(current->flags & PF_MEMALLOC))
 | |
| 		goto force;
 | |
| 
 | |
| 	if (unlikely(task_in_memcg_oom(current)))
 | |
| 		goto nomem;
 | |
| 
 | |
| 	if (!gfpflags_allow_blocking(gfp_mask))
 | |
| 		goto nomem;
 | |
| 
 | |
| 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
 | |
| 
 | |
| 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
 | |
| 						    gfp_mask, may_swap);
 | |
| 
 | |
| 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
 | |
| 		goto retry;
 | |
| 
 | |
| 	if (!drained) {
 | |
| 		drain_all_stock(mem_over_limit);
 | |
| 		drained = true;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (gfp_mask & __GFP_NORETRY)
 | |
| 		goto nomem;
 | |
| 	/*
 | |
| 	 * Even though the limit is exceeded at this point, reclaim
 | |
| 	 * may have been able to free some pages.  Retry the charge
 | |
| 	 * before killing the task.
 | |
| 	 *
 | |
| 	 * Only for regular pages, though: huge pages are rather
 | |
| 	 * unlikely to succeed so close to the limit, and we fall back
 | |
| 	 * to regular pages anyway in case of failure.
 | |
| 	 */
 | |
| 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
 | |
| 		goto retry;
 | |
| 	/*
 | |
| 	 * At task move, charge accounts can be doubly counted. So, it's
 | |
| 	 * better to wait until the end of task_move if something is going on.
 | |
| 	 */
 | |
| 	if (mem_cgroup_wait_acct_move(mem_over_limit))
 | |
| 		goto retry;
 | |
| 
 | |
| 	if (nr_retries--)
 | |
| 		goto retry;
 | |
| 
 | |
| 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	if (gfp_mask & __GFP_NOFAIL)
 | |
| 		goto force;
 | |
| 
 | |
| 	if (fatal_signal_pending(current))
 | |
| 		goto force;
 | |
| 
 | |
| 	/*
 | |
| 	 * keep retrying as long as the memcg oom killer is able to make
 | |
| 	 * a forward progress or bypass the charge if the oom killer
 | |
| 	 * couldn't make any progress.
 | |
| 	 */
 | |
| 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
 | |
| 		       get_order(nr_pages * PAGE_SIZE));
 | |
| 	switch (oom_status) {
 | |
| 	case OOM_SUCCESS:
 | |
| 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 		goto retry;
 | |
| 	case OOM_FAILED:
 | |
| 		goto force;
 | |
| 	default:
 | |
| 		goto nomem;
 | |
| 	}
 | |
| nomem:
 | |
| 	if (!(gfp_mask & __GFP_NOFAIL))
 | |
| 		return -ENOMEM;
 | |
| force:
 | |
| 	/*
 | |
| 	 * The allocation either can't fail or will lead to more memory
 | |
| 	 * being freed very soon.  Allow memory usage go over the limit
 | |
| 	 * temporarily by force charging it.
 | |
| 	 */
 | |
| 	page_counter_charge(&memcg->memory, nr_pages);
 | |
| 	if (do_memsw_account())
 | |
| 		page_counter_charge(&memcg->memsw, nr_pages);
 | |
| 	css_get_many(&memcg->css, nr_pages);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| done_restock:
 | |
| 	css_get_many(&memcg->css, batch);
 | |
| 	if (batch > nr_pages)
 | |
| 		refill_stock(memcg, batch - nr_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the hierarchy is above the normal consumption range, schedule
 | |
| 	 * reclaim on returning to userland.  We can perform reclaim here
 | |
| 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
 | |
| 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
 | |
| 	 * not recorded as it most likely matches current's and won't
 | |
| 	 * change in the meantime.  As high limit is checked again before
 | |
| 	 * reclaim, the cost of mismatch is negligible.
 | |
| 	 */
 | |
| 	do {
 | |
| 		if (page_counter_read(&memcg->memory) > memcg->high) {
 | |
| 			/* Don't bother a random interrupted task */
 | |
| 			if (in_interrupt()) {
 | |
| 				schedule_work(&memcg->high_work);
 | |
| 				break;
 | |
| 			}
 | |
| 			current->memcg_nr_pages_over_high += batch;
 | |
| 			set_notify_resume(current);
 | |
| 			break;
 | |
| 		}
 | |
| 	} while ((memcg = parent_mem_cgroup(memcg)));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 | |
| {
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		return;
 | |
| 
 | |
| 	page_counter_uncharge(&memcg->memory, nr_pages);
 | |
| 	if (do_memsw_account())
 | |
| 		page_counter_uncharge(&memcg->memsw, nr_pages);
 | |
| 
 | |
| 	css_put_many(&memcg->css, nr_pages);
 | |
| }
 | |
| 
 | |
| static void lock_page_lru(struct page *page, int *isolated)
 | |
| {
 | |
| 	pg_data_t *pgdat = page_pgdat(page);
 | |
| 
 | |
| 	spin_lock_irq(&pgdat->lru_lock);
 | |
| 	if (PageLRU(page)) {
 | |
| 		struct lruvec *lruvec;
 | |
| 
 | |
| 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 | |
| 		ClearPageLRU(page);
 | |
| 		del_page_from_lru_list(page, lruvec, page_lru(page));
 | |
| 		*isolated = 1;
 | |
| 	} else
 | |
| 		*isolated = 0;
 | |
| }
 | |
| 
 | |
| static void unlock_page_lru(struct page *page, int isolated)
 | |
| {
 | |
| 	pg_data_t *pgdat = page_pgdat(page);
 | |
| 
 | |
| 	if (isolated) {
 | |
| 		struct lruvec *lruvec;
 | |
| 
 | |
| 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 | |
| 		VM_BUG_ON_PAGE(PageLRU(page), page);
 | |
| 		SetPageLRU(page);
 | |
| 		add_page_to_lru_list(page, lruvec, page_lru(page));
 | |
| 	}
 | |
| 	spin_unlock_irq(&pgdat->lru_lock);
 | |
| }
 | |
| 
 | |
| static void commit_charge(struct page *page, struct mem_cgroup *memcg,
 | |
| 			  bool lrucare)
 | |
| {
 | |
| 	int isolated;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
 | |
| 
 | |
| 	/*
 | |
| 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
 | |
| 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
 | |
| 	 */
 | |
| 	if (lrucare)
 | |
| 		lock_page_lru(page, &isolated);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nobody should be changing or seriously looking at
 | |
| 	 * page->mem_cgroup at this point:
 | |
| 	 *
 | |
| 	 * - the page is uncharged
 | |
| 	 *
 | |
| 	 * - the page is off-LRU
 | |
| 	 *
 | |
| 	 * - an anonymous fault has exclusive page access, except for
 | |
| 	 *   a locked page table
 | |
| 	 *
 | |
| 	 * - a page cache insertion, a swapin fault, or a migration
 | |
| 	 *   have the page locked
 | |
| 	 */
 | |
| 	page->mem_cgroup = memcg;
 | |
| 
 | |
| 	if (lrucare)
 | |
| 		unlock_page_lru(page, isolated);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| static int memcg_alloc_cache_id(void)
 | |
| {
 | |
| 	int id, size;
 | |
| 	int err;
 | |
| 
 | |
| 	id = ida_simple_get(&memcg_cache_ida,
 | |
| 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
 | |
| 	if (id < 0)
 | |
| 		return id;
 | |
| 
 | |
| 	if (id < memcg_nr_cache_ids)
 | |
| 		return id;
 | |
| 
 | |
| 	/*
 | |
| 	 * There's no space for the new id in memcg_caches arrays,
 | |
| 	 * so we have to grow them.
 | |
| 	 */
 | |
| 	down_write(&memcg_cache_ids_sem);
 | |
| 
 | |
| 	size = 2 * (id + 1);
 | |
| 	if (size < MEMCG_CACHES_MIN_SIZE)
 | |
| 		size = MEMCG_CACHES_MIN_SIZE;
 | |
| 	else if (size > MEMCG_CACHES_MAX_SIZE)
 | |
| 		size = MEMCG_CACHES_MAX_SIZE;
 | |
| 
 | |
| 	err = memcg_update_all_caches(size);
 | |
| 	if (!err)
 | |
| 		err = memcg_update_all_list_lrus(size);
 | |
| 	if (!err)
 | |
| 		memcg_nr_cache_ids = size;
 | |
| 
 | |
| 	up_write(&memcg_cache_ids_sem);
 | |
| 
 | |
| 	if (err) {
 | |
| 		ida_simple_remove(&memcg_cache_ida, id);
 | |
| 		return err;
 | |
| 	}
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| static void memcg_free_cache_id(int id)
 | |
| {
 | |
| 	ida_simple_remove(&memcg_cache_ida, id);
 | |
| }
 | |
| 
 | |
| struct memcg_kmem_cache_create_work {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct kmem_cache *cachep;
 | |
| 	struct work_struct work;
 | |
| };
 | |
| 
 | |
| static void memcg_kmem_cache_create_func(struct work_struct *w)
 | |
| {
 | |
| 	struct memcg_kmem_cache_create_work *cw =
 | |
| 		container_of(w, struct memcg_kmem_cache_create_work, work);
 | |
| 	struct mem_cgroup *memcg = cw->memcg;
 | |
| 	struct kmem_cache *cachep = cw->cachep;
 | |
| 
 | |
| 	memcg_create_kmem_cache(memcg, cachep);
 | |
| 
 | |
| 	css_put(&memcg->css);
 | |
| 	kfree(cw);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enqueue the creation of a per-memcg kmem_cache.
 | |
|  */
 | |
| static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
 | |
| 					       struct kmem_cache *cachep)
 | |
| {
 | |
| 	struct memcg_kmem_cache_create_work *cw;
 | |
| 
 | |
| 	if (!css_tryget_online(&memcg->css))
 | |
| 		return;
 | |
| 
 | |
| 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
 | |
| 	if (!cw)
 | |
| 		return;
 | |
| 
 | |
| 	cw->memcg = memcg;
 | |
| 	cw->cachep = cachep;
 | |
| 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
 | |
| 
 | |
| 	queue_work(memcg_kmem_cache_wq, &cw->work);
 | |
| }
 | |
| 
 | |
| static inline bool memcg_kmem_bypass(void)
 | |
| {
 | |
| 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 | |
|  * @cachep: the original global kmem cache
 | |
|  *
 | |
|  * Return the kmem_cache we're supposed to use for a slab allocation.
 | |
|  * We try to use the current memcg's version of the cache.
 | |
|  *
 | |
|  * If the cache does not exist yet, if we are the first user of it, we
 | |
|  * create it asynchronously in a workqueue and let the current allocation
 | |
|  * go through with the original cache.
 | |
|  *
 | |
|  * This function takes a reference to the cache it returns to assure it
 | |
|  * won't get destroyed while we are working with it. Once the caller is
 | |
|  * done with it, memcg_kmem_put_cache() must be called to release the
 | |
|  * reference.
 | |
|  */
 | |
| struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct kmem_cache *memcg_cachep;
 | |
| 	struct memcg_cache_array *arr;
 | |
| 	int kmemcg_id;
 | |
| 
 | |
| 	VM_BUG_ON(!is_root_cache(cachep));
 | |
| 
 | |
| 	if (memcg_kmem_bypass())
 | |
| 		return cachep;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	if (unlikely(current->active_memcg))
 | |
| 		memcg = current->active_memcg;
 | |
| 	else
 | |
| 		memcg = mem_cgroup_from_task(current);
 | |
| 
 | |
| 	if (!memcg || memcg == root_mem_cgroup)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
 | |
| 	if (kmemcg_id < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we will access the up-to-date value. The code updating
 | |
| 	 * memcg_caches issues a write barrier to match the data dependency
 | |
| 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
 | |
| 	 */
 | |
| 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are in a safe context (can wait, and not in interrupt
 | |
| 	 * context), we could be be predictable and return right away.
 | |
| 	 * This would guarantee that the allocation being performed
 | |
| 	 * already belongs in the new cache.
 | |
| 	 *
 | |
| 	 * However, there are some clashes that can arrive from locking.
 | |
| 	 * For instance, because we acquire the slab_mutex while doing
 | |
| 	 * memcg_create_kmem_cache, this means no further allocation
 | |
| 	 * could happen with the slab_mutex held. So it's better to
 | |
| 	 * defer everything.
 | |
| 	 *
 | |
| 	 * If the memcg is dying or memcg_cache is about to be released,
 | |
| 	 * don't bother creating new kmem_caches. Because memcg_cachep
 | |
| 	 * is ZEROed as the fist step of kmem offlining, we don't need
 | |
| 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
 | |
| 	 * memcg_schedule_kmem_cache_create() will prevent us from
 | |
| 	 * creation of a new kmem_cache.
 | |
| 	 */
 | |
| 	if (unlikely(!memcg_cachep))
 | |
| 		memcg_schedule_kmem_cache_create(memcg, cachep);
 | |
| 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
 | |
| 		cachep = memcg_cachep;
 | |
| out_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return cachep;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 | |
|  * @cachep: the cache returned by memcg_kmem_get_cache
 | |
|  */
 | |
| void memcg_kmem_put_cache(struct kmem_cache *cachep)
 | |
| {
 | |
| 	if (!is_root_cache(cachep))
 | |
| 		percpu_ref_put(&cachep->memcg_params.refcnt);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memcg_kmem_charge_memcg: charge a kmem page
 | |
|  * @page: page to charge
 | |
|  * @gfp: reclaim mode
 | |
|  * @order: allocation order
 | |
|  * @memcg: memory cgroup to charge
 | |
|  *
 | |
|  * Returns 0 on success, an error code on failure.
 | |
|  */
 | |
| int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
 | |
| 			    struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 	struct page_counter *counter;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = try_charge(memcg, gfp, nr_pages);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
 | |
| 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Enforce __GFP_NOFAIL allocation because callers are not
 | |
| 		 * prepared to see failures and likely do not have any failure
 | |
| 		 * handling code.
 | |
| 		 */
 | |
| 		if (gfp & __GFP_NOFAIL) {
 | |
| 			page_counter_charge(&memcg->kmem, nr_pages);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		cancel_charge(memcg, nr_pages);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
 | |
|  * @page: page to charge
 | |
|  * @gfp: reclaim mode
 | |
|  * @order: allocation order
 | |
|  *
 | |
|  * Returns 0 on success, an error code on failure.
 | |
|  */
 | |
| int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (memcg_kmem_bypass())
 | |
| 		return 0;
 | |
| 
 | |
| 	memcg = get_mem_cgroup_from_current();
 | |
| 	if (!mem_cgroup_is_root(memcg)) {
 | |
| 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
 | |
| 		if (!ret) {
 | |
| 			page->mem_cgroup = memcg;
 | |
| 			__SetPageKmemcg(page);
 | |
| 		}
 | |
| 	}
 | |
| 	css_put(&memcg->css);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
 | |
|  * @memcg: memcg to uncharge
 | |
|  * @nr_pages: number of pages to uncharge
 | |
|  */
 | |
| void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
 | |
| 				 unsigned int nr_pages)
 | |
| {
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		page_counter_uncharge(&memcg->kmem, nr_pages);
 | |
| 
 | |
| 	page_counter_uncharge(&memcg->memory, nr_pages);
 | |
| 	if (do_memsw_account())
 | |
| 		page_counter_uncharge(&memcg->memsw, nr_pages);
 | |
| }
 | |
| /**
 | |
|  * __memcg_kmem_uncharge: uncharge a kmem page
 | |
|  * @page: page to uncharge
 | |
|  * @order: allocation order
 | |
|  */
 | |
| void __memcg_kmem_uncharge(struct page *page, int order)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = page->mem_cgroup;
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 
 | |
| 	if (!memcg)
 | |
| 		return;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
 | |
| 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
 | |
| 	page->mem_cgroup = NULL;
 | |
| 
 | |
| 	/* slab pages do not have PageKmemcg flag set */
 | |
| 	if (PageKmemcg(page))
 | |
| 		__ClearPageKmemcg(page);
 | |
| 
 | |
| 	css_put_many(&memcg->css, nr_pages);
 | |
| }
 | |
| #endif /* CONFIG_MEMCG_KMEM */
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 
 | |
| /*
 | |
|  * Because tail pages are not marked as "used", set it. We're under
 | |
|  * pgdat->lru_lock and migration entries setup in all page mappings.
 | |
|  */
 | |
| void mem_cgroup_split_huge_fixup(struct page *head)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 1; i < HPAGE_PMD_NR; i++)
 | |
| 		head[i].mem_cgroup = head->mem_cgroup;
 | |
| 
 | |
| 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_SWAP
 | |
| /**
 | |
|  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 | |
|  * @entry: swap entry to be moved
 | |
|  * @from:  mem_cgroup which the entry is moved from
 | |
|  * @to:  mem_cgroup which the entry is moved to
 | |
|  *
 | |
|  * It succeeds only when the swap_cgroup's record for this entry is the same
 | |
|  * as the mem_cgroup's id of @from.
 | |
|  *
 | |
|  * Returns 0 on success, -EINVAL on failure.
 | |
|  *
 | |
|  * The caller must have charged to @to, IOW, called page_counter_charge() about
 | |
|  * both res and memsw, and called css_get().
 | |
|  */
 | |
| static int mem_cgroup_move_swap_account(swp_entry_t entry,
 | |
| 				struct mem_cgroup *from, struct mem_cgroup *to)
 | |
| {
 | |
| 	unsigned short old_id, new_id;
 | |
| 
 | |
| 	old_id = mem_cgroup_id(from);
 | |
| 	new_id = mem_cgroup_id(to);
 | |
| 
 | |
| 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
 | |
| 		mod_memcg_state(from, MEMCG_SWAP, -1);
 | |
| 		mod_memcg_state(to, MEMCG_SWAP, 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #else
 | |
| static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
 | |
| 				struct mem_cgroup *from, struct mem_cgroup *to)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static DEFINE_MUTEX(memcg_max_mutex);
 | |
| 
 | |
| static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
 | |
| 				 unsigned long max, bool memsw)
 | |
| {
 | |
| 	bool enlarge = false;
 | |
| 	bool drained = false;
 | |
| 	int ret;
 | |
| 	bool limits_invariant;
 | |
| 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
 | |
| 
 | |
| 	do {
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&memcg_max_mutex);
 | |
| 		/*
 | |
| 		 * Make sure that the new limit (memsw or memory limit) doesn't
 | |
| 		 * break our basic invariant rule memory.max <= memsw.max.
