forked from mirrors/linux
		
	 1e562deace
			
		
	
	
		1e562deace
		
	
	
	
	
		
			
			A sig_alg backend has just been introduced with the intent of moving all asymmetric sign/verify algorithms to it one by one. Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate rsassa-pkcs1.c which uses the new backend. Consequently there are now two templates which build on the "rsa" akcipher_alg: * The existing "pkcs1pad" template, which is instantiated as an akcipher_instance and retains the encrypt/decrypt operations of RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2). * The new "pkcs1" template, which is instantiated as a sig_instance and contains the sign/verify operations of RSASSA-PKCS1-v1_5 (RFC 8017 sec 8.2). In a separate step, rsa-pkcs1pad.c could optionally be renamed to rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates could be added for RSAES-OAEP and RSASSA-PSS. Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform without specifying a hash algorithm. That makes sense if the transform is only used for encrypt/decrypt and continues to be supported. But for sign/verify, such transforms previously did not insert the Full Hash Prefix into the padding. The resulting message encoding was incompliant with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical. From here on in, it is no longer allowed to allocate a transform without specifying a hash algorithm if the transform is used for sign/verify operations. This simplifies the code because the insertion of the Full Hash Prefix is no longer optional, so various "if (digest_info)" clauses can be removed. There has been a previous attempt to forbid transform allocation without specifying a hash algorithm, namely by commitc0d20d22e0("crypto: rsa-pkcs1pad - Require hash to be present"). It had to be rolled back with commitb3a8c8a5eb("crypto: rsa-pkcs1pad: Allow hash to be optional [ver #2]"), presumably because it broke allocation of a transform which was solely used for encrypt/decrypt, not sign/verify. Avoid such breakage by allowing transform allocation for encrypt/decrypt with and without specifying a hash algorithm (and simply ignoring the hash algorithm in the former case). So again, specifying a hash algorithm is now mandatory for sign/verify, but optional and ignored for encrypt/decrypt. The new sig_alg API uses kernel buffers instead of sglists, which avoids the overhead of copying signature and digest from sglists back into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit. sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg may be asynchronous. So await the result of the akcipher_alg, similar to crypto_akcipher_sync_{en,de}crypt(). As part of the migration, rename "rsa_digest_info" to "hash_prefix" to adhere to the spec language in RFC 9580. Otherwise keep the code unmodified wherever possible to ease reviewing and bisecting. Leave several simplification and hardening opportunities to separate commits. rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers which need to be freed by kfree_sensitive(), hence a DEFINE_FREE() clause for kfree_sensitive() is introduced herein as a byproduct. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			437 lines
		
