forked from mirrors/linux
		
	 1e562deace
			
		
	
	
		1e562deace
		
	
	
	
	
		
			
			A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commitc0d20d22e0("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commitb3a8c8a5eb("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			379 lines
		
	
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			379 lines
		
	
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * RSA padding templates.
 | |
|  *
 | |
|  * Copyright (c) 2015  Intel Corporation
 | |
|  */
 | |
| 
 | |
| #include <crypto/algapi.h>
 | |
| #include <crypto/akcipher.h>
 | |
| #include <crypto/internal/akcipher.h>
 | |
| #include <crypto/internal/rsa.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/scatterlist.h>
 | |
| 
 | |
| struct pkcs1pad_ctx {
 | |
| 	struct crypto_akcipher *child;
 | |
| 	unsigned int key_size;
 | |
| };
 | |
| 
 | |
| struct pkcs1pad_inst_ctx {
 | |
| 	struct crypto_akcipher_spawn spawn;
 | |
| };
 | |
| 
 | |
| struct pkcs1pad_request {
 | |
| 	struct scatterlist in_sg[2], out_sg[1];
 | |
| 	uint8_t *in_buf, *out_buf;
 | |
| 	struct akcipher_request child_req;
 | |
| };
 | |
| 
 | |
| static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
 | |
| 		unsigned int keylen)
 | |
| {
 | |
| 	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
 | |
| 
 | |
| 	return rsa_set_key(ctx->child, &ctx->key_size, RSA_PUB, key, keylen);
 | |
| }
 | |
| 
 | |
| static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
 | |
| 		unsigned int keylen)
 | |
| {
 | |
| 	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
 | |
| 
 | |
| 	return rsa_set_key(ctx->child, &ctx->key_size, RSA_PRIV, key, keylen);
 | |
| }
 | |
| 
 | |
| static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
 | |
| {
 | |
| 	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
 | |
| 
 | |
| 	/*
 | |
| 	 * The maximum destination buffer size for the encrypt operation
 | |
| 	 * will be the same as for RSA, even though it's smaller for
 | |
| 	 * decrypt.
 | |
| 	 */
 | |
| 
 | |
| 	return ctx->key_size;
 | |
| }
 | |
| 
 | |
| static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
 | |
| 		struct scatterlist *next)
 | |
| {
 | |
| 	int nsegs = next ? 2 : 1;
 | |
| 
 | |
| 	sg_init_table(sg, nsegs);
 | |
| 	sg_set_buf(sg, buf, len);
 | |
| 
 | |
| 	if (next)
 | |
| 		sg_chain(sg, nsegs, next);
 | |
| }
 | |
| 
 | |
| static int pkcs1pad_encrypt_complete(struct akcipher_request *req, int err)
 | |
| {
 | |
| 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
 | |
| 	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
 | |
| 	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
 | |
| 	unsigned int pad_len;
 | |
| 	unsigned int len;
 | |
| 	u8 *out_buf;
 | |
| 
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	len = req_ctx->child_req.dst_len;
 | |
| 	pad_len = ctx->key_size - len;
 | |
| 
 | |
| 	/* Four billion to one */
 | |
| 	if (likely(!pad_len))
 | |
| 		goto out;
 | |
| 
 | |
| 	out_buf = kzalloc(ctx->key_size, GFP_ATOMIC);
 | |
| 	err = -ENOMEM;
 | |
| 	if (!out_buf)
 | |
| 		goto out;
 | |
| 
 | |
| 	sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
 | |
| 			  out_buf + pad_len, len);
 | |
| 	sg_copy_from_buffer(req->dst,
 | |
| 			    sg_nents_for_len(req->dst, ctx->key_size),
 | |
| 			    out_buf, ctx->key_size);
 | |
| 	kfree_sensitive(out_buf);
 | |
| 
 | |
| out:
 | |
| 	req->dst_len = ctx->key_size;
 | |
| 
 | |
| 	kfree(req_ctx->in_buf);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void pkcs1pad_encrypt_complete_cb(void *data, int err)
 | |
| {
 | |
| 	struct akcipher_request *req = data;
 | |
| 
 | |
| 	if (err == -EINPROGRESS)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = pkcs1pad_encrypt_complete(req, err);
 | |
| 
 | |
| out:
 | |
| 	akcipher_request_complete(req, err);
 | |
| }
 | |
| 
 | |
