forked from mirrors/linux
		
	This commit adds a workqueue dedicated for isochronous context processing. The workqueue is allocated per instance of fw_card structure to satisfy the following characteristics descending from 1394 OHCI specification: In 1394 OHCI specification, memory pages are reserved to each isochronous context dedicated to DMA transmission. It allows to operate these per-context pages concurrently. Software can schedule hardware interrupt for several isochronous context to the same cycle, thus WQ_UNBOUND is specified. Additionally, it is sleepable to operate the content of pages, thus WQ_BH is not used. The isochronous context delivers the packets with time stamp, thus WQ_HIGHPRI is specified for semi real-time data such as IEC 61883-1/6 protocol implemented by ALSA firewire stack. The isochronous context is not used by the implementation of SCSI over IEEE1394 protocol (sbp2), thus WQ_MEM_RECLAIM is not specified. It is useful for users to adjust cpu affinity of the workqueue depending on their work loads, thus WQ_SYS is specified to expose the attributes to user space. Tested-by: Edmund Raile <edmund.raile@protonmail.com> Link: https://lore.kernel.org/r/20240904125155.461886-2-o-takashi@sakamocchi.jp Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
		
			
				
	
	
		
			787 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			787 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/bug.h>
 | 
						|
#include <linux/completion.h>
 | 
						|
#include <linux/crc-itu-t.h>
 | 
						|
#include <linux/device.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/firewire.h>
 | 
						|
#include <linux/firewire-constants.h>
 | 
						|
#include <linux/jiffies.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/kref.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
 | 
						|
#include <linux/atomic.h>
 | 
						|
#include <asm/byteorder.h>
 | 
						|
 | 
						|
#include "core.h"
 | 
						|
#include <trace/events/firewire.h>
 | 
						|
 | 
						|
#define define_fw_printk_level(func, kern_level)		\
 | 
						|
void func(const struct fw_card *card, const char *fmt, ...)	\
 | 
						|
{								\
 | 
						|
	struct va_format vaf;					\
 | 
						|
	va_list args;						\
 | 
						|
								\
 | 
						|
	va_start(args, fmt);					\
 | 
						|
	vaf.fmt = fmt;						\
 | 
						|
	vaf.va = &args;						\
 | 
						|
	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
 | 
						|
	       dev_name(card->device), &vaf);			\
 | 
						|
	va_end(args);						\
 | 
						|
}
 | 
						|
define_fw_printk_level(fw_err, KERN_ERR);
 | 
						|
define_fw_printk_level(fw_notice, KERN_NOTICE);
 | 
						|
 | 
						|
int fw_compute_block_crc(__be32 *block)
 | 
						|
{
 | 
						|
	int length;
 | 
						|
	u16 crc;
 | 
						|
 | 
						|
	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
 | 
						|
	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
 | 
						|
	*block |= cpu_to_be32(crc);
 | 
						|
 | 
						|
	return length;
 | 
						|
}
 | 
						|
 | 
						|
static DEFINE_MUTEX(card_mutex);
 | 
						|
static LIST_HEAD(card_list);
 | 
						|
 | 
						|
static LIST_HEAD(descriptor_list);
 | 
						|
static int descriptor_count;
 | 
						|
 | 
						|
static __be32 tmp_config_rom[256];
 | 
						|
/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
 | 
						|
static size_t config_rom_length = 1 + 4 + 1 + 1;
 | 
						|
 | 
						|
#define BIB_CRC(v)		((v) <<  0)
 | 
						|
#define BIB_CRC_LENGTH(v)	((v) << 16)
 | 
						|
#define BIB_INFO_LENGTH(v)	((v) << 24)
 | 
						|
#define BIB_BUS_NAME		0x31333934 /* "1394" */
 | 
						|
#define BIB_LINK_SPEED(v)	((v) <<  0)
 | 
						|
#define BIB_GENERATION(v)	((v) <<  4)
 | 
						|
#define BIB_MAX_ROM(v)		((v) <<  8)
 | 
						|
#define BIB_MAX_RECEIVE(v)	((v) << 12)
 | 
						|
#define BIB_CYC_CLK_ACC(v)	((v) << 16)
 | 
						|
#define BIB_PMC			((1) << 27)
 | 
						|
#define BIB_BMC			((1) << 28)
 | 
						|
#define BIB_ISC			((1) << 29)
 | 
						|
#define BIB_CMC			((1) << 30)
 | 
						|
#define BIB_IRMC		((1) << 31)
 | 
						|
#define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
 | 
						|
 | 
						|
/*
 | 
						|
 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
 | 
						|
 * but we have to make it longer because there are many devices whose firmware
 | 
						|
 * is just too slow for that.
