forked from mirrors/linux
		
	 bfe9d006c9
			
		
	
	
		bfe9d006c9
		
	
	
	
	
		
			
			When zone_watermark_ok() is called in migrate_balanced_pgdat() to check
migration target node, the parameter classzone_idx (for requested zone)
is specified as 0 (ZONE_DMA).  But when allocating memory for autonuma
in alloc_misplaced_dst_page(), the requested zone from GFP flags is
ZONE_MOVABLE.  That is, the requested zone is different.  The size of
lowmem_reserve for the different requested zone is different.  And this
may cause some issues.
For example, in the zoneinfo of a test machine as below,
Node 0, zone    DMA32
  pages free     61592
        min      29
        low      454
        high     879
        spanned  1044480
        present  442306
        managed  425921
        protection: (0, 0, 62457, 62457, 62457)
The free page number of ZONE_DMA32 is greater than "high watermark +
lowmem_reserve[ZONE_DMA]", but less than "high watermark +
lowmem_reserve[ZONE_MOVABLE]".  And because __alloc_pages_node() in
alloc_misplaced_dst_page() requests ZONE_MOVABLE, the
zone_watermark_ok() on ZONE_DMA32 in migrate_balanced_pgdat() may always
return true.  So, autonuma may not stop even when memory pressure in
node 0 is heavy.
To fix the issue, ZONE_MOVABLE is used as parameter to call
zone_watermark_ok() in migrate_balanced_pgdat().  This makes it same as
requested zone in alloc_misplaced_dst_page().  So that
migrate_balanced_pgdat() returns false when memory pressure is heavy.
Link: http://lkml.kernel.org/r/20191101075727.26683-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			2937 lines
		
	
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2937 lines
		
	
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Memory Migration functionality - linux/mm/migrate.c
 | |
|  *
 | |
|  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 | |
|  *
 | |
|  * Page migration was first developed in the context of the memory hotplug
 | |
|  * project. The main authors of the migration code are:
 | |
|  *
 | |
|  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 | |
|  * Hirokazu Takahashi <taka@valinux.co.jp>
 | |
|  * Dave Hansen <haveblue@us.ibm.com>
 | |
|  * Christoph Lameter
 | |
|  */
 | |
| 
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/compaction.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/hugetlb_cgroup.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/pagewalk.h>
 | |
| #include <linux/pfn_t.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/balloon_compaction.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <linux/page_owner.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/ptrace.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/migrate.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * migrate_prep() needs to be called before we start compiling a list of pages
 | |
|  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 | |
|  * undesirable, use migrate_prep_local()
 | |
|  */
 | |
| int migrate_prep(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Clear the LRU lists so pages can be isolated.
 | |
| 	 * Note that pages may be moved off the LRU after we have
 | |
| 	 * drained them. Those pages will fail to migrate like other
 | |
| 	 * pages that may be busy.
 | |
| 	 */
 | |
| 	lru_add_drain_all();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Do the necessary work of migrate_prep but not if it involves other CPUs */
 | |
| int migrate_prep_local(void)
 | |
| {
 | |
| 	lru_add_drain();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int isolate_movable_page(struct page *page, isolate_mode_t mode)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid burning cycles with pages that are yet under __free_pages(),
 | |
| 	 * or just got freed under us.
 | |
| 	 *
 | |
| 	 * In case we 'win' a race for a movable page being freed under us and
 | |
| 	 * raise its refcount preventing __free_pages() from doing its job
 | |
| 	 * the put_page() at the end of this block will take care of
 | |
| 	 * release this page, thus avoiding a nasty leakage.
 | |
| 	 */
 | |
| 	if (unlikely(!get_page_unless_zero(page)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check PageMovable before holding a PG_lock because page's owner
 | |
| 	 * assumes anybody doesn't touch PG_lock of newly allocated page
 | |
| 	 * so unconditionally grabbing the lock ruins page's owner side.
 | |
| 	 */
 | |
| 	if (unlikely(!__PageMovable(page)))
 | |
| 		goto out_putpage;
 | |
| 	/*
 | |
| 	 * As movable pages are not isolated from LRU lists, concurrent
 | |
| 	 * compaction threads can race against page migration functions
 | |
| 	 * as well as race against the releasing a page.
 | |
| 	 *
 | |
| 	 * In order to avoid having an already isolated movable page
 | |
| 	 * being (wrongly) re-isolated while it is under migration,
 | |
| 	 * or to avoid attempting to isolate pages being released,
 | |
| 	 * lets be sure we have the page lock
 | |
| 	 * before proceeding with the movable page isolation steps.
 | |
| 	 */
 | |
| 	if (unlikely(!trylock_page(page)))
 | |
| 		goto out_putpage;
 | |
| 
 | |
| 	if (!PageMovable(page) || PageIsolated(page))
 | |
| 		goto out_no_isolated;
 | |
| 
 | |
| 	mapping = page_mapping(page);
 | |
| 	VM_BUG_ON_PAGE(!mapping, page);
 | |
| 
 | |
| 	if (!mapping->a_ops->isolate_page(page, mode))
 | |
| 		goto out_no_isolated;
 | |
| 
 | |
| 	/* Driver shouldn't use PG_isolated bit of page->flags */
 | |
| 	WARN_ON_ONCE(PageIsolated(page));
 | |
| 	__SetPageIsolated(page);
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_no_isolated:
 | |
| 	unlock_page(page);
 | |
| out_putpage:
 | |
| 	put_page(page);
 | |
| out:
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| /* It should be called on page which is PG_movable */
 | |
| void putback_movable_page(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageMovable(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 | |
| 
 | |
| 	mapping = page_mapping(page);
 | |
| 	mapping->a_ops->putback_page(page);
 | |
| 	__ClearPageIsolated(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put previously isolated pages back onto the appropriate lists
 | |
|  * from where they were once taken off for compaction/migration.
 | |
|  *
 | |
|  * This function shall be used whenever the isolated pageset has been
 | |
|  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 | |
|  * and isolate_huge_page().
 | |
|  */
 | |
| void putback_movable_pages(struct list_head *l)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct page *page2;
 | |
| 
 | |
| 	list_for_each_entry_safe(page, page2, l, lru) {
 | |
| 		if (unlikely(PageHuge(page))) {
 | |
| 			putback_active_hugepage(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 		list_del(&page->lru);
 | |
| 		/*
 | |
| 		 * We isolated non-lru movable page so here we can use
 | |
| 		 * __PageMovable because LRU page's mapping cannot have
 | |
| 		 * PAGE_MAPPING_MOVABLE.
 | |
| 		 */
 | |
| 		if (unlikely(__PageMovable(page))) {
 | |
| 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 | |
| 			lock_page(page);
 | |
| 			if (PageMovable(page))
 | |
| 				putback_movable_page(page);
 | |
| 			else
 | |
| 				__ClearPageIsolated(page);
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 		} else {
 | |
| 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 | |
| 					page_is_file_cache(page), -hpage_nr_pages(page));
 | |
| 			putback_lru_page(page);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restore a potential migration pte to a working pte entry
 | |
|  */
 | |
| static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 | |
| 				 unsigned long addr, void *old)
 | |
| {
 | |
| 	struct page_vma_mapped_walk pvmw = {
 | |
| 		.page = old,
 | |
| 		.vma = vma,
 | |
| 		.address = addr,
 | |
| 		.flags = PVMW_SYNC | PVMW_MIGRATION,
 | |
| 	};
 | |
| 	struct page *new;
 | |
| 	pte_t pte;
 | |
| 	swp_entry_t entry;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 	while (page_vma_mapped_walk(&pvmw)) {
 | |
| 		if (PageKsm(page))
 | |
| 			new = page;
 | |
| 		else
 | |
| 			new = page - pvmw.page->index +
 | |
| 				linear_page_index(vma, pvmw.address);
 | |
| 
 | |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | |
| 		/* PMD-mapped THP migration entry */
 | |
| 		if (!pvmw.pte) {
 | |
| 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 | |
| 			remove_migration_pmd(&pvmw, new);
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		get_page(new);
 | |
| 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 | |
| 		if (pte_swp_soft_dirty(*pvmw.pte))
 | |
| 			pte = pte_mksoft_dirty(pte);
 | |
| 
 | |
| 		/*
 | |
| 		 * Recheck VMA as permissions can change since migration started
 | |
| 		 */
 | |
| 		entry = pte_to_swp_entry(*pvmw.pte);
 | |
| 		if (is_write_migration_entry(entry))
 | |
| 			pte = maybe_mkwrite(pte, vma);
 | |
| 
 | |
| 		if (unlikely(is_zone_device_page(new))) {
 | |
| 			if (is_device_private_page(new)) {
 | |
| 				entry = make_device_private_entry(new, pte_write(pte));
 | |
| 				pte = swp_entry_to_pte(entry);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 		if (PageHuge(new)) {
 | |
| 			pte = pte_mkhuge(pte);
 | |
| 			pte = arch_make_huge_pte(pte, vma, new, 0);
 | |
| 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 | |
| 			if (PageAnon(new))
 | |
| 				hugepage_add_anon_rmap(new, vma, pvmw.address);
 | |
| 			else
 | |
| 				page_dup_rmap(new, true);
 | |
| 		} else
 | |
| #endif
 | |
| 		{
 | |
| 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 | |
| 
 | |
| 			if (PageAnon(new))
 | |
| 				page_add_anon_rmap(new, vma, pvmw.address, false);
 | |
| 			else
 | |
| 				page_add_file_rmap(new, false);
 | |
| 		}
 | |
| 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 | |
| 			mlock_vma_page(new);
 | |
| 
 | |
| 		if (PageTransHuge(page) && PageMlocked(page))
 | |
| 			clear_page_mlock(page);
 | |
| 
 | |
| 		/* No need to invalidate - it was non-present before */
 | |
| 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get rid of all migration entries and replace them by
 | |
|  * references to the indicated page.
 | |
|  */
 | |
| void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 | |
| {
 | |
| 	struct rmap_walk_control rwc = {
 | |
| 		.rmap_one = remove_migration_pte,
 | |
| 		.arg = old,
 | |
| 	};
 | |
| 
 | |
| 	if (locked)
 | |
| 		rmap_walk_locked(new, &rwc);
 | |
| 	else
 | |
| 		rmap_walk(new, &rwc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Something used the pte of a page under migration. We need to
 | |
|  * get to the page and wait until migration is finished.
 | |
|  * When we return from this function the fault will be retried.
 | |
|  */
 | |
| void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 | |
| 				spinlock_t *ptl)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 	swp_entry_t entry;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	spin_lock(ptl);
 | |
| 	pte = *ptep;
 | |
| 	if (!is_swap_pte(pte))
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = pte_to_swp_entry(pte);
 | |
| 	if (!is_migration_entry(entry))
 | |
| 		goto out;
 | |
| 
 | |
| 	page = migration_entry_to_page(entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * Once page cache replacement of page migration started, page_count
 | |
| 	 * is zero; but we must not call put_and_wait_on_page_locked() without
 | |
| 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 | |
| 	 */
 | |
| 	if (!get_page_unless_zero(page))
 | |
| 		goto out;
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| 	put_and_wait_on_page_locked(page);
 | |
| 	return;
 | |
| out:
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| }
 | |
| 
 | |
| void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 | |
| 				unsigned long address)
 | |
| {
 | |
| 	spinlock_t *ptl = pte_lockptr(mm, pmd);
 | |
| 	pte_t *ptep = pte_offset_map(pmd, address);
 | |
| 	__migration_entry_wait(mm, ptep, ptl);
 | |
| }
 | |
| 
 | |
| void migration_entry_wait_huge(struct vm_area_struct *vma,
 | |
| 		struct mm_struct *mm, pte_t *pte)
 | |
| {
 | |
| 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 | |
| 	__migration_entry_wait(mm, pte, ptl);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | |
| void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	if (!is_pmd_migration_entry(*pmd))
 | |
| 		goto unlock;
 | |
| 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 | |
| 	if (!get_page_unless_zero(page))
 | |
| 		goto unlock;
 | |
| 	spin_unlock(ptl);
 | |
| 	put_and_wait_on_page_locked(page);
 | |
| 	return;
 | |
| unlock:
 | |
| 	spin_unlock(ptl);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int expected_page_refs(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	int expected_count = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Device public or private pages have an extra refcount as they are
 | |
| 	 * ZONE_DEVICE pages.