 | |
| 		 */
 | |
| 		limits_invariant = memsw ? max >= memcg->memory.max :
 | |
| 					   max <= memcg->memsw.max;
 | |
| 		if (!limits_invariant) {
 | |
| 			mutex_unlock(&memcg_max_mutex);
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (max > counter->max)
 | |
| 			enlarge = true;
 | |
| 		ret = page_counter_set_max(counter, max);
 | |
| 		mutex_unlock(&memcg_max_mutex);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 
 | |
| 		if (!drained) {
 | |
| 			drain_all_stock(memcg);
 | |
| 			drained = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
 | |
| 					GFP_KERNEL, !memsw)) {
 | |
| 			ret = -EBUSY;
 | |
| 			break;
 | |
| 		}
 | |
| 	} while (true);
 | |
| 
 | |
| 	if (!ret && enlarge)
 | |
| 		memcg_oom_recover(memcg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
 | |
| 					    gfp_t gfp_mask,
 | |
| 					    unsigned long *total_scanned)
 | |
| {
 | |
| 	unsigned long nr_reclaimed = 0;
 | |
| 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
 | |
| 	unsigned long reclaimed;
 | |
| 	int loop = 0;
 | |
| 	struct mem_cgroup_tree_per_node *mctz;
 | |
| 	unsigned long excess;
 | |
| 	unsigned long nr_scanned;
 | |
| 
 | |
| 	if (order > 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	mctz = soft_limit_tree_node(pgdat->node_id);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not even bother to check the largest node if the root
 | |
| 	 * is empty. Do it lockless to prevent lock bouncing. Races
 | |
| 	 * are acceptable as soft limit is best effort anyway.
 | |
| 	 */
 | |
| 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This loop can run a while, specially if mem_cgroup's continuously
 | |
| 	 * keep exceeding their soft limit and putting the system under
 | |
| 	 * pressure
 | |
| 	 */
 | |
| 	do {
 | |
| 		if (next_mz)
 | |
| 			mz = next_mz;
 | |
| 		else
 | |
| 			mz = mem_cgroup_largest_soft_limit_node(mctz);
 | |
| 		if (!mz)
 | |
| 			break;
 | |
| 
 | |
| 		nr_scanned = 0;
 | |
| 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
 | |
| 						    gfp_mask, &nr_scanned);
 | |
| 		nr_reclaimed += reclaimed;
 | |
| 		*total_scanned += nr_scanned;
 | |
| 		spin_lock_irq(&mctz->lock);
 | |
| 		__mem_cgroup_remove_exceeded(mz, mctz);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we failed to reclaim anything from this memory cgroup
 | |
| 		 * it is time to move on to the next cgroup
 | |
| 		 */
 | |
| 		next_mz = NULL;
 | |
| 		if (!reclaimed)
 | |
| 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
 | |
| 
 | |
| 		excess = soft_limit_excess(mz->memcg);
 | |
| 		/*
 | |
| 		 * One school of thought says that we should not add
 | |
| 		 * back the node to the tree if reclaim returns 0.
 | |
| 		 * But our reclaim could return 0, simply because due
 | |
| 		 * to priority we are exposing a smaller subset of
 | |
| 		 * memory to reclaim from. Consider this as a longer
 | |
| 		 * term TODO.
 | |
| 		 */
 | |
| 		/* If excess == 0, no tree ops */
 | |
| 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
 | |
| 		spin_unlock_irq(&mctz->lock);
 | |
| 		css_put(&mz->memcg->css);
 | |
| 		loop++;
 | |
| 		/*
 | |
| 		 * Could not reclaim anything and there are no more
 | |
| 		 * mem cgroups to try or we seem to be looping without
 | |
| 		 * reclaiming anything.
 | |
| 		 */
 | |
| 		if (!nr_reclaimed &&
 | |
| 			(next_mz == NULL ||
 | |
| 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
 | |
| 			break;
 | |
| 	} while (!nr_reclaimed);
 | |
| 	if (next_mz)
 | |
| 		css_put(&next_mz->memcg->css);
 | |
| 	return nr_reclaimed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test whether @memcg has children, dead or alive.  Note that this
 | |
|  * function doesn't care whether @memcg has use_hierarchy enabled and
 | |
|  * returns %true if there are child csses according to the cgroup
 | |
|  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 | |
|  */
 | |
| static inline bool memcg_has_children(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ret = css_next_child(NULL, &memcg->css);
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reclaims as many pages from the given memcg as possible.
 | |
|  *
 | |
|  * Caller is responsible for holding css reference for memcg.
 | |
|  */
 | |
| static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 
 | |
| 	/* we call try-to-free pages for make this cgroup empty */
 | |
| 	lru_add_drain_all();
 | |
| 
 | |
| 	drain_all_stock(memcg);
 | |
| 
 | |
| 	/* try to free all pages in this cgroup */
 | |
| 	while (nr_retries && page_counter_read(&memcg->memory)) {
 | |
| 		int progress;
 | |
| 
 | |
| 		if (signal_pending(current))
 | |
| 			return -EINTR;
 | |
| 
 | |
| 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
 | |
| 							GFP_KERNEL, true);
 | |
| 		if (!progress) {
 | |
| 			nr_retries--;
 | |
| 			/* maybe some writeback is necessary */
 | |
| 			congestion_wait(BLK_RW_ASYNC, HZ/10);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
 | |
| 					    char *buf, size_t nbytes,
 | |
| 					    loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 
 | |
| 	if (mem_cgroup_is_root(memcg))
 | |
| 		return -EINVAL;
 | |
| 	return mem_cgroup_force_empty(memcg) ?: nbytes;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
 | |
| 				     struct cftype *cft)
 | |
| {
 | |
| 	return mem_cgroup_from_css(css)->use_hierarchy;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
 | |
| 				      struct cftype *cft, u64 val)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
 | |
| 
 | |
| 	if (memcg->use_hierarchy == val)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If parent's use_hierarchy is set, we can't make any modifications
 | |
| 	 * in the child subtrees. If it is unset, then the change can
 | |
| 	 * occur, provided the current cgroup has no children.
 | |
| 	 *
 | |
| 	 * For the root cgroup, parent_mem is NULL, we allow value to be
 | |
| 	 * set if there are no children.
 | |
| 	 */
 | |
| 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
 | |
| 				(val == 1 || val == 0)) {
 | |
| 		if (!memcg_has_children(memcg))
 | |
| 			memcg->use_hierarchy = val;
 | |
| 		else
 | |
| 			retval = -EBUSY;
 | |
| 	} else
 | |
| 		retval = -EINVAL;
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	if (mem_cgroup_is_root(memcg)) {
 | |
| 		val = memcg_page_state(memcg, MEMCG_CACHE) +
 | |
| 			memcg_page_state(memcg, MEMCG_RSS);
 | |
| 		if (swap)
 | |
| 			val += memcg_page_state(memcg, MEMCG_SWAP);
 | |
| 	} else {
 | |
| 		if (!swap)
 | |
| 			val = page_counter_read(&memcg->memory);
 | |
| 		else
 | |
| 			val = page_counter_read(&memcg->memsw);
 | |
| 	}
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	RES_USAGE,
 | |
| 	RES_LIMIT,
 | |
| 	RES_MAX_USAGE,
 | |
| 	RES_FAILCNT,
 | |
| 	RES_SOFT_LIMIT,
 | |
| };
 | |
| 
 | |
| static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
 | |
| 			       struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 	struct page_counter *counter;
 | |
| 
 | |
| 	switch (MEMFILE_TYPE(cft->private)) {
 | |
| 	case _MEM:
 | |
| 		counter = &memcg->memory;
 | |
| 		break;
 | |
| 	case _MEMSWAP:
 | |
| 		counter = &memcg->memsw;
 | |
| 		break;
 | |
| 	case _KMEM:
 | |
| 		counter = &memcg->kmem;
 | |
| 		break;
 | |
| 	case _TCP:
 | |
| 		counter = &memcg->tcpmem;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	switch (MEMFILE_ATTR(cft->private)) {
 | |
| 	case RES_USAGE:
 | |
| 		if (counter == &memcg->memory)
 | |
| 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
 | |
| 		if (counter == &memcg->memsw)
 | |
| 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
 | |
| 		return (u64)page_counter_read(counter) * PAGE_SIZE;
 | |
| 	case RES_LIMIT:
 | |
| 		return (u64)counter->max * PAGE_SIZE;
 | |
| 	case RES_MAX_USAGE:
 | |
| 		return (u64)counter->watermark * PAGE_SIZE;
 | |
| 	case RES_FAILCNT:
 | |
| 		return counter->failcnt;
 | |
| 	case RES_SOFT_LIMIT:
 | |
| 		return (u64)memcg->soft_limit * PAGE_SIZE;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
 | |
| {
 | |
| 	unsigned long stat[MEMCG_NR_STAT];
 | |
| 	struct mem_cgroup *mi;
 | |
| 	int node, cpu, i;
 | |
| 	int min_idx, max_idx;
 | |
| 
 | |
| 	if (slab_only) {
 | |
| 		min_idx = NR_SLAB_RECLAIMABLE;
 | |
| 		max_idx = NR_SLAB_UNRECLAIMABLE;
 | |
| 	} else {
 | |
| 		min_idx = 0;
 | |
| 		max_idx = MEMCG_NR_STAT;
 | |
| 	}
 | |
| 
 | |
| 	for (i = min_idx; i < max_idx; i++)
 | |
| 		stat[i] = 0;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		for (i = min_idx; i < max_idx; i++)
 | |
| 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
 | |
| 
 | |
| 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 | |
| 		for (i = min_idx; i < max_idx; i++)
 | |
| 			atomic_long_add(stat[i], &mi->vmstats[i]);
 | |
| 
 | |
| 	if (!slab_only)
 | |
| 		max_idx = NR_VM_NODE_STAT_ITEMS;
 | |
| 
 | |
| 	for_each_node(node) {
 | |
| 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
 | |
| 		struct mem_cgroup_per_node *pi;
 | |
| 
 | |
| 		for (i = min_idx; i < max_idx; i++)
 | |
| 			stat[i] = 0;
 | |
| 
 | |
| 		for_each_online_cpu(cpu)
 | |
| 			for (i = min_idx; i < max_idx; i++)
 | |
| 				stat[i] += per_cpu(
 | |
| 					pn->lruvec_stat_cpu->count[i], cpu);
 | |
| 
 | |
| 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
 | |
| 			for (i = min_idx; i < max_idx; i++)
 | |
| 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long events[NR_VM_EVENT_ITEMS];
 | |
| 	struct mem_cgroup *mi;
 | |
| 	int cpu, i;
 | |
| 
 | |
| 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 | |
| 		events[i] = 0;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 | |
| 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
 | |
| 					     cpu);
 | |
| 
 | |
| 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 | |
| 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 | |
| 			atomic_long_add(events[i], &mi->vmevents[i]);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| static int memcg_online_kmem(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	int memcg_id;
 | |
| 
 | |
| 	if (cgroup_memory_nokmem)
 | |
| 		return 0;
 | |
| 
 | |
| 	BUG_ON(memcg->kmemcg_id >= 0);
 | |
| 	BUG_ON(memcg->kmem_state);
 | |
| 
 | |
| 	memcg_id = memcg_alloc_cache_id();
 | |
| 	if (memcg_id < 0)
 | |
| 		return memcg_id;
 | |
| 
 | |
| 	static_branch_inc(&memcg_kmem_enabled_key);
 | |
| 	/*
 | |
| 	 * A memory cgroup is considered kmem-online as soon as it gets
 | |
| 	 * kmemcg_id. Setting the id after enabling static branching will
 | |
| 	 * guarantee no one starts accounting before all call sites are
 | |
| 	 * patched.
 | |
| 	 */
 | |
| 	memcg->kmemcg_id = memcg_id;
 | |
| 	memcg->kmem_state = KMEM_ONLINE;
 | |
| 	INIT_LIST_HEAD(&memcg->kmem_caches);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void memcg_offline_kmem(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct mem_cgroup *parent, *child;
 | |
| 	int kmemcg_id;
 | |
| 
 | |
| 	if (memcg->kmem_state != KMEM_ONLINE)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Clear the online state before clearing memcg_caches array
 | |
| 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
 | |
| 	 * guarantees that no cache will be created for this cgroup
 | |
| 	 * after we are done (see memcg_create_kmem_cache()).
 | |
| 	 */
 | |
| 	memcg->kmem_state = KMEM_ALLOCATED;
 | |
| 
 | |
| 	parent = parent_mem_cgroup(memcg);
 | |
| 	if (!parent)
 | |
| 		parent = root_mem_cgroup;
 | |
| 
 | |
| 	/*
 | |
| 	 * Deactivate and reparent kmem_caches. Then flush percpu
 | |
| 	 * slab statistics to have precise values at the parent and
 | |
| 	 * all ancestor levels. It's required to keep slab stats
 | |
| 	 * accurate after the reparenting of kmem_caches.
 | |
| 	 */
 | |
| 	memcg_deactivate_kmem_caches(memcg, parent);
 | |
| 	memcg_flush_percpu_vmstats(memcg, true);
 | |
| 
 | |
| 	kmemcg_id = memcg->kmemcg_id;
 | |
| 	BUG_ON(kmemcg_id < 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Change kmemcg_id of this cgroup and all its descendants to the
 | |
| 	 * parent's id, and then move all entries from this cgroup's list_lrus
 | |
| 	 * to ones of the parent. After we have finished, all list_lrus
 | |
| 	 * corresponding to this cgroup are guaranteed to remain empty. The
 | |
| 	 * ordering is imposed by list_lru_node->lock taken by
 | |
| 	 * memcg_drain_all_list_lrus().
 | |
| 	 */
 | |
| 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
 | |
| 	css_for_each_descendant_pre(css, &memcg->css) {
 | |
| 		child = mem_cgroup_from_css(css);
 | |
| 		BUG_ON(child->kmemcg_id != kmemcg_id);
 | |
| 		child->kmemcg_id = parent->kmemcg_id;
 | |
| 		if (!memcg->use_hierarchy)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	memcg_drain_all_list_lrus(kmemcg_id, parent);
 | |
| 
 | |
| 	memcg_free_cache_id(kmemcg_id);
 | |
| }
 | |
| 
 | |
| static void memcg_free_kmem(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	/* css_alloc() failed, offlining didn't happen */
 | |
| 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
 | |
| 		memcg_offline_kmem(memcg);
 | |
| 
 | |
| 	if (memcg->kmem_state == KMEM_ALLOCATED) {
 | |
| 		WARN_ON(!list_empty(&memcg->kmem_caches));
 | |
| 		static_branch_dec(&memcg_kmem_enabled_key);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static int memcg_online_kmem(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static void memcg_offline_kmem(struct mem_cgroup *memcg)
 | |
| {
 | |
| }
 | |
| static void memcg_free_kmem(struct mem_cgroup *memcg)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MEMCG_KMEM */
 | |
| 
 | |
| static int memcg_update_kmem_max(struct mem_cgroup *memcg,
 | |
| 				 unsigned long max)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&memcg_max_mutex);
 | |
| 	ret = page_counter_set_max(&memcg->kmem, max);
 | |
| 	mutex_unlock(&memcg_max_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&memcg_max_mutex);
 | |
| 
 | |
| 	ret = page_counter_set_max(&memcg->tcpmem, max);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!memcg->tcpmem_active) {
 | |
| 		/*
 | |
| 		 * The active flag needs to be written after the static_key
 | |
| 		 * update. This is what guarantees that the socket activation
 | |
| 		 * function is the last one to run. See mem_cgroup_sk_alloc()
 | |
| 		 * for details, and note that we don't mark any socket as
 | |
| 		 * belonging to this memcg until that flag is up.
 | |
| 		 *
 | |
| 		 * We need to do this, because static_keys will span multiple
 | |
| 		 * sites, but we can't control their order. If we mark a socket
 | |
| 		 * as accounted, but the accounting functions are not patched in
 | |
| 		 * yet, we'll lose accounting.
 | |
| 		 *
 | |
| 		 * We never race with the readers in mem_cgroup_sk_alloc(),
 | |
| 		 * because when this value change, the code to process it is not
 | |
| 		 * patched in yet.
 | |
| 		 */
 | |
| 		static_branch_inc(&memcg_sockets_enabled_key);
 | |
| 		memcg->tcpmem_active = true;
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&memcg_max_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The user of this function is...
 | |
|  * RES_LIMIT.
