forked from mirrors/linux
		
	 867e5e1de1
			
		
	
	
		867e5e1de1
		
	
	
	
	
		
			
			There is a per-memcg lruvec and a NUMA node lruvec. Which one is being used is somewhat confusing right now, and it's easy to make mistakes - especially when it comes to global reclaim. How it works: when memory cgroups are enabled, we always use the root_mem_cgroup's per-node lruvecs. When memory cgroups are not compiled in or disabled at runtime, we use pgdat->lruvec. Document that in a comment. Due to the way the reclaim code is generalized, all lookups use the mem_cgroup_lruvec() helper function, and nobody should have to find the right lruvec manually right now. But to avoid future mistakes, rename the pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper that suggests it's a commonly accessed member. While in this area, swap the mem_cgroup_lruvec() argument order. The name suggests a memcg operation, yet it takes a pgdat first and a memcg second. I have to double take every time I call this. Fix that. Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			694 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			694 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef MM_SLAB_H
 | |
| #define MM_SLAB_H
 | |
| /*
 | |
|  * Internal slab definitions
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SLOB
 | |
| /*
 | |
|  * Common fields provided in kmem_cache by all slab allocators
 | |
|  * This struct is either used directly by the allocator (SLOB)
 | |
|  * or the allocator must include definitions for all fields
 | |
|  * provided in kmem_cache_common in their definition of kmem_cache.
 | |
|  *
 | |
|  * Once we can do anonymous structs (C11 standard) we could put a
 | |
|  * anonymous struct definition in these allocators so that the
 | |
|  * separate allocations in the kmem_cache structure of SLAB and
 | |
|  * SLUB is no longer needed.
 | |
|  */
 | |
| struct kmem_cache {
 | |
| 	unsigned int object_size;/* The original size of the object */
 | |
| 	unsigned int size;	/* The aligned/padded/added on size  */
 | |
| 	unsigned int align;	/* Alignment as calculated */
 | |
| 	slab_flags_t flags;	/* Active flags on the slab */
 | |
| 	unsigned int useroffset;/* Usercopy region offset */
 | |
| 	unsigned int usersize;	/* Usercopy region size */
 | |
| 	const char *name;	/* Slab name for sysfs */
 | |
| 	int refcount;		/* Use counter */
 | |
| 	void (*ctor)(void *);	/* Called on object slot creation */
 | |
| 	struct list_head list;	/* List of all slab caches on the system */
 | |
| };
 | |
| 
 | |
| #else /* !CONFIG_SLOB */
 | |
| 
 | |
| struct memcg_cache_array {
 | |
| 	struct rcu_head rcu;
 | |
| 	struct kmem_cache *entries[0];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is the main placeholder for memcg-related information in kmem caches.
 | |
|  * Both the root cache and the child caches will have it. For the root cache,
 | |
|  * this will hold a dynamically allocated array large enough to hold
 | |
|  * information about the currently limited memcgs in the system. To allow the
 | |
|  * array to be accessed without taking any locks, on relocation we free the old
 | |
|  * version only after a grace period.
 | |
|  *
 | |
|  * Root and child caches hold different metadata.
 | |
|  *
 | |
|  * @root_cache:	Common to root and child caches.  NULL for root, pointer to
 | |
|  *		the root cache for children.
 | |
|  *
 | |
|  * The following fields are specific to root caches.
 | |
|  *
 | |
|  * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
 | |
|  *		used to index child cachces during allocation and cleared
 | |
|  *		early during shutdown.
 | |
|  *
 | |
|  * @root_caches_node: List node for slab_root_caches list.
 | |
|  *
 | |
|  * @children:	List of all child caches.  While the child caches are also
 | |
|  *		reachable through @memcg_caches, a child cache remains on
 | |
|  *		this list until it is actually destroyed.
 | |
|  *
 | |
|  * The following fields are specific to child caches.
 | |
|  *
 | |
|  * @memcg:	Pointer to the memcg this cache belongs to.
 | |
|  *
 | |
|  * @children_node: List node for @root_cache->children list.