 | |
| 	 */
 | |
| 	expected_count += is_device_private_page(page);
 | |
| 	if (mapping)
 | |
| 		expected_count += hpage_nr_pages(page) + page_has_private(page);
 | |
| 
 | |
| 	return expected_count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replace the page in the mapping.
 | |
|  *
 | |
|  * The number of remaining references must be:
 | |
|  * 1 for anonymous pages without a mapping
 | |
|  * 2 for pages with a mapping
 | |
|  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 | |
|  */
 | |
| int migrate_page_move_mapping(struct address_space *mapping,
 | |
| 		struct page *newpage, struct page *page, int extra_count)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, page_index(page));
 | |
| 	struct zone *oldzone, *newzone;
 | |
| 	int dirty;
 | |
| 	int expected_count = expected_page_refs(mapping, page) + extra_count;
 | |
| 
 | |
| 	if (!mapping) {
 | |
| 		/* Anonymous page without mapping */
 | |
| 		if (page_count(page) != expected_count)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		/* No turning back from here */
 | |
| 		newpage->index = page->index;
 | |
| 		newpage->mapping = page->mapping;
 | |
| 		if (PageSwapBacked(page))
 | |
| 			__SetPageSwapBacked(newpage);
 | |
| 
 | |
| 		return MIGRATEPAGE_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	oldzone = page_zone(page);
 | |
| 	newzone = page_zone(newpage);
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	if (!page_ref_freeze(page, expected_count)) {
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we know that no one else is looking at the page:
 | |
| 	 * no turning back from here.
 | |
| 	 */
 | |
| 	newpage->index = page->index;
 | |
| 	newpage->mapping = page->mapping;
 | |
| 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 | |
| 	if (PageSwapBacked(page)) {
 | |
| 		__SetPageSwapBacked(newpage);
 | |
| 		if (PageSwapCache(page)) {
 | |
| 			SetPageSwapCache(newpage);
 | |
| 			set_page_private(newpage, page_private(page));
 | |
| 		}
 | |
| 	} else {
 | |
| 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 | |
| 	}
 | |
| 
 | |
| 	/* Move dirty while page refs frozen and newpage not yet exposed */
 | |
| 	dirty = PageDirty(page);
 | |
| 	if (dirty) {
 | |
| 		ClearPageDirty(page);
 | |
| 		SetPageDirty(newpage);
 | |
| 	}
 | |
| 
 | |
| 	xas_store(&xas, newpage);
 | |
| 	if (PageTransHuge(page)) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 1; i < HPAGE_PMD_NR; i++) {
 | |
| 			xas_next(&xas);
 | |
| 			xas_store(&xas, newpage);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop cache reference from old page by unfreezing
 | |
| 	 * to one less reference.
 | |
| 	 * We know this isn't the last reference.
 | |
| 	 */
 | |
| 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 | |
| 
 | |
| 	xas_unlock(&xas);
 | |
| 	/* Leave irq disabled to prevent preemption while updating stats */
 | |
| 
 | |
| 	/*
 | |
| 	 * If moved to a different zone then also account
 | |
| 	 * the page for that zone. Other VM counters will be
 | |
| 	 * taken care of when we establish references to the
 | |
| 	 * new page and drop references to the old page.
 | |
| 	 *
 | |
| 	 * Note that anonymous pages are accounted for
 | |
| 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 | |
| 	 * are mapped to swap space.
 | |
| 	 */
 | |
| 	if (newzone != oldzone) {
 | |
| 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 | |
| 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 | |
| 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 | |
| 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 | |
| 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 | |
| 		}
 | |
| 		if (dirty && mapping_cap_account_dirty(mapping)) {
 | |
| 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 | |
| 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 | |
| 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 | |
| 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 | |
| 		}
 | |
| 	}
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	return MIGRATEPAGE_SUCCESS;
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_page_move_mapping);
 | |
| 
 | |
| /*
 | |
|  * The expected number of remaining references is the same as that
 | |
|  * of migrate_page_move_mapping().
 | |
|  */
 | |
| int migrate_huge_page_move_mapping(struct address_space *mapping,
 | |
| 				   struct page *newpage, struct page *page)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, page_index(page));
 | |
| 	int expected_count;
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	expected_count = 2 + page_has_private(page);
 | |
| 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	if (!page_ref_freeze(page, expected_count)) {
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	newpage->index = page->index;
 | |
| 	newpage->mapping = page->mapping;
 | |
| 
 | |
| 	get_page(newpage);
 | |
| 
 | |
| 	xas_store(&xas, newpage);
 | |
| 
 | |
| 	page_ref_unfreeze(page, expected_count - 1);
 | |
| 
 | |
| 	xas_unlock_irq(&xas);
 | |
| 
 | |
| 	return MIGRATEPAGE_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Gigantic pages are so large that we do not guarantee that page++ pointer
 | |
|  * arithmetic will work across the entire page.  We need something more
 | |
|  * specialized.
 | |
|  */
 | |
| static void __copy_gigantic_page(struct page *dst, struct page *src,
 | |
| 				int nr_pages)
 | |
| {
 | |
| 	int i;
 | |
| 	struct page *dst_base = dst;
 | |
| 	struct page *src_base = src;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; ) {
 | |
| 		cond_resched();
 | |
| 		copy_highpage(dst, src);
 | |
| 
 | |
| 		i++;
 | |
| 		dst = mem_map_next(dst, dst_base, i);
 | |
| 		src = mem_map_next(src, src_base, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void copy_huge_page(struct page *dst, struct page *src)
 | |
| {
 | |
| 	int i;
 | |
| 	int nr_pages;
 | |
| 
 | |
| 	if (PageHuge(src)) {
 | |
| 		/* hugetlbfs page */
 | |
| 		struct hstate *h = page_hstate(src);
 | |
| 		nr_pages = pages_per_huge_page(h);
 | |
| 
 | |
| 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 | |
| 			__copy_gigantic_page(dst, src, nr_pages);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* thp page */
 | |
| 		BUG_ON(!PageTransHuge(src));
 | |
| 		nr_pages = hpage_nr_pages(src);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		cond_resched();
 | |
| 		copy_highpage(dst + i, src + i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the page to its new location
 | |
|  */
 | |
| void migrate_page_states(struct page *newpage, struct page *page)
 | |
| {
 | |
| 	int cpupid;
 | |
| 
 | |
| 	if (PageError(page))
 | |
| 		SetPageError(newpage);
 | |
| 	if (PageReferenced(page))
 | |
| 		SetPageReferenced(newpage);
 | |
| 	if (PageUptodate(page))
 | |
| 		SetPageUptodate(newpage);
 | |
| 	if (TestClearPageActive(page)) {
 | |
| 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 | |
| 		SetPageActive(newpage);
 | |
| 	} else if (TestClearPageUnevictable(page))
 | |
| 		SetPageUnevictable(newpage);
 | |
| 	if (PageWorkingset(page))
 | |
| 		SetPageWorkingset(newpage);
 | |
| 	if (PageChecked(page))
 | |
| 		SetPageChecked(newpage);
 | |
| 	if (PageMappedToDisk(page))
 | |
| 		SetPageMappedToDisk(newpage);
 | |
| 
 | |
| 	/* Move dirty on pages not done by migrate_page_move_mapping() */
 | |
| 	if (PageDirty(page))
 | |
| 		SetPageDirty(newpage);
 | |
| 
 | |
| 	if (page_is_young(page))
 | |
| 		set_page_young(newpage);
 | |
| 	if (page_is_idle(page))
 | |
| 		set_page_idle(newpage);
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy NUMA information to the new page, to prevent over-eager
 | |
| 	 * future migrations of this same page.
 | |
| 	 */
 | |
| 	cpupid = page_cpupid_xchg_last(page, -1);
 | |
| 	page_cpupid_xchg_last(newpage, cpupid);
 | |
| 
 | |
| 	ksm_migrate_page(newpage, page);
 | |
| 	/*
 | |
| 	 * Please do not reorder this without considering how mm/ksm.c's
 | |
| 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 | |
| 	 */
 | |
| 	if (PageSwapCache(page))
 | |
| 		ClearPageSwapCache(page);
 | |
| 	ClearPagePrivate(page);
 | |
| 	set_page_private(page, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If any waiters have accumulated on the new page then
 | |
| 	 * wake them up.
 | |
| 	 */
 | |
| 	if (PageWriteback(newpage))
 | |
| 		end_page_writeback(newpage);
 | |
| 
 | |
| 	copy_page_owner(page, newpage);
 | |
| 
 | |
| 	mem_cgroup_migrate(page, newpage);
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_page_states);
 | |
| 
 | |
| void migrate_page_copy(struct page *newpage, struct page *page)
 | |
| {
 | |
| 	if (PageHuge(page) || PageTransHuge(page))
 | |
| 		copy_huge_page(newpage, page);
 | |
| 	else
 | |
| 		copy_highpage(newpage, page);
 | |
| 
 | |
| 	migrate_page_states(newpage, page);
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_page_copy);
 | |
| 
 | |
| /************************************************************
 | |
|  *                    Migration functions
 | |
|  ***********************************************************/
 | |
| 
 | |
| /*
 | |
|  * Common logic to directly migrate a single LRU page suitable for
 | |
|  * pages that do not use PagePrivate/PagePrivate2.
 | |
|  *
 | |
|  * Pages are locked upon entry and exit.
 | |
|  */
 | |
| int migrate_page(struct address_space *mapping,
 | |
| 		struct page *newpage, struct page *page,
 | |
| 		enum migrate_mode mode)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 | |
| 
 | |
| 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 | |
| 
 | |
| 	if (rc != MIGRATEPAGE_SUCCESS)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (mode != MIGRATE_SYNC_NO_COPY)
 | |
| 		migrate_page_copy(newpage, page);
 | |
| 	else
 | |
| 		migrate_page_states(newpage, page);
 | |
| 	return MIGRATEPAGE_SUCCESS;
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_page);
 | |
| 
 | |
| #ifdef CONFIG_BLOCK
 | |
| /* Returns true if all buffers are successfully locked */
 | |
| static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 | |
| 							enum migrate_mode mode)
 | |
| {
 | |
| 	struct buffer_head *bh = head;
 | |
| 
 | |
| 	/* Simple case, sync compaction */
 | |
| 	if (mode != MIGRATE_ASYNC) {
 | |
| 		do {
 | |
| 			lock_buffer(bh);
 | |
| 			bh = bh->b_this_page;
 | |
| 
 | |
| 		} while (bh != head);
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 | |
| 	do {
 | |
| 		if (!trylock_buffer(bh)) {
 | |
| 			/*
 | |
| 			 * We failed to lock the buffer and cannot stall in
 | |
| 			 * async migration. Release the taken locks
 | |
| 			 */
 | |
| 			struct buffer_head *failed_bh = bh;
 | |
| 			bh = head;
 | |
| 			while (bh != failed_bh) {
 | |
| 				unlock_buffer(bh);
 | |
| 				bh = bh->b_this_page;
 | |
| 			}
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		bh = bh->b_this_page;
 | |
| 	} while (bh != head);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int __buffer_migrate_page(struct address_space *mapping,
 | |
| 		struct page *newpage, struct page *page, enum migrate_mode mode,
 | |
| 		bool check_refs)
 | |
| {
 | |
| 	struct buffer_head *bh, *head;
 | |
| 	int rc;
 | |
| 	int expected_count;
 | |
| 
 | |
| 	if (!page_has_buffers(page))
 | |
| 		return migrate_page(mapping, newpage, page, mode);
 | |
| 
 | |
| 	/* Check whether page does not have extra refs before we do more work */
 | |
| 	expected_count = expected_page_refs(mapping, page);
 | |
| 	if (page_count(page) != expected_count)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	head = page_buffers(page);
 | |
| 	if (!buffer_migrate_lock_buffers(head, mode))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (check_refs) {
 | |
| 		bool busy;
 | |
| 		bool invalidated = false;
 | |
| 
 | |
| recheck_buffers:
 | |
| 		busy = false;
 | |
| 		spin_lock(&mapping->private_lock);
 | |
| 		bh = head;
 | |
| 		do {
 | |
| 			if (atomic_read(&bh->b_count)) {
 | |
| 				busy = true;
 | |
| 				break;
 | |
| 			}
 | |
| 			bh = bh->b_this_page;
 | |
| 		} while (bh != head);
 | |
| 		if (busy) {
 | |
| 			if (invalidated) {
 | |
| 				rc = -EAGAIN;
 | |
| 				goto unlock_buffers;
 | |
| 			}
 | |
| 			spin_unlock(&mapping->private_lock);
 | |
| 			invalidate_bh_lrus();
 | |
| 			invalidated = true;
 | |
| 			goto recheck_buffers;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 | |
| 	if (rc != MIGRATEPAGE_SUCCESS)
 | |
| 		goto unlock_buffers;
 | |
| 
 | |
| 	ClearPagePrivate(page);
 | |
| 	set_page_private(newpage, page_private(page));
 | |
| 	set_page_private(page, 0);
 | |
| 	put_page(page);
 | |
| 	get_page(newpage);
 | |
| 
 | |
| 	bh = head;
 | |
| 	do {
 | |
| 		set_bh_page(bh, newpage, bh_offset(bh));
 | |
| 		bh = bh->b_this_page;
 | |
| 
 | |
| 	} while (bh != head);
 | |
| 
 | |
| 	SetPagePrivate(newpage);
 | |
| 
 | |
| 	if (mode != MIGRATE_SYNC_NO_COPY)
 | |
| 		migrate_page_copy(newpage, page);
 | |
| 	else
 | |
| 		migrate_page_states(newpage, page);
 | |
| 
 | |
| 	rc = MIGRATEPAGE_SUCCESS;
 | |
| unlock_buffers:
 | |
| 	if (check_refs)
 | |
| 		spin_unlock(&mapping->private_lock);
 | |
| 	bh = head;
 | |
| 	do {
 | |
| 		unlock_buffer(bh);
 | |
| 		bh = bh->b_this_page;
 | |
| 
 | |
| 	} while (bh != head);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Migration function for pages with buffers. This function can only be used
 | |
|  * if the underlying filesystem guarantees that no other references to "page"
 | |
|  * exist. For example attached buffer heads are accessed only under page lock.