 | |
|  */
 | |
| static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
 | |
| 				char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long nr_pages;
 | |
| 	int ret;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	ret = page_counter_memparse(buf, "-1", &nr_pages);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 | |
| 	case RES_LIMIT:
 | |
| 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
 | |
| 		case _MEM:
 | |
| 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
 | |
| 			break;
 | |
| 		case _MEMSWAP:
 | |
| 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
 | |
| 			break;
 | |
| 		case _KMEM:
 | |
| 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
 | |
| 				     "Please report your usecase to linux-mm@kvack.org if you "
 | |
| 				     "depend on this functionality.\n");
 | |
| 			ret = memcg_update_kmem_max(memcg, nr_pages);
 | |
| 			break;
 | |
| 		case _TCP:
 | |
| 			ret = memcg_update_tcp_max(memcg, nr_pages);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case RES_SOFT_LIMIT:
 | |
| 		memcg->soft_limit = nr_pages;
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret ?: nbytes;
 | |
| }
 | |
| 
 | |
| static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
 | |
| 				size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	struct page_counter *counter;
 | |
| 
 | |
| 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
 | |
| 	case _MEM:
 | |
| 		counter = &memcg->memory;
 | |
| 		break;
 | |
| 	case _MEMSWAP:
 | |
| 		counter = &memcg->memsw;
 | |
| 		break;
 | |
| 	case _KMEM:
 | |
| 		counter = &memcg->kmem;
 | |
| 		break;
 | |
| 	case _TCP:
 | |
| 		counter = &memcg->tcpmem;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 | |
| 	case RES_MAX_USAGE:
 | |
| 		page_counter_reset_watermark(counter);
 | |
| 		break;
 | |
| 	case RES_FAILCNT:
 | |
| 		counter->failcnt = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
 | |
| 					struct cftype *cft)
 | |
| {
 | |
| 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
 | |
| 					struct cftype *cft, u64 val)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	if (val & ~MOVE_MASK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * No kind of locking is needed in here, because ->can_attach() will
 | |
| 	 * check this value once in the beginning of the process, and then carry
 | |
| 	 * on with stale data. This means that changes to this value will only
 | |
| 	 * affect task migrations starting after the change.
 | |
| 	 */
 | |
| 	memcg->move_charge_at_immigrate = val;
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
 | |
| 					struct cftype *cft, u64 val)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 | |
| #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 | |
| #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
 | |
| 
 | |
| static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 | |
| 					   int nid, unsigned int lru_mask)
 | |
| {
 | |
| 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
 | |
| 	unsigned long nr = 0;
 | |
| 	enum lru_list lru;
 | |
| 
 | |
| 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 | |
| 
 | |
| 	for_each_lru(lru) {
 | |
| 		if (!(BIT(lru) & lru_mask))
 | |
| 			continue;
 | |
| 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
 | |
| 	}
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 | |
| 					     unsigned int lru_mask)
 | |
| {
 | |
| 	unsigned long nr = 0;
 | |
| 	enum lru_list lru;
 | |
| 
 | |
| 	for_each_lru(lru) {
 | |
| 		if (!(BIT(lru) & lru_mask))
 | |
| 			continue;
 | |
| 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
 | |
| 	}
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static int memcg_numa_stat_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct numa_stat {
 | |
| 		const char *name;
 | |
| 		unsigned int lru_mask;
 | |
| 	};
 | |
| 
 | |
| 	static const struct numa_stat stats[] = {
 | |
| 		{ "total", LRU_ALL },
 | |
| 		{ "file", LRU_ALL_FILE },
 | |
| 		{ "anon", LRU_ALL_ANON },
 | |
| 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
 | |
| 	};
 | |
| 	const struct numa_stat *stat;
 | |
| 	int nid;
 | |
| 	unsigned long nr;
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 | |
| 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
 | |
| 		seq_printf(m, "%s=%lu", stat->name, nr);
 | |
| 		for_each_node_state(nid, N_MEMORY) {
 | |
| 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
 | |
| 							  stat->lru_mask);
 | |
| 			seq_printf(m, " N%d=%lu", nid, nr);
 | |
| 		}
 | |
| 		seq_putc(m, '\n');
 | |
| 	}
 | |
| 
 | |
| 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 | |
| 		struct mem_cgroup *iter;
 | |
| 
 | |
| 		nr = 0;
 | |
| 		for_each_mem_cgroup_tree(iter, memcg)
 | |
| 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
 | |
| 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
 | |
| 		for_each_node_state(nid, N_MEMORY) {
 | |
| 			nr = 0;
 | |
| 			for_each_mem_cgroup_tree(iter, memcg)
 | |
| 				nr += mem_cgroup_node_nr_lru_pages(
 | |
| 					iter, nid, stat->lru_mask);
 | |
| 			seq_printf(m, " N%d=%lu", nid, nr);
 | |
| 		}
 | |
| 		seq_putc(m, '\n');
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| static const unsigned int memcg1_stats[] = {
 | |
| 	MEMCG_CACHE,
 | |
| 	MEMCG_RSS,
 | |
| 	MEMCG_RSS_HUGE,
 | |
| 	NR_SHMEM,
 | |
| 	NR_FILE_MAPPED,
 | |
| 	NR_FILE_DIRTY,
 | |
| 	NR_WRITEBACK,
 | |
| 	MEMCG_SWAP,
 | |
| };
 | |
| 
 | |
| static const char *const memcg1_stat_names[] = {
 | |
| 	"cache",
 | |
| 	"rss",
 | |
| 	"rss_huge",
 | |
| 	"shmem",
 | |
| 	"mapped_file",
 | |
| 	"dirty",
 | |
| 	"writeback",
 | |
| 	"swap",
 | |
| };
 | |
| 
 | |
| /* Universal VM events cgroup1 shows, original sort order */
 | |
| static const unsigned int memcg1_events[] = {
 | |
| 	PGPGIN,
 | |
| 	PGPGOUT,
 | |
| 	PGFAULT,
 | |
| 	PGMAJFAULT,
 | |
| };
 | |
| 
 | |
| static int memcg_stat_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 	unsigned long memory, memsw;
 | |
| 	struct mem_cgroup *mi;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
 | |
| 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
 | |
| 			continue;
 | |
| 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
 | |
| 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
 | |
| 			   PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
 | |
| 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
 | |
| 			   memcg_events_local(memcg, memcg1_events[i]));
 | |
| 
 | |
| 	for (i = 0; i < NR_LRU_LISTS; i++)
 | |
| 		seq_printf(m, "%s %lu\n", lru_list_name(i),
 | |
| 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
 | |
| 			   PAGE_SIZE);
 | |
| 
 | |
| 	/* Hierarchical information */
 | |
| 	memory = memsw = PAGE_COUNTER_MAX;
 | |
| 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
 | |
| 		memory = min(memory, mi->memory.max);
 | |
| 		memsw = min(memsw, mi->memsw.max);
 | |
| 	}
 | |
| 	seq_printf(m, "hierarchical_memory_limit %llu\n",
 | |
| 		   (u64)memory * PAGE_SIZE);
 | |
| 	if (do_memsw_account())
 | |
| 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
 | |
| 			   (u64)memsw * PAGE_SIZE);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
 | |
| 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
 | |
| 			continue;
 | |
| 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
 | |
| 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
 | |
| 			   PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
 | |
| 		seq_printf(m, "total_%s %llu\n",
 | |
| 			   vm_event_name(memcg1_events[i]),
 | |
| 			   (u64)memcg_events(memcg, memcg1_events[i]));
 | |
| 
 | |
| 	for (i = 0; i < NR_LRU_LISTS; i++)
 | |
| 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
 | |
| 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
 | |
| 			   PAGE_SIZE);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	{
 | |
| 		pg_data_t *pgdat;
 | |
| 		struct mem_cgroup_per_node *mz;
 | |
| 		struct zone_reclaim_stat *rstat;
 | |
| 		unsigned long recent_rotated[2] = {0, 0};
 | |
| 		unsigned long recent_scanned[2] = {0, 0};
 | |
| 
 | |
| 		for_each_online_pgdat(pgdat) {
 | |
| 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 | |
| 			rstat = &mz->lruvec.reclaim_stat;
 | |
| 
 | |
| 			recent_rotated[0] += rstat->recent_rotated[0];
 | |
| 			recent_rotated[1] += rstat->recent_rotated[1];
 | |
| 			recent_scanned[0] += rstat->recent_scanned[0];
 | |
| 			recent_scanned[1] += rstat->recent_scanned[1];
 | |
| 		}
 | |
| 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
 | |
| 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
 | |
| 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
 | |
| 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
 | |
| 				      struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	return mem_cgroup_swappiness(memcg);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
 | |
| 				       struct cftype *cft, u64 val)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	if (val > 100)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (css->parent)
 | |
| 		memcg->swappiness = val;
 | |
| 	else
 | |
| 		vm_swappiness = val;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
 | |
| {
 | |
| 	struct mem_cgroup_threshold_ary *t;
 | |
| 	unsigned long usage;
 | |
| 	int i;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!swap)
 | |
| 		t = rcu_dereference(memcg->thresholds.primary);
 | |
| 	else
 | |
| 		t = rcu_dereference(memcg->memsw_thresholds.primary);
 | |
| 
 | |
| 	if (!t)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	usage = mem_cgroup_usage(memcg, swap);
 | |
| 
 | |
| 	/*
 | |
| 	 * current_threshold points to threshold just below or equal to usage.
 | |
| 	 * If it's not true, a threshold was crossed after last
 | |
| 	 * call of __mem_cgroup_threshold().
 | |
| 	 */
 | |
| 	i = t->current_threshold;
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate backward over array of thresholds starting from
 | |
| 	 * current_threshold and check if a threshold is crossed.
 | |
| 	 * If none of thresholds below usage is crossed, we read
 | |
| 	 * only one element of the array here.
 | |
| 	 */
 | |
| 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
 | |
| 		eventfd_signal(t->entries[i].eventfd, 1);
 | |
| 
 | |
| 	/* i = current_threshold + 1 */
 | |
| 	i++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate forward over array of thresholds starting from
 | |
| 	 * current_threshold+1 and check if a threshold is crossed.
 | |
| 	 * If none of thresholds above usage is crossed, we read
 | |
| 	 * only one element of the array here.
 | |
| 	 */
 | |
| 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
 | |
| 		eventfd_signal(t->entries[i].eventfd, 1);
 | |
| 
 | |
| 	/* Update current_threshold */
 | |
| 	t->current_threshold = i - 1;
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_threshold(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	while (memcg) {
 | |
| 		__mem_cgroup_threshold(memcg, false);
 | |
| 		if (do_memsw_account())
 | |
| 			__mem_cgroup_threshold(memcg, true);
 | |
| 
 | |
| 		memcg = parent_mem_cgroup(memcg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int compare_thresholds(const void *a, const void *b)
 | |
| {
 | |
| 	const struct mem_cgroup_threshold *_a = a;
 | |
| 	const struct mem_cgroup_threshold *_b = b;
 | |
| 
 | |
| 	if (_a->threshold > _b->threshold)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (_a->threshold < _b->threshold)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup_eventfd_list *ev;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 
 | |
| 	list_for_each_entry(ev, &memcg->oom_notify, list)
 | |
| 		eventfd_signal(ev->eventfd, 1);
 | |
| 
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *iter;
 | |
| 
 | |
| 	for_each_mem_cgroup_tree(iter, memcg)
 | |
| 		mem_cgroup_oom_notify_cb(iter);
 | |
| }
 | |
| 
 | |
| static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
 | |
| {
 | |
| 	struct mem_cgroup_thresholds *thresholds;
 | |
| 	struct mem_cgroup_threshold_ary *new;
 | |
| 	unsigned long threshold;
 | |
| 	unsigned long usage;
 | |
| 	int i, size, ret;
 | |
| 
 | |
| 	ret = page_counter_memparse(args, "-1", &threshold);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&memcg->thresholds_lock);
 | |
| 
 | |
| 	if (type == _MEM) {
 | |
| 		thresholds = &memcg->thresholds;
 | |
| 		usage = mem_cgroup_usage(memcg, false);
 | |
| 	} else if (type == _MEMSWAP) {
 | |
| 		thresholds = &memcg->memsw_thresholds;
 | |
| 		usage = mem_cgroup_usage(memcg, true);
 | |
| 	} else
 | |
| 		BUG();
 | |
| 
 | |
| 	/* Check if a threshold crossed before adding a new one */
 | |
| 	if (thresholds->primary)
 | |
| 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | |
| 
 | |
| 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
 | |
| 
 | |
| 	/* Allocate memory for new array of thresholds */
 | |
| 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
 | |
| 	if (!new) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	new->size = size;
 | |
| 
 | |
| 	/* Copy thresholds (if any) to new array */
 | |
| 	if (thresholds->primary) {
 | |
| 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
 | |
| 				sizeof(struct mem_cgroup_threshold));
 | |
| 	}
 | |
| 
 | |
| 	/* Add new threshold */
 | |
| 	new->entries[size - 1].eventfd = eventfd;
 | |
| 	new->entries[size - 1].threshold = threshold;
 | |
| 
 | |
| 	/* Sort thresholds. Registering of new threshold isn't time-critical */
 | |
| 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
 | |
| 			compare_thresholds, NULL);
 | |
| 
 | |
| 	/* Find current threshold */
 | |
| 	new->current_threshold = -1;
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		if (new->entries[i].threshold <= usage) {
 | |
| 			/*
 | |
| 			 * new->current_threshold will not be used until
 | |
| 			 * rcu_assign_pointer(), so it's safe to increment
 | |
| 			 * it here.
 | |
| 			 */
 | |
| 			++new->current_threshold;
 | |
| 		} else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Free old spare buffer and save old primary buffer as spare */
 | |
| 	kfree(thresholds->spare);
 | |
| 	thresholds->spare = thresholds->primary;
 | |
| 
 | |
| 	rcu_assign_pointer(thresholds->primary, new);
 | |
| 
 | |
| 	/* To be sure that nobody uses thresholds */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&memcg->thresholds_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, const char *args)
 | |
| {
 | |
| 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
 | |
| }
 | |
| 
 | |
| static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, const char *args)
 | |
| {
 | |
| 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, enum res_type type)
 | |
| {
 | |
| 	struct mem_cgroup_thresholds *thresholds;
 | |
| 	struct mem_cgroup_threshold_ary *new;
 | |
| 	unsigned long usage;
 | |
| 	int i, j, size;
 | |
| 
 | |
| 	mutex_lock(&memcg->thresholds_lock);
 | |
| 
 | |
| 	if (type == _MEM) {
 | |
| 		thresholds = &memcg->thresholds;
 | |
| 		usage = mem_cgroup_usage(memcg, false);
 | |
| 	} else if (type == _MEMSWAP) {
 | |
| 		thresholds = &memcg->memsw_thresholds;
 | |
| 		usage = mem_cgroup_usage(memcg, true);
 | |
| 	} else
 | |
| 		BUG();
 | |
| 
 | |
| 	if (!thresholds->primary)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/* Check if a threshold crossed before removing */
 | |
| 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | |
| 
 | |
| 	/* Calculate new number of threshold */
 | |
| 	size = 0;
 | |
| 	for (i = 0; i < thresholds->primary->size; i++) {
 | |
| 		if (thresholds->primary->entries[i].eventfd != eventfd)
 | |
| 			size++;
 | |
| 	}
 | |
| 
 | |
| 	new = thresholds->spare;
 | |
| 
 | |
| 	/* Set thresholds array to NULL if we don't have thresholds */
 | |
| 	if (!size) {
 | |
| 		kfree(new);
 | |
| 		new = NULL;
 | |
| 		goto swap_buffers;
 | |
| 	}
 | |
| 
 | |
| 	new->size = size;
 | |
| 
 | |
| 	/* Copy thresholds and find current threshold */
 | |
| 	new->current_threshold = -1;
 | |
| 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
 | |
| 		if (thresholds->primary->entries[i].eventfd == eventfd)
 | |
| 			continue;
 | |
| 
 | |
| 		new->entries[j] = thresholds->primary->entries[i];
 | |
| 		if (new->entries[j].threshold <= usage) {
 | |
| 			/*
 | |
| 			 * new->current_threshold will not be used
 | |
| 			 * until rcu_assign_pointer(), so it's safe to increment
 | |
| 			 * it here.
 | |
| 			 */
 | |
| 			++new->current_threshold;
 | |
| 		}
 | |
| 		j++;
 | |
| 	}
 | |
| 
 | |
| swap_buffers:
 | |
| 	/* Swap primary and spare array */
 | |
| 	thresholds->spare = thresholds->primary;
 | |
| 
 | |
| 	rcu_assign_pointer(thresholds->primary, new);
 | |
| 
 | |
| 	/* To be sure that nobody uses thresholds */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	/* If all events are unregistered, free the spare array */
 | |
| 	if (!new) {
 | |
| 		kfree(thresholds->spare);
 | |
| 		thresholds->spare = NULL;
 | |
| 	}
 | |
| unlock:
 | |
| 	mutex_unlock(&memcg->thresholds_lock);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd)
 | |
| {
 | |
| 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
 | |
| }
 | |
| 
 | |
| static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd)
 | |
| {
 | |
| 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd, const char *args)
 | |
| {
 | |
| 	struct mem_cgroup_eventfd_list *event;
 | |
| 
 | |
| 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
 | |
| 	if (!event)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 
 | |
| 	event->eventfd = eventfd;
 | |
| 	list_add(&event->list, &memcg->oom_notify);
 | |
| 
 | |
| 	/* already in OOM ? */
 | |
| 	if (memcg->under_oom)
 | |
| 		eventfd_signal(eventfd, 1);
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
 | |
| 	struct eventfd_ctx *eventfd)
 | |
| {
 | |
| 	struct mem_cgroup_eventfd_list *ev, *tmp;
 | |
| 
 | |
| 	spin_lock(&memcg_oom_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
 | |
| 		if (ev->eventfd == eventfd) {
 | |
| 			list_del(&ev->list);
 | |
| 			kfree(ev);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&memcg_oom_lock);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
 | |
| 
 | |
| 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
 | |
| 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
 | |
| 	seq_printf(sf, "oom_kill %lu\n",
 | |
| 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
 | |
| 	struct cftype *cft, u64 val)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	/* cannot set to root cgroup and only 0 and 1 are allowed */
 | |
| 	if (!css->parent || !((val == 0) || (val == 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcg->oom_kill_disable = val;
 | |
| 	if (!val)
 | |
| 		memcg_oom_recover(memcg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| 
 | |
| #include <trace/events/writeback.h>
 | |
| 
 | |
| static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
 | |
| {
 | |
| 	return wb_domain_init(&memcg->cgwb_domain, gfp);
 | |
| }
 | |
| 
 | |
| static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	wb_domain_exit(&memcg->cgwb_domain);
 | |
| }
 | |
| 
 | |
| static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	wb_domain_size_changed(&memcg->cgwb_domain);
 | |
| }
 | |
| 
 | |
| struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
 | |
| 
 | |
| 	if (!memcg->css.parent)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &memcg->cgwb_domain;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * idx can be of type enum memcg_stat_item or node_stat_item.