 | 
						|
 */
 | 
						|
#define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
 | 
						|
 | 
						|
#define CANON_OUI		0x000085
 | 
						|
 | 
						|
static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
 | 
						|
{
 | 
						|
	struct fw_descriptor *desc;
 | 
						|
	int i, j, k, length;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize contents of config rom buffer.  On the OHCI
 | 
						|
	 * controller, block reads to the config rom accesses the host
 | 
						|
	 * memory, but quadlet read access the hardware bus info block
 | 
						|
	 * registers.  That's just crack, but it means we should make
 | 
						|
	 * sure the contents of bus info block in host memory matches
 | 
						|
	 * the version stored in the OHCI registers.
 | 
						|
	 */
 | 
						|
 | 
						|
	config_rom[0] = cpu_to_be32(
 | 
						|
		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
 | 
						|
	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
 | 
						|
	config_rom[2] = cpu_to_be32(
 | 
						|
		BIB_LINK_SPEED(card->link_speed) |
 | 
						|
		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
 | 
						|
		BIB_MAX_ROM(2) |
 | 
						|
		BIB_MAX_RECEIVE(card->max_receive) |
 | 
						|
		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
 | 
						|
	config_rom[3] = cpu_to_be32(card->guid >> 32);
 | 
						|
	config_rom[4] = cpu_to_be32(card->guid);
 | 
						|
 | 
						|
	/* Generate root directory. */
 | 
						|
	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
 | 
						|
	i = 7;
 | 
						|
	j = 7 + descriptor_count;
 | 
						|
 | 
						|
	/* Generate root directory entries for descriptors. */
 | 
						|
	list_for_each_entry (desc, &descriptor_list, link) {
 | 
						|
		if (desc->immediate > 0)
 | 
						|
			config_rom[i++] = cpu_to_be32(desc->immediate);
 | 
						|
		config_rom[i] = cpu_to_be32(desc->key | (j - i));
 | 
						|
		i++;
 | 
						|
		j += desc->length;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Update root directory length. */
 | 
						|
	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
 | 
						|
 | 
						|
	/* End of root directory, now copy in descriptors. */
 | 
						|
	list_for_each_entry (desc, &descriptor_list, link) {
 | 
						|
		for (k = 0; k < desc->length; k++)
 | 
						|
			config_rom[i + k] = cpu_to_be32(desc->data[k]);
 | 
						|
		i += desc->length;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate CRCs for all blocks in the config rom.  This
 | 
						|
	 * assumes that CRC length and info length are identical for
 | 
						|
	 * the bus info block, which is always the case for this
 | 
						|
	 * implementation. */
 | 
						|
	for (i = 0; i < j; i += length + 1)
 | 
						|
		length = fw_compute_block_crc(config_rom + i);
 | 
						|
 | 
						|
	WARN_ON(j != config_rom_length);
 | 
						|
}
 | 
						|
 | 
						|
static void update_config_roms(void)
 | 
						|
{
 | 
						|
	struct fw_card *card;
 | 
						|
 | 
						|
	list_for_each_entry (card, &card_list, link) {
 | 
						|
		generate_config_rom(card, tmp_config_rom);
 | 
						|
		card->driver->set_config_rom(card, tmp_config_rom,
 | 
						|
					     config_rom_length);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static size_t required_space(struct fw_descriptor *desc)
 | 
						|
{
 | 
						|
	/* descriptor + entry into root dir + optional immediate entry */
 | 
						|
	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
 | 
						|
}
 | 
						|
 | 
						|
int fw_core_add_descriptor(struct fw_descriptor *desc)
 | 
						|
{
 | 
						|
	size_t i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check descriptor is valid; the length of all blocks in the
 | 
						|
	 * descriptor has to add up to exactly the length of the
 | 
						|
	 * block.