 | |
|  */
 | |
| int buffer_migrate_page(struct address_space *mapping,
 | |
| 		struct page *newpage, struct page *page, enum migrate_mode mode)
 | |
| {
 | |
| 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
 | |
| }
 | |
| EXPORT_SYMBOL(buffer_migrate_page);
 | |
| 
 | |
| /*
 | |
|  * Same as above except that this variant is more careful and checks that there
 | |
|  * are also no buffer head references. This function is the right one for
 | |
|  * mappings where buffer heads are directly looked up and referenced (such as
 | |
|  * block device mappings).
 | |
|  */
 | |
| int buffer_migrate_page_norefs(struct address_space *mapping,
 | |
| 		struct page *newpage, struct page *page, enum migrate_mode mode)
 | |
| {
 | |
| 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Writeback a page to clean the dirty state
 | |
|  */
 | |
| static int writeout(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = WB_SYNC_NONE,
 | |
| 		.nr_to_write = 1,
 | |
| 		.range_start = 0,
 | |
| 		.range_end = LLONG_MAX,
 | |
| 		.for_reclaim = 1
 | |
| 	};
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!mapping->a_ops->writepage)
 | |
| 		/* No write method for the address space */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!clear_page_dirty_for_io(page))
 | |
| 		/* Someone else already triggered a write */
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * A dirty page may imply that the underlying filesystem has
 | |
| 	 * the page on some queue. So the page must be clean for
 | |
| 	 * migration. Writeout may mean we loose the lock and the
 | |
| 	 * page state is no longer what we checked for earlier.
 | |
| 	 * At this point we know that the migration attempt cannot
 | |
| 	 * be successful.
 | |
| 	 */
 | |
| 	remove_migration_ptes(page, page, false);
 | |
| 
 | |
| 	rc = mapping->a_ops->writepage(page, &wbc);
 | |
| 
 | |
| 	if (rc != AOP_WRITEPAGE_ACTIVATE)
 | |
| 		/* unlocked. Relock */
 | |
| 		lock_page(page);
 | |
| 
 | |
| 	return (rc < 0) ? -EIO : -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Default handling if a filesystem does not provide a migration function.
 | |
|  */
 | |
| static int fallback_migrate_page(struct address_space *mapping,
 | |
| 	struct page *newpage, struct page *page, enum migrate_mode mode)
 | |
| {
 | |
| 	if (PageDirty(page)) {
 | |
| 		/* Only writeback pages in full synchronous migration */
 | |
| 		switch (mode) {
 | |
| 		case MIGRATE_SYNC:
 | |
| 		case MIGRATE_SYNC_NO_COPY:
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 		return writeout(mapping, page);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Buffers may be managed in a filesystem specific way.
 | |
| 	 * We must have no buffers or drop them.
 | |
| 	 */
 | |
| 	if (page_has_private(page) &&
 | |
| 	    !try_to_release_page(page, GFP_KERNEL))
 | |
| 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 | |
| 
 | |
| 	return migrate_page(mapping, newpage, page, mode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a page to a newly allocated page
 | |
|  * The page is locked and all ptes have been successfully removed.
 | |
|  *
 | |
|  * The new page will have replaced the old page if this function
 | |
|  * is successful.
 | |
|  *
 | |
|  * Return value:
 | |
|  *   < 0 - error code
 | |
|  *  MIGRATEPAGE_SUCCESS - success
 | |
|  */
 | |
| static int move_to_new_page(struct page *newpage, struct page *page,
 | |
| 				enum migrate_mode mode)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 	int rc = -EAGAIN;
 | |
| 	bool is_lru = !__PageMovable(page);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 | |
| 
 | |
| 	mapping = page_mapping(page);
 | |
| 
 | |
| 	if (likely(is_lru)) {
 | |
| 		if (!mapping)
 | |
| 			rc = migrate_page(mapping, newpage, page, mode);
 | |
| 		else if (mapping->a_ops->migratepage)
 | |
| 			/*
 | |
| 			 * Most pages have a mapping and most filesystems
 | |
| 			 * provide a migratepage callback. Anonymous pages
 | |
| 			 * are part of swap space which also has its own
 | |
| 			 * migratepage callback. This is the most common path
 | |
| 			 * for page migration.
 | |
| 			 */
 | |
| 			rc = mapping->a_ops->migratepage(mapping, newpage,
 | |
| 							page, mode);
 | |
| 		else
 | |
| 			rc = fallback_migrate_page(mapping, newpage,
 | |
| 							page, mode);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * In case of non-lru page, it could be released after
 | |
| 		 * isolation step. In that case, we shouldn't try migration.
 | |
| 		 */
 | |
| 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 | |
| 		if (!PageMovable(page)) {
 | |
| 			rc = MIGRATEPAGE_SUCCESS;
 | |
| 			__ClearPageIsolated(page);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		rc = mapping->a_ops->migratepage(mapping, newpage,
 | |
| 						page, mode);
 | |
| 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 | |
| 			!PageIsolated(page));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When successful, old pagecache page->mapping must be cleared before
 | |
| 	 * page is freed; but stats require that PageAnon be left as PageAnon.
 | |
| 	 */
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS) {
 | |
| 		if (__PageMovable(page)) {
 | |
| 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 | |
| 
 | |
| 			/*
 | |
| 			 * We clear PG_movable under page_lock so any compactor
 | |
| 			 * cannot try to migrate this page.
 | |
| 			 */
 | |
| 			__ClearPageIsolated(page);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Anonymous and movable page->mapping will be cleard by
 | |
| 		 * free_pages_prepare so don't reset it here for keeping
 | |
| 		 * the type to work PageAnon, for example.
 | |
| 		 */
 | |
| 		if (!PageMappingFlags(page))
 | |
| 			page->mapping = NULL;
 | |
| 
 | |
| 		if (likely(!is_zone_device_page(newpage)))
 | |
| 			flush_dcache_page(newpage);
 | |
| 
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int __unmap_and_move(struct page *page, struct page *newpage,
 | |
| 				int force, enum migrate_mode mode)
 | |
| {
 | |
| 	int rc = -EAGAIN;
 | |
| 	int page_was_mapped = 0;
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 	bool is_lru = !__PageMovable(page);
 | |
| 
 | |
| 	if (!trylock_page(page)) {
 | |
| 		if (!force || mode == MIGRATE_ASYNC)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * It's not safe for direct compaction to call lock_page.
 | |
| 		 * For example, during page readahead pages are added locked
 | |
| 		 * to the LRU. Later, when the IO completes the pages are
 | |
| 		 * marked uptodate and unlocked. However, the queueing
 | |
| 		 * could be merging multiple pages for one bio (e.g.
 | |
| 		 * mpage_readpages). If an allocation happens for the
 | |
| 		 * second or third page, the process can end up locking
 | |
| 		 * the same page twice and deadlocking. Rather than
 | |
| 		 * trying to be clever about what pages can be locked,
 | |
| 		 * avoid the use of lock_page for direct compaction
 | |
| 		 * altogether.
 | |
| 		 */
 | |
| 		if (current->flags & PF_MEMALLOC)
 | |
| 			goto out;
 | |
| 
 | |
| 		lock_page(page);
 | |
| 	}
 | |
| 
 | |
| 	if (PageWriteback(page)) {
 | |
| 		/*
 | |
| 		 * Only in the case of a full synchronous migration is it
 | |
| 		 * necessary to wait for PageWriteback. In the async case,
 | |
| 		 * the retry loop is too short and in the sync-light case,
 | |
| 		 * the overhead of stalling is too much
 | |
| 		 */
 | |
| 		switch (mode) {
 | |
| 		case MIGRATE_SYNC:
 | |
| 		case MIGRATE_SYNC_NO_COPY:
 | |
| 			break;
 | |
| 		default:
 | |
| 			rc = -EBUSY;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		if (!force)
 | |
| 			goto out_unlock;
 | |
| 		wait_on_page_writeback(page);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 | |
| 	 * we cannot notice that anon_vma is freed while we migrates a page.
 | |
| 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 | |
| 	 * of migration. File cache pages are no problem because of page_lock()
 | |
| 	 * File Caches may use write_page() or lock_page() in migration, then,
 | |
| 	 * just care Anon page here.
 | |
| 	 *
 | |
| 	 * Only page_get_anon_vma() understands the subtleties of
 | |
| 	 * getting a hold on an anon_vma from outside one of its mms.
 | |
| 	 * But if we cannot get anon_vma, then we won't need it anyway,
 | |
| 	 * because that implies that the anon page is no longer mapped
 | |
| 	 * (and cannot be remapped so long as we hold the page lock).
 | |
| 	 */
 | |
| 	if (PageAnon(page) && !PageKsm(page))
 | |
| 		anon_vma = page_get_anon_vma(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Block others from accessing the new page when we get around to
 | |
| 	 * establishing additional references. We are usually the only one
 | |
| 	 * holding a reference to newpage at this point. We used to have a BUG
 | |
| 	 * here if trylock_page(newpage) fails, but would like to allow for
 | |
| 	 * cases where there might be a race with the previous use of newpage.
 | |
| 	 * This is much like races on refcount of oldpage: just don't BUG().
 | |
| 	 */
 | |
| 	if (unlikely(!trylock_page(newpage)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (unlikely(!is_lru)) {
 | |
| 		rc = move_to_new_page(newpage, page, mode);
 | |
| 		goto out_unlock_both;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Corner case handling:
 | |
| 	 * 1. When a new swap-cache page is read into, it is added to the LRU
 | |
| 	 * and treated as swapcache but it has no rmap yet.
 | |
| 	 * Calling try_to_unmap() against a page->mapping==NULL page will
 | |
| 	 * trigger a BUG.  So handle it here.
 | |
| 	 * 2. An orphaned page (see truncate_complete_page) might have
 | |
| 	 * fs-private metadata. The page can be picked up due to memory
 | |
| 	 * offlining.  Everywhere else except page reclaim, the page is
 | |
| 	 * invisible to the vm, so the page can not be migrated.  So try to
 | |
| 	 * free the metadata, so the page can be freed.