 | |
|  * Keep in sync with memcg_exact_page().
 | |
|  */
 | |
| static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
 | |
| {
 | |
| 	long x = atomic_long_read(&memcg->vmstats[idx]);
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
 | |
| 	if (x < 0)
 | |
| 		x = 0;
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 | |
|  * @wb: bdi_writeback in question
 | |
|  * @pfilepages: out parameter for number of file pages
 | |
|  * @pheadroom: out parameter for number of allocatable pages according to memcg
 | |
|  * @pdirty: out parameter for number of dirty pages
 | |
|  * @pwriteback: out parameter for number of pages under writeback
 | |
|  *
 | |
|  * Determine the numbers of file, headroom, dirty, and writeback pages in
 | |
|  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 | |
|  * is a bit more involved.
 | |
|  *
 | |
|  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 | |
|  * headroom is calculated as the lowest headroom of itself and the
 | |
|  * ancestors.  Note that this doesn't consider the actual amount of
 | |
|  * available memory in the system.  The caller should further cap
 | |
|  * *@pheadroom accordingly.
 | |
|  */
 | |
| void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
 | |
| 			 unsigned long *pheadroom, unsigned long *pdirty,
 | |
| 			 unsigned long *pwriteback)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
 | |
| 	struct mem_cgroup *parent;
 | |
| 
 | |
| 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
 | |
| 
 | |
| 	/* this should eventually include NR_UNSTABLE_NFS */
 | |
| 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
 | |
| 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
 | |
| 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
 | |
| 	*pheadroom = PAGE_COUNTER_MAX;
 | |
| 
 | |
| 	while ((parent = parent_mem_cgroup(memcg))) {
 | |
| 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
 | |
| 		unsigned long used = page_counter_read(&memcg->memory);
 | |
| 
 | |
| 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
 | |
| 		memcg = parent;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Foreign dirty flushing
 | |
|  *
 | |
|  * There's an inherent mismatch between memcg and writeback.  The former
 | |
|  * trackes ownership per-page while the latter per-inode.  This was a
 | |
|  * deliberate design decision because honoring per-page ownership in the
 | |
|  * writeback path is complicated, may lead to higher CPU and IO overheads
 | |
|  * and deemed unnecessary given that write-sharing an inode across
 | |
|  * different cgroups isn't a common use-case.
 | |
|  *
 | |
|  * Combined with inode majority-writer ownership switching, this works well
 | |
|  * enough in most cases but there are some pathological cases.  For
 | |
|  * example, let's say there are two cgroups A and B which keep writing to
 | |
|  * different but confined parts of the same inode.  B owns the inode and
 | |
|  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 | |
|  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 | |
|  * triggering background writeback.  A will be slowed down without a way to
 | |
|  * make writeback of the dirty pages happen.
 | |
|  *
 | |
|  * Conditions like the above can lead to a cgroup getting repatedly and
 | |
|  * severely throttled after making some progress after each
 | |
|  * dirty_expire_interval while the underyling IO device is almost
 | |
|  * completely idle.
 | |
|  *
 | |
|  * Solving this problem completely requires matching the ownership tracking
 | |
|  * granularities between memcg and writeback in either direction.  However,
 | |
|  * the more egregious behaviors can be avoided by simply remembering the
 | |
|  * most recent foreign dirtying events and initiating remote flushes on
 | |
|  * them when local writeback isn't enough to keep the memory clean enough.
 | |
|  *
 | |
|  * The following two functions implement such mechanism.  When a foreign
 | |
|  * page - a page whose memcg and writeback ownerships don't match - is
 | |
|  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 | |
|  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 | |
|  * decides that the memcg needs to sleep due to high dirty ratio, it calls
 | |
|  * mem_cgroup_flush_foreign() which queues writeback on the recorded
 | |
|  * foreign bdi_writebacks which haven't expired.  Both the numbers of
 | |
|  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 | |
|  * limited to MEMCG_CGWB_FRN_CNT.
 | |
|  *
 | |
|  * The mechanism only remembers IDs and doesn't hold any object references.
 | |
|  * As being wrong occasionally doesn't matter, updates and accesses to the
 | |
|  * records are lockless and racy.
 | |
|  */
 | |
| void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
 | |
| 					     struct bdi_writeback *wb)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = page->mem_cgroup;
 | |
| 	struct memcg_cgwb_frn *frn;
 | |
| 	u64 now = get_jiffies_64();
 | |
| 	u64 oldest_at = now;
 | |
| 	int oldest = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	trace_track_foreign_dirty(page, wb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pick the slot to use.  If there is already a slot for @wb, keep
 | |
| 	 * using it.  If not replace the oldest one which isn't being
 | |
| 	 * written out.
 | |
| 	 */
 | |
| 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
 | |
| 		frn = &memcg->cgwb_frn[i];
 | |
| 		if (frn->bdi_id == wb->bdi->id &&
 | |
| 		    frn->memcg_id == wb->memcg_css->id)
 | |
| 			break;
 | |
| 		if (time_before64(frn->at, oldest_at) &&
 | |
| 		    atomic_read(&frn->done.cnt) == 1) {
 | |
| 			oldest = i;
 | |
| 			oldest_at = frn->at;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (i < MEMCG_CGWB_FRN_CNT) {
 | |
| 		/*
 | |
| 		 * Re-using an existing one.  Update timestamp lazily to
 | |
| 		 * avoid making the cacheline hot.  We want them to be
 | |
| 		 * reasonably up-to-date and significantly shorter than
 | |
| 		 * dirty_expire_interval as that's what expires the record.
 | |
| 		 * Use the shorter of 1s and dirty_expire_interval / 8.
 | |
| 		 */
 | |
| 		unsigned long update_intv =
 | |
| 			min_t(unsigned long, HZ,
 | |
| 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
 | |
| 
 | |
| 		if (time_before64(frn->at, now - update_intv))
 | |
| 			frn->at = now;
 | |
| 	} else if (oldest >= 0) {
 | |
| 		/* replace the oldest free one */
 | |
| 		frn = &memcg->cgwb_frn[oldest];
 | |
| 		frn->bdi_id = wb->bdi->id;
 | |
| 		frn->memcg_id = wb->memcg_css->id;
 | |
| 		frn->at = now;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* issue foreign writeback flushes for recorded foreign dirtying events */
 | |
| void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
 | |
| 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
 | |
| 	u64 now = jiffies_64;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
 | |
| 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * If the record is older than dirty_expire_interval,
 | |
| 		 * writeback on it has already started.  No need to kick it
 | |
| 		 * off again.  Also, don't start a new one if there's
 | |
| 		 * already one in flight.
 | |
| 		 */
 | |
| 		if (time_after64(frn->at, now - intv) &&
 | |
| 		    atomic_read(&frn->done.cnt) == 1) {
 | |
| 			frn->at = 0;
 | |
| 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
 | |
| 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
 | |
| 					       WB_REASON_FOREIGN_FLUSH,
 | |
| 					       &frn->done);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_CGROUP_WRITEBACK */
 | |
| 
 | |
| static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_CGROUP_WRITEBACK */
 | |
| 
 | |
| /*
 | |
|  * DO NOT USE IN NEW FILES.
 | |
|  *
 | |
|  * "cgroup.event_control" implementation.
 | |
|  *
 | |
|  * This is way over-engineered.  It tries to support fully configurable
 | |
|  * events for each user.  Such level of flexibility is completely
 | |
|  * unnecessary especially in the light of the planned unified hierarchy.
 | |
|  *
 | |
|  * Please deprecate this and replace with something simpler if at all
 | |
|  * possible.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Unregister event and free resources.
 | |
|  *
 | |
|  * Gets called from workqueue.
 | |
|  */
 | |
| static void memcg_event_remove(struct work_struct *work)
 | |
| {
 | |
| 	struct mem_cgroup_event *event =
 | |
| 		container_of(work, struct mem_cgroup_event, remove);
 | |
| 	struct mem_cgroup *memcg = event->memcg;
 | |
| 
 | |
| 	remove_wait_queue(event->wqh, &event->wait);
 | |
| 
 | |
| 	event->unregister_event(memcg, event->eventfd);
 | |
| 
 | |
| 	/* Notify userspace the event is going away. */
 | |
| 	eventfd_signal(event->eventfd, 1);
 | |
| 
 | |
| 	eventfd_ctx_put(event->eventfd);
 | |
| 	kfree(event);
 | |
| 	css_put(&memcg->css);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Gets called on EPOLLHUP on eventfd when user closes it.
 | |
|  *
 | |
|  * Called with wqh->lock held and interrupts disabled.
 | |
|  */
 | |
| static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
 | |
| 			    int sync, void *key)
 | |
| {
 | |
| 	struct mem_cgroup_event *event =
 | |
| 		container_of(wait, struct mem_cgroup_event, wait);
 | |
| 	struct mem_cgroup *memcg = event->memcg;
 | |
| 	__poll_t flags = key_to_poll(key);
 | |
| 
 | |
| 	if (flags & EPOLLHUP) {
 | |
| 		/*
 | |
| 		 * If the event has been detached at cgroup removal, we
 | |
| 		 * can simply return knowing the other side will cleanup
 | |
| 		 * for us.
 | |
| 		 *
 | |
| 		 * We can't race against event freeing since the other
 | |
| 		 * side will require wqh->lock via remove_wait_queue(),
 | |
| 		 * which we hold.
 | |
| 		 */
 | |
| 		spin_lock(&memcg->event_list_lock);
 | |
| 		if (!list_empty(&event->list)) {
 | |
| 			list_del_init(&event->list);
 | |
| 			/*
 | |
| 			 * We are in atomic context, but cgroup_event_remove()
 | |
| 			 * may sleep, so we have to call it in workqueue.
 | |
| 			 */
 | |
| 			schedule_work(&event->remove);
 | |
| 		}
 | |
| 		spin_unlock(&memcg->event_list_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void memcg_event_ptable_queue_proc(struct file *file,
 | |
| 		wait_queue_head_t *wqh, poll_table *pt)
 | |
| {
 | |
| 	struct mem_cgroup_event *event =
 | |
| 		container_of(pt, struct mem_cgroup_event, pt);
 | |
| 
 | |
| 	event->wqh = wqh;
 | |
| 	add_wait_queue(wqh, &event->wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DO NOT USE IN NEW FILES.
 | |
|  *
 | |
|  * Parse input and register new cgroup event handler.
 | |
|  *
 | |
|  * Input must be in format '<event_fd> <control_fd> <args>'.
 | |
|  * Interpretation of args is defined by control file implementation.
 | |
|  */
 | |
| static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
 | |
| 					 char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css = of_css(of);
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 	struct mem_cgroup_event *event;
 | |
| 	struct cgroup_subsys_state *cfile_css;
 | |
| 	unsigned int efd, cfd;
 | |
| 	struct fd efile;
 | |
| 	struct fd cfile;
 | |
| 	const char *name;
 | |
| 	char *endp;
 | |
| 	int ret;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 
 | |
| 	efd = simple_strtoul(buf, &endp, 10);
 | |
| 	if (*endp != ' ')
 | |
| 		return -EINVAL;
 | |
| 	buf = endp + 1;
 | |
| 
 | |
| 	cfd = simple_strtoul(buf, &endp, 10);
 | |
| 	if ((*endp != ' ') && (*endp != '\0'))
 | |
| 		return -EINVAL;
 | |
| 	buf = endp + 1;
 | |
| 
 | |
| 	event = kzalloc(sizeof(*event), GFP_KERNEL);
 | |
| 	if (!event)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	event->memcg = memcg;
 | |
| 	INIT_LIST_HEAD(&event->list);
 | |
| 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
 | |
| 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
 | |
| 	INIT_WORK(&event->remove, memcg_event_remove);
 | |
| 
 | |
| 	efile = fdget(efd);
 | |
| 	if (!efile.file) {
 | |
| 		ret = -EBADF;
 | |
| 		goto out_kfree;
 | |
| 	}
 | |
| 
 | |
| 	event->eventfd = eventfd_ctx_fileget(efile.file);
 | |
| 	if (IS_ERR(event->eventfd)) {
 | |
| 		ret = PTR_ERR(event->eventfd);
 | |
| 		goto out_put_efile;
 | |
| 	}
 | |
| 
 | |
| 	cfile = fdget(cfd);
 | |
| 	if (!cfile.file) {
 | |
| 		ret = -EBADF;
 | |
| 		goto out_put_eventfd;
 | |
| 	}
 | |
| 
 | |
| 	/* the process need read permission on control file */
 | |
| 	/* AV: shouldn't we check that it's been opened for read instead? */
 | |
| 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
 | |
| 	if (ret < 0)
 | |
| 		goto out_put_cfile;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the event callbacks and set them in @event.  This used
 | |
| 	 * to be done via struct cftype but cgroup core no longer knows
 | |
| 	 * about these events.  The following is crude but the whole thing
 | |
| 	 * is for compatibility anyway.
 | |
| 	 *
 | |
| 	 * DO NOT ADD NEW FILES.
 | |
| 	 */
 | |
| 	name = cfile.file->f_path.dentry->d_name.name;
 | |
| 
 | |
| 	if (!strcmp(name, "memory.usage_in_bytes")) {
 | |
| 		event->register_event = mem_cgroup_usage_register_event;
 | |
| 		event->unregister_event = mem_cgroup_usage_unregister_event;
 | |
| 	} else if (!strcmp(name, "memory.oom_control")) {
 | |
| 		event->register_event = mem_cgroup_oom_register_event;
 | |
| 		event->unregister_event = mem_cgroup_oom_unregister_event;
 | |
| 	} else if (!strcmp(name, "memory.pressure_level")) {
 | |
| 		event->register_event = vmpressure_register_event;
 | |
| 		event->unregister_event = vmpressure_unregister_event;
 | |
| 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
 | |
| 		event->register_event = memsw_cgroup_usage_register_event;
 | |
| 		event->unregister_event = memsw_cgroup_usage_unregister_event;
 | |
| 	} else {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_put_cfile;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify @cfile should belong to @css.  Also, remaining events are
 | |
| 	 * automatically removed on cgroup destruction but the removal is
 | |
| 	 * asynchronous, so take an extra ref on @css.
 | |
| 	 */
 | |
| 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
 | |
| 					       &memory_cgrp_subsys);
 | |
| 	ret = -EINVAL;
 | |
| 	if (IS_ERR(cfile_css))
 | |
| 		goto out_put_cfile;
 | |
| 	if (cfile_css != css) {
 | |
| 		css_put(cfile_css);
 | |
| 		goto out_put_cfile;
 | |
| 	}
 | |
| 
 | |
| 	ret = event->register_event(memcg, event->eventfd, buf);
 | |
| 	if (ret)
 | |
| 		goto out_put_css;
 | |
| 
 | |
| 	vfs_poll(efile.file, &event->pt);
 | |
| 
 | |
| 	spin_lock(&memcg->event_list_lock);
 | |
| 	list_add(&event->list, &memcg->event_list);
 | |
| 	spin_unlock(&memcg->event_list_lock);
 | |
| 
 | |
| 	fdput(cfile);
 | |
| 	fdput(efile);
 | |
| 
 | |
| 	return nbytes;
 | |
| 
 | |
| out_put_css:
 | |
| 	css_put(css);
 | |
| out_put_cfile:
 | |
| 	fdput(cfile);
 | |
| out_put_eventfd:
 | |
| 	eventfd_ctx_put(event->eventfd);
 | |
| out_put_efile:
 | |
| 	fdput(efile);
 | |
| out_kfree:
 | |
| 	kfree(event);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct cftype mem_cgroup_legacy_files[] = {
 | |
| 	{
 | |
| 		.name = "usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "soft_limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "stat",
 | |
| 		.seq_show = memcg_stat_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "force_empty",
 | |
| 		.write = mem_cgroup_force_empty_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "use_hierarchy",
 | |
| 		.write_u64 = mem_cgroup_hierarchy_write,
 | |
| 		.read_u64 = mem_cgroup_hierarchy_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "cgroup.event_control",		/* XXX: for compat */
 | |
| 		.write = memcg_write_event_control,
 | |
| 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swappiness",
 | |
| 		.read_u64 = mem_cgroup_swappiness_read,
 | |
| 		.write_u64 = mem_cgroup_swappiness_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "move_charge_at_immigrate",
 | |
| 		.read_u64 = mem_cgroup_move_charge_read,
 | |
| 		.write_u64 = mem_cgroup_move_charge_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "oom_control",
 | |
| 		.seq_show = mem_cgroup_oom_control_read,
 | |
| 		.write_u64 = mem_cgroup_oom_control_write,
 | |
| 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "pressure_level",
 | |
| 	},
 | |
| #ifdef CONFIG_NUMA
 | |
| 	{
 | |
| 		.name = "numa_stat",
 | |
| 		.seq_show = memcg_numa_stat_show,
 | |
| 	},
 | |
| #endif
 | |
| 	{
 | |
| 		.name = "kmem.limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 | |
| 	{
 | |
| 		.name = "kmem.slabinfo",
 | |
| 		.seq_start = memcg_slab_start,
 | |
| 		.seq_next = memcg_slab_next,
 | |
| 		.seq_stop = memcg_slab_stop,
 | |
| 		.seq_show = memcg_slab_show,
 | |
| 	},
 | |
| #endif
 | |
| 	{
 | |
| 		.name = "kmem.tcp.limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.tcp.usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.tcp.failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "kmem.tcp.max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{ },	/* terminate */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Private memory cgroup IDR
 | |
|  *
 | |
|  * Swap-out records and page cache shadow entries need to store memcg
 | |
|  * references in constrained space, so we maintain an ID space that is
 | |
|  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 | |
|  * memory-controlled cgroups to 64k.