	
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			437 lines
		
	
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /* RSA asymmetric public-key algorithm [RFC3447]
 | |
|  *
 | |
|  * Copyright (c) 2015, Intel Corporation
 | |
|  * Authors: Tadeusz Struk <tadeusz.struk@intel.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/fips.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mpi.h>
 | |
| #include <crypto/internal/rsa.h>
 | |
| #include <crypto/internal/akcipher.h>
 | |
| #include <crypto/akcipher.h>
 | |
| #include <crypto/algapi.h>
 | |
| 
 | |
| struct rsa_mpi_key {
 | |
| 	MPI n;
 | |
| 	MPI e;
 | |
| 	MPI d;
 | |
| 	MPI p;
 | |
| 	MPI q;
 | |
| 	MPI dp;
 | |
| 	MPI dq;
 | |
| 	MPI qinv;
 | |
| };
 | |
| 
 | |
| static int rsa_check_payload(MPI x, MPI n)
 | |
| {
 | |
| 	MPI n1;
 | |
| 
 | |
| 	if (mpi_cmp_ui(x, 1) <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	n1 = mpi_alloc(0);
 | |
| 	if (!n1)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (mpi_sub_ui(n1, n, 1) || mpi_cmp(x, n1) >= 0) {
 | |
| 		mpi_free(n1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mpi_free(n1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RSAEP function [RFC3447 sec 5.1.1]
 | |
|  * c = m^e mod n;
 | |
|  */
 | |
| static int _rsa_enc(const struct rsa_mpi_key *key, MPI c, MPI m)
 | |
| {
 | |
| 	/*
 | |
| 	 * Even though (1) in RFC3447 only requires 0 <= m <= n - 1, we are
 | |
| 	 * slightly more conservative and require 1 < m < n - 1. This is in line
 | |
| 	 * with SP 800-56Br2, Section 7.1.1.
 | |
| 	 */
 | |
| 	if (rsa_check_payload(m, key->n))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* (2) c = m^e mod n */
 | |
| 	return mpi_powm(c, m, key->e, key->n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RSADP function [RFC3447 sec 5.1.2]
 | |
|  * m_1 = c^dP mod p;
 | |
|  * m_2 = c^dQ mod q;
 | |
|  * h = (m_1 - m_2) * qInv mod p;
 | |
|  * m = m_2 + q * h;
 | |
|  */
 | |
| static int _rsa_dec_crt(const struct rsa_mpi_key *key, MPI m_or_m1_or_h, MPI c)
 | |
| {
 | |
| 	MPI m2, m12_or_qh;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Even though (1) in RFC3447 only requires 0 <= c <= n - 1, we are
 | |
| 	 * slightly more conservative and require 1 < c < n - 1. This is in line
 | |
| 	 * with SP 800-56Br2, Section 7.1.2.
 | |
| 	 */
 | |
| 	if (rsa_check_payload(c, key->n))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	m2 = mpi_alloc(0);
 | |
| 	m12_or_qh = mpi_alloc(0);
 | |
| 	if (!m2 || !m12_or_qh)
 | |
| 		goto err_free_mpi;
 | |
| 
 | |
| 	/* (2i) m_1 = c^dP mod p */
 | |
| 	ret = mpi_powm(m_or_m1_or_h, c, key->dp, key->p);
 | |
| 	if (ret)
 | |
| 		goto err_free_mpi;
 | |
| 
 | |
| 	/* (2i) m_2 = c^dQ mod q */
 | |
| 	ret = mpi_powm(m2, c, key->dq, key->q);
 | |
| 	if (ret)
 | |
| 		goto err_free_mpi;
 | |
| 
 | |
| 	/* (2iii) h = (m_1 - m_2) * qInv mod p */
 | |
| 	ret = mpi_sub(m12_or_qh, m_or_m1_or_h, m2) ?:
 | |
| 	      mpi_mulm(m_or_m1_or_h, m12_or_qh, key->qinv, key->p);
 | |
| 
 | |
| 	/* (2iv) m = m_2 + q * h */
 | |
| 	ret = ret ?:
 | |
| 	      mpi_mul(m12_or_qh, key->q, m_or_m1_or_h) ?:
 | |
| 	      mpi_addm(m_or_m1_or_h, m2, m12_or_qh, key->n);
 | |
| 
 | |
| err_free_mpi:
 | |
| 	mpi_free(m12_or_qh);
 | |
| 	mpi_free(m2);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline struct rsa_mpi_key *rsa_get_key(struct crypto_akcipher *tfm)
 | |
| {
 | |
| 	return akcipher_tfm_ctx(tfm);
 | |
| }
 | |
| 
 | |
| static int rsa_enc(struct akcipher_request *req)
 | |
| {
 | |
| 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
 | |
| 	const struct rsa_mpi_key *pkey = rsa_get_key(tfm);
 | |
| 	MPI m, c = mpi_alloc(0);
 | |
| 	int ret = 0;
 | |
| 	int sign;
 | |
| 
 | |
| 	if (!c)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (unlikely(!pkey->n || !pkey->e)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto err_free_c;