| static int pkcs1pad_encrypt(struct akcipher_request *req)
 | |
| {
 | |
| 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
 | |
| 	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
 | |
| 	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
 | |
| 	int err;
 | |
| 	unsigned int i, ps_end;
 | |
| 
 | |
| 	if (!ctx->key_size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->src_len > ctx->key_size - 11)
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	if (req->dst_len < ctx->key_size) {
 | |
| 		req->dst_len = ctx->key_size;
 | |
| 		return -EOVERFLOW;
 | |
| 	}
 | |
| 
 | |
| 	req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
 | |
| 				  GFP_KERNEL);
 | |
| 	if (!req_ctx->in_buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ps_end = ctx->key_size - req->src_len - 2;
 | |
| 	req_ctx->in_buf[0] = 0x02;
 | |
| 	for (i = 1; i < ps_end; i++)
 | |
| 		req_ctx->in_buf[i] = get_random_u32_inclusive(1, 255);
 | |
| 	req_ctx->in_buf[ps_end] = 0x00;
 | |
| 
 | |
| 	pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
 | |
| 			ctx->key_size - 1 - req->src_len, req->src);
 | |
| 
 | |
| 	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
 | |
| 	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
 | |
| 			pkcs1pad_encrypt_complete_cb, req);
 | |
| 
 | |
| 	/* Reuse output buffer */
 | |
| 	akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
 | |
| 				   req->dst, ctx->key_size - 1, req->dst_len);
 | |
| 
 | |
| 	err = crypto_akcipher_encrypt(&req_ctx->child_req);
 | |
| 	if (err != -EINPROGRESS && err != -EBUSY)
 | |
| 		return pkcs1pad_encrypt_complete(req, err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
 | |
| {
 | |
| 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
 | |
| 	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
 | |
| 	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
 | |
| 	unsigned int dst_len;
 | |
| 	unsigned int pos;
 | |
| 	u8 *out_buf;
 | |
| 
 | |
| 	if (err)
 | |
| 		goto done;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	dst_len = req_ctx->child_req.dst_len;
 | |
| 	if (dst_len < ctx->key_size - 1)
 | |
| 		goto done;
 | |
| 
 | |
| 	out_buf = req_ctx->out_buf;
 | |
| 	if (dst_len == ctx->key_size) {
 | |
| 		if (out_buf[0] != 0x00)
 | |
| 			/* Decrypted value had no leading 0 byte */
 | |
| 			goto done;
 | |
| 
 | |
| 		dst_len--;
 | |
| 		out_buf++;
 | |
| 	}
 | |
| 
 | |
| 	if (out_buf[0] != 0x02)
 | |
| 		goto done;
 | |
| 
 | |
| 	for (pos = 1; pos < dst_len; pos++)
 | |
| 		if (out_buf[pos] == 0x00)
 | |
| 			break;
 | |
| 	if (pos < 9 || pos == dst_len)
 | |
| 		goto done;
 | |
| 	pos++;
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| 	if (req->dst_len < dst_len - pos)
 | |
| 		err = -EOVERFLOW;
 | |
| 	req->dst_len = dst_len - pos;
 | |
| 
 | |
| 	if (!err)
 | |
| 		sg_copy_from_buffer(req->dst,
 | |
| 				sg_nents_for_len(req->dst, req->dst_len),
 | |
| 				out_buf + pos, req->dst_len);
 | |
| 
 | |
| done:
 | |
| 	kfree_sensitive(req_ctx->out_buf);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void pkcs1pad_decrypt_complete_cb(void *data, int err)
 | |
| {
 | |
| 	struct akcipher_request *req = data;
 | |
| 
 | |
| 	if (err == -EINPROGRESS)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = pkcs1pad_decrypt_complete(req, err);
 | |
| 
 | |
| out:
 | |
| 	akcipher_request_complete(req, err);
 | |
| }
 | |
| 
 | |
| static int pkcs1pad_decrypt(struct akcipher_request *req)
 | |
| {
 | |
| 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
 | |
| 	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
 | |
| 	struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ctx->key_size || req->src_len != ctx->key_size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
 | |
| 	if (!req_ctx->out_buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
 | |
| 			    ctx->key_size, NULL);