 | |
|  *
 | |
|  * However, there usually are many references to the oflline CSS after
 | |
|  * the cgroup has been destroyed, such as page cache or reclaimable
 | |
|  * slab objects, that don't need to hang on to the ID. We want to keep
 | |
|  * those dead CSS from occupying IDs, or we might quickly exhaust the
 | |
|  * relatively small ID space and prevent the creation of new cgroups
 | |
|  * even when there are much fewer than 64k cgroups - possibly none.
 | |
|  *
 | |
|  * Maintain a private 16-bit ID space for memcg, and allow the ID to
 | |
|  * be freed and recycled when it's no longer needed, which is usually
 | |
|  * when the CSS is offlined.
 | |
|  *
 | |
|  * The only exception to that are records of swapped out tmpfs/shmem
 | |
|  * pages that need to be attributed to live ancestors on swapin. But
 | |
|  * those references are manageable from userspace.
 | |
|  */
 | |
| 
 | |
| static DEFINE_IDR(mem_cgroup_idr);
 | |
| 
 | |
| static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	if (memcg->id.id > 0) {
 | |
| 		idr_remove(&mem_cgroup_idr, memcg->id.id);
 | |
| 		memcg->id.id = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
 | |
| {
 | |
| 	refcount_add(n, &memcg->id.ref);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
 | |
| {
 | |
| 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
 | |
| 		mem_cgroup_id_remove(memcg);
 | |
| 
 | |
| 		/* Memcg ID pins CSS */
 | |
| 		css_put(&memcg->css);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	mem_cgroup_id_put_many(memcg, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_from_id - look up a memcg from a memcg id
 | |
|  * @id: the memcg id to look up
 | |
|  *
 | |
|  * Caller must hold rcu_read_lock().
 | |
|  */
 | |
| struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 | |
| {
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held());
 | |
| 	return idr_find(&mem_cgroup_idr, id);
 | |
| }
 | |
| 
 | |
| static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 	int tmp = node;
 | |
| 	/*
 | |
| 	 * This routine is called against possible nodes.
 | |
| 	 * But it's BUG to call kmalloc() against offline node.
 | |
| 	 *
 | |
| 	 * TODO: this routine can waste much memory for nodes which will
 | |
| 	 *       never be onlined. It's better to use memory hotplug callback
 | |
| 	 *       function.
 | |
| 	 */
 | |
| 	if (!node_state(node, N_NORMAL_MEMORY))
 | |
| 		tmp = -1;
 | |
| 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
 | |
| 	if (!pn)
 | |
| 		return 1;
 | |
| 
 | |
| 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
 | |
| 	if (!pn->lruvec_stat_local) {
 | |
| 		kfree(pn);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
 | |
| 	if (!pn->lruvec_stat_cpu) {
 | |
| 		free_percpu(pn->lruvec_stat_local);
 | |
| 		kfree(pn);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	lruvec_init(&pn->lruvec);
 | |
| 	pn->usage_in_excess = 0;
 | |
| 	pn->on_tree = false;
 | |
| 	pn->memcg = memcg;
 | |
| 
 | |
| 	memcg->nodeinfo[node] = pn;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
 | |
| 
 | |
| 	if (!pn)
 | |
| 		return;
 | |
| 
 | |
| 	free_percpu(pn->lruvec_stat_cpu);
 | |
| 	free_percpu(pn->lruvec_stat_local);
 | |
| 	kfree(pn);
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_free(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node(node)
 | |
| 		free_mem_cgroup_per_node_info(memcg, node);
 | |
| 	free_percpu(memcg->vmstats_percpu);
 | |
| 	free_percpu(memcg->vmstats_local);
 | |
| 	kfree(memcg);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_free(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	memcg_wb_domain_exit(memcg);
 | |
| 	/*
 | |
| 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
 | |
| 	 * on parent's and all ancestor levels.
 | |
| 	 */
 | |
| 	memcg_flush_percpu_vmstats(memcg, false);
 | |
| 	memcg_flush_percpu_vmevents(memcg);
 | |
| 	__mem_cgroup_free(memcg);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *mem_cgroup_alloc(void)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned int size;
 | |
| 	int node;
 | |
| 	int __maybe_unused i;
 | |
| 
 | |
| 	size = sizeof(struct mem_cgroup);
 | |
| 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
 | |
| 
 | |
| 	memcg = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!memcg)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
 | |
| 				 1, MEM_CGROUP_ID_MAX,
 | |
| 				 GFP_KERNEL);
 | |
| 	if (memcg->id.id < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
 | |
| 	if (!memcg->vmstats_local)
 | |
| 		goto fail;
 | |
| 
 | |
| 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
 | |
| 	if (!memcg->vmstats_percpu)
 | |
| 		goto fail;
 | |
| 
 | |
| 	for_each_node(node)
 | |
| 		if (alloc_mem_cgroup_per_node_info(memcg, node))
 | |
| 			goto fail;
 | |
| 
 | |
| 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
 | |
| 		goto fail;
 | |
| 
 | |
| 	INIT_WORK(&memcg->high_work, high_work_func);
 | |
| 	INIT_LIST_HEAD(&memcg->oom_notify);
 | |
| 	mutex_init(&memcg->thresholds_lock);
 | |
| 	spin_lock_init(&memcg->move_lock);
 | |
| 	vmpressure_init(&memcg->vmpressure);
 | |
| 	INIT_LIST_HEAD(&memcg->event_list);
 | |
| 	spin_lock_init(&memcg->event_list_lock);
 | |
| 	memcg->socket_pressure = jiffies;
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 	memcg->kmemcg_id = -1;
 | |
| #endif
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| 	INIT_LIST_HEAD(&memcg->cgwb_list);
 | |
| 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
 | |
| 		memcg->cgwb_frn[i].done =
 | |
| 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
 | |
| 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
 | |
| 	memcg->deferred_split_queue.split_queue_len = 0;
 | |
| #endif
 | |
| 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
 | |
| 	return memcg;
 | |
| fail:
 | |
| 	mem_cgroup_id_remove(memcg);
 | |
| 	__mem_cgroup_free(memcg);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct cgroup_subsys_state * __ref
 | |
| mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 | |
| {
 | |
| 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	long error = -ENOMEM;
 | |
| 
 | |
| 	memcg = mem_cgroup_alloc();
 | |
| 	if (!memcg)
 | |
| 		return ERR_PTR(error);
 | |
| 
 | |
| 	memcg->high = PAGE_COUNTER_MAX;
 | |
| 	memcg->soft_limit = PAGE_COUNTER_MAX;
 | |
| 	if (parent) {
 | |
| 		memcg->swappiness = mem_cgroup_swappiness(parent);
 | |
| 		memcg->oom_kill_disable = parent->oom_kill_disable;
 | |
| 	}
 | |
| 	if (parent && parent->use_hierarchy) {
 | |
| 		memcg->use_hierarchy = true;
 | |
| 		page_counter_init(&memcg->memory, &parent->memory);
 | |
| 		page_counter_init(&memcg->swap, &parent->swap);
 | |
| 		page_counter_init(&memcg->memsw, &parent->memsw);
 | |
| 		page_counter_init(&memcg->kmem, &parent->kmem);
 | |
| 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
 | |
| 	} else {
 | |
| 		page_counter_init(&memcg->memory, NULL);
 | |
| 		page_counter_init(&memcg->swap, NULL);
 | |
| 		page_counter_init(&memcg->memsw, NULL);
 | |
| 		page_counter_init(&memcg->kmem, NULL);
 | |
| 		page_counter_init(&memcg->tcpmem, NULL);
 | |
| 		/*
 | |
| 		 * Deeper hierachy with use_hierarchy == false doesn't make
 | |
| 		 * much sense so let cgroup subsystem know about this
 | |
| 		 * unfortunate state in our controller.
 | |
| 		 */
 | |
| 		if (parent != root_mem_cgroup)
 | |
| 			memory_cgrp_subsys.broken_hierarchy = true;
 | |
| 	}
 | |
| 
 | |
| 	/* The following stuff does not apply to the root */
 | |
| 	if (!parent) {
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 		INIT_LIST_HEAD(&memcg->kmem_caches);
 | |
| #endif
 | |
| 		root_mem_cgroup = memcg;
 | |
| 		return &memcg->css;
 | |
| 	}
 | |
| 
 | |
| 	error = memcg_online_kmem(memcg);
 | |
| 	if (error)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
 | |
| 		static_branch_inc(&memcg_sockets_enabled_key);
 | |
| 
 | |
| 	return &memcg->css;
 | |
| fail:
 | |
| 	mem_cgroup_id_remove(memcg);
 | |
| 	mem_cgroup_free(memcg);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	/*
 | |
| 	 * A memcg must be visible for memcg_expand_shrinker_maps()
 | |
| 	 * by the time the maps are allocated. So, we allocate maps
 | |
| 	 * here, when for_each_mem_cgroup() can't skip it.
 | |
| 	 */
 | |
| 	if (memcg_alloc_shrinker_maps(memcg)) {
 | |
| 		mem_cgroup_id_remove(memcg);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Online state pins memcg ID, memcg ID pins CSS */
 | |
| 	refcount_set(&memcg->id.ref, 1);
 | |
| 	css_get(css);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 	struct mem_cgroup_event *event, *tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unregister events and notify userspace.
 | |
| 	 * Notify userspace about cgroup removing only after rmdir of cgroup
 | |
| 	 * directory to avoid race between userspace and kernelspace.
 | |
| 	 */
 | |
| 	spin_lock(&memcg->event_list_lock);
 | |
| 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
 | |
| 		list_del_init(&event->list);
 | |
| 		schedule_work(&event->remove);
 | |
| 	}
 | |
| 	spin_unlock(&memcg->event_list_lock);
 | |
| 
 | |
| 	page_counter_set_min(&memcg->memory, 0);
 | |
| 	page_counter_set_low(&memcg->memory, 0);
 | |
| 
 | |
| 	memcg_offline_kmem(memcg);
 | |
| 	wb_memcg_offline(memcg);
 | |
| 
 | |
| 	drain_all_stock(memcg);
 | |
| 
 | |
| 	mem_cgroup_id_put(memcg);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	invalidate_reclaim_iterators(memcg);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 	int __maybe_unused i;
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
 | |
| 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
 | |
| #endif
 | |
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
 | |
| 		static_branch_dec(&memcg_sockets_enabled_key);
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
 | |
| 		static_branch_dec(&memcg_sockets_enabled_key);
 | |
| 
 | |
| 	vmpressure_cleanup(&memcg->vmpressure);
 | |
| 	cancel_work_sync(&memcg->high_work);
 | |
| 	mem_cgroup_remove_from_trees(memcg);
 | |
| 	memcg_free_shrinker_maps(memcg);
 | |
| 	memcg_free_kmem(memcg);
 | |
| 	mem_cgroup_free(memcg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_css_reset - reset the states of a mem_cgroup
 | |
|  * @css: the target css
 | |
|  *
 | |
|  * Reset the states of the mem_cgroup associated with @css.  This is
 | |
|  * invoked when the userland requests disabling on the default hierarchy
 | |
|  * but the memcg is pinned through dependency.  The memcg should stop
 | |
|  * applying policies and should revert to the vanilla state as it may be
 | |
|  * made visible again.
 | |
|  *
 | |
|  * The current implementation only resets the essential configurations.
 | |
|  * This needs to be expanded to cover all the visible parts.
 | |
|  */
 | |
| static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
 | |
| 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
 | |
| 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
 | |
| 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
 | |
| 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
 | |
| 	page_counter_set_min(&memcg->memory, 0);
 | |
| 	page_counter_set_low(&memcg->memory, 0);
 | |
| 	memcg->high = PAGE_COUNTER_MAX;
 | |
| 	memcg->soft_limit = PAGE_COUNTER_MAX;
 | |
| 	memcg_wb_domain_size_changed(memcg);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /* Handlers for move charge at task migration. */
 | |
| static int mem_cgroup_do_precharge(unsigned long count)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Try a single bulk charge without reclaim first, kswapd may wake */
 | |
| 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
 | |
| 	if (!ret) {
 | |
| 		mc.precharge += count;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Try charges one by one with reclaim, but do not retry */
 | |
| 	while (count--) {
 | |
| 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		mc.precharge++;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| union mc_target {
 | |
| 	struct page	*page;
 | |
| 	swp_entry_t	ent;
 | |
| };
 | |
| 
 | |
| enum mc_target_type {
 | |
| 	MC_TARGET_NONE = 0,
 | |
| 	MC_TARGET_PAGE,
 | |
| 	MC_TARGET_SWAP,
 | |
| 	MC_TARGET_DEVICE,
 | |
| };
 | |
| 
 | |
| static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
 | |
| 						unsigned long addr, pte_t ptent)
 | |
| {
 | |
| 	struct page *page = vm_normal_page(vma, addr, ptent);
 | |
| 
 | |
| 	if (!page || !page_mapped(page))
 | |
| 		return NULL;
 | |
| 	if (PageAnon(page)) {
 | |
| 		if (!(mc.flags & MOVE_ANON))
 | |
| 			return NULL;
 | |
| 	} else {
 | |
| 		if (!(mc.flags & MOVE_FILE))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if (!get_page_unless_zero(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
 | |
| static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
 | |
| 			pte_t ptent, swp_entry_t *entry)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	swp_entry_t ent = pte_to_swp_entry(ptent);
 | |
| 
 | |
| 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
 | |
| 	 * a device and because they are not accessible by CPU they are store
 | |
| 	 * as special swap entry in the CPU page table.
 | |
| 	 */
 | |
| 	if (is_device_private_entry(ent)) {
 | |
| 		page = device_private_entry_to_page(ent);
 | |
| 		/*
 | |
| 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
 | |
| 		 * a refcount of 1 when free (unlike normal page)
 | |
| 		 */
 | |
| 		if (!page_ref_add_unless(page, 1, 1))
 | |
| 			return NULL;
 | |
| 		return page;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because lookup_swap_cache() updates some statistics counter,
 | |
| 	 * we call find_get_page() with swapper_space directly.
 | |
| 	 */
 | |
| 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
 | |
| 	if (do_memsw_account())
 | |
| 		entry->val = ent.val;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| #else
 | |
| static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
 | |
| 			pte_t ptent, swp_entry_t *entry)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
 | |
| 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	struct address_space *mapping;
 | |
| 	pgoff_t pgoff;
 | |
| 
 | |
| 	if (!vma->vm_file) /* anonymous vma */
 | |
| 		return NULL;
 | |
| 	if (!(mc.flags & MOVE_FILE))
 | |
| 		return NULL;
 | |
| 
 | |
| 	mapping = vma->vm_file->f_mapping;
 | |
| 	pgoff = linear_page_index(vma, addr);
 | |
| 
 | |
| 	/* page is moved even if it's not RSS of this task(page-faulted). */
 | |
| #ifdef CONFIG_SWAP
 | |
| 	/* shmem/tmpfs may report page out on swap: account for that too. */
 | |
| 	if (shmem_mapping(mapping)) {
 | |
| 		page = find_get_entry(mapping, pgoff);
 | |
| 		if (xa_is_value(page)) {
 | |
| 			swp_entry_t swp = radix_to_swp_entry(page);
 | |
| 			if (do_memsw_account())
 | |
| 				*entry = swp;
 | |
| 			page = find_get_page(swap_address_space(swp),
 | |
| 					     swp_offset(swp));
 | |
| 		}
 | |
| 	} else
 | |
| 		page = find_get_page(mapping, pgoff);
 | |
| #else
 | |
| 	page = find_get_page(mapping, pgoff);
 | |
| #endif
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_move_account - move account of the page
 | |
|  * @page: the page
 | |
|  * @compound: charge the page as compound or small page
 | |
|  * @from: mem_cgroup which the page is moved from.
 | |
|  * @to:	mem_cgroup which the page is moved to. @from != @to.
 | |
|  *
 | |
|  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
 | |
|  *
 | |
|  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 | |
|  * from old cgroup.
 | |
|  */
 | |
| static int mem_cgroup_move_account(struct page *page,
 | |
| 				   bool compound,
 | |
| 				   struct mem_cgroup *from,
 | |
| 				   struct mem_cgroup *to)
 | |
| {
 | |
| 	struct lruvec *from_vec, *to_vec;
 | |
| 	struct pglist_data *pgdat;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
 | |
| 	int ret;
 | |
| 	bool anon;
 | |
| 
 | |
| 	VM_BUG_ON(from == to);
 | |
| 	VM_BUG_ON_PAGE(PageLRU(page), page);
 | |
| 	VM_BUG_ON(compound && !PageTransHuge(page));
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent mem_cgroup_migrate() from looking at
 | |
| 	 * page->mem_cgroup of its source page while we change it.
 | |
| 	 */
 | |
| 	ret = -EBUSY;
 | |
| 	if (!trylock_page(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (page->mem_cgroup != from)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	anon = PageAnon(page);
 | |
| 
 | |
| 	pgdat = page_pgdat(page);
 | |
| 	from_vec = mem_cgroup_lruvec(from, pgdat);
 | |
| 	to_vec = mem_cgroup_lruvec(to, pgdat);
 | |
| 
 | |
| 	spin_lock_irqsave(&from->move_lock, flags);
 | |
| 
 | |
| 	if (!anon && page_mapped(page)) {
 | |
| 		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
 | |
| 		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * move_lock grabbed above and caller set from->moving_account, so
 | |
| 	 * mod_memcg_page_state will serialize updates to PageDirty.
 | |
| 	 * So mapping should be stable for dirty pages.