 | |
| 	 */
 | |
| 	if (!page->mapping) {
 | |
| 		VM_BUG_ON_PAGE(PageAnon(page), page);
 | |
| 		if (page_has_private(page)) {
 | |
| 			try_to_free_buffers(page);
 | |
| 			goto out_unlock_both;
 | |
| 		}
 | |
| 	} else if (page_mapped(page)) {
 | |
| 		/* Establish migration ptes */
 | |
| 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
 | |
| 				page);
 | |
| 		try_to_unmap(page,
 | |
| 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 | |
| 		page_was_mapped = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!page_mapped(page))
 | |
| 		rc = move_to_new_page(newpage, page, mode);
 | |
| 
 | |
| 	if (page_was_mapped)
 | |
| 		remove_migration_ptes(page,
 | |
| 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
 | |
| 
 | |
| out_unlock_both:
 | |
| 	unlock_page(newpage);
 | |
| out_unlock:
 | |
| 	/* Drop an anon_vma reference if we took one */
 | |
| 	if (anon_vma)
 | |
| 		put_anon_vma(anon_vma);
 | |
| 	unlock_page(page);
 | |
| out:
 | |
| 	/*
 | |
| 	 * If migration is successful, decrease refcount of the newpage
 | |
| 	 * which will not free the page because new page owner increased
 | |
| 	 * refcounter. As well, if it is LRU page, add the page to LRU
 | |
| 	 * list in here. Use the old state of the isolated source page to
 | |
| 	 * determine if we migrated a LRU page. newpage was already unlocked
 | |
| 	 * and possibly modified by its owner - don't rely on the page
 | |
| 	 * state.
 | |
| 	 */
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS) {
 | |
| 		if (unlikely(!is_lru))
 | |
| 			put_page(newpage);
 | |
| 		else
 | |
| 			putback_lru_page(newpage);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 | |
|  * around it.
 | |
|  */
 | |
| #if defined(CONFIG_ARM) && \
 | |
| 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
 | |
| #define ICE_noinline noinline
 | |
| #else
 | |
| #define ICE_noinline
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Obtain the lock on page, remove all ptes and migrate the page
 | |
|  * to the newly allocated page in newpage.
 | |
|  */
 | |
| static ICE_noinline int unmap_and_move(new_page_t get_new_page,
 | |
| 				   free_page_t put_new_page,
 | |
| 				   unsigned long private, struct page *page,
 | |
| 				   int force, enum migrate_mode mode,
 | |
| 				   enum migrate_reason reason)
 | |
| {
 | |
| 	int rc = MIGRATEPAGE_SUCCESS;
 | |
| 	struct page *newpage = NULL;
 | |
| 
 | |
| 	if (!thp_migration_supported() && PageTransHuge(page))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (page_count(page) == 1) {
 | |
| 		/* page was freed from under us. So we are done. */
 | |
| 		ClearPageActive(page);
 | |
| 		ClearPageUnevictable(page);
 | |
| 		if (unlikely(__PageMovable(page))) {
 | |
| 			lock_page(page);
 | |
| 			if (!PageMovable(page))
 | |
| 				__ClearPageIsolated(page);
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	newpage = get_new_page(page, private);
 | |
| 	if (!newpage)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = __unmap_and_move(page, newpage, force, mode);
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS)
 | |
| 		set_page_owner_migrate_reason(newpage, reason);
 | |
| 
 | |
| out:
 | |
| 	if (rc != -EAGAIN) {
 | |
| 		/*
 | |
| 		 * A page that has been migrated has all references
 | |
| 		 * removed and will be freed. A page that has not been
 | |
| 		 * migrated will have kepts its references and be
 | |
| 		 * restored.
 | |
| 		 */
 | |
| 		list_del(&page->lru);
 | |
| 
 | |
| 		/*
 | |
| 		 * Compaction can migrate also non-LRU pages which are
 | |
| 		 * not accounted to NR_ISOLATED_*. They can be recognized
 | |
| 		 * as __PageMovable
 | |
| 		 */
 | |
| 		if (likely(!__PageMovable(page)))
 | |
| 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 | |
| 					page_is_file_cache(page), -hpage_nr_pages(page));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If migration is successful, releases reference grabbed during
 | |
| 	 * isolation. Otherwise, restore the page to right list unless
 | |
| 	 * we want to retry.
 | |
| 	 */
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS) {
 | |
| 		put_page(page);
 | |
| 		if (reason == MR_MEMORY_FAILURE) {
 | |
| 			/*
 | |
| 			 * Set PG_HWPoison on just freed page
 | |
| 			 * intentionally. Although it's rather weird,
 | |
| 			 * it's how HWPoison flag works at the moment.
 | |
| 			 */
 | |
| 			if (set_hwpoison_free_buddy_page(page))
 | |
| 				num_poisoned_pages_inc();
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (rc != -EAGAIN) {
 | |
| 			if (likely(!__PageMovable(page))) {
 | |
| 				putback_lru_page(page);
 | |
| 				goto put_new;
 | |
| 			}
 | |
| 
 | |
| 			lock_page(page);
 | |
| 			if (PageMovable(page))
 | |
| 				putback_movable_page(page);
 | |
| 			else
 | |
| 				__ClearPageIsolated(page);
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 		}
 | |
| put_new:
 | |
| 		if (put_new_page)
 | |
| 			put_new_page(newpage, private);
 | |
| 		else
 | |
| 			put_page(newpage);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Counterpart of unmap_and_move_page() for hugepage migration.
 | |
|  *
 | |
|  * This function doesn't wait the completion of hugepage I/O
 | |
|  * because there is no race between I/O and migration for hugepage.
 | |
|  * Note that currently hugepage I/O occurs only in direct I/O
 | |
|  * where no lock is held and PG_writeback is irrelevant,
 | |
|  * and writeback status of all subpages are counted in the reference
 | |
|  * count of the head page (i.e. if all subpages of a 2MB hugepage are
 | |
|  * under direct I/O, the reference of the head page is 512 and a bit more.)
 | |
|  * This means that when we try to migrate hugepage whose subpages are
 | |
|  * doing direct I/O, some references remain after try_to_unmap() and
 | |
|  * hugepage migration fails without data corruption.
 | |
|  *
 | |
|  * There is also no race when direct I/O is issued on the page under migration,
 | |
|  * because then pte is replaced with migration swap entry and direct I/O code
 | |
|  * will wait in the page fault for migration to complete.
 | |
|  */
 | |
| static int unmap_and_move_huge_page(new_page_t get_new_page,
 | |
| 				free_page_t put_new_page, unsigned long private,
 | |
| 				struct page *hpage, int force,
 | |
| 				enum migrate_mode mode, int reason)
 | |
| {
 | |
| 	int rc = -EAGAIN;
 | |
| 	int page_was_mapped = 0;
 | |
| 	struct page *new_hpage;
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Migratability of hugepages depends on architectures and their size.
 | |
| 	 * This check is necessary because some callers of hugepage migration
 | |
| 	 * like soft offline and memory hotremove don't walk through page
 | |
| 	 * tables or check whether the hugepage is pmd-based or not before
 | |
| 	 * kicking migration.
 | |
| 	 */
 | |
| 	if (!hugepage_migration_supported(page_hstate(hpage))) {
 | |
| 		putback_active_hugepage(hpage);
 | |
| 		return -ENOSYS;
 | |
| 	}
 | |
| 
 | |
| 	new_hpage = get_new_page(hpage, private);
 | |
| 	if (!new_hpage)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!trylock_page(hpage)) {
 | |
| 		if (!force)
 | |
| 			goto out;
 | |
| 		switch (mode) {
 | |
| 		case MIGRATE_SYNC:
 | |
| 		case MIGRATE_SYNC_NO_COPY:
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto out;
 | |
| 		}
 | |
| 		lock_page(hpage);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for pages which are in the process of being freed.  Without
 | |
| 	 * page_mapping() set, hugetlbfs specific move page routine will not
 | |
| 	 * be called and we could leak usage counts for subpools.
 | |
| 	 */
 | |
| 	if (page_private(hpage) && !page_mapping(hpage)) {
 | |
| 		rc = -EBUSY;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (PageAnon(hpage))
 | |
| 		anon_vma = page_get_anon_vma(hpage);
 | |
| 
 | |
| 	if (unlikely(!trylock_page(new_hpage)))
 | |
| 		goto put_anon;
 | |
| 
 | |
| 	if (page_mapped(hpage)) {
 | |
| 		try_to_unmap(hpage,
 | |
| 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 | |
| 		page_was_mapped = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!page_mapped(hpage))
 | |
| 		rc = move_to_new_page(new_hpage, hpage, mode);
 | |
| 
 | |
| 	if (page_was_mapped)
 | |
| 		remove_migration_ptes(hpage,
 | |
| 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
 | |
| 
 | |
| 	unlock_page(new_hpage);
 | |
| 
 | |
| put_anon:
 | |
| 	if (anon_vma)
 | |
| 		put_anon_vma(anon_vma);
 | |
| 
 | |
| 	if (rc == MIGRATEPAGE_SUCCESS) {
 | |
| 		move_hugetlb_state(hpage, new_hpage, reason);
 | |
| 		put_new_page = NULL;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	unlock_page(hpage);
 | |
| out:
 | |
| 	if (rc != -EAGAIN)
 | |
| 		putback_active_hugepage(hpage);
 | |
| 
 | |
| 	/*
 | |
| 	 * If migration was not successful and there's a freeing callback, use
 | |
| 	 * it.  Otherwise, put_page() will drop the reference grabbed during
 | |
| 	 * isolation.
 | |
| 	 */
 | |
| 	if (put_new_page)
 | |
| 		put_new_page(new_hpage, private);
 | |
| 	else
 | |
| 		putback_active_hugepage(new_hpage);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migrate_pages - migrate the pages specified in a list, to the free pages
 | |
|  *		   supplied as the target for the page migration
 | |
|  *
 | |
|  * @from:		The list of pages to be migrated.
 | |
|  * @get_new_page:	The function used to allocate free pages to be used
 | |
|  *			as the target of the page migration.
 | |
|  * @put_new_page:	The function used to free target pages if migration
 | |
|  *			fails, or NULL if no special handling is necessary.
 | |
|  * @private:		Private data to be passed on to get_new_page()
 | |
|  * @mode:		The migration mode that specifies the constraints for
 | |
|  *			page migration, if any.
 | |
|  * @reason:		The reason for page migration.
 | |
|  *
 | |
|  * The function returns after 10 attempts or if no pages are movable any more
 | |
|  * because the list has become empty or no retryable pages exist any more.
 | |
|  * The caller should call putback_movable_pages() to return pages to the LRU
 | |
|  * or free list only if ret != 0.
 | |
|  *
 | |
|  * Returns the number of pages that were not migrated, or an error code.
 | |
|  */
 | |
| int migrate_pages(struct list_head *from, new_page_t get_new_page,
 | |
| 		free_page_t put_new_page, unsigned long private,
 | |
| 		enum migrate_mode mode, int reason)
 | |
| {
 | |
| 	int retry = 1;
 | |
| 	int nr_failed = 0;
 | |
| 	int nr_succeeded = 0;
 | |
| 	int pass = 0;
 | |
| 	struct page *page;
 | |
| 	struct page *page2;
 | |
| 	int swapwrite = current->flags & PF_SWAPWRITE;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!swapwrite)
 | |
| 		current->flags |= PF_SWAPWRITE;
 | |
| 
 | |
| 	for(pass = 0; pass < 10 && retry; pass++) {
 | |
| 		retry = 0;
 | |
| 
 | |
| 		list_for_each_entry_safe(page, page2, from, lru) {
 | |
| retry:
 | |
| 			cond_resched();
 | |
| 
 | |
| 			if (PageHuge(page))
 | |
| 				rc = unmap_and_move_huge_page(get_new_page,
 | |
| 						put_new_page, private, page,
 | |
| 						pass > 2, mode, reason);
 | |
| 			else
 | |
| 				rc = unmap_and_move(get_new_page, put_new_page,
 | |
| 						private, page, pass > 2, mode,
 | |
| 						reason);
 | |
| 
 | |
| 			switch(rc) {
 | |
| 			case -ENOMEM:
 | |
| 				/*
 | |
| 				 * THP migration might be unsupported or the
 | |
| 				 * allocation could've failed so we should
 | |
| 				 * retry on the same page with the THP split
 | |
| 				 * to base pages.
 | |
| 				 *
 | |
| 				 * Head page is retried immediately and tail
 | |
| 				 * pages are added to the tail of the list so
 | |
| 				 * we encounter them after the rest of the list
 | |
| 				 * is processed.