 | 
						|
	 */
 | 
						|
	i = 0;
 | 
						|
	while (i < desc->length)
 | 
						|
		i += (desc->data[i] >> 16) + 1;
 | 
						|
 | 
						|
	if (i != desc->length)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	guard(mutex)(&card_mutex);
 | 
						|
 | 
						|
	if (config_rom_length + required_space(desc) > 256)
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	list_add_tail(&desc->link, &descriptor_list);
 | 
						|
	config_rom_length += required_space(desc);
 | 
						|
	descriptor_count++;
 | 
						|
	if (desc->immediate > 0)
 | 
						|
		descriptor_count++;
 | 
						|
	update_config_roms();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fw_core_add_descriptor);
 | 
						|
 | 
						|
void fw_core_remove_descriptor(struct fw_descriptor *desc)
 | 
						|
{
 | 
						|
	guard(mutex)(&card_mutex);
 | 
						|
 | 
						|
	list_del(&desc->link);
 | 
						|
	config_rom_length -= required_space(desc);
 | 
						|
	descriptor_count--;
 | 
						|
	if (desc->immediate > 0)
 | 
						|
		descriptor_count--;
 | 
						|
	update_config_roms();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fw_core_remove_descriptor);
 | 
						|
 | 
						|
static int reset_bus(struct fw_card *card, bool short_reset)
 | 
						|
{
 | 
						|
	int reg = short_reset ? 5 : 1;
 | 
						|
	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
 | 
						|
 | 
						|
	trace_bus_reset_initiate(card->index, card->generation, short_reset);
 | 
						|
 | 
						|
	return card->driver->update_phy_reg(card, reg, 0, bit);
 | 
						|
}
 | 
						|
 | 
						|
void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
 | 
						|
{
 | 
						|
	trace_bus_reset_schedule(card->index, card->generation, short_reset);
 | 
						|
 | 
						|
	/* We don't try hard to sort out requests of long vs. short resets. */
 | 
						|
	card->br_short = short_reset;
 | 
						|
 | 
						|
	/* Use an arbitrary short delay to combine multiple reset requests. */
 | 
						|
	fw_card_get(card);
 | 
						|
	if (!queue_delayed_work(fw_workqueue, &card->br_work,
 | 
						|
				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
 | 
						|
		fw_card_put(card);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fw_schedule_bus_reset);
 | 
						|
 | 
						|
static void br_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
 | 
						|
 | 
						|
	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
 | 
						|
	if (card->reset_jiffies != 0 &&
 | 
						|
	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
 | 
						|
		trace_bus_reset_postpone(card->index, card->generation, card->br_short);
 | 
						|
 | 
						|
		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
 | 
						|
			fw_card_put(card);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
 | 
						|
			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
 | 
						|
	reset_bus(card, card->br_short);
 | 
						|
	fw_card_put(card);
 | 
						|
}
 | 
						|
 | 
						|
static void allocate_broadcast_channel(struct fw_card *card, int generation)
 | 
						|
{
 | 
						|
	int channel, bandwidth = 0;
 | 
						|
 | 
						|
	if (!card->broadcast_channel_allocated) {
 | 
						|