 | |
| 	 */
 | |
| 	if (!anon && PageDirty(page)) {
 | |
| 		struct address_space *mapping = page_mapping(page);
 | |
| 
 | |
| 		if (mapping_cap_account_dirty(mapping)) {
 | |
| 			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
 | |
| 			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (PageWriteback(page)) {
 | |
| 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
 | |
| 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	if (compound && !list_empty(page_deferred_list(page))) {
 | |
| 		spin_lock(&from->deferred_split_queue.split_queue_lock);
 | |
| 		list_del_init(page_deferred_list(page));
 | |
| 		from->deferred_split_queue.split_queue_len--;
 | |
| 		spin_unlock(&from->deferred_split_queue.split_queue_lock);
 | |
| 	}
 | |
| #endif
 | |
| 	/*
 | |
| 	 * It is safe to change page->mem_cgroup here because the page
 | |
| 	 * is referenced, charged, and isolated - we can't race with
 | |
| 	 * uncharging, charging, migration, or LRU putback.
 | |
| 	 */
 | |
| 
 | |
| 	/* caller should have done css_get */
 | |
| 	page->mem_cgroup = to;
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	if (compound && list_empty(page_deferred_list(page))) {
 | |
| 		spin_lock(&to->deferred_split_queue.split_queue_lock);
 | |
| 		list_add_tail(page_deferred_list(page),
 | |
| 			      &to->deferred_split_queue.split_queue);
 | |
| 		to->deferred_split_queue.split_queue_len++;
 | |
| 		spin_unlock(&to->deferred_split_queue.split_queue_lock);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	spin_unlock_irqrestore(&from->move_lock, flags);
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
 | |
| 	memcg_check_events(to, page);
 | |
| 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
 | |
| 	memcg_check_events(from, page);
 | |
| 	local_irq_enable();
 | |
| out_unlock:
 | |
| 	unlock_page(page);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_mctgt_type - get target type of moving charge
 | |
|  * @vma: the vma the pte to be checked belongs
 | |
|  * @addr: the address corresponding to the pte to be checked
 | |
|  * @ptent: the pte to be checked
 | |
|  * @target: the pointer the target page or swap ent will be stored(can be NULL)
 | |
|  *
 | |
|  * Returns
 | |
|  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 | |
|  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 | |
|  *     move charge. if @target is not NULL, the page is stored in target->page
 | |
|  *     with extra refcnt got(Callers should handle it).
 | |
|  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 | |
|  *     target for charge migration. if @target is not NULL, the entry is stored
 | |
|  *     in target->ent.
 | |
|  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 | |
|  *     (so ZONE_DEVICE page and thus not on the lru).
 | |
|  *     For now we such page is charge like a regular page would be as for all
 | |
|  *     intent and purposes it is just special memory taking the place of a
 | |
|  *     regular page.
 | |
|  *
 | |
|  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
 | |
|  *
 | |
|  * Called with pte lock held.
 | |
|  */
 | |
| 
 | |
| static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
 | |
| 		unsigned long addr, pte_t ptent, union mc_target *target)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	enum mc_target_type ret = MC_TARGET_NONE;
 | |
| 	swp_entry_t ent = { .val = 0 };
 | |
| 
 | |
| 	if (pte_present(ptent))
 | |
| 		page = mc_handle_present_pte(vma, addr, ptent);
 | |
| 	else if (is_swap_pte(ptent))
 | |
| 		page = mc_handle_swap_pte(vma, ptent, &ent);
 | |
| 	else if (pte_none(ptent))
 | |
| 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
 | |
| 
 | |
| 	if (!page && !ent.val)
 | |
| 		return ret;
 | |
| 	if (page) {
 | |
| 		/*
 | |
| 		 * Do only loose check w/o serialization.
 | |
| 		 * mem_cgroup_move_account() checks the page is valid or
 | |
| 		 * not under LRU exclusion.
 | |
| 		 */
 | |
| 		if (page->mem_cgroup == mc.from) {
 | |
| 			ret = MC_TARGET_PAGE;
 | |
| 			if (is_device_private_page(page))
 | |
| 				ret = MC_TARGET_DEVICE;
 | |
| 			if (target)
 | |
| 				target->page = page;
 | |
| 		}
 | |
| 		if (!ret || !target)
 | |
| 			put_page(page);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * There is a swap entry and a page doesn't exist or isn't charged.
 | |
| 	 * But we cannot move a tail-page in a THP.
 | |
| 	 */
 | |
| 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
 | |
| 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
 | |
| 		ret = MC_TARGET_SWAP;
 | |
| 		if (target)
 | |
| 			target->ent = ent;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| /*
 | |
|  * We don't consider PMD mapped swapping or file mapped pages because THP does
 | |
|  * not support them for now.
 | |
|  * Caller should make sure that pmd_trans_huge(pmd) is true.
 | |
|  */
 | |
| static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
 | |
| 		unsigned long addr, pmd_t pmd, union mc_target *target)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	enum mc_target_type ret = MC_TARGET_NONE;
 | |
| 
 | |
| 	if (unlikely(is_swap_pmd(pmd))) {
 | |
| 		VM_BUG_ON(thp_migration_supported() &&
 | |
| 				  !is_pmd_migration_entry(pmd));
 | |
| 		return ret;
 | |
| 	}
 | |
| 	page = pmd_page(pmd);
 | |
| 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
 | |
| 	if (!(mc.flags & MOVE_ANON))
 | |
| 		return ret;
 | |
| 	if (page->mem_cgroup == mc.from) {
 | |
| 		ret = MC_TARGET_PAGE;
 | |
| 		if (target) {
 | |
| 			get_page(page);
 | |
| 			target->page = page;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
 | |
| 		unsigned long addr, pmd_t pmd, union mc_target *target)
 | |
| {
 | |
| 	return MC_TARGET_NONE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
 | |
| 					unsigned long addr, unsigned long end,
 | |
| 					struct mm_walk *walk)
 | |
| {
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	pte_t *pte;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (ptl) {
 | |
| 		/*
 | |
| 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
 | |
| 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
 | |
| 		 * this might change.
 | |
| 		 */
 | |
| 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
 | |
| 			mc.precharge += HPAGE_PMD_NR;
 | |
| 		spin_unlock(ptl);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_trans_unstable(pmd))
 | |
| 		return 0;
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	for (; addr != end; pte++, addr += PAGE_SIZE)
 | |
| 		if (get_mctgt_type(vma, addr, *pte, NULL))
 | |
| 			mc.precharge++;	/* increment precharge temporarily */
 | |
| 	pte_unmap_unlock(pte - 1, ptl);
 | |
| 	cond_resched();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct mm_walk_ops precharge_walk_ops = {
 | |
| 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
 | |
| };
 | |
| 
 | |
| static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long precharge;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	precharge = mc.precharge;
 | |
| 	mc.precharge = 0;
 | |
| 
 | |
| 	return precharge;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_precharge_mc(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long precharge = mem_cgroup_count_precharge(mm);
 | |
| 
 | |
| 	VM_BUG_ON(mc.moving_task);
 | |
| 	mc.moving_task = current;
 | |
| 	return mem_cgroup_do_precharge(precharge);
 | |
| }
 | |
| 
 | |
| /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
 | |
| static void __mem_cgroup_clear_mc(void)
 | |
| {
 | |
| 	struct mem_cgroup *from = mc.from;
 | |
| 	struct mem_cgroup *to = mc.to;
 | |
| 
 | |
| 	/* we must uncharge all the leftover precharges from mc.to */
 | |
| 	if (mc.precharge) {
 | |
| 		cancel_charge(mc.to, mc.precharge);
 | |
| 		mc.precharge = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
 | |
| 	 * we must uncharge here.
 | |
| 	 */
 | |
| 	if (mc.moved_charge) {
 | |
| 		cancel_charge(mc.from, mc.moved_charge);
 | |
| 		mc.moved_charge = 0;
 | |
| 	}
 | |
| 	/* we must fixup refcnts and charges */
 | |
| 	if (mc.moved_swap) {
 | |
| 		/* uncharge swap account from the old cgroup */
 | |
| 		if (!mem_cgroup_is_root(mc.from))
 | |
| 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
 | |
| 
 | |
| 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
 | |
| 
 | |
| 		/*
 | |
| 		 * we charged both to->memory and to->memsw, so we
 | |
| 		 * should uncharge to->memory.
 | |
| 		 */
 | |
| 		if (!mem_cgroup_is_root(mc.to))
 | |
| 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
 | |
| 
 | |
| 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
 | |
| 		css_put_many(&mc.to->css, mc.moved_swap);
 | |
| 
 | |
| 		mc.moved_swap = 0;
 | |
| 	}
 | |
| 	memcg_oom_recover(from);
 | |
| 	memcg_oom_recover(to);
 | |
| 	wake_up_all(&mc.waitq);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_clear_mc(void)
 | |
| {
 | |
| 	struct mm_struct *mm = mc.mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * we must clear moving_task before waking up waiters at the end of
 | |
| 	 * task migration.
 | |
| 	 */
 | |
| 	mc.moving_task = NULL;
 | |
| 	__mem_cgroup_clear_mc();
 | |
| 	spin_lock(&mc.lock);
 | |
| 	mc.from = NULL;
 | |
| 	mc.to = NULL;
 | |
| 	mc.mm = NULL;
 | |
| 	spin_unlock(&mc.lock);
 | |
| 
 | |
| 	mmput(mm);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
 | |
| 	struct mem_cgroup *from;
 | |
| 	struct task_struct *leader, *p;
 | |
| 	struct mm_struct *mm;
 | |
| 	unsigned long move_flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* charge immigration isn't supported on the default hierarchy */
 | |
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Multi-process migrations only happen on the default hierarchy
 | |
| 	 * where charge immigration is not used.  Perform charge
 | |
| 	 * immigration if @tset contains a leader and whine if there are
 | |
| 	 * multiple.
 | |
| 	 */
 | |
| 	p = NULL;
 | |
| 	cgroup_taskset_for_each_leader(leader, css, tset) {
 | |
| 		WARN_ON_ONCE(p);
 | |
| 		p = leader;
 | |
| 		memcg = mem_cgroup_from_css(css);
 | |
| 	}
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are now commited to this value whatever it is. Changes in this
 | |
| 	 * tunable will only affect upcoming migrations, not the current one.
 | |
| 	 * So we need to save it, and keep it going.
 | |
| 	 */
 | |
| 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
 | |
| 	if (!move_flags)
 | |
| 		return 0;
 | |
| 
 | |
| 	from = mem_cgroup_from_task(p);
 | |
| 
 | |
| 	VM_BUG_ON(from == memcg);
 | |
| 
 | |
| 	mm = get_task_mm(p);
 | |
| 	if (!mm)
 | |
| 		return 0;
 | |
| 	/* We move charges only when we move a owner of the mm */
 | |
| 	if (mm->owner == p) {
 | |
| 		VM_BUG_ON(mc.from);
 | |
| 		VM_BUG_ON(mc.to);
 | |
| 		VM_BUG_ON(mc.precharge);
 | |
| 		VM_BUG_ON(mc.moved_charge);
 | |
| 		VM_BUG_ON(mc.moved_swap);
 | |
| 
 | |
| 		spin_lock(&mc.lock);
 | |
| 		mc.mm = mm;
 | |
| 		mc.from = from;
 | |
| 		mc.to = memcg;
 | |
| 		mc.flags = move_flags;
 | |
| 		spin_unlock(&mc.lock);
 | |
| 		/* We set mc.moving_task later */
 | |
| 
 | |
| 		ret = mem_cgroup_precharge_mc(mm);
 | |
| 		if (ret)
 | |
| 			mem_cgroup_clear_mc();
 | |
| 	} else {
 | |
| 		mmput(mm);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	if (mc.to)
 | |
| 		mem_cgroup_clear_mc();
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				struct mm_walk *walk)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	pte_t *pte;
 | |
| 	spinlock_t *ptl;
 | |
| 	enum mc_target_type target_type;
 | |
| 	union mc_target target;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	ptl = pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (ptl) {
 | |
| 		if (mc.precharge < HPAGE_PMD_NR) {
 | |
| 			spin_unlock(ptl);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
 | |
| 		if (target_type == MC_TARGET_PAGE) {
 | |
| 			page = target.page;
 | |
| 			if (!isolate_lru_page(page)) {
 | |
| 				if (!mem_cgroup_move_account(page, true,
 | |
| 							     mc.from, mc.to)) {
 | |
| 					mc.precharge -= HPAGE_PMD_NR;
 | |
| 					mc.moved_charge += HPAGE_PMD_NR;
 | |
| 				}
 | |
| 				putback_lru_page(page);
 | |
| 			}
 | |
| 			put_page(page);
 | |
| 		} else if (target_type == MC_TARGET_DEVICE) {
 | |
| 			page = target.page;
 | |
| 			if (!mem_cgroup_move_account(page, true,
 | |
| 						     mc.from, mc.to)) {
 | |
| 				mc.precharge -= HPAGE_PMD_NR;
 | |
| 				mc.moved_charge += HPAGE_PMD_NR;
 | |
| 			}
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 		spin_unlock(ptl);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_trans_unstable(pmd))
 | |
| 		return 0;
 | |
| retry:
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	for (; addr != end; addr += PAGE_SIZE) {
 | |
| 		pte_t ptent = *(pte++);
 | |
| 		bool device = false;
 | |
| 		swp_entry_t ent;
 | |
| 
 | |
| 		if (!mc.precharge)
 | |
| 			break;
 | |
| 
 | |
| 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
 | |
| 		case MC_TARGET_DEVICE:
 | |
| 			device = true;
 | |
| 			/* fall through */
 | |
| 		case MC_TARGET_PAGE:
 | |
| 			page = target.page;
 | |
| 			/*
 | |
| 			 * We can have a part of the split pmd here. Moving it
 | |
| 			 * can be done but it would be too convoluted so simply
 | |
| 			 * ignore such a partial THP and keep it in original
 | |
| 			 * memcg. There should be somebody mapping the head.
 | |
| 			 */
 | |
| 			if (PageTransCompound(page))
 | |
| 				goto put;
 | |
| 			if (!device && isolate_lru_page(page))
 | |
| 				goto put;
 | |
| 			if (!mem_cgroup_move_account(page, false,
 | |
| 						mc.from, mc.to)) {
 | |
| 				mc.precharge--;
 | |
| 				/* we uncharge from mc.from later. */
 | |
| 				mc.moved_charge++;
 | |
| 			}
 | |
| 			if (!device)
 | |
| 				putback_lru_page(page);
 | |
| put:			/* get_mctgt_type() gets the page */
 | |
| 			put_page(page);
 | |
| 			break;
 | |
| 		case MC_TARGET_SWAP:
 | |
| 			ent = target.ent;
 | |
| 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
 | |
| 				mc.precharge--;
 | |
| 				/* we fixup refcnts and charges later. */
 | |
| 				mc.moved_swap++;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	pte_unmap_unlock(pte - 1, ptl);
 | |
| 	cond_resched();
 | |
| 
 | |
| 	if (addr != end) {
 | |
| 		/*
 | |
| 		 * We have consumed all precharges we got in can_attach().
 | |
| 		 * We try charge one by one, but don't do any additional
 | |
| 		 * charges to mc.to if we have failed in charge once in attach()
 | |
| 		 * phase.
 | |
| 		 */
 | |
| 		ret = mem_cgroup_do_precharge(1);
 | |
| 		if (!ret)
 | |
| 			goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct mm_walk_ops charge_walk_ops = {
 | |
| 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
 | |
| };
 | |
| 
 | |
| static void mem_cgroup_move_charge(void)
 | |
| {
 | |
| 	lru_add_drain_all();
 | |
| 	/*
 | |
| 	 * Signal lock_page_memcg() to take the memcg's move_lock
 | |
| 	 * while we're moving its pages to another memcg. Then wait
 | |
| 	 * for already started RCU-only updates to finish.
 | |
| 	 */
 | |
| 	atomic_inc(&mc.from->moving_account);
 | |
| 	synchronize_rcu();
 | |
| retry:
 | |
| 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
 | |
| 		/*
 | |
| 		 * Someone who are holding the mmap_sem might be waiting in
 | |
| 		 * waitq. So we cancel all extra charges, wake up all waiters,
 | |
| 		 * and retry. Because we cancel precharges, we might not be able
 | |
| 		 * to move enough charges, but moving charge is a best-effort
 | |
| 		 * feature anyway, so it wouldn't be a big problem.
 | |
| 		 */
 | |
| 		__mem_cgroup_clear_mc();
 | |
| 		cond_resched();
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * When we have consumed all precharges and failed in doing
 | |
| 	 * additional charge, the page walk just aborts.
 | |
| 	 */
 | |
| 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
 | |
| 			NULL);
 | |
| 
 | |
| 	up_read(&mc.mm->mmap_sem);
 | |
| 	atomic_dec(&mc.from->moving_account);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_move_task(void)
 | |
| {
 | |
| 	if (mc.to) {
 | |
| 		mem_cgroup_move_charge();
 | |
| 		mem_cgroup_clear_mc();
 | |
| 	}
 | |
| }
 | |
| #else	/* !CONFIG_MMU */
 | |
| static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 | |
| {
 | |
| }
 | |
| static void mem_cgroup_move_task(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Cgroup retains root cgroups across [un]mount cycles making it necessary
 | |
|  * to verify whether we're attached to the default hierarchy on each mount
 | |
|  * attempt.
 | |
|  */
 | |
| static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
 | |
| {
 | |
| 	/*
 | |
| 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
 | |
| 	 * guarantees that @root doesn't have any children, so turning it
 | |
| 	 * on for the root memcg is enough.