 | |
|  *
 | |
|  * @kmem_caches_node: List node for @memcg->kmem_caches list.
 | |
|  */
 | |
| struct memcg_cache_params {
 | |
| 	struct kmem_cache *root_cache;
 | |
| 	union {
 | |
| 		struct {
 | |
| 			struct memcg_cache_array __rcu *memcg_caches;
 | |
| 			struct list_head __root_caches_node;
 | |
| 			struct list_head children;
 | |
| 			bool dying;
 | |
| 		};
 | |
| 		struct {
 | |
| 			struct mem_cgroup *memcg;
 | |
| 			struct list_head children_node;
 | |
| 			struct list_head kmem_caches_node;
 | |
| 			struct percpu_ref refcnt;
 | |
| 
 | |
| 			void (*work_fn)(struct kmem_cache *);
 | |
| 			union {
 | |
| 				struct rcu_head rcu_head;
 | |
| 				struct work_struct work;
 | |
| 			};
 | |
| 		};
 | |
| 	};
 | |
| };
 | |
| #endif /* CONFIG_SLOB */
 | |
| 
 | |
| #ifdef CONFIG_SLAB
 | |
| #include <linux/slab_def.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB
 | |
| #include <linux/slub_def.h>
 | |
| #endif
 | |
| 
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/fault-inject.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/sched/mm.h>
 | |
| 
 | |
| /*
 | |
|  * State of the slab allocator.
 | |
|  *
 | |
|  * This is used to describe the states of the allocator during bootup.
 | |
|  * Allocators use this to gradually bootstrap themselves. Most allocators
 | |
|  * have the problem that the structures used for managing slab caches are
 | |
|  * allocated from slab caches themselves.
 | |
|  */
 | |
| enum slab_state {
 | |
| 	DOWN,			/* No slab functionality yet */
 | |
| 	PARTIAL,		/* SLUB: kmem_cache_node available */
 | |
| 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
 | |
| 	UP,			/* Slab caches usable but not all extras yet */
 | |
| 	FULL			/* Everything is working */
 | |
| };
 | |
| 
 | |
| extern enum slab_state slab_state;
 | |
| 
 | |
| /* The slab cache mutex protects the management structures during changes */
 | |
| extern struct mutex slab_mutex;
 | |
| 
 | |
| /* The list of all slab caches on the system */
 | |
| extern struct list_head slab_caches;
 | |
| 
 | |
| /* The slab cache that manages slab cache information */
 | |
| extern struct kmem_cache *kmem_cache;
 | |
| 
 | |
| /* A table of kmalloc cache names and sizes */
 | |
| extern const struct kmalloc_info_struct {
 | |
| 	const char *name[NR_KMALLOC_TYPES];
 | |
| 	unsigned int size;
 | |
| } kmalloc_info[];
 | |
| 
 | |
| #ifndef CONFIG_SLOB
 | |
| /* Kmalloc array related functions */
 | |
| void setup_kmalloc_cache_index_table(void);
 | |
| void create_kmalloc_caches(slab_flags_t);
 | |
| 
 | |
| /* Find the kmalloc slab corresponding for a certain size */
 | |
| struct kmem_cache *kmalloc_slab(size_t, gfp_t);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Functions provided by the slab allocators */
 | |
| int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
 | |
| 
 | |
| struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
 | |
| 			slab_flags_t flags, unsigned int useroffset,
 | |
| 			unsigned int usersize);
 | |
| extern void create_boot_cache(struct kmem_cache *, const char *name,
 | |
| 			unsigned int size, slab_flags_t flags,
 | |
| 			unsigned int useroffset, unsigned int usersize);
 | |
| 
 | |
| int slab_unmergeable(struct kmem_cache *s);
 | |
| struct kmem_cache *find_mergeable(unsigned size, unsigned align,
 | |
| 		slab_flags_t flags, const char *name, void (*ctor)(void *));
 | |
| #ifndef CONFIG_SLOB
 | |
| struct kmem_cache *
 | |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
 | |
| 		   slab_flags_t flags, void (*ctor)(void *));
 | |
| 
 | |
| slab_flags_t kmem_cache_flags(unsigned int object_size,
 | |
| 	slab_flags_t flags, const char *name,
 | |
| 	void (*ctor)(void *));
 | |
| #else
 | |
| static inline struct kmem_cache *
 | |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
 | |
| 		   slab_flags_t flags, void (*ctor)(void *))
 | |