 | |
| 				 */
 | |
| 				if (PageTransHuge(page) && !PageHuge(page)) {
 | |
| 					lock_page(page);
 | |
| 					rc = split_huge_page_to_list(page, from);
 | |
| 					unlock_page(page);
 | |
| 					if (!rc) {
 | |
| 						list_safe_reset_next(page, page2, lru);
 | |
| 						goto retry;
 | |
| 					}
 | |
| 				}
 | |
| 				nr_failed++;
 | |
| 				goto out;
 | |
| 			case -EAGAIN:
 | |
| 				retry++;
 | |
| 				break;
 | |
| 			case MIGRATEPAGE_SUCCESS:
 | |
| 				nr_succeeded++;
 | |
| 				break;
 | |
| 			default:
 | |
| 				/*
 | |
| 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
 | |
| 				 * unlike -EAGAIN case, the failed page is
 | |
| 				 * removed from migration page list and not
 | |
| 				 * retried in the next outer loop.
 | |
| 				 */
 | |
| 				nr_failed++;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	nr_failed += retry;
 | |
| 	rc = nr_failed;
 | |
| out:
 | |
| 	if (nr_succeeded)
 | |
| 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
 | |
| 	if (nr_failed)
 | |
| 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
 | |
| 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
 | |
| 
 | |
| 	if (!swapwrite)
 | |
| 		current->flags &= ~PF_SWAPWRITE;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| static int store_status(int __user *status, int start, int value, int nr)
 | |
| {
 | |
| 	while (nr-- > 0) {
 | |
| 		if (put_user(value, status + start))
 | |
| 			return -EFAULT;
 | |
| 		start++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_move_pages_to_node(struct mm_struct *mm,
 | |
| 		struct list_head *pagelist, int node)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (list_empty(pagelist))
 | |
| 		return 0;
 | |
| 
 | |
| 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
 | |
| 			MIGRATE_SYNC, MR_SYSCALL);
 | |
| 	if (err)
 | |
| 		putback_movable_pages(pagelist);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resolves the given address to a struct page, isolates it from the LRU and
 | |
|  * puts it to the given pagelist.
 | |
|  * Returns -errno if the page cannot be found/isolated or 0 when it has been
 | |
|  * queued or the page doesn't need to be migrated because it is already on
 | |
|  * the target node
 | |
|  */
 | |
| static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
 | |
| 		int node, struct list_head *pagelist, bool migrate_all)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct page *page;
 | |
| 	unsigned int follflags;
 | |
| 	int err;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	err = -EFAULT;
 | |
| 	vma = find_vma(mm, addr);
 | |
| 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* FOLL_DUMP to ignore special (like zero) pages */
 | |
| 	follflags = FOLL_GET | FOLL_DUMP;
 | |
| 	page = follow_page(vma, addr, follflags);
 | |
| 
 | |
| 	err = PTR_ERR(page);
 | |
| 	if (IS_ERR(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| 	if (!page)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (page_to_nid(page) == node)
 | |
| 		goto out_putpage;
 | |
| 
 | |
| 	err = -EACCES;
 | |
| 	if (page_mapcount(page) > 1 && !migrate_all)
 | |
| 		goto out_putpage;
 | |
| 
 | |
| 	if (PageHuge(page)) {
 | |
| 		if (PageHead(page)) {
 | |
| 			isolate_huge_page(page, pagelist);
 | |
| 			err = 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct page *head;
 | |
| 
 | |
| 		head = compound_head(page);
 | |
| 		err = isolate_lru_page(head);
 | |
| 		if (err)
 | |
| 			goto out_putpage;
 | |
| 
 | |
| 		err = 0;
 | |
| 		list_add_tail(&head->lru, pagelist);
 | |
| 		mod_node_page_state(page_pgdat(head),
 | |
| 			NR_ISOLATED_ANON + page_is_file_cache(head),
 | |
| 			hpage_nr_pages(head));
 | |
| 	}
 | |
| out_putpage:
 | |
| 	/*
 | |
| 	 * Either remove the duplicate refcount from
 | |
| 	 * isolate_lru_page() or drop the page ref if it was
 | |
| 	 * not isolated.
 | |
| 	 */
 | |
| 	put_page(page);
 | |
| out:
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Migrate an array of page address onto an array of nodes and fill
 | |
|  * the corresponding array of status.
 | |
|  */
 | |
| static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
 | |
| 			 unsigned long nr_pages,
 | |
| 			 const void __user * __user *pages,
 | |
| 			 const int __user *nodes,
 | |
| 			 int __user *status, int flags)
 | |
| {
 | |
| 	int current_node = NUMA_NO_NODE;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 	int start, i;
 | |
| 	int err = 0, err1;
 | |
| 
 | |
| 	migrate_prep();
 | |
| 
 | |
| 	for (i = start = 0; i < nr_pages; i++) {
 | |
| 		const void __user *p;
 | |
| 		unsigned long addr;
 | |
| 		int node;
 | |
| 
 | |
| 		err = -EFAULT;
 | |
| 		if (get_user(p, pages + i))
 | |
| 			goto out_flush;
 | |
| 		if (get_user(node, nodes + i))
 | |
| 			goto out_flush;
 | |
| 		addr = (unsigned long)untagged_addr(p);
 | |
| 
 | |
| 		err = -ENODEV;
 | |
| 		if (node < 0 || node >= MAX_NUMNODES)
 | |
| 			goto out_flush;
 | |
| 		if (!node_state(node, N_MEMORY))
 | |
| 			goto out_flush;
 | |
| 
 | |
| 		err = -EACCES;
 | |
| 		if (!node_isset(node, task_nodes))
 | |
| 			goto out_flush;
 | |
| 
 | |
| 		if (current_node == NUMA_NO_NODE) {
 | |
| 			current_node = node;
 | |
| 			start = i;
 | |
| 		} else if (node != current_node) {
 | |
| 			err = do_move_pages_to_node(mm, &pagelist, current_node);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 			err = store_status(status, start, current_node, i - start);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 			start = i;
 | |
| 			current_node = node;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Errors in the page lookup or isolation are not fatal and we simply
 | |
| 		 * report them via status
 | |
| 		 */
 | |
| 		err = add_page_for_migration(mm, addr, current_node,
 | |
| 				&pagelist, flags & MPOL_MF_MOVE_ALL);
 | |
| 		if (!err)
 | |
| 			continue;
 | |
| 
 | |
| 		err = store_status(status, i, err, 1);
 | |
| 		if (err)
 | |
| 			goto out_flush;
 | |
| 
 | |
| 		err = do_move_pages_to_node(mm, &pagelist, current_node);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		if (i > start) {
 | |
| 			err = store_status(status, start, current_node, i - start);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		current_node = NUMA_NO_NODE;
 | |
| 	}
 | |
| out_flush:
 | |
| 	if (list_empty(&pagelist))
 | |
| 		return err;
 | |
| 
 | |
| 	/* Make sure we do not overwrite the existing error */
 | |
| 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
 | |
| 	if (!err1)
 | |
| 		err1 = store_status(status, start, current_node, i - start);
 | |
| 	if (!err)
 | |
| 		err = err1;
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the nodes of an array of pages and store it in an array of status.
 | |
|  */
 | |
| static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
 | |
| 				const void __user **pages, int *status)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		unsigned long addr = (unsigned long)(*pages);
 | |
| 		struct vm_area_struct *vma;
 | |
| 		struct page *page;
 | |
| 		int err = -EFAULT;
 | |
| 
 | |
| 		vma = find_vma(mm, addr);
 | |
| 		if (!vma || addr < vma->vm_start)
 | |
| 			goto set_status;
 | |
| 
 | |
| 		/* FOLL_DUMP to ignore special (like zero) pages */
 | |
| 		page = follow_page(vma, addr, FOLL_DUMP);
 | |
| 
 | |
| 		err = PTR_ERR(page);
 | |
| 		if (IS_ERR(page))
 | |
| 			goto set_status;
 | |
| 
 | |
| 		err = page ? page_to_nid(page) : -ENOENT;
 | |
| set_status:
 | |
| 		*status = err;
 | |
| 
 | |
| 		pages++;
 | |
| 		status++;
 | |
| 	}
 | |
| 
 | |
| 	up_read(&mm->mmap_sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the nodes of a user array of pages and store it in
 | |
|  * a user array of status.
 | |
|  */
 | |
| static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
 | |
| 			 const void __user * __user *pages,
 | |
| 			 int __user *status)
 | |
| {
 | |
| #define DO_PAGES_STAT_CHUNK_NR 16
 | |
| 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
 | |
| 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
 | |
| 
 | |
| 	while (nr_pages) {
 | |
| 		unsigned long chunk_nr;
 | |
| 
 | |
| 		chunk_nr = nr_pages;
 | |
| 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
 | |
| 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
 | |
| 
 | |
| 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
 | |
| 			break;
 | |
| 
 | |
| 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
 | |
| 
 | |
| 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
 | |
| 			break;
 | |
| 
 | |
| 		pages += chunk_nr;
 | |
| 		status += chunk_nr;
 | |
| 		nr_pages -= chunk_nr;
 | |
| 	}
 | |
| 	return nr_pages ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a list of pages in the address space of the currently executing
 | |
|  * process.
 | |
|  */
 | |
| static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
 | |
| 			     const void __user * __user *pages,
 | |
| 			     const int __user *nodes,
 | |
| 			     int __user *status, int flags)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	struct mm_struct *mm;
 | |
| 	int err;
 | |
| 	nodemask_t task_nodes;
 | |
| 
 | |
| 	/* Check flags */
 | |
| 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* Find the mm_struct */
 | |
| 	rcu_read_lock();
 | |
| 	task = pid ? find_task_by_vpid(pid) : current;
 | |
| 	if (!task) {
 | |
| 		rcu_read_unlock();
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 	get_task_struct(task);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if this process has the right to modify the specified
 | |
| 	 * process. Use the regular "ptrace_may_access()" checks.
 | |
| 	 */
 | |
| 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
 | |
| 		rcu_read_unlock();
 | |
| 		err = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
|  	err = security_task_movememory(task);
 | |
|  	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	task_nodes = cpuset_mems_allowed(task);
 | |
| 	mm = get_task_mm(task);
 | |
| 	put_task_struct(task);
 | |
| 
 | |
| 	if (!mm)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (nodes)
 | |
| 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
 | |
| 				    nodes, status, flags);
 | |
| 	else
 | |
| 		err = do_pages_stat(mm, nr_pages, pages, status);
 | |
| 
 | |
| 	mmput(mm);
 | |
| 	return err;
 | |
| 
 | |
| out:
 | |
| 	put_task_struct(task);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
 | |
| 		const void __user * __user *, pages,
 | |
| 		const int __user *, nodes,
 | |
| 		int __user *, status, int, flags)
 | |
| {
 | |
| 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
 | |
| 		       compat_uptr_t __user *, pages32,
 | |
| 		       const int __user *, nodes,
 | |
| 		       int __user *, status,
 | |
| 		       int, flags)
 | |
| {
 | |
| 	const void __user * __user *pages;
 | |
| 	int i;
 | |
| 
 | |
| 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		compat_uptr_t p;
 | |
| 
 | |
| 		if (get_user(p, pages32 + i) ||
 | |
| 			put_user(compat_ptr(p), pages + i))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
 | |
| }
 | |
| #endif /* CONFIG_COMPAT */
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /*
 | |
|  * Returns true if this is a safe migration target node for misplaced NUMA
 | |
|  * pages. Currently it only checks the watermarks which crude
 | |
|  */
 | |
| static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
 | |
| 				   unsigned long nr_migrate_pages)
 | |
| {
 | |
| 	int z;
 | |
| 
 | |
| 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
 | |
| 		struct zone *zone = pgdat->node_zones + z;
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
 | |
| 		if (!zone_watermark_ok(zone, 0,
 | |
| 				       high_wmark_pages(zone) +
 | |
| 				       nr_migrate_pages,
 | |
| 				       ZONE_MOVABLE, 0))
 | |
| 			continue;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static struct page *alloc_misplaced_dst_page(struct page *page,
 | |
| 					   unsigned long data)
 | |
| {
 | |
| 	int nid = (int) data;
 | |
| 	struct page *newpage;
 | |
| 
 | |
| 	newpage = __alloc_pages_node(nid,
 | |
| 					 (GFP_HIGHUSER_MOVABLE |
 | |
| 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
 | |
| 					  __GFP_NORETRY | __GFP_NOWARN) &
 | |
| 					 ~__GFP_RECLAIM, 0);
 | |
| 
 | |
| 	return newpage;
 | |
| }
 | |
| 
 | |
| static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
 | |
| {
 | |
| 	int page_lru;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
 | |
| 
 | |
| 	/* Avoid migrating to a node that is nearly full */
 | |
| 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (isolate_lru_page(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * migrate_misplaced_transhuge_page() skips page migration's usual
 | |
| 	 * check on page_count(), so we must do it here, now that the page
 | |
| 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
 | |
| 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
 | |
| 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
 | |
| 	 */
 | |
| 	if (PageTransHuge(page) && page_count(page) != 3) {
 | |
| 		putback_lru_page(page);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	page_lru = page_is_file_cache(page);
 | |
| 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
 | |
| 				hpage_nr_pages(page));
 | |
| 
 | |
| 	/*
 | |
| 	 * Isolating the page has taken another reference, so the
 | |
| 	 * caller's reference can be safely dropped without the page
 | |
| 	 * disappearing underneath us during migration.