		fw_iso_resource_manage(card, generation, 1ULL << 31,
 | 
						|
				       &channel, &bandwidth, true);
 | 
						|
		if (channel != 31) {
 | 
						|
			fw_notice(card, "failed to allocate broadcast channel\n");
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		card->broadcast_channel_allocated = true;
 | 
						|
	}
 | 
						|
 | 
						|
	device_for_each_child(card->device, (void *)(long)generation,
 | 
						|
			      fw_device_set_broadcast_channel);
 | 
						|
}
 | 
						|
 | 
						|
static const char gap_count_table[] = {
 | 
						|
	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
 | 
						|
};
 | 
						|
 | 
						|
void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
 | 
						|
{
 | 
						|
	fw_card_get(card);
 | 
						|
	if (!schedule_delayed_work(&card->bm_work, delay))
 | 
						|
		fw_card_put(card);
 | 
						|
}
 | 
						|
 | 
						|
static void bm_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
 | 
						|
	struct fw_device *root_device, *irm_device;
 | 
						|
	struct fw_node *root_node;
 | 
						|
	int root_id, new_root_id, irm_id, bm_id, local_id;
 | 
						|
	int gap_count, generation, grace, rcode;
 | 
						|
	bool do_reset = false;
 | 
						|
	bool root_device_is_running;
 | 
						|
	bool root_device_is_cmc;
 | 
						|
	bool irm_is_1394_1995_only;
 | 
						|
	bool keep_this_irm;
 | 
						|
	__be32 transaction_data[2];
 | 
						|
 | 
						|
	spin_lock_irq(&card->lock);
 | 
						|
 | 
						|
	if (card->local_node == NULL) {
 | 
						|
		spin_unlock_irq(&card->lock);
 | 
						|
		goto out_put_card;
 | 
						|
	}
 | 
						|
 | 
						|
	generation = card->generation;
 | 
						|
 | 
						|
	root_node = card->root_node;
 | 
						|
	fw_node_get(root_node);
 | 
						|
	root_device = root_node->data;
 | 
						|
	root_device_is_running = root_device &&
 | 
						|
			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
 | 
						|
	root_device_is_cmc = root_device && root_device->cmc;
 | 
						|
 | 
						|
	irm_device = card->irm_node->data;
 | 
						|
	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
 | 
						|
			(irm_device->config_rom[2] & 0x000000f0) == 0;
 | 
						|
 | 
						|
	/* Canon MV5i works unreliably if it is not root node. */
 | 
						|
	keep_this_irm = irm_device && irm_device->config_rom &&
 | 
						|
			irm_device->config_rom[3] >> 8 == CANON_OUI;
 | 
						|
 | 
						|
	root_id  = root_node->node_id;
 | 
						|
	irm_id   = card->irm_node->node_id;
 | 
						|
	local_id = card->local_node->node_id;
 | 
						|
 | 
						|
	grace = time_after64(get_jiffies_64(),
 | 
						|
			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
 | 
						|
 | 
						|
	if ((is_next_generation(generation, card->bm_generation) &&
 | 
						|
	     !card->bm_abdicate) ||
 | 
						|
	    (card->bm_generation != generation && grace)) {
 | 
						|
		/*
 | 
						|
		 * This first step is to figure out who is IRM and
 | 
						|
		 * then try to become bus manager.  If the IRM is not
 | 
						|
		 * well defined (e.g. does not have an active link
 | 
						|
		 * layer or does not responds to our lock request, we
 | 
						|
		 * will have to do a little vigilante bus management.