| { return NULL; }
 | |
| 
 | |
| static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
 | |
| 	slab_flags_t flags, const char *name,
 | |
| 	void (*ctor)(void *))
 | |
| {
 | |
| 	return flags;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Legal flag mask for kmem_cache_create(), for various configurations */
 | |
| #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
 | |
| 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
 | |
| 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_SLAB)
 | |
| #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 | |
| #elif defined(CONFIG_SLUB_DEBUG)
 | |
| #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 | |
| 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
 | |
| #else
 | |
| #define SLAB_DEBUG_FLAGS (0)
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_SLAB)
 | |
| #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
 | |
| 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
 | |
| 			  SLAB_ACCOUNT)
 | |
| #elif defined(CONFIG_SLUB)
 | |
| #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
 | |
| 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
 | |
| #else
 | |
| #define SLAB_CACHE_FLAGS (0)
 | |
| #endif
 | |
| 
 | |
| /* Common flags available with current configuration */
 | |
| #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
 | |
| 
 | |
| /* Common flags permitted for kmem_cache_create */
 | |
| #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
 | |
| 			      SLAB_RED_ZONE | \
 | |
| 			      SLAB_POISON | \
 | |
| 			      SLAB_STORE_USER | \
 | |
| 			      SLAB_TRACE | \
 | |
| 			      SLAB_CONSISTENCY_CHECKS | \
 | |
| 			      SLAB_MEM_SPREAD | \
 | |
| 			      SLAB_NOLEAKTRACE | \
 | |
| 			      SLAB_RECLAIM_ACCOUNT | \
 | |
| 			      SLAB_TEMPORARY | \
 | |
| 			      SLAB_ACCOUNT)
 | |
| 
 | |
| bool __kmem_cache_empty(struct kmem_cache *);
 | |
| int __kmem_cache_shutdown(struct kmem_cache *);
 | |
| void __kmem_cache_release(struct kmem_cache *);
 | |
| int __kmem_cache_shrink(struct kmem_cache *);
 | |
| void __kmemcg_cache_deactivate(struct kmem_cache *s);
 | |
| void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
 | |
| void slab_kmem_cache_release(struct kmem_cache *);
 | |
| void kmem_cache_shrink_all(struct kmem_cache *s);
 | |
| 
 | |
| struct seq_file;
 | |
| struct file;
 | |
| 
 | |
| struct slabinfo {
 | |
| 	unsigned long active_objs;
 | |
| 	unsigned long num_objs;
 | |
| 	unsigned long active_slabs;
 | |
| 	unsigned long num_slabs;
 | |
| 	unsigned long shared_avail;
 | |
| 	unsigned int limit;
 | |
| 	unsigned int batchcount;
 | |
| 	unsigned int shared;
 | |
| 	unsigned int objects_per_slab;
 | |
| 	unsigned int cache_order;
 | |
| };
 | |
| 
 | |
| void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
 | |
| void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
 | |
| ssize_t slabinfo_write(struct file *file, const char __user *buffer,
 | |
| 		       size_t count, loff_t *ppos);
 | |
| 
 | |
| /*
 | |
|  * Generic implementation of bulk operations
 | |
|  * These are useful for situations in which the allocator cannot
 | |
|  * perform optimizations. In that case segments of the object listed
 | |
|  * may be allocated or freed using these operations.
 | |
|  */
 | |
| void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
 | |
| int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
 | |
| 
 | |
| static inline int cache_vmstat_idx(struct kmem_cache *s)
 | |
| {
 | |
| 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
 | |
| 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 
 | |
| /* List of all root caches. */
 | |
| extern struct list_head		slab_root_caches;
 | |
| #define root_caches_node	memcg_params.__root_caches_node
 | |
| 
 | |
| /*
 | |
|  * Iterate over all memcg caches of the given root cache. The caller must hold
 | |
|  * slab_mutex.