 | |
| 
 | |
| 	akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
 | |
| 	akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
 | |
| 			pkcs1pad_decrypt_complete_cb, req);
 | |
| 
 | |
| 	/* Reuse input buffer, output to a new buffer */
 | |
| 	akcipher_request_set_crypt(&req_ctx->child_req, req->src,
 | |
| 				   req_ctx->out_sg, req->src_len,
 | |
| 				   ctx->key_size);
 | |
| 
 | |
| 	err = crypto_akcipher_decrypt(&req_ctx->child_req);
 | |
| 	if (err != -EINPROGRESS && err != -EBUSY)
 | |
| 		return pkcs1pad_decrypt_complete(req, err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
 | |
| {
 | |
| 	struct akcipher_instance *inst = akcipher_alg_instance(tfm);
 | |
| 	struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
 | |
| 	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
 | |
| 	struct crypto_akcipher *child_tfm;
 | |
| 
 | |
| 	child_tfm = crypto_spawn_akcipher(&ictx->spawn);
 | |
| 	if (IS_ERR(child_tfm))
 | |
| 		return PTR_ERR(child_tfm);
 | |
| 
 | |
| 	ctx->child = child_tfm;
 | |
| 
 | |
| 	akcipher_set_reqsize(tfm, sizeof(struct pkcs1pad_request) +
 | |
| 				  crypto_akcipher_reqsize(child_tfm));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
 | |
| {
 | |
| 	struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
 | |
| 
 | |
| 	crypto_free_akcipher(ctx->child);
 | |
| }
 | |
| 
 | |
| static void pkcs1pad_free(struct akcipher_instance *inst)
 | |
| {
 | |
| 	struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
 | |
| 	struct crypto_akcipher_spawn *spawn = &ctx->spawn;
 | |
| 
 | |
| 	crypto_drop_akcipher(spawn);
 | |
| 	kfree(inst);
 | |
| }
 | |
| 
 | |
| static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
 | |
| {
 | |
| 	u32 mask;
 | |
| 	struct akcipher_instance *inst;
 | |
| 	struct pkcs1pad_inst_ctx *ctx;
 | |
| 	struct akcipher_alg *rsa_alg;
 | |
| 	int err;
 | |
| 
 | |
| 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
 | |
| 	if (!inst)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx = akcipher_instance_ctx(inst);
 | |
| 
 | |
| 	err = crypto_grab_akcipher(&ctx->spawn, akcipher_crypto_instance(inst),
 | |
| 				   crypto_attr_alg_name(tb[1]), 0, mask);
 | |
| 	if (err)
 | |
| 		goto err_free_inst;
 | |
| 
 | |
| 	rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn);
 | |
| 
 | |
| 	if (strcmp(rsa_alg->base.cra_name, "rsa") != 0) {
 | |
| 		err = -EINVAL;
 | |
| 		goto err_free_inst;
 | |
| 	}
 | |
| 
 | |
| 	err = -ENAMETOOLONG;
 | |
| 	if (snprintf(inst->alg.base.cra_name,
 | |
| 		     CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
 | |
| 		     rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
 | |
| 		goto err_free_inst;
 | |
| 
 | |
| 	if (snprintf(inst->alg.base.cra_driver_name,
 | |
| 		     CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
 | |
| 		     rsa_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
 | |
| 		goto err_free_inst;
 | |
| 
 | |
| 	inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
 | |
| 	inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
 | |
| 
 | |
| 	inst->alg.init = pkcs1pad_init_tfm;
 | |
| 	inst->alg.exit = pkcs1pad_exit_tfm;
 | |
| 
 | |
| 	inst->alg.encrypt = pkcs1pad_encrypt;
 | |
| 	inst->alg.decrypt = pkcs1pad_decrypt;
 | |
| 	inst->alg.set_pub_key = pkcs1pad_set_pub_key;
 | |
| 	inst->alg.set_priv_key = pkcs1pad_set_priv_key;
 | |
| 	inst->alg.max_size = pkcs1pad_get_max_size;
 | |
| 
 | |
| 	inst->free = pkcs1pad_free;
 | |
| 
 | |
| 	err = akcipher_register_instance(tmpl, inst);
 | |
| 	if (err) {
 | |
| err_free_inst:
 | |
| 		pkcs1pad_free(inst);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| struct crypto_template rsa_pkcs1pad_tmpl = {
 | |
| 	.name = "pkcs1pad",
 | |
| 	.create = pkcs1pad_create,
 | |
| 	.module = THIS_MODULE,
 | |
| };
 | |
| 
 | |
| MODULE_ALIAS_CRYPTO("pkcs1pad");
 |