 | |
| 	 */
 | |
| 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		root_mem_cgroup->use_hierarchy = true;
 | |
| 	else
 | |
| 		root_mem_cgroup->use_hierarchy = false;
 | |
| }
 | |
| 
 | |
| static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
 | |
| {
 | |
| 	if (value == PAGE_COUNTER_MAX)
 | |
| 		seq_puts(m, "max\n");
 | |
| 	else
 | |
| 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 memory_current_read(struct cgroup_subsys_state *css,
 | |
| 			       struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| static int memory_min_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
 | |
| }
 | |
| 
 | |
| static ssize_t memory_min_write(struct kernfs_open_file *of,
 | |
| 				char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long min;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &min);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	page_counter_set_min(&memcg->memory, min);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int memory_low_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
 | |
| }
 | |
| 
 | |
| static ssize_t memory_low_write(struct kernfs_open_file *of,
 | |
| 				char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long low;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &low);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	page_counter_set_low(&memcg->memory, low);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int memory_high_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
 | |
| }
 | |
| 
 | |
| static ssize_t memory_high_write(struct kernfs_open_file *of,
 | |
| 				 char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	bool drained = false;
 | |
| 	unsigned long high;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &high);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	memcg->high = high;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		unsigned long nr_pages = page_counter_read(&memcg->memory);
 | |
| 		unsigned long reclaimed;
 | |
| 
 | |
| 		if (nr_pages <= high)
 | |
| 			break;
 | |
| 
 | |
| 		if (signal_pending(current))
 | |
| 			break;
 | |
| 
 | |
| 		if (!drained) {
 | |
| 			drain_all_stock(memcg);
 | |
| 			drained = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
 | |
| 							 GFP_KERNEL, true);
 | |
| 
 | |
| 		if (!reclaimed && !nr_retries--)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int memory_max_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
 | |
| }
 | |
| 
 | |
| static ssize_t memory_max_write(struct kernfs_open_file *of,
 | |
| 				char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	bool drained = false;
 | |
| 	unsigned long max;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &max);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	xchg(&memcg->memory.max, max);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		unsigned long nr_pages = page_counter_read(&memcg->memory);
 | |
| 
 | |
| 		if (nr_pages <= max)
 | |
| 			break;
 | |
| 
 | |
| 		if (signal_pending(current))
 | |
| 			break;
 | |
| 
 | |
| 		if (!drained) {
 | |
| 			drain_all_stock(memcg);
 | |
| 			drained = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (nr_reclaims) {
 | |
| 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
 | |
| 							  GFP_KERNEL, true))
 | |
| 				nr_reclaims--;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		memcg_memory_event(memcg, MEMCG_OOM);
 | |
| 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	memcg_wb_domain_size_changed(memcg);
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
 | |
| {
 | |
| 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
 | |
| 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
 | |
| 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
 | |
| 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
 | |
| 	seq_printf(m, "oom_kill %lu\n",
 | |
| 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
 | |
| }
 | |
| 
 | |
| static int memory_events_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	__memory_events_show(m, memcg->memory_events);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int memory_events_local_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	__memory_events_show(m, memcg->memory_events_local);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int memory_stat_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 	char *buf;
 | |
| 
 | |
| 	buf = memory_stat_format(memcg);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 	seq_puts(m, buf);
 | |
| 	kfree(buf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int memory_oom_group_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	seq_printf(m, "%d\n", memcg->oom_group);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
 | |
| 				      char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	int ret, oom_group;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	if (!buf)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = kstrtoint(buf, 0, &oom_group);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (oom_group != 0 && oom_group != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcg->oom_group = oom_group;
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static struct cftype memory_files[] = {
 | |
| 	{
 | |
| 		.name = "current",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.read_u64 = memory_current_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "min",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = memory_min_show,
 | |
| 		.write = memory_min_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "low",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = memory_low_show,
 | |
| 		.write = memory_low_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "high",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = memory_high_show,
 | |
| 		.write = memory_high_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "max",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = memory_max_show,
 | |
| 		.write = memory_max_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "events",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.file_offset = offsetof(struct mem_cgroup, events_file),
 | |
| 		.seq_show = memory_events_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "events.local",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
 | |
| 		.seq_show = memory_events_local_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "stat",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = memory_stat_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "oom.group",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
 | |
| 		.seq_show = memory_oom_group_show,
 | |
| 		.write = memory_oom_group_write,
 | |
| 	},
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| 
 | |
| struct cgroup_subsys memory_cgrp_subsys = {
 | |
| 	.css_alloc = mem_cgroup_css_alloc,
 | |
| 	.css_online = mem_cgroup_css_online,
 | |
| 	.css_offline = mem_cgroup_css_offline,
 | |
| 	.css_released = mem_cgroup_css_released,
 | |
| 	.css_free = mem_cgroup_css_free,
 | |
| 	.css_reset = mem_cgroup_css_reset,
 | |
| 	.can_attach = mem_cgroup_can_attach,
 | |
| 	.cancel_attach = mem_cgroup_cancel_attach,
 | |
| 	.post_attach = mem_cgroup_move_task,
 | |
| 	.bind = mem_cgroup_bind,
 | |
| 	.dfl_cftypes = memory_files,
 | |
| 	.legacy_cftypes = mem_cgroup_legacy_files,
 | |
| 	.early_init = 0,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_protected - check if memory consumption is in the normal range
 | |
|  * @root: the top ancestor of the sub-tree being checked
 | |
|  * @memcg: the memory cgroup to check
 | |
|  *
 | |
|  * WARNING: This function is not stateless! It can only be used as part
 | |
|  *          of a top-down tree iteration, not for isolated queries.
 | |
|  *
 | |
|  * Returns one of the following:
 | |
|  *   MEMCG_PROT_NONE: cgroup memory is not protected
 | |
|  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 | |
|  *     an unprotected supply of reclaimable memory from other cgroups.
 | |
|  *   MEMCG_PROT_MIN: cgroup memory is protected
 | |
|  *
 | |
|  * @root is exclusive; it is never protected when looked at directly
 | |
|  *
 | |
|  * To provide a proper hierarchical behavior, effective memory.min/low values
 | |
|  * are used. Below is the description of how effective memory.low is calculated.
 | |
|  * Effective memory.min values is calculated in the same way.
 | |
|  *
 | |
|  * Effective memory.low is always equal or less than the original memory.low.
 | |
|  * If there is no memory.low overcommittment (which is always true for
 | |
|  * top-level memory cgroups), these two values are equal.
 | |
|  * Otherwise, it's a part of parent's effective memory.low,
 | |
|  * calculated as a cgroup's memory.low usage divided by sum of sibling's
 | |
|  * memory.low usages, where memory.low usage is the size of actually
 | |
|  * protected memory.
 | |
|  *
 | |
|  *                                             low_usage
 | |
|  * elow = min( memory.low, parent->elow * ------------------ ),
 | |
|  *                                        siblings_low_usage
 | |
|  *
 | |
|  *             | memory.current, if memory.current < memory.low
 | |
|  * low_usage = |
 | |
|  *	       | 0, otherwise.
 | |
|  *
 | |
|  *
 | |
|  * Such definition of the effective memory.low provides the expected
 | |
|  * hierarchical behavior: parent's memory.low value is limiting
 | |
|  * children, unprotected memory is reclaimed first and cgroups,
 | |
|  * which are not using their guarantee do not affect actual memory
 | |
|  * distribution.
 | |
|  *
 | |
|  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 | |
|  *
 | |
|  *     A      A/memory.low = 2G, A/memory.current = 6G
 | |
|  *    //\\
 | |
|  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 | |
|  *            C/memory.low = 1G  C/memory.current = 2G
 | |
|  *            D/memory.low = 0   D/memory.current = 2G
 | |
|  *            E/memory.low = 10G E/memory.current = 0
 | |
|  *
 | |
|  * and the memory pressure is applied, the following memory distribution
 | |
|  * is expected (approximately):
 | |
|  *
 | |
|  *     A/memory.current = 2G
 | |
|  *
 | |
|  *     B/memory.current = 1.3G
 | |
|  *     C/memory.current = 0.6G
 | |
|  *     D/memory.current = 0
 | |
|  *     E/memory.current = 0
 | |
|  *
 | |
|  * These calculations require constant tracking of the actual low usages
 | |
|  * (see propagate_protected_usage()), as well as recursive calculation of
 | |
|  * effective memory.low values. But as we do call mem_cgroup_protected()
 | |
|  * path for each memory cgroup top-down from the reclaim,
 | |
|  * it's possible to optimize this part, and save calculated elow
 | |
|  * for next usage. This part is intentionally racy, but it's ok,
 | |
|  * as memory.low is a best-effort mechanism.
 | |
|  */
 | |
| enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
 | |
| 						struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *parent;
 | |
| 	unsigned long emin, parent_emin;
 | |
| 	unsigned long elow, parent_elow;
 | |
| 	unsigned long usage;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return MEMCG_PROT_NONE;
 | |
| 
 | |
| 	if (!root)
 | |
| 		root = root_mem_cgroup;
 | |
| 	if (memcg == root)
 | |
| 		return MEMCG_PROT_NONE;
 | |
| 
 | |
| 	usage = page_counter_read(&memcg->memory);
 | |
| 	if (!usage)
 | |
| 		return MEMCG_PROT_NONE;
 | |
| 
 | |
| 	emin = memcg->memory.min;
 | |
| 	elow = memcg->memory.low;
 | |
| 
 | |
| 	parent = parent_mem_cgroup(memcg);
 | |
| 	/* No parent means a non-hierarchical mode on v1 memcg */
 | |
| 	if (!parent)
 | |
| 		return MEMCG_PROT_NONE;
 | |
| 
 | |
| 	if (parent == root)
 | |
| 		goto exit;
 | |
| 
 | |
| 	parent_emin = READ_ONCE(parent->memory.emin);
 | |
| 	emin = min(emin, parent_emin);
 | |
| 	if (emin && parent_emin) {
 | |
| 		unsigned long min_usage, siblings_min_usage;
 | |
| 
 | |
| 		min_usage = min(usage, memcg->memory.min);
 | |
| 		siblings_min_usage = atomic_long_read(
 | |
| 			&parent->memory.children_min_usage);
 | |
| 
 | |
| 		if (min_usage && siblings_min_usage)
 | |
| 			emin = min(emin, parent_emin * min_usage /
 | |
| 				   siblings_min_usage);
 | |
| 	}
 | |
| 
 | |
| 	parent_elow = READ_ONCE(parent->memory.elow);
 | |
| 	elow = min(elow, parent_elow);
 | |
| 	if (elow && parent_elow) {
 | |
| 		unsigned long low_usage, siblings_low_usage;
 | |
| 
 | |
| 		low_usage = min(usage, memcg->memory.low);
 | |
| 		siblings_low_usage = atomic_long_read(
 | |
| 			&parent->memory.children_low_usage);
 | |
| 
 | |
| 		if (low_usage && siblings_low_usage)
 | |
| 			elow = min(elow, parent_elow * low_usage /
 | |
| 				   siblings_low_usage);
 | |
| 	}
 | |
| 
 | |
| exit:
 | |
| 	memcg->memory.emin = emin;
 | |
| 	memcg->memory.elow = elow;
 | |
| 
 | |
| 	if (usage <= emin)
 | |
| 		return MEMCG_PROT_MIN;
 | |
| 	else if (usage <= elow)
 | |
| 		return MEMCG_PROT_LOW;
 | |
| 	else
 | |
| 		return MEMCG_PROT_NONE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_try_charge - try charging a page
 | |
|  * @page: page to charge
 | |
|  * @mm: mm context of the victim
 | |
|  * @gfp_mask: reclaim mode
 | |
|  * @memcgp: charged memcg return
 | |
|  * @compound: charge the page as compound or small page
 | |
|  *
 | |
|  * Try to charge @page to the memcg that @mm belongs to, reclaiming
 | |
|  * pages according to @gfp_mask if necessary.
 | |
|  *
 | |
|  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 | |
|  * Otherwise, an error code is returned.
 | |
|  *
 | |
|  * After page->mapping has been set up, the caller must finalize the
 | |
|  * charge with mem_cgroup_commit_charge().  Or abort the transaction
 | |
|  * with mem_cgroup_cancel_charge() in case page instantiation fails.
 | |
|  */
 | |
| int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
 | |
| 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
 | |
| 			  bool compound)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = NULL;
 | |
| 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		goto out;
 | |
| 
 | |
| 	if (PageSwapCache(page)) {
 | |
| 		/*
 | |
| 		 * Every swap fault against a single page tries to charge the
 | |
| 		 * page, bail as early as possible.  shmem_unuse() encounters
 | |
| 		 * already charged pages, too.  The USED bit is protected by
 | |
| 		 * the page lock, which serializes swap cache removal, which
 | |
| 		 * in turn serializes uncharging.
 | |
| 		 */
 | |
| 		VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 		if (compound_head(page)->mem_cgroup)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (do_swap_account) {
 | |
| 			swp_entry_t ent = { .val = page_private(page), };
 | |
| 			unsigned short id = lookup_swap_cgroup_id(ent);
 | |
| 
 | |
| 			rcu_read_lock();
 | |
| 			memcg = mem_cgroup_from_id(id);
 | |
| 			if (memcg && !css_tryget_online(&memcg->css))
 | |
| 				memcg = NULL;
 | |
| 			rcu_read_unlock();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!memcg)
 | |
| 		memcg = get_mem_cgroup_from_mm(mm);
 | |
| 
 | |
| 	ret = try_charge(memcg, gfp_mask, nr_pages);
 | |
| 
 | |
| 	css_put(&memcg->css);
 | |
| out:
 | |
| 	*memcgp = memcg;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
 | |
| 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
 | |
| 			  bool compound)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
 | |
| 	memcg = *memcgp;
 | |
| 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_commit_charge - commit a page charge
 | |
|  * @page: page to charge
 | |
|  * @memcg: memcg to charge the page to
 | |
|  * @lrucare: page might be on LRU already
 | |
|  * @compound: charge the page as compound or small page
 | |
|  *
 | |
|  * Finalize a charge transaction started by mem_cgroup_try_charge(),
 | |
|  * after page->mapping has been set up.  This must happen atomically
 | |
|  * as part of the page instantiation, i.e. under the page table lock
 | |
|  * for anonymous pages, under the page lock for page and swap cache.
 | |
|  *
 | |
|  * In addition, the page must not be on the LRU during the commit, to
 | |
|  * prevent racing with task migration.  If it might be, use @lrucare.
 | |
|  *
 | |
|  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 | |
|  */
 | |
| void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
 | |
| 			      bool lrucare, bool compound)
 | |
| {
 | |
| 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!page->mapping, page);
 | |
| 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Swap faults will attempt to charge the same page multiple
 | |
| 	 * times.  But reuse_swap_page() might have removed the page
 | |
| 	 * from swapcache already, so we can't check PageSwapCache().
 | |
| 	 */
 | |
| 	if (!memcg)
 | |
| 		return;
 | |
| 
 | |
| 	commit_charge(page, memcg, lrucare);
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
 | |
| 	memcg_check_events(memcg, page);
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	if (do_memsw_account() && PageSwapCache(page)) {
 | |
| 		swp_entry_t entry = { .val = page_private(page) };
 | |
| 		/*
 | |
| 		 * The swap entry might not get freed for a long time,
 | |
| 		 * let's not wait for it.  The page already received a
 | |
| 		 * memory+swap charge, drop the swap entry duplicate.
 | |
| 		 */
 | |
| 		mem_cgroup_uncharge_swap(entry, nr_pages);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_cancel_charge - cancel a page charge
 | |
|  * @page: page to charge
 | |
|  * @memcg: memcg to charge the page to
 | |
|  * @compound: charge the page as compound or small page
 | |
|  *
 | |
|  * Cancel a charge transaction started by mem_cgroup_try_charge().
 | |
|  */
 | |
| void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
 | |
| 		bool compound)
 | |
| {
 | |
| 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Swap faults will attempt to charge the same page multiple
 | |
| 	 * times.  But reuse_swap_page() might have removed the page
 | |
| 	 * from swapcache already, so we can't check PageSwapCache().
 | |
| 	 */
 | |
| 	if (!memcg)
 | |
| 		return;
 | |
| 
 | |
| 	cancel_charge(memcg, nr_pages);
 | |
| }
 | |
| 
 | |
| struct uncharge_gather {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned long pgpgout;
 | |
| 	unsigned long nr_anon;
 | |
| 	unsigned long nr_file;
 | |
| 	unsigned long nr_kmem;
 | |
| 	unsigned long nr_huge;
 | |
| 	unsigned long nr_shmem;
 | |
| 	struct page *dummy_page;
 | |
| };
 | |
| 
 | |
| static inline void uncharge_gather_clear(struct uncharge_gather *ug)
 | |
| {
 | |
| 	memset(ug, 0, sizeof(*ug));
 | |
| }
 | |
| 
 | |
| static void uncharge_batch(const struct uncharge_gather *ug)
 | |
| {
 | |
| 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!mem_cgroup_is_root(ug->memcg)) {
 | |
| 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
 | |
| 		if (do_memsw_account())
 | |
| 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
 | |
| 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
 | |
| 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
 | |
| 		memcg_oom_recover(ug->memcg);
 | |
| 	}
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
 | |
| 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
 | |
| 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
 | |
| 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
 | |
| 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
 | |
| 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
 | |
| 	memcg_check_events(ug->memcg, ug->dummy_page);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	if (!mem_cgroup_is_root(ug->memcg))
 | |
| 		css_put_many(&ug->memcg->css, nr_pages);
 | |
| }
 | |
| 
 | |
| static void uncharge_page(struct page *page, struct uncharge_gather *ug)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(PageLRU(page), page);
 | |
| 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
 | |
| 			!PageHWPoison(page) , page);
 | |
| 
 | |
| 	if (!page->mem_cgroup)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Nobody should be changing or seriously looking at
 | |
| 	 * page->mem_cgroup at this point, we have fully
 | |
| 	 * exclusive access to the page.