 | |
|  */
 | |
| #define for_each_memcg_cache(iter, root) \
 | |
| 	list_for_each_entry(iter, &(root)->memcg_params.children, \
 | |
| 			    memcg_params.children_node)
 | |
| 
 | |
| static inline bool is_root_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	return !s->memcg_params.root_cache;
 | |
| }
 | |
| 
 | |
| static inline bool slab_equal_or_root(struct kmem_cache *s,
 | |
| 				      struct kmem_cache *p)
 | |
| {
 | |
| 	return p == s || p == s->memcg_params.root_cache;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use suffixes to the name in memcg because we can't have caches
 | |
|  * created in the system with the same name. But when we print them
 | |
|  * locally, better refer to them with the base name
 | |
|  */
 | |
| static inline const char *cache_name(struct kmem_cache *s)
 | |
| {
 | |
| 	if (!is_root_cache(s))
 | |
| 		s = s->memcg_params.root_cache;
 | |
| 	return s->name;
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	if (is_root_cache(s))
 | |
| 		return s;
 | |
| 	return s->memcg_params.root_cache;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expects a pointer to a slab page. Please note, that PageSlab() check
 | |
|  * isn't sufficient, as it returns true also for tail compound slab pages,
 | |
|  * which do not have slab_cache pointer set.
 | |
|  * So this function assumes that the page can pass PageSlab() && !PageTail()
 | |
|  * check.
 | |
|  *
 | |
|  * The kmem_cache can be reparented asynchronously. The caller must ensure
 | |
|  * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
 | |
|  */
 | |
| static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	s = READ_ONCE(page->slab_cache);
 | |
| 	if (s && !is_root_cache(s))
 | |
| 		return READ_ONCE(s->memcg_params.memcg);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Charge the slab page belonging to the non-root kmem_cache.
 | |
|  * Can be called for non-root kmem_caches only.
 | |
|  */
 | |
| static __always_inline int memcg_charge_slab(struct page *page,
 | |
| 					     gfp_t gfp, int order,
 | |
| 					     struct kmem_cache *s)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct lruvec *lruvec;
 | |
| 	int ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = READ_ONCE(s->memcg_params.memcg);
 | |
| 	while (memcg && !css_tryget_online(&memcg->css))
 | |
| 		memcg = parent_mem_cgroup(memcg);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (unlikely(!memcg || mem_cgroup_is_root(memcg))) {
 | |
| 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
 | |
| 				    (1 << order));
 | |
| 		percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
 | |
| 	mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order);
 | |
| 
 | |
| 	/* transer try_charge() page references to kmem_cache */
 | |
| 	percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
 | |
| 	css_put_many(&memcg->css, 1 << order);
 | |
| out:
 | |
| 	css_put(&memcg->css);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Uncharge a slab page belonging to a non-root kmem_cache.
 | |
|  * Can be called for non-root kmem_caches only.