 | |
| 	}
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	m = mpi_read_raw_from_sgl(req->src, req->src_len);
 | |
| 	if (!m)
 | |
| 		goto err_free_c;
 | |
| 
 | |
| 	ret = _rsa_enc(pkey, c, m);
 | |
| 	if (ret)
 | |
| 		goto err_free_m;
 | |
| 
 | |
| 	ret = mpi_write_to_sgl(c, req->dst, req->dst_len, &sign);
 | |
| 	if (ret)
 | |
| 		goto err_free_m;
 | |
| 
 | |
| 	if (sign < 0)
 | |
| 		ret = -EBADMSG;
 | |
| 
 | |
| err_free_m:
 | |
| 	mpi_free(m);
 | |
| err_free_c:
 | |
| 	mpi_free(c);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rsa_dec(struct akcipher_request *req)
 | |
| {
 | |
| 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
 | |
| 	const struct rsa_mpi_key *pkey = rsa_get_key(tfm);
 | |
| 	MPI c, m = mpi_alloc(0);
 | |
| 	int ret = 0;
 | |
| 	int sign;
 | |
| 
 | |
| 	if (!m)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (unlikely(!pkey->n || !pkey->d)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto err_free_m;
 | |
| 	}
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	c = mpi_read_raw_from_sgl(req->src, req->src_len);
 | |
| 	if (!c)
 | |
| 		goto err_free_m;
 | |
| 
 | |
| 	ret = _rsa_dec_crt(pkey, m, c);
 | |
| 	if (ret)
 | |
| 		goto err_free_c;
 | |
| 
 | |
| 	ret = mpi_write_to_sgl(m, req->dst, req->dst_len, &sign);
 | |
| 	if (ret)
 | |
| 		goto err_free_c;
 | |
| 
 | |
| 	if (sign < 0)
 | |
| 		ret = -EBADMSG;
 | |
| err_free_c:
 | |
| 	mpi_free(c);
 | |
| err_free_m:
 | |
| 	mpi_free(m);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void rsa_free_mpi_key(struct rsa_mpi_key *key)
 | |
| {
 | |
| 	mpi_free(key->d);
 | |
| 	mpi_free(key->e);
 | |
| 	mpi_free(key->n);
 | |
| 	mpi_free(key->p);
 | |
| 	mpi_free(key->q);
 | |
| 	mpi_free(key->dp);
 | |
| 	mpi_free(key->dq);
 | |
| 	mpi_free(key->qinv);
 | |
| 	key->d = NULL;
 | |
| 	key->e = NULL;
 | |
| 	key->n = NULL;
 | |
| 	key->p = NULL;
 | |
| 	key->q = NULL;
 | |
| 	key->dp = NULL;
 | |
| 	key->dq = NULL;
 | |
| 	key->qinv = NULL;
 | |
| }
 | |
| 
 | |
| static int rsa_check_key_length(unsigned int len)
 | |
| {
 | |
| 	switch (len) {
 | |
| 	case 512:
 | |
| 	case 1024:
 | |
| 	case 1536:
 | |
| 		if (fips_enabled)
 | |
| 			return -EINVAL;
 | |
| 		fallthrough;
 | |
| 	case 2048:
 | |
| 	case 3072:
 | |
| 	case 4096:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int rsa_check_exponent_fips(MPI e)
 | |
| {
 | |
| 	MPI e_max = NULL;
 | |
| 	int err;
 | |
| 
 | |
| 	/* check if odd */
 | |
| 	if (!mpi_test_bit(e, 0)) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* check if 2^16 < e < 2^256. */
 | |
| 	if (mpi_cmp_ui(e, 65536) <= 0) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	e_max = mpi_alloc(0);
 | |
| 	if (!e_max)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = mpi_set_bit(e_max, 256);
 | |
| 	if (err) {
 | |
| 		mpi_free(e_max);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (mpi_cmp(e, e_max) >= 0) {
 | |
| 		mpi_free(e_max);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mpi_free(e_max);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
 | |
| 			   unsigned int keylen)
 | |
| {
 | |
| 	struct rsa_mpi_key *mpi_key = akcipher_tfm_ctx(tfm);
 | |
| 	struct rsa_key raw_key = {0};
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Free the old MPI key if any */
 | |
| 	rsa_free_mpi_key(mpi_key);
 | |
| 
 | |
| 	ret = rsa_parse_pub_key(&raw_key, key, keylen);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mpi_key->e = mpi_read_raw_data(raw_key.e, raw_key.e_sz);
 | |
| 	if (!mpi_key->e)
 | |
| 		goto err;
 | |
| 
 | |
| 	mpi_key->n = mpi_read_raw_data(raw_key.n, raw_key.n_sz);
 | |
| 	if (!mpi_key->n)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (rsa_check_key_length(mpi_get_size(mpi_key->n) << 3)) {
 | |
| 		rsa_free_mpi_key(mpi_key);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (fips_enabled && rsa_check_exponent_fips(mpi_key->e)) {