 | 
						|
		 * In that case, we do a goto into the gap count logic
 | 
						|
		 * so that when we do the reset, we still optimize the
 | 
						|
		 * gap count.  That could well save a reset in the
 | 
						|
		 * next generation.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (!card->irm_node->link_on) {
 | 
						|
			new_root_id = local_id;
 | 
						|
			fw_notice(card, "%s, making local node (%02x) root\n",
 | 
						|
				  "IRM has link off", new_root_id);
 | 
						|
			goto pick_me;
 | 
						|
		}
 | 
						|
 | 
						|
		if (irm_is_1394_1995_only && !keep_this_irm) {
 | 
						|
			new_root_id = local_id;
 | 
						|
			fw_notice(card, "%s, making local node (%02x) root\n",
 | 
						|
				  "IRM is not 1394a compliant", new_root_id);
 | 
						|
			goto pick_me;
 | 
						|
		}
 | 
						|
 | 
						|
		transaction_data[0] = cpu_to_be32(0x3f);
 | 
						|
		transaction_data[1] = cpu_to_be32(local_id);
 | 
						|
 | 
						|
		spin_unlock_irq(&card->lock);
 | 
						|
 | 
						|
		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
 | 
						|
				irm_id, generation, SCODE_100,
 | 
						|
				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
 | 
						|
				transaction_data, 8);
 | 
						|
 | 
						|
		if (rcode == RCODE_GENERATION)
 | 
						|
			/* Another bus reset, BM work has been rescheduled. */
 | 
						|
			goto out;
 | 
						|
 | 
						|
		bm_id = be32_to_cpu(transaction_data[0]);
 | 
						|
 | 
						|
		scoped_guard(spinlock_irq, &card->lock) {
 | 
						|
			if (rcode == RCODE_COMPLETE && generation == card->generation)
 | 
						|
				card->bm_node_id =
 | 
						|
				    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
 | 
						|
		}
 | 
						|
 | 
						|
		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
 | 
						|
			/* Somebody else is BM.  Only act as IRM. */
 | 
						|
			if (local_id == irm_id)
 | 
						|
				allocate_broadcast_channel(card, generation);
 | 
						|
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (rcode == RCODE_SEND_ERROR) {
 | 
						|
			/*
 | 
						|
			 * We have been unable to send the lock request due to
 | 
						|
			 * some local problem.  Let's try again later and hope
 | 
						|
			 * that the problem has gone away by then.
 | 
						|
			 */
 | 
						|
			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		spin_lock_irq(&card->lock);
 | 
						|
 | 
						|
		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
 | 
						|
			/*
 | 
						|
			 * The lock request failed, maybe the IRM
 | 
						|
			 * isn't really IRM capable after all. Let's
 | 
						|
			 * do a bus reset and pick the local node as
 | 
						|
			 * root, and thus, IRM.
 | 
						|
			 */
 | 
						|
			new_root_id = local_id;
 | 
						|
			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
 | 
						|
				  fw_rcode_string(rcode), new_root_id);
 | 
						|
			goto pick_me;
 | 
						|
		}
 | 
						|
	} else if (card->bm_generation != generation) {
 | 
						|
		/*
 | 
						|
		 * We weren't BM in the last generation, and the last
 | 
						|
		 * bus reset is less than 125ms ago.  Reschedule this job.
 | 
						|
		 */
 | 
						|
		spin_unlock_irq(&card->lock);
 | 
						|
		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're bus manager for this generation, so next step is to
 | 
						|
	 * make sure we have an active cycle master and do gap count
 | 
						|
	 * optimization.
 | 
						|
	 */
 | 
						|
	card->bm_generation = generation;
 | 
						|
 | 
						|
	if (card->gap_count == 0) {
 | 
						|
		/*
 | 
						|
		 * If self IDs have inconsistent gap counts, do a
 | 
						|
		 * bus reset ASAP. The config rom read might never
 | 
						|
		 * complete, so don't wait for it. However, still
 | 
						|
		 * send a PHY configuration packet prior to the
 | 
						|
		 * bus reset. The PHY configuration packet might
 | 
						|
		 * fail, but 1394-2008 8.4.5.2 explicitly permits
 | 
						|
		 * it in this case, so it should be safe to try.
 | 
						|
		 */
 | 
						|
		new_root_id = local_id;
 | 
						|
		/*
 | 
						|
		 * We must always send a bus reset if the gap count
 | 
						|
		 * is inconsistent, so bypass the 5-reset limit.