 | |
|  */
 | |
| static __always_inline void memcg_uncharge_slab(struct page *page, int order,
 | |
| 						struct kmem_cache *s)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	struct lruvec *lruvec;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memcg = READ_ONCE(s->memcg_params.memcg);
 | |
| 	if (likely(!mem_cgroup_is_root(memcg))) {
 | |
| 		lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
 | |
| 		mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order));
 | |
| 		memcg_kmem_uncharge_memcg(page, order, memcg);
 | |
| 	} else {
 | |
| 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
 | |
| 				    -(1 << order));
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order);
 | |
| }
 | |
| 
 | |
| extern void slab_init_memcg_params(struct kmem_cache *);
 | |
| extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
 | |
| 
 | |
| #else /* CONFIG_MEMCG_KMEM */
 | |
| 
 | |
| /* If !memcg, all caches are root. */
 | |
| #define slab_root_caches	slab_caches
 | |
| #define root_caches_node	list
 | |
| 
 | |
| #define for_each_memcg_cache(iter, root) \
 | |
| 	for ((void)(iter), (void)(root); 0; )
 | |
| 
 | |
| static inline bool is_root_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool slab_equal_or_root(struct kmem_cache *s,
 | |
| 				      struct kmem_cache *p)
 | |
| {
 | |
| 	return s == p;
 | |
| }
 | |
| 
 | |
| static inline const char *cache_name(struct kmem_cache *s)
 | |
| {
 | |
| 	return s->name;
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
 | |
| 				    struct kmem_cache *s)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void memcg_uncharge_slab(struct page *page, int order,
 | |
| 				       struct kmem_cache *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void slab_init_memcg_params(struct kmem_cache *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void memcg_link_cache(struct kmem_cache *s,
 | |
| 				    struct mem_cgroup *memcg)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MEMCG_KMEM */
 | |
| 
 | |
| static inline struct kmem_cache *virt_to_cache(const void *obj)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = virt_to_head_page(obj);
 | |
| 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
 | |
| 					__func__))
 | |
| 		return NULL;
 | |
| 	return page->slab_cache;
 | |
| }
 | |
| 
 | |
| static __always_inline int charge_slab_page(struct page *page,
 | |
| 					    gfp_t gfp, int order,
 | |
| 					    struct kmem_cache *s)
 | |
| {
 | |
| 	if (is_root_cache(s)) {
 | |
| 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
 | |
| 				    1 << order);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return memcg_charge_slab(page, gfp, order, s);
 | |
| }
 | |
| 
 | |
| static __always_inline void uncharge_slab_page(struct page *page, int order,
 | |
| 					       struct kmem_cache *s)
 | |
| {
 | |
| 	if (is_root_cache(s)) {
 | |
| 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
 | |
| 				    -(1 << order));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memcg_uncharge_slab(page, order, s);
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
 | |
| {
 | |
| 	struct kmem_cache *cachep;
 | |
| 
 | |
| 	/*
 | |
| 	 * When kmemcg is not being used, both assignments should return the
 | |
| 	 * same value. but we don't want to pay the assignment price in that
 | |
| 	 * case. If it is not compiled in, the compiler should be smart enough
 | |
| 	 * to not do even the assignment. In that case, slab_equal_or_root
 | |
| 	 * will also be a constant.
 | |
| 	 */
 | |
| 	if (!memcg_kmem_enabled() &&
 | |
| 	    !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
 | |
| 	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
 | |
| 		return s;
 | |
| 
 | |
| 	cachep = virt_to_cache(x);
 | |
| 	WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
 | |
| 		  "%s: Wrong slab cache. %s but object is from %s\n",
 | |
| 		  __func__, s->name, cachep->name);
 | |
| 	return cachep;
 | |
| }
 | |
| 
 | |
| static inline size_t slab_ksize(const struct kmem_cache *s)
 | |
| {
 | |
| #ifndef CONFIG_SLUB
 | |
| 	return s->object_size;
 | |
| 
 | |
| #else /* CONFIG_SLUB */
 | |
| # ifdef CONFIG_SLUB_DEBUG
 | |
| 	/*
 | |
| 	 * Debugging requires use of the padding between object
 | |
| 	 * and whatever may come after it.
 | |
| 	 */
 | |
| 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 | |
| 		return s->object_size;
 | |
| # endif
 | |
| 	if (s->flags & SLAB_KASAN)
 | |
| 		return s->object_size;
 | |
| 	/*
 | |
| 	 * If we have the need to store the freelist pointer
 | |
| 	 * back there or track user information then we can
 | |
| 	 * only use the space before that information.