 | |
| 		rsa_free_mpi_key(mpi_key);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	rsa_free_mpi_key(mpi_key);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
 | |
| 			    unsigned int keylen)
 | |
| {
 | |
| 	struct rsa_mpi_key *mpi_key = akcipher_tfm_ctx(tfm);
 | |
| 	struct rsa_key raw_key = {0};
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Free the old MPI key if any */
 | |
| 	rsa_free_mpi_key(mpi_key);
 | |
| 
 | |
| 	ret = rsa_parse_priv_key(&raw_key, key, keylen);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mpi_key->d = mpi_read_raw_data(raw_key.d, raw_key.d_sz);
 | |
| 	if (!mpi_key->d)
 | |
| 		goto err;
 | |
| 
 | |
| 	mpi_key->e = mpi_read_raw_data(raw_key.e, raw_key.e_sz);
 | |
| 	if (!mpi_key->e)
 | |
| 		goto err;
 | |
| 
 | |
| 	mpi_key->n = mpi_read_raw_data(raw_key.n, raw_key.n_sz);
 | |
| 	if (!mpi_key->n)
 | |
| 		goto err;
 | |
| 
 | |
| 	mpi_key->p = mpi_read_raw_data(raw_key.p, raw_key.p_sz);
 | |
| 	if (!mpi_key->p)
 | |
| 		goto err;
 | |
| 
 | |
| 	mpi_key->q = mpi_read_raw_data(raw_key.q, raw_key.q_sz);
 | |
| 	if (!mpi_key->q)
 | |
| 		goto err;
 | |
| 
 | |
| 	mpi_key->dp = mpi_read_raw_data(raw_key.dp, raw_key.dp_sz);
 | |
| 	if (!mpi_key->dp)
 | |
| 		goto err;
 | |
| 
 | |
| 	mpi_key->dq = mpi_read_raw_data(raw_key.dq, raw_key.dq_sz);
 | |
| 	if (!mpi_key->dq)
 | |
| 		goto err;
 | |
| 
 | |
| 	mpi_key->qinv = mpi_read_raw_data(raw_key.qinv, raw_key.qinv_sz);
 | |
| 	if (!mpi_key->qinv)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (rsa_check_key_length(mpi_get_size(mpi_key->n) << 3)) {
 | |
| 		rsa_free_mpi_key(mpi_key);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (fips_enabled && rsa_check_exponent_fips(mpi_key->e)) {
 | |
| 		rsa_free_mpi_key(mpi_key);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	rsa_free_mpi_key(mpi_key);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static unsigned int rsa_max_size(struct crypto_akcipher *tfm)
 | |
| {
 | |
| 	struct rsa_mpi_key *pkey = akcipher_tfm_ctx(tfm);
 | |
| 
 | |
| 	return mpi_get_size(pkey->n);
 | |
| }
 | |
| 
 | |
| static void rsa_exit_tfm(struct crypto_akcipher *tfm)
 | |
| {
 | |
| 	struct rsa_mpi_key *pkey = akcipher_tfm_ctx(tfm);
 | |
| 
 | |
| 	rsa_free_mpi_key(pkey);
 | |
| }
 | |
| 
 | |
| static struct akcipher_alg rsa = {
 | |
| 	.encrypt = rsa_enc,
 | |
| 	.decrypt = rsa_dec,
 | |
| 	.set_priv_key = rsa_set_priv_key,
 | |
| 	.set_pub_key = rsa_set_pub_key,
 | |
| 	.max_size = rsa_max_size,
 | |
| 	.exit = rsa_exit_tfm,
 | |
| 	.base = {
 | |
| 		.cra_name = "rsa",
 | |
| 		.cra_driver_name = "rsa-generic",
 | |
| 		.cra_priority = 100,
 | |
| 		.cra_module = THIS_MODULE,
 | |
| 		.cra_ctxsize = sizeof(struct rsa_mpi_key),
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init rsa_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = crypto_register_akcipher(&rsa);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = crypto_register_template(&rsa_pkcs1pad_tmpl);
 | |
| 	if (err)
 | |
| 		goto err_unregister_rsa;
 | |
| 
 | |
| 	err = crypto_register_template(&rsassa_pkcs1_tmpl);
 | |
| 	if (err)
 | |
| 		goto err_unregister_rsa_pkcs1pad;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_unregister_rsa_pkcs1pad:
 | |
| 	crypto_unregister_template(&rsa_pkcs1pad_tmpl);
 | |
| err_unregister_rsa:
 | |
| 	crypto_unregister_akcipher(&rsa);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __exit rsa_exit(void)
 | |
| {
 | |
| 	crypto_unregister_template(&rsassa_pkcs1_tmpl);
 | |
| 	crypto_unregister_template(&rsa_pkcs1pad_tmpl);
 | |
| 	crypto_unregister_akcipher(&rsa);
 | |
| }
 | |
| 
 | |
| subsys_initcall(rsa_init);
 | |
| module_exit(rsa_exit);
 | |
| MODULE_ALIAS_CRYPTO("rsa");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("RSA generic algorithm");
 |