 | 
						|
		 */
 | 
						|
		card->bm_retries = 0;
 | 
						|
	} else if (root_device == NULL) {
 | 
						|
		/*
 | 
						|
		 * Either link_on is false, or we failed to read the
 | 
						|
		 * config rom.  In either case, pick another root.
 | 
						|
		 */
 | 
						|
		new_root_id = local_id;
 | 
						|
	} else if (!root_device_is_running) {
 | 
						|
		/*
 | 
						|
		 * If we haven't probed this device yet, bail out now
 | 
						|
		 * and let's try again once that's done.
 | 
						|
		 */
 | 
						|
		spin_unlock_irq(&card->lock);
 | 
						|
		goto out;
 | 
						|
	} else if (root_device_is_cmc) {
 | 
						|
		/*
 | 
						|
		 * We will send out a force root packet for this
 | 
						|
		 * node as part of the gap count optimization.
 | 
						|
		 */
 | 
						|
		new_root_id = root_id;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Current root has an active link layer and we
 | 
						|
		 * successfully read the config rom, but it's not
 | 
						|
		 * cycle master capable.
 | 
						|
		 */
 | 
						|
		new_root_id = local_id;
 | 
						|
	}
 | 
						|
 | 
						|
 pick_me:
 | 
						|
	/*
 | 
						|
	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
 | 
						|
	 * the typically much larger 1394b beta repeater delays though.
 | 
						|
	 */
 | 
						|
	if (!card->beta_repeaters_present &&
 | 
						|
	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
 | 
						|
		gap_count = gap_count_table[root_node->max_hops];
 | 
						|
	else
 | 
						|
		gap_count = 63;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Finally, figure out if we should do a reset or not.  If we have
 | 
						|
	 * done less than 5 resets with the same physical topology and we
 | 
						|
	 * have either a new root or a new gap count setting, let's do it.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (card->bm_retries++ < 5 &&
 | 
						|
	    (card->gap_count != gap_count || new_root_id != root_id))
 | 
						|
		do_reset = true;
 | 
						|
 | 
						|
	spin_unlock_irq(&card->lock);
 | 
						|
 | 
						|
	if (do_reset) {
 | 
						|
		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
 | 
						|
			  new_root_id, gap_count);
 | 
						|
		fw_send_phy_config(card, new_root_id, generation, gap_count);
 | 
						|
		/*
 | 
						|
		 * Where possible, use a short bus reset to minimize
 | 
						|
		 * disruption to isochronous transfers. But in the event
 | 
						|
		 * of a gap count inconsistency, use a long bus reset.
 | 
						|
		 *
 | 
						|
		 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
 | 
						|
		 * may set different gap counts after a bus reset. On a mixed
 | 
						|
		 * 1394/1394a bus, a short bus reset can get doubled. Some
 | 
						|
		 * nodes may treat the double reset as one bus reset and others
 | 
						|
		 * may treat it as two, causing a gap count inconsistency
 | 
						|
		 * again. Using a long bus reset prevents this.
 | 
						|
		 */
 | 
						|
		reset_bus(card, card->gap_count != 0);
 | 
						|
		/* Will allocate broadcast channel after the reset. */
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (root_device_is_cmc) {
 | 
						|
		/*
 | 
						|
		 * Make sure that the cycle master sends cycle start packets.