 | |
| 	 */
 | |
| 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
 | |
| 		return s->inuse;
 | |
| 	/*
 | |
| 	 * Else we can use all the padding etc for the allocation
 | |
| 	 */
 | |
| 	return s->size;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
 | |
| 						     gfp_t flags)
 | |
| {
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 
 | |
| 	fs_reclaim_acquire(flags);
 | |
| 	fs_reclaim_release(flags);
 | |
| 
 | |
| 	might_sleep_if(gfpflags_allow_blocking(flags));
 | |
| 
 | |
| 	if (should_failslab(s, flags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (memcg_kmem_enabled() &&
 | |
| 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
 | |
| 		return memcg_kmem_get_cache(s);
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
 | |
| 					size_t size, void **p)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		p[i] = kasan_slab_alloc(s, p[i], flags);
 | |
| 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
 | |
| 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
 | |
| 					 s->flags, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (memcg_kmem_enabled())
 | |
| 		memcg_kmem_put_cache(s);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SLOB
 | |
| /*
 | |
|  * The slab lists for all objects.
 | |
|  */
 | |
| struct kmem_cache_node {
 | |
| 	spinlock_t list_lock;
 | |
| 
 | |
| #ifdef CONFIG_SLAB
 | |
| 	struct list_head slabs_partial;	/* partial list first, better asm code */
 | |
| 	struct list_head slabs_full;
 | |
| 	struct list_head slabs_free;
 | |
| 	unsigned long total_slabs;	/* length of all slab lists */
 | |
| 	unsigned long free_slabs;	/* length of free slab list only */
 | |
| 	unsigned long free_objects;
 | |
| 	unsigned int free_limit;
 | |
| 	unsigned int colour_next;	/* Per-node cache coloring */
 | |
| 	struct array_cache *shared;	/* shared per node */
 | |
| 	struct alien_cache **alien;	/* on other nodes */
 | |
| 	unsigned long next_reap;	/* updated without locking */
 | |
| 	int free_touched;		/* updated without locking */
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB
 | |
| 	unsigned long nr_partial;
 | |
| 	struct list_head partial;
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	atomic_long_t nr_slabs;
 | |
| 	atomic_long_t total_objects;
 | |
| 	struct list_head full;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| };
 | |
| 
 | |
| static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 | |
| {
 | |
| 	return s->node[node];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterator over all nodes. The body will be executed for each node that has
 | |
|  * a kmem_cache_node structure allocated (which is true for all online nodes)
 | |
|  */
 | |
| #define for_each_kmem_cache_node(__s, __node, __n) \
 | |
| 	for (__node = 0; __node < nr_node_ids; __node++) \
 | |
| 		 if ((__n = get_node(__s, __node)))
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void *slab_start(struct seq_file *m, loff_t *pos);
 | |
| void *slab_next(struct seq_file *m, void *p, loff_t *pos);
 | |
| void slab_stop(struct seq_file *m, void *p);
 | |
| void *memcg_slab_start(struct seq_file *m, loff_t *pos);
 | |
| void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
 | |
| void memcg_slab_stop(struct seq_file *m, void *p);
 | |
| int memcg_slab_show(struct seq_file *m, void *p);
 | |
| 
 | |
| #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 | |
| void dump_unreclaimable_slab(void);
 | |
| #else
 | |
| static inline void dump_unreclaimable_slab(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
 | |
| 
 | |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM
 | |
| int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 | |
| 			gfp_t gfp);
 | |
| void cache_random_seq_destroy(struct kmem_cache *cachep);
 | |
| #else
 | |
| static inline int cache_random_seq_create(struct kmem_cache *cachep,
 | |
| 					unsigned int count, gfp_t gfp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
 | |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */
 | |
| 
 | |
| static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
 | |
| {
 | |
| 	if (static_branch_unlikely(&init_on_alloc)) {
 | |
| 		if (c->ctor)
 | |
| 			return false;
 | |
| 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
 | |
| 			return flags & __GFP_ZERO;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return flags & __GFP_ZERO;
 | |
| }
 | |
| 
 | |
| static inline bool slab_want_init_on_free(struct kmem_cache *c)
 | |
| {
 | |
| 	if (static_branch_unlikely(&init_on_free))
 | |
| 		return !(c->ctor ||
 | |
| 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif /* MM_SLAB_H */
 |