 | |
| 	 */
 | |
| 	put_page(page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| bool pmd_trans_migrating(pmd_t pmd)
 | |
| {
 | |
| 	struct page *page = pmd_page(pmd);
 | |
| 	return PageLocked(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to migrate a misplaced page to the specified destination
 | |
|  * node. Caller is expected to have an elevated reference count on
 | |
|  * the page that will be dropped by this function before returning.
 | |
|  */
 | |
| int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
 | |
| 			   int node)
 | |
| {
 | |
| 	pg_data_t *pgdat = NODE_DATA(node);
 | |
| 	int isolated;
 | |
| 	int nr_remaining;
 | |
| 	LIST_HEAD(migratepages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't migrate file pages that are mapped in multiple processes
 | |
| 	 * with execute permissions as they are probably shared libraries.
 | |
| 	 */
 | |
| 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
 | |
| 	    (vma->vm_flags & VM_EXEC))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Also do not migrate dirty pages as not all filesystems can move
 | |
| 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
 | |
| 	 */
 | |
| 	if (page_is_file_cache(page) && PageDirty(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	isolated = numamigrate_isolate_page(pgdat, page);
 | |
| 	if (!isolated)
 | |
| 		goto out;
 | |
| 
 | |
| 	list_add(&page->lru, &migratepages);
 | |
| 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
 | |
| 				     NULL, node, MIGRATE_ASYNC,
 | |
| 				     MR_NUMA_MISPLACED);
 | |
| 	if (nr_remaining) {
 | |
| 		if (!list_empty(&migratepages)) {
 | |
| 			list_del(&page->lru);
 | |
| 			dec_node_page_state(page, NR_ISOLATED_ANON +
 | |
| 					page_is_file_cache(page));
 | |
| 			putback_lru_page(page);
 | |
| 		}
 | |
| 		isolated = 0;
 | |
| 	} else
 | |
| 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
 | |
| 	BUG_ON(!list_empty(&migratepages));
 | |
| 	return isolated;
 | |
| 
 | |
| out:
 | |
| 	put_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| /*
 | |
|  * Migrates a THP to a given target node. page must be locked and is unlocked
 | |
|  * before returning.
 | |
|  */
 | |
| int migrate_misplaced_transhuge_page(struct mm_struct *mm,
 | |
| 				struct vm_area_struct *vma,
 | |
| 				pmd_t *pmd, pmd_t entry,
 | |
| 				unsigned long address,
 | |
| 				struct page *page, int node)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	pg_data_t *pgdat = NODE_DATA(node);
 | |
| 	int isolated = 0;
 | |
| 	struct page *new_page = NULL;
 | |
| 	int page_lru = page_is_file_cache(page);
 | |
| 	unsigned long start = address & HPAGE_PMD_MASK;
 | |
| 
 | |
| 	new_page = alloc_pages_node(node,
 | |
| 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
 | |
| 		HPAGE_PMD_ORDER);
 | |
| 	if (!new_page)
 | |
| 		goto out_fail;
 | |
| 	prep_transhuge_page(new_page);
 | |
| 
 | |
| 	isolated = numamigrate_isolate_page(pgdat, page);
 | |
| 	if (!isolated) {
 | |
| 		put_page(new_page);
 | |
| 		goto out_fail;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare a page as a migration target */
 | |
| 	__SetPageLocked(new_page);
 | |
| 	if (PageSwapBacked(page))
 | |
| 		__SetPageSwapBacked(new_page);
 | |
| 
 | |
| 	/* anon mapping, we can simply copy page->mapping to the new page: */
 | |
| 	new_page->mapping = page->mapping;
 | |
| 	new_page->index = page->index;
 | |
| 	/* flush the cache before copying using the kernel virtual address */
 | |
| 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
 | |
| 	migrate_page_copy(new_page, page);
 | |
| 	WARN_ON(PageLRU(new_page));
 | |
| 
 | |
| 	/* Recheck the target PMD */
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
 | |
| 		spin_unlock(ptl);
 | |
| 
 | |
| 		/* Reverse changes made by migrate_page_copy() */
 | |
| 		if (TestClearPageActive(new_page))
 | |
| 			SetPageActive(page);
 | |
| 		if (TestClearPageUnevictable(new_page))
 | |
| 			SetPageUnevictable(page);
 | |
| 
 | |
| 		unlock_page(new_page);
 | |
| 		put_page(new_page);		/* Free it */
 | |
| 
 | |
| 		/* Retake the callers reference and putback on LRU */
 | |
| 		get_page(page);
 | |
| 		putback_lru_page(page);
 | |
| 		mod_node_page_state(page_pgdat(page),
 | |
| 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
 | |
| 
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 | |
| 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 
 | |
| 	/*
 | |
| 	 * Overwrite the old entry under pagetable lock and establish
 | |
| 	 * the new PTE. Any parallel GUP will either observe the old
 | |
| 	 * page blocking on the page lock, block on the page table
 | |
| 	 * lock or observe the new page. The SetPageUptodate on the
 | |
| 	 * new page and page_add_new_anon_rmap guarantee the copy is
 | |
| 	 * visible before the pagetable update.
 | |
| 	 */
 | |
| 	page_add_anon_rmap(new_page, vma, start, true);
 | |
| 	/*
 | |
| 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
 | |
| 	 * has already been flushed globally.  So no TLB can be currently
 | |
| 	 * caching this non present pmd mapping.  There's no need to clear the
 | |
| 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
 | |
| 	 * set_pmd_at().  Clearing the pmd here would introduce a race
 | |
| 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
 | |
| 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
 | |
| 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
 | |
| 	 * pmd.
 | |
| 	 */
 | |
| 	set_pmd_at(mm, start, pmd, entry);
 | |
| 	update_mmu_cache_pmd(vma, address, &entry);
 | |
| 
 | |
| 	page_ref_unfreeze(page, 2);
 | |
| 	mlock_migrate_page(new_page, page);
 | |
| 	page_remove_rmap(page, true);
 | |
| 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
 | |
| 
 | |
| 	spin_unlock(ptl);
 | |
| 
 | |
| 	/* Take an "isolate" reference and put new page on the LRU. */
 | |
| 	get_page(new_page);
 | |
| 	putback_lru_page(new_page);
 | |
| 
 | |
| 	unlock_page(new_page);
 | |
| 	unlock_page(page);
 | |
| 	put_page(page);			/* Drop the rmap reference */
 | |
| 	put_page(page);			/* Drop the LRU isolation reference */
 | |
| 
 | |
| 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
 | |
| 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
 | |
| 
 | |
| 	mod_node_page_state(page_pgdat(page),
 | |
| 			NR_ISOLATED_ANON + page_lru,
 | |
| 			-HPAGE_PMD_NR);
 | |
| 	return isolated;
 | |
| 
 | |
| out_fail:
 | |
| 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	if (pmd_same(*pmd, entry)) {
 | |
| 		entry = pmd_modify(entry, vma->vm_page_prot);
 | |
| 		set_pmd_at(mm, start, pmd, entry);
 | |
| 		update_mmu_cache_pmd(vma, address, &entry);
 | |
| 	}
 | |
| 	spin_unlock(ptl);
 | |
| 
 | |
| out_unlock:
 | |
| 	unlock_page(page);
 | |
| 	put_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| #ifdef CONFIG_DEVICE_PRIVATE
 | |
| static int migrate_vma_collect_hole(unsigned long start,
 | |
| 				    unsigned long end,
 | |
| 				    struct mm_walk *walk)
 | |
| {
 | |
| 	struct migrate_vma *migrate = walk->private;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
 | |
| 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
 | |
| 		migrate->dst[migrate->npages] = 0;
 | |
| 		migrate->npages++;
 | |
| 		migrate->cpages++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int migrate_vma_collect_skip(unsigned long start,
 | |
| 				    unsigned long end,
 | |
| 				    struct mm_walk *walk)
 | |
| {
 | |
| 	struct migrate_vma *migrate = walk->private;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
 | |
| 		migrate->dst[migrate->npages] = 0;
 | |
| 		migrate->src[migrate->npages++] = 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int migrate_vma_collect_pmd(pmd_t *pmdp,
 | |
| 				   unsigned long start,
 | |
| 				   unsigned long end,
 | |
| 				   struct mm_walk *walk)
 | |
| {
 | |
| 	struct migrate_vma *migrate = walk->private;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	unsigned long addr = start, unmapped = 0;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| again:
 | |
| 	if (pmd_none(*pmdp))
 | |
| 		return migrate_vma_collect_hole(start, end, walk);
 | |
| 
 | |
| 	if (pmd_trans_huge(*pmdp)) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		ptl = pmd_lock(mm, pmdp);
 | |
| 		if (unlikely(!pmd_trans_huge(*pmdp))) {
 | |
| 			spin_unlock(ptl);
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		page = pmd_page(*pmdp);
 | |
| 		if (is_huge_zero_page(page)) {
 | |
| 			spin_unlock(ptl);
 | |
| 			split_huge_pmd(vma, pmdp, addr);
 | |
| 			if (pmd_trans_unstable(pmdp))
 | |
| 				return migrate_vma_collect_skip(start, end,
 | |
| 								walk);
 | |
| 		} else {
 | |
| 			int ret;
 | |
| 
 | |
| 			get_page(page);
 | |
| 			spin_unlock(ptl);
 | |
| 			if (unlikely(!trylock_page(page)))
 | |
| 				return migrate_vma_collect_skip(start, end,
 | |
| 								walk);
 | |
| 			ret = split_huge_page(page);
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			if (ret)
 | |
| 				return migrate_vma_collect_skip(start, end,
 | |
| 								walk);
 | |
| 			if (pmd_none(*pmdp))
 | |
| 				return migrate_vma_collect_hole(start, end,
 | |
| 								walk);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(pmd_bad(*pmdp)))
 | |
| 		return migrate_vma_collect_skip(start, end, walk);
 | |
| 
 | |
| 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
 | |
| 	arch_enter_lazy_mmu_mode();
 | |
| 
 | |
| 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
 | |
| 		unsigned long mpfn, pfn;
 | |
| 		struct page *page;
 | |
| 		swp_entry_t entry;
 | |
| 		pte_t pte;
 | |
| 
 | |
| 		pte = *ptep;
 | |
| 
 | |
| 		if (pte_none(pte)) {
 | |
| 			mpfn = MIGRATE_PFN_MIGRATE;
 | |
| 			migrate->cpages++;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		if (!pte_present(pte)) {
 | |
| 			mpfn = 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * Only care about unaddressable device page special
 | |
| 			 * page table entry. Other special swap entries are not
 | |
| 			 * migratable, and we ignore regular swapped page.