 | |
| 	 */
 | |
| 
 | |
| 	if (ug->memcg != page->mem_cgroup) {
 | |
| 		if (ug->memcg) {
 | |
| 			uncharge_batch(ug);
 | |
| 			uncharge_gather_clear(ug);
 | |
| 		}
 | |
| 		ug->memcg = page->mem_cgroup;
 | |
| 	}
 | |
| 
 | |
| 	if (!PageKmemcg(page)) {
 | |
| 		unsigned int nr_pages = 1;
 | |
| 
 | |
| 		if (PageTransHuge(page)) {
 | |
| 			nr_pages = compound_nr(page);
 | |
| 			ug->nr_huge += nr_pages;
 | |
| 		}
 | |
| 		if (PageAnon(page))
 | |
| 			ug->nr_anon += nr_pages;
 | |
| 		else {
 | |
| 			ug->nr_file += nr_pages;
 | |
| 			if (PageSwapBacked(page))
 | |
| 				ug->nr_shmem += nr_pages;
 | |
| 		}
 | |
| 		ug->pgpgout++;
 | |
| 	} else {
 | |
| 		ug->nr_kmem += compound_nr(page);
 | |
| 		__ClearPageKmemcg(page);
 | |
| 	}
 | |
| 
 | |
| 	ug->dummy_page = page;
 | |
| 	page->mem_cgroup = NULL;
 | |
| }
 | |
| 
 | |
| static void uncharge_list(struct list_head *page_list)
 | |
| {
 | |
| 	struct uncharge_gather ug;
 | |
| 	struct list_head *next;
 | |
| 
 | |
| 	uncharge_gather_clear(&ug);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that the list can be a single page->lru; hence the
 | |
| 	 * do-while loop instead of a simple list_for_each_entry().
 | |
| 	 */
 | |
| 	next = page_list->next;
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = list_entry(next, struct page, lru);
 | |
| 		next = page->lru.next;
 | |
| 
 | |
| 		uncharge_page(page, &ug);
 | |
| 	} while (next != page_list);
 | |
| 
 | |
| 	if (ug.memcg)
 | |
| 		uncharge_batch(&ug);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_uncharge - uncharge a page
 | |
|  * @page: page to uncharge
 | |
|  *
 | |
|  * Uncharge a page previously charged with mem_cgroup_try_charge() and
 | |
|  * mem_cgroup_commit_charge().
 | |
|  */
 | |
| void mem_cgroup_uncharge(struct page *page)
 | |
| {
 | |
| 	struct uncharge_gather ug;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	/* Don't touch page->lru of any random page, pre-check: */
 | |
| 	if (!page->mem_cgroup)
 | |
| 		return;
 | |
| 
 | |
| 	uncharge_gather_clear(&ug);
 | |
| 	uncharge_page(page, &ug);
 | |
| 	uncharge_batch(&ug);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_uncharge_list - uncharge a list of page
 | |
|  * @page_list: list of pages to uncharge
 | |
|  *
 | |
|  * Uncharge a list of pages previously charged with
 | |
|  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 | |
|  */
 | |
| void mem_cgroup_uncharge_list(struct list_head *page_list)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (!list_empty(page_list))
 | |
| 		uncharge_list(page_list);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_migrate - charge a page's replacement
 | |
|  * @oldpage: currently circulating page
 | |
|  * @newpage: replacement page
 | |
|  *
 | |
|  * Charge @newpage as a replacement page for @oldpage. @oldpage will
 | |
|  * be uncharged upon free.
 | |
|  *
 | |
|  * Both pages must be locked, @newpage->mapping must be set up.
 | |
|  */
 | |
| void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned int nr_pages;
 | |
| 	bool compound;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 | |
| 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
 | |
| 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
 | |
| 		       newpage);
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	/* Page cache replacement: new page already charged? */
 | |
| 	if (newpage->mem_cgroup)
 | |
| 		return;
 | |
| 
 | |
| 	/* Swapcache readahead pages can get replaced before being charged */
 | |
| 	memcg = oldpage->mem_cgroup;
 | |
| 	if (!memcg)
 | |
| 		return;
 | |
| 
 | |
| 	/* Force-charge the new page. The old one will be freed soon */
 | |
| 	compound = PageTransHuge(newpage);
 | |
| 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
 | |
| 
 | |
| 	page_counter_charge(&memcg->memory, nr_pages);
 | |
| 	if (do_memsw_account())
 | |
| 		page_counter_charge(&memcg->memsw, nr_pages);
 | |
| 	css_get_many(&memcg->css, nr_pages);
 | |
| 
 | |
| 	commit_charge(newpage, memcg, false);
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
 | |
| 	memcg_check_events(memcg, newpage);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
 | |
| EXPORT_SYMBOL(memcg_sockets_enabled_key);
 | |
| 
 | |
| void mem_cgroup_sk_alloc(struct sock *sk)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	if (!mem_cgroup_sockets_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Socket cloning can throw us here with sk_memcg already
 | |
| 	 * filled. It won't however, necessarily happen from
 | |
| 	 * process context. So the test for root memcg given
 | |
| 	 * the current task's memcg won't help us in this case.
 | |
| 	 *
 | |
| 	 * Respecting the original socket's memcg is a better
 | |
| 	 * decision in this case.
 | |
| 	 */
 | |
| 	if (sk->sk_memcg) {
 | |
| 		css_get(&sk->sk_memcg->css);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = mem_cgroup_from_task(current);
 | |
| 	if (memcg == root_mem_cgroup)
 | |
| 		goto out;
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
 | |
| 		goto out;
 | |
| 	if (css_tryget_online(&memcg->css))
 | |
| 		sk->sk_memcg = memcg;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void mem_cgroup_sk_free(struct sock *sk)
 | |
| {
 | |
| 	if (sk->sk_memcg)
 | |
| 		css_put(&sk->sk_memcg->css);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_charge_skmem - charge socket memory
 | |
|  * @memcg: memcg to charge
 | |
|  * @nr_pages: number of pages to charge
 | |
|  *
 | |
|  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 | |
|  * @memcg's configured limit, %false if the charge had to be forced.
 | |
|  */
 | |
| bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
 | |
| {
 | |
| 	gfp_t gfp_mask = GFP_KERNEL;
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
 | |
| 		struct page_counter *fail;
 | |
| 
 | |
| 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
 | |
| 			memcg->tcpmem_pressure = 0;
 | |
| 			return true;
 | |
| 		}
 | |
| 		page_counter_charge(&memcg->tcpmem, nr_pages);
 | |
| 		memcg->tcpmem_pressure = 1;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't block in the packet receive path */
 | |
| 	if (in_softirq())
 | |
| 		gfp_mask = GFP_NOWAIT;
 | |
| 
 | |
| 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
 | |
| 
 | |
| 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
 | |
| 		return true;
 | |
| 
 | |
| 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_uncharge_skmem - uncharge socket memory
 | |
|  * @memcg: memcg to uncharge
 | |
|  * @nr_pages: number of pages to uncharge
 | |
|  */
 | |
| void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
 | |
| {
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
 | |
| 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
 | |
| 
 | |
| 	refill_stock(memcg, nr_pages);
 | |
| }
 | |
| 
 | |
| static int __init cgroup_memory(char *s)
 | |
| {
 | |
| 	char *token;
 | |
| 
 | |
| 	while ((token = strsep(&s, ",")) != NULL) {
 | |
| 		if (!*token)
 | |
| 			continue;
 | |
| 		if (!strcmp(token, "nosocket"))
 | |
| 			cgroup_memory_nosocket = true;
 | |
| 		if (!strcmp(token, "nokmem"))
 | |
| 			cgroup_memory_nokmem = true;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| __setup("cgroup.memory=", cgroup_memory);
 | |
| 
 | |
| /*
 | |
|  * subsys_initcall() for memory controller.
 | |
|  *
 | |
|  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 | |
|  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 | |
|  * basically everything that doesn't depend on a specific mem_cgroup structure
 | |
|  * should be initialized from here.
 | |
|  */
 | |
| static int __init mem_cgroup_init(void)
 | |
| {
 | |
| 	int cpu, node;
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 	/*
 | |
| 	 * Kmem cache creation is mostly done with the slab_mutex held,
 | |
| 	 * so use a workqueue with limited concurrency to avoid stalling
 | |
| 	 * all worker threads in case lots of cgroups are created and
 | |
| 	 * destroyed simultaneously.
 | |
| 	 */
 | |
| 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
 | |
| 	BUG_ON(!memcg_kmem_cache_wq);
 | |
| #endif
 | |
| 
 | |
| 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
 | |
| 				  memcg_hotplug_cpu_dead);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
 | |
| 			  drain_local_stock);
 | |
| 
 | |
| 	for_each_node(node) {
 | |
| 		struct mem_cgroup_tree_per_node *rtpn;
 | |
| 
 | |
| 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
 | |
| 				    node_online(node) ? node : NUMA_NO_NODE);
 | |
| 
 | |
| 		rtpn->rb_root = RB_ROOT;
 | |
| 		rtpn->rb_rightmost = NULL;
 | |
| 		spin_lock_init(&rtpn->lock);
 | |
| 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(mem_cgroup_init);
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_SWAP
 | |
| static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
 | |
| 		/*
 | |
| 		 * The root cgroup cannot be destroyed, so it's refcount must
 | |
| 		 * always be >= 1.
 | |
| 		 */
 | |
| 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
 | |
| 			VM_BUG_ON(1);
 | |
| 			break;
 | |
| 		}
 | |
| 		memcg = parent_mem_cgroup(memcg);
 | |
| 		if (!memcg)
 | |
| 			memcg = root_mem_cgroup;
 | |
| 	}
 | |
| 	return memcg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_swapout - transfer a memsw charge to swap
 | |
|  * @page: page whose memsw charge to transfer
 | |
|  * @entry: swap entry to move the charge to
 | |
|  *
 | |
|  * Transfer the memsw charge of @page to @entry.
 | |
|  */
 | |
| void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
 | |
| {
 | |
| 	struct mem_cgroup *memcg, *swap_memcg;
 | |
| 	unsigned int nr_entries;
 | |
| 	unsigned short oldid;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageLRU(page), page);
 | |
| 	VM_BUG_ON_PAGE(page_count(page), page);
 | |
| 
 | |
| 	if (!do_memsw_account())
 | |
| 		return;
 | |
| 
 | |
| 	memcg = page->mem_cgroup;
 | |
| 
 | |
| 	/* Readahead page, never charged */
 | |
| 	if (!memcg)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case the memcg owning these pages has been offlined and doesn't
 | |
| 	 * have an ID allocated to it anymore, charge the closest online
 | |
| 	 * ancestor for the swap instead and transfer the memory+swap charge.
 | |
| 	 */
 | |
| 	swap_memcg = mem_cgroup_id_get_online(memcg);
 | |
| 	nr_entries = hpage_nr_pages(page);
 | |
| 	/* Get references for the tail pages, too */
 | |
| 	if (nr_entries > 1)
 | |
| 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
 | |
| 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
 | |
| 				   nr_entries);
 | |
| 	VM_BUG_ON_PAGE(oldid, page);
 | |
| 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
 | |
| 
 | |
| 	page->mem_cgroup = NULL;
 | |
| 
 | |
| 	if (!mem_cgroup_is_root(memcg))
 | |
| 		page_counter_uncharge(&memcg->memory, nr_entries);
 | |
| 
 | |
| 	if (memcg != swap_memcg) {
 | |
| 		if (!mem_cgroup_is_root(swap_memcg))
 | |
| 			page_counter_charge(&swap_memcg->memsw, nr_entries);
 | |
| 		page_counter_uncharge(&memcg->memsw, nr_entries);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Interrupts should be disabled here because the caller holds the
 | |
| 	 * i_pages lock which is taken with interrupts-off. It is
 | |
| 	 * important here to have the interrupts disabled because it is the
 | |
| 	 * only synchronisation we have for updating the per-CPU variables.
 | |
| 	 */
 | |
| 	VM_BUG_ON(!irqs_disabled());
 | |
| 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
 | |
| 				     -nr_entries);
 | |
| 	memcg_check_events(memcg, page);
 | |
| 
 | |
| 	if (!mem_cgroup_is_root(memcg))
 | |
| 		css_put_many(&memcg->css, nr_entries);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_try_charge_swap - try charging swap space for a page
 | |
|  * @page: page being added to swap
 | |
|  * @entry: swap entry to charge
 | |
|  *
 | |
|  * Try to charge @page's memcg for the swap space at @entry.
 | |
|  *
 | |
|  * Returns 0 on success, -ENOMEM on failure.
 | |
|  */
 | |
| int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
 | |
| {
 | |
| 	unsigned int nr_pages = hpage_nr_pages(page);
 | |
| 	struct page_counter *counter;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned short oldid;
 | |
| 
 | |
| 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcg = page->mem_cgroup;
 | |
| 
 | |
| 	/* Readahead page, never charged */
 | |
| 	if (!memcg)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!entry.val) {
 | |
| 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	memcg = mem_cgroup_id_get_online(memcg);
 | |
| 
 | |
| 	if (!mem_cgroup_is_root(memcg) &&
 | |
| 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
 | |
| 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
 | |
| 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
 | |
| 		mem_cgroup_id_put(memcg);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Get references for the tail pages, too */
 | |
| 	if (nr_pages > 1)
 | |
| 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
 | |
| 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
 | |
| 	VM_BUG_ON_PAGE(oldid, page);
 | |
| 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_uncharge_swap - uncharge swap space
 | |
|  * @entry: swap entry to uncharge
 | |
|  * @nr_pages: the amount of swap space to uncharge
 | |
|  */
 | |
| void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned short id;
 | |
| 
 | |
| 	if (!do_swap_account)
 | |
| 		return;
 | |
| 
 | |
| 	id = swap_cgroup_record(entry, 0, nr_pages);
 | |
| 	rcu_read_lock();
 | |
| 	memcg = mem_cgroup_from_id(id);
 | |
| 	if (memcg) {
 | |
| 		if (!mem_cgroup_is_root(memcg)) {
 | |
| 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 				page_counter_uncharge(&memcg->swap, nr_pages);
 | |
| 			else
 | |
| 				page_counter_uncharge(&memcg->memsw, nr_pages);
 | |
| 		}
 | |
| 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
 | |
| 		mem_cgroup_id_put_many(memcg, nr_pages);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	long nr_swap_pages = get_nr_swap_pages();
 | |
| 
 | |
| 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		return nr_swap_pages;
 | |
| 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
 | |
| 		nr_swap_pages = min_t(long, nr_swap_pages,
 | |
| 				      READ_ONCE(memcg->swap.max) -
 | |
| 				      page_counter_read(&memcg->swap));
 | |
| 	return nr_swap_pages;
 | |
| }
 | |
| 
 | |
| bool mem_cgroup_swap_full(struct page *page)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 
 | |
| 	if (vm_swap_full())
 | |
| 		return true;
 | |
| 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 | |
| 		return false;
 | |
| 
 | |
| 	memcg = page->mem_cgroup;
 | |
| 	if (!memcg)
 | |
| 		return false;
 | |
| 
 | |
| 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
 | |
| 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* for remember boot option*/
 | |
| #ifdef CONFIG_MEMCG_SWAP_ENABLED
 | |
| static int really_do_swap_account __initdata = 1;
 | |
| #else
 | |
| static int really_do_swap_account __initdata;
 | |
| #endif
 | |
| 
 | |
| static int __init enable_swap_account(char *s)
 | |
| {
 | |
| 	if (!strcmp(s, "1"))
 | |
| 		really_do_swap_account = 1;
 | |
| 	else if (!strcmp(s, "0"))
 | |
| 		really_do_swap_account = 0;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("swapaccount=", enable_swap_account);
 | |
| 
 | |
| static u64 swap_current_read(struct cgroup_subsys_state *css,
 | |
| 			     struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 | |
| 
 | |
| 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| static int swap_max_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	return seq_puts_memcg_tunable(m,
 | |
| 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
 | |
| }
 | |
| 
 | |
| static ssize_t swap_max_write(struct kernfs_open_file *of,
 | |
| 			      char *buf, size_t nbytes, loff_t off)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 | |
| 	unsigned long max;
 | |
| 	int err;
 | |
| 
 | |
| 	buf = strstrip(buf);
 | |
| 	err = page_counter_memparse(buf, "max", &max);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	xchg(&memcg->swap.max, max);
 | |
| 
 | |
| 	return nbytes;
 | |
| }
 | |
| 
 | |
| static int swap_events_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 | |
| 
 | |
| 	seq_printf(m, "max %lu\n",
 | |
| 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
 | |
| 	seq_printf(m, "fail %lu\n",
 | |
| 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cftype swap_files[] = {
 | |
| 	{
 | |
| 		.name = "swap.current",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.read_u64 = swap_current_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swap.max",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.seq_show = swap_max_show,
 | |
| 		.write = swap_max_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swap.events",
 | |
| 		.flags = CFTYPE_NOT_ON_ROOT,
 | |
| 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
 | |
| 		.seq_show = swap_events_show,
 | |
| 	},
 | |
| 	{ }	/* terminate */
 | |
| };
 | |
| 
 | |
| static struct cftype memsw_cgroup_files[] = {
 | |
| 	{
 | |
| 		.name = "memsw.usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
 | |
| 		.write = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read_u64,
 | |
| 	},
 | |
| 	{ },	/* terminate */
 | |
| };
 | |
| 
 | |
| static int __init mem_cgroup_swap_init(void)
 | |
| {
 | |
| 	if (!mem_cgroup_disabled() && really_do_swap_account) {
 | |
| 		do_swap_account = 1;
 | |
| 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
 | |
| 					       swap_files));
 | |
| 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
 | |
| 						  memsw_cgroup_files));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(mem_cgroup_swap_init);
 | |
| 
 | |
| #endif /* CONFIG_MEMCG_SWAP */
 |