 | |
| 			 */
 | |
| 			entry = pte_to_swp_entry(pte);
 | |
| 			if (!is_device_private_entry(entry))
 | |
| 				goto next;
 | |
| 
 | |
| 			page = device_private_entry_to_page(entry);
 | |
| 			mpfn = migrate_pfn(page_to_pfn(page)) |
 | |
| 					MIGRATE_PFN_MIGRATE;
 | |
| 			if (is_write_device_private_entry(entry))
 | |
| 				mpfn |= MIGRATE_PFN_WRITE;
 | |
| 		} else {
 | |
| 			pfn = pte_pfn(pte);
 | |
| 			if (is_zero_pfn(pfn)) {
 | |
| 				mpfn = MIGRATE_PFN_MIGRATE;
 | |
| 				migrate->cpages++;
 | |
| 				goto next;
 | |
| 			}
 | |
| 			page = vm_normal_page(migrate->vma, addr, pte);
 | |
| 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
 | |
| 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
 | |
| 		}
 | |
| 
 | |
| 		/* FIXME support THP */
 | |
| 		if (!page || !page->mapping || PageTransCompound(page)) {
 | |
| 			mpfn = 0;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * By getting a reference on the page we pin it and that blocks
 | |
| 		 * any kind of migration. Side effect is that it "freezes" the
 | |
| 		 * pte.
 | |
| 		 *
 | |
| 		 * We drop this reference after isolating the page from the lru
 | |
| 		 * for non device page (device page are not on the lru and thus
 | |
| 		 * can't be dropped from it).
 | |
| 		 */
 | |
| 		get_page(page);
 | |
| 		migrate->cpages++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Optimize for the common case where page is only mapped once
 | |
| 		 * in one process. If we can lock the page, then we can safely
 | |
| 		 * set up a special migration page table entry now.
 | |
| 		 */
 | |
| 		if (trylock_page(page)) {
 | |
| 			pte_t swp_pte;
 | |
| 
 | |
| 			mpfn |= MIGRATE_PFN_LOCKED;
 | |
| 			ptep_get_and_clear(mm, addr, ptep);
 | |
| 
 | |
| 			/* Setup special migration page table entry */
 | |
| 			entry = make_migration_entry(page, mpfn &
 | |
| 						     MIGRATE_PFN_WRITE);
 | |
| 			swp_pte = swp_entry_to_pte(entry);
 | |
| 			if (pte_soft_dirty(pte))
 | |
| 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
 | |
| 			set_pte_at(mm, addr, ptep, swp_pte);
 | |
| 
 | |
| 			/*
 | |
| 			 * This is like regular unmap: we remove the rmap and
 | |
| 			 * drop page refcount. Page won't be freed, as we took
 | |
| 			 * a reference just above.
 | |
| 			 */
 | |
| 			page_remove_rmap(page, false);
 | |
| 			put_page(page);
 | |
| 
 | |
| 			if (pte_present(pte))
 | |
| 				unmapped++;
 | |
| 		}
 | |
| 
 | |
| next:
 | |
| 		migrate->dst[migrate->npages] = 0;
 | |
| 		migrate->src[migrate->npages++] = mpfn;
 | |
| 	}
 | |
| 	arch_leave_lazy_mmu_mode();
 | |
| 	pte_unmap_unlock(ptep - 1, ptl);
 | |
| 
 | |
| 	/* Only flush the TLB if we actually modified any entries */
 | |
| 	if (unmapped)
 | |
| 		flush_tlb_range(walk->vma, start, end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct mm_walk_ops migrate_vma_walk_ops = {
 | |
| 	.pmd_entry		= migrate_vma_collect_pmd,
 | |
| 	.pte_hole		= migrate_vma_collect_hole,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * migrate_vma_collect() - collect pages over a range of virtual addresses
 | |
|  * @migrate: migrate struct containing all migration information
 | |
|  *
 | |
|  * This will walk the CPU page table. For each virtual address backed by a
 | |
|  * valid page, it updates the src array and takes a reference on the page, in
 | |
|  * order to pin the page until we lock it and unmap it.
 | |
|  */
 | |
| static void migrate_vma_collect(struct migrate_vma *migrate)
 | |
| {
 | |
| 	struct mmu_notifier_range range;
 | |
| 
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
 | |
| 			migrate->vma->vm_mm, migrate->start, migrate->end);
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 
 | |
| 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
 | |
| 			&migrate_vma_walk_ops, migrate);
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migrate_vma_check_page() - check if page is pinned or not
 | |
|  * @page: struct page to check
 | |
|  *
 | |
|  * Pinned pages cannot be migrated. This is the same test as in
 | |
|  * migrate_page_move_mapping(), except that here we allow migration of a
 | |
|  * ZONE_DEVICE page.
 | |
|  */
 | |
| static bool migrate_vma_check_page(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * One extra ref because caller holds an extra reference, either from
 | |
| 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
 | |
| 	 * a device page.
 | |
| 	 */
 | |
| 	int extra = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME support THP (transparent huge page), it is bit more complex to
 | |
| 	 * check them than regular pages, because they can be mapped with a pmd
 | |
| 	 * or with a pte (split pte mapping).
 | |
| 	 */
 | |
| 	if (PageCompound(page))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Page from ZONE_DEVICE have one extra reference */
 | |
| 	if (is_zone_device_page(page)) {
 | |
| 		/*
 | |
| 		 * Private page can never be pin as they have no valid pte and
 | |
| 		 * GUP will fail for those. Yet if there is a pending migration
 | |
| 		 * a thread might try to wait on the pte migration entry and
 | |
| 		 * will bump the page reference count. Sadly there is no way to
 | |
| 		 * differentiate a regular pin from migration wait. Hence to
 | |
| 		 * avoid 2 racing thread trying to migrate back to CPU to enter
 | |
| 		 * infinite loop (one stoping migration because the other is
 | |
| 		 * waiting on pte migration entry). We always return true here.
 | |
| 		 *
 | |
| 		 * FIXME proper solution is to rework migration_entry_wait() so
 | |
| 		 * it does not need to take a reference on page.
 | |
| 		 */
 | |
| 		return is_device_private_page(page);
 | |
| 	}
 | |
| 
 | |
| 	/* For file back page */
 | |
| 	if (page_mapping(page))
 | |
| 		extra += 1 + page_has_private(page);
 | |
| 
 | |
| 	if ((page_count(page) - extra) > page_mapcount(page))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migrate_vma_prepare() - lock pages and isolate them from the lru
 | |
|  * @migrate: migrate struct containing all migration information
 | |
|  *
 | |
|  * This locks pages that have been collected by migrate_vma_collect(). Once each
 | |
|  * page is locked it is isolated from the lru (for non-device pages). Finally,
 | |
|  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 | |
|  * migrated by concurrent kernel threads.
 | |
|  */
 | |
| static void migrate_vma_prepare(struct migrate_vma *migrate)
 | |
| {
 | |
| 	const unsigned long npages = migrate->npages;
 | |
| 	const unsigned long start = migrate->start;
 | |
| 	unsigned long addr, i, restore = 0;
 | |
| 	bool allow_drain = true;
 | |
| 
 | |
| 	lru_add_drain();
 | |
| 
 | |
| 	for (i = 0; (i < npages) && migrate->cpages; i++) {
 | |
| 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
 | |
| 		bool remap = true;
 | |
| 
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
 | |
| 			/*
 | |
| 			 * Because we are migrating several pages there can be
 | |
| 			 * a deadlock between 2 concurrent migration where each
 | |
| 			 * are waiting on each other page lock.
 | |
| 			 *
 | |
| 			 * Make migrate_vma() a best effort thing and backoff
 | |
| 			 * for any page we can not lock right away.
 | |
| 			 */
 | |
| 			if (!trylock_page(page)) {
 | |
| 				migrate->src[i] = 0;
 | |
| 				migrate->cpages--;
 | |
| 				put_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 			remap = false;
 | |
| 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
 | |
| 		}
 | |
| 
 | |
| 		/* ZONE_DEVICE pages are not on LRU */
 | |
| 		if (!is_zone_device_page(page)) {
 | |
| 			if (!PageLRU(page) && allow_drain) {
 | |
| 				/* Drain CPU's pagevec */
 | |
| 				lru_add_drain_all();
 | |
| 				allow_drain = false;
 | |
| 			}
 | |
| 
 | |
| 			if (isolate_lru_page(page)) {
 | |
| 				if (remap) {
 | |
| 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 					migrate->cpages--;
 | |
| 					restore++;
 | |
| 				} else {
 | |
| 					migrate->src[i] = 0;
 | |
| 					unlock_page(page);
 | |
| 					migrate->cpages--;
 | |
| 					put_page(page);
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* Drop the reference we took in collect */
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 
 | |
| 		if (!migrate_vma_check_page(page)) {
 | |
| 			if (remap) {
 | |
| 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 				migrate->cpages--;
 | |
| 				restore++;
 | |
| 
 | |
| 				if (!is_zone_device_page(page)) {
 | |
| 					get_page(page);
 | |
| 					putback_lru_page(page);
 | |
| 				}
 | |
| 			} else {
 | |
| 				migrate->src[i] = 0;
 | |
| 				unlock_page(page);
 | |
| 				migrate->cpages--;
 | |
| 
 | |
| 				if (!is_zone_device_page(page))
 | |
| 					putback_lru_page(page);
 | |
| 				else
 | |
| 					put_page(page);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
 | |
| 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
 | |
| 
 | |
| 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
 | |
| 			continue;
 | |
| 
 | |
| 		remove_migration_pte(page, migrate->vma, addr, page);
 | |
| 
 | |
| 		migrate->src[i] = 0;
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		restore--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migrate_vma_unmap() - replace page mapping with special migration pte entry
 | |
|  * @migrate: migrate struct containing all migration information
 | |
|  *
 | |
|  * Replace page mapping (CPU page table pte) with a special migration pte entry
 | |
|  * and check again if it has been pinned. Pinned pages are restored because we
 | |
|  * cannot migrate them.
 | |
|  *
 | |
|  * This is the last step before we call the device driver callback to allocate
 | |
|  * destination memory and copy contents of original page over to new page.
 | |
|  */
 | |
| static void migrate_vma_unmap(struct migrate_vma *migrate)
 | |
| {
 | |
| 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 | |
| 	const unsigned long npages = migrate->npages;
 | |
| 	const unsigned long start = migrate->start;
 | |
| 	unsigned long addr, i, restore = 0;
 | |
| 
 | |
| 	for (i = 0; i < npages; i++) {
 | |
| 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
 | |
| 
 | |
| 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
 | |
| 			continue;
 | |
| 
 | |
| 		if (page_mapped(page)) {
 | |
| 			try_to_unmap(page, flags);
 | |
| 			if (page_mapped(page))
 | |
| 				goto restore;
 | |
| 		}
 | |
| 
 | |
| 		if (migrate_vma_check_page(page))
 | |
| 			continue;
 | |
| 
 | |
| restore:
 | |
| 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 		migrate->cpages--;
 | |
| 		restore++;
 | |
| 	}
 | |
| 
 | |
| 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
 | |
| 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
 | |
| 
 | |
| 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
 | |
| 			continue;
 | |
| 
 | |
| 		remove_migration_ptes(page, page, false);
 | |
| 
 | |
| 		migrate->src[i] = 0;
 | |
| 		unlock_page(page);
 | |
| 		restore--;
 | |
| 
 | |
| 		if (is_zone_device_page(page))
 | |
| 			put_page(page);
 | |
| 		else
 | |
| 			putback_lru_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * migrate_vma_setup() - prepare to migrate a range of memory
 | |
|  * @args: contains the vma, start, and and pfns arrays for the migration
 | |
|  *
 | |
|  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
 | |
|  * without an error.
 | |
|  *
 | |
|  * Prepare to migrate a range of memory virtual address range by collecting all
 | |
|  * the pages backing each virtual address in the range, saving them inside the
 | |
|  * src array.  Then lock those pages and unmap them. Once the pages are locked
 | |
|  * and unmapped, check whether each page is pinned or not.  Pages that aren't
 | |
|  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
 | |
|  * corresponding src array entry.  Then restores any pages that are pinned, by
 | |
|  * remapping and unlocking those pages.
 | |
|  *
 | |
|  * The caller should then allocate destination memory and copy source memory to
 | |
|  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
 | |
|  * flag set).  Once these are allocated and copied, the caller must update each
 | |
|  * corresponding entry in the dst array with the pfn value of the destination
 | |
|  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
 | |
|  * (destination pages must have their struct pages locked, via lock_page()).
 | |
|  *
 | |
|  * Note that the caller does not have to migrate all the pages that are marked
 | |
|  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
 | |
|  * device memory to system memory.  If the caller cannot migrate a device page
 | |
|  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
 | |
|  * consequences for the userspace process, so it must be avoided if at all
 | |
|  * possible.
 | |
|  *
 | |
|  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
 | |
|  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
 | |
|  * allowing the caller to allocate device memory for those unback virtual
 | |
|  * address.  For this the caller simply has to allocate device memory and
 | |
|  * properly set the destination entry like for regular migration.  Note that
 | |
|  * this can still fails and thus inside the device driver must check if the
 | |
|  * migration was successful for those entries after calling migrate_vma_pages()
 | |
|  * just like for regular migration.
 | |
|  *
 | |
|  * After that, the callers must call migrate_vma_pages() to go over each entry
 | |
|  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 | |
|  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 | |
|  * then migrate_vma_pages() to migrate struct page information from the source
 | |
|  * struct page to the destination struct page.  If it fails to migrate the
 | |
|  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
 | |
|  * src array.
 | |
|  *
 | |
|  * At this point all successfully migrated pages have an entry in the src
 | |
|  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 | |
|  * array entry with MIGRATE_PFN_VALID flag set.
 | |
|  *
 | |
|  * Once migrate_vma_pages() returns the caller may inspect which pages were
 | |
|  * successfully migrated, and which were not.  Successfully migrated pages will
 | |
|  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
 | |
|  *
 | |
|  * It is safe to update device page table after migrate_vma_pages() because
 | |
|  * both destination and source page are still locked, and the mmap_sem is held
 | |
|  * in read mode (hence no one can unmap the range being migrated).
 | |
|  *
 | |
|  * Once the caller is done cleaning up things and updating its page table (if it
 | |
|  * chose to do so, this is not an obligation) it finally calls
 | |
|  * migrate_vma_finalize() to update the CPU page table to point to new pages
 | |
|  * for successfully migrated pages or otherwise restore the CPU page table to
 | |
|  * point to the original source pages.
 | |
|  */
 | |
| int migrate_vma_setup(struct migrate_vma *args)
 | |
| {
 | |
| 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
 | |
| 
 | |
| 	args->start &= PAGE_MASK;
 | |
| 	args->end &= PAGE_MASK;
 | |
| 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
 | |
| 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
 | |
| 		return -EINVAL;
 | |
| 	if (nr_pages <= 0)
 | |
| 		return -EINVAL;
 | |
| 	if (args->start < args->vma->vm_start ||
 | |
| 	    args->start >= args->vma->vm_end)
 | |
| 		return -EINVAL;
 | |
| 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
 | |
| 		return -EINVAL;
 | |
| 	if (!args->src || !args->dst)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
 | |
| 	args->cpages = 0;
 | |
| 	args->npages = 0;
 | |
| 
 | |
| 	migrate_vma_collect(args);
 | |
| 
 | |
| 	if (args->cpages)
 | |
| 		migrate_vma_prepare(args);
 | |
| 	if (args->cpages)
 | |
| 		migrate_vma_unmap(args);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point pages are locked and unmapped, and thus they have
 | |
| 	 * stable content and can safely be copied to destination memory that
 | |
| 	 * is allocated by the drivers.
 | |
| 	 */
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_vma_setup);
 | |
| 
 | |
| static void migrate_vma_insert_page(struct migrate_vma *migrate,
 | |
| 				    unsigned long addr,
 | |
| 				    struct page *page,
 | |
| 				    unsigned long *src,
 | |
| 				    unsigned long *dst)
 | |
| {
 | |
| 	struct vm_area_struct *vma = migrate->vma;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	bool flush = false;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t entry;
 | |
| 	pgd_t *pgdp;
 | |
| 	p4d_t *p4dp;
 | |
| 	pud_t *pudp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| 	/* Only allow populating anonymous memory */
 | |
| 	if (!vma_is_anonymous(vma))
 | |
| 		goto abort;
 | |
| 
 | |
| 	pgdp = pgd_offset(mm, addr);
 | |
| 	p4dp = p4d_alloc(mm, pgdp, addr);
 | |
| 	if (!p4dp)
 | |
| 		goto abort;
 | |
| 	pudp = pud_alloc(mm, p4dp, addr);
 | |
| 	if (!pudp)
 | |
| 		goto abort;
 | |
| 	pmdp = pmd_alloc(mm, pudp, addr);
 | |
| 	if (!pmdp)
 | |
| 		goto abort;
 | |
| 
 | |
| 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
 | |
| 		goto abort;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
 | |
| 	 * pte_offset_map() on pmds where a huge pmd might be created
 | |
| 	 * from a different thread.
 | |
| 	 *
 | |
| 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
 | |
| 	 * parallel threads are excluded by other means.
 | |
| 	 *
 | |
| 	 * Here we only have down_read(mmap_sem).
 | |
| 	 */
 | |
| 	if (pte_alloc(mm, pmdp))
 | |
| 		goto abort;
 | |
| 
 | |
| 	/* See the comment in pte_alloc_one_map() */
 | |
| 	if (unlikely(pmd_trans_unstable(pmdp)))
 | |
| 		goto abort;
 | |
| 
 | |
| 	if (unlikely(anon_vma_prepare(vma)))
 | |
| 		goto abort;
 | |
| 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
 | |
| 		goto abort;
 | |
| 
 | |
| 	/*
 | |
| 	 * The memory barrier inside __SetPageUptodate makes sure that
 | |
| 	 * preceding stores to the page contents become visible before
 | |
| 	 * the set_pte_at() write.
 | |
| 	 */
 | |
| 	__SetPageUptodate(page);
 | |
| 
 | |
| 	if (is_zone_device_page(page)) {
 | |
| 		if (is_device_private_page(page)) {
 | |
| 			swp_entry_t swp_entry;
 | |
| 
 | |
| 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
 | |
| 			entry = swp_entry_to_pte(swp_entry);
 | |
| 		}
 | |
| 	} else {
 | |
| 		entry = mk_pte(page, vma->vm_page_prot);
 | |
| 		if (vma->vm_flags & VM_WRITE)
 | |
| 			entry = pte_mkwrite(pte_mkdirty(entry));
 | |
| 	}
 | |
| 
 | |
| 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
 | |
| 
 | |
| 	if (pte_present(*ptep)) {
 | |
| 		unsigned long pfn = pte_pfn(*ptep);
 | |
| 
 | |
| 		if (!is_zero_pfn(pfn)) {
 | |
| 			pte_unmap_unlock(ptep, ptl);
 | |
| 			mem_cgroup_cancel_charge(page, memcg, false);
 | |
| 			goto abort;
 | |
| 		}
 | |
| 		flush = true;
 | |
| 	} else if (!pte_none(*ptep)) {
 | |
| 		pte_unmap_unlock(ptep, ptl);
 | |
| 		mem_cgroup_cancel_charge(page, memcg, false);
 | |
| 		goto abort;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for usefaultfd but do not deliver the fault. Instead,
 | |
| 	 * just back off.
 | |
| 	 */
 | |
| 	if (userfaultfd_missing(vma)) {
 | |
| 		pte_unmap_unlock(ptep, ptl);
 | |
| 		mem_cgroup_cancel_charge(page, memcg, false);
 | |
| 		goto abort;
 | |
| 	}
 | |
| 
 | |
| 	inc_mm_counter(mm, MM_ANONPAGES);
 | |
| 	page_add_new_anon_rmap(page, vma, addr, false);
 | |
| 	mem_cgroup_commit_charge(page, memcg, false, false);
 | |
| 	if (!is_zone_device_page(page))
 | |
| 		lru_cache_add_active_or_unevictable(page, vma);
 | |
| 	get_page(page);
 | |
| 
 | |
| 	if (flush) {
 | |
| 		flush_cache_page(vma, addr, pte_pfn(*ptep));
 | |
| 		ptep_clear_flush_notify(vma, addr, ptep);
 | |
| 		set_pte_at_notify(mm, addr, ptep, entry);
 | |
| 		update_mmu_cache(vma, addr, ptep);
 | |
| 	} else {
 | |
| 		/* No need to invalidate - it was non-present before */
 | |
| 		set_pte_at(mm, addr, ptep, entry);
 | |
| 		update_mmu_cache(vma, addr, ptep);
 | |
| 	}
 | |
| 
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| 	*src = MIGRATE_PFN_MIGRATE;
 | |
| 	return;
 | |
| 
 | |
| abort:
 | |
| 	*src &= ~MIGRATE_PFN_MIGRATE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * migrate_vma_pages() - migrate meta-data from src page to dst page
 | |
|  * @migrate: migrate struct containing all migration information
 | |
|  *
 | |
|  * This migrates struct page meta-data from source struct page to destination
 | |
|  * struct page. This effectively finishes the migration from source page to the
 | |
|  * destination page.
 | |
|  */
 | |
| void migrate_vma_pages(struct migrate_vma *migrate)
 | |
| {
 | |
| 	const unsigned long npages = migrate->npages;
 | |
| 	const unsigned long start = migrate->start;
 | |
| 	struct mmu_notifier_range range;
 | |
| 	unsigned long addr, i;
 | |
| 	bool notified = false;
 | |
| 
 | |
| 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
 | |
| 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
 | |
| 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
 | |
| 		struct address_space *mapping;
 | |
| 		int r;
 | |
| 
 | |
| 		if (!newpage) {
 | |
| 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!page) {
 | |
| 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (!notified) {
 | |
| 				notified = true;
 | |
| 
 | |
| 				mmu_notifier_range_init(&range,
 | |
| 							MMU_NOTIFY_CLEAR, 0,
 | |
| 							NULL,
 | |
| 							migrate->vma->vm_mm,
 | |
| 							addr, migrate->end);
 | |
| 				mmu_notifier_invalidate_range_start(&range);
 | |
| 			}
 | |
| 			migrate_vma_insert_page(migrate, addr, newpage,
 | |
| 						&migrate->src[i],
 | |
| 						&migrate->dst[i]);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		mapping = page_mapping(page);
 | |
| 
 | |
| 		if (is_zone_device_page(newpage)) {
 | |
| 			if (is_device_private_page(newpage)) {
 | |
| 				/*
 | |
| 				 * For now only support private anonymous when
 | |
| 				 * migrating to un-addressable device memory.
 | |
| 				 */
 | |
| 				if (mapping) {
 | |
| 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 					continue;
 | |
| 				}
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * Other types of ZONE_DEVICE page are not
 | |
| 				 * supported.
 | |
| 				 */
 | |
| 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
 | |
| 		if (r != MIGRATEPAGE_SUCCESS)
 | |
| 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to double call mmu_notifier->invalidate_range() callback as
 | |
| 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
 | |
| 	 * did already call it.
 | |
| 	 */
 | |
| 	if (notified)
 | |
| 		mmu_notifier_invalidate_range_only_end(&range);
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_vma_pages);
 | |
| 
 | |
| /**
 | |
|  * migrate_vma_finalize() - restore CPU page table entry
 | |
|  * @migrate: migrate struct containing all migration information
 | |
|  *
 | |
|  * This replaces the special migration pte entry with either a mapping to the
 | |
|  * new page if migration was successful for that page, or to the original page
 | |
|  * otherwise.
 | |
|  *
 | |
|  * This also unlocks the pages and puts them back on the lru, or drops the extra
 | |
|  * refcount, for device pages.
 | |
|  */
 | |
| void migrate_vma_finalize(struct migrate_vma *migrate)
 | |
| {
 | |
| 	const unsigned long npages = migrate->npages;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < npages; i++) {
 | |
| 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
 | |
| 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
 | |
| 
 | |
| 		if (!page) {
 | |
| 			if (newpage) {
 | |
| 				unlock_page(newpage);
 | |
| 				put_page(newpage);
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
 | |
| 			if (newpage) {
 | |
| 				unlock_page(newpage);
 | |
| 				put_page(newpage);
 | |
| 			}
 | |
| 			newpage = page;
 | |
| 		}
 | |
| 
 | |
| 		remove_migration_ptes(page, newpage, false);
 | |
| 		unlock_page(page);
 | |
| 		migrate->cpages--;
 | |
| 
 | |
| 		if (is_zone_device_page(page))
 | |
| 			put_page(page);
 | |
| 		else
 | |
| 			putback_lru_page(page);
 | |
| 
 | |
| 		if (newpage != page) {
 | |
| 			unlock_page(newpage);
 | |
| 			if (is_zone_device_page(newpage))
 | |
| 				put_page(newpage);
 | |
| 			else
 | |
| 				putback_lru_page(newpage);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_vma_finalize);
 | |
| #endif /* CONFIG_DEVICE_PRIVATE */
 |