 | 
						|
		 */
 | 
						|
		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
 | 
						|
		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
 | 
						|
				root_id, generation, SCODE_100,
 | 
						|
				CSR_REGISTER_BASE + CSR_STATE_SET,
 | 
						|
				transaction_data, 4);
 | 
						|
		if (rcode == RCODE_GENERATION)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (local_id == irm_id)
 | 
						|
		allocate_broadcast_channel(card, generation);
 | 
						|
 | 
						|
 out:
 | 
						|
	fw_node_put(root_node);
 | 
						|
 out_put_card:
 | 
						|
	fw_card_put(card);
 | 
						|
}
 | 
						|
 | 
						|
void fw_card_initialize(struct fw_card *card,
 | 
						|
			const struct fw_card_driver *driver,
 | 
						|
			struct device *device)
 | 
						|
{
 | 
						|
	static atomic_t index = ATOMIC_INIT(-1);
 | 
						|
 | 
						|
	card->index = atomic_inc_return(&index);
 | 
						|
	card->driver = driver;
 | 
						|
	card->device = device;
 | 
						|
	card->current_tlabel = 0;
 | 
						|
	card->tlabel_mask = 0;
 | 
						|
	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
 | 
						|
	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
 | 
						|
	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
 | 
						|
	card->split_timeout_jiffies =
 | 
						|
			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
 | 
						|
	card->color = 0;
 | 
						|
	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
 | 
						|
 | 
						|
	kref_init(&card->kref);
 | 
						|
	init_completion(&card->done);
 | 
						|
	INIT_LIST_HEAD(&card->transaction_list);
 | 
						|
	INIT_LIST_HEAD(&card->phy_receiver_list);
 | 
						|
	spin_lock_init(&card->lock);
 | 
						|
 | 
						|
	card->local_node = NULL;
 | 
						|
 | 
						|
	INIT_DELAYED_WORK(&card->br_work, br_work);
 | 
						|
	INIT_DELAYED_WORK(&card->bm_work, bm_work);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fw_card_initialize);
 | 
						|
 | 
						|
int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
 | 
						|
		unsigned int supported_isoc_contexts)
 | 
						|
{
 | 
						|
	struct workqueue_struct *isoc_wq;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	// This workqueue should be:
 | 
						|
	//  * != WQ_BH			Sleepable.
 | 
						|
	//  * == WQ_UNBOUND		Any core can process data for isoc context. The
 | 
						|
	//				implementation of unit protocol could consumes the core
 | 
						|
	//				longer somehow.
 | 
						|
	//  * != WQ_MEM_RECLAIM		Not used for any backend of block device.
 | 
						|
	//  * == WQ_FREEZABLE		Isochronous communication is at regular interval in real
 | 
						|
	//				time, thus should be drained if possible at freeze phase.
 | 
						|
	//  * == WQ_HIGHPRI		High priority to process semi-realtime timestamped data.
 | 
						|
	//  * == WQ_SYSFS		Parameters are available via sysfs.
 | 
						|
	//  * max_active == n_it + n_ir	A hardIRQ could notify events for multiple isochronous
 | 
						|
	//				contexts if they are scheduled to the same cycle.
 | 
						|
	isoc_wq = alloc_workqueue("firewire-isoc-card%u",
 | 
						|
				  WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
 | 
						|
				  supported_isoc_contexts, card->index);
 | 
						|
	if (!isoc_wq)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	card->max_receive = max_receive;
 | 
						|
	card->link_speed = link_speed;
 | 
						|
	card->guid = guid;
 | 
						|
 | 
						|
	guard(mutex)(&card_mutex);
 | 
						|
 | 
						|
	generate_config_rom(card, tmp_config_rom);
 | 
						|
	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
 | 
						|
	if (ret < 0) {
 | 
						|
		destroy_workqueue(isoc_wq);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	card->isoc_wq = isoc_wq;
 | 
						|
	list_add_tail(&card->link, &card_list);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fw_card_add);
 | 
						|
 | 
						|
/*
 | 
						|
 * The next few functions implement a dummy driver that is used once a card
 | 
						|
 * driver shuts down an fw_card.  This allows the driver to cleanly unload,
 | 
						|
 * as all IO to the card will be handled (and failed) by the dummy driver
 | 
						|
 * instead of calling into the module.  Only functions for iso context
 | 
						|
 * shutdown still need to be provided by the card driver.
 | 
						|
 *
 | 
						|
 * .read/write_csr() should never be called anymore after the dummy driver
 | 
						|
 * was bound since they are only used within request handler context.
 | 
						|
 * .set_config_rom() is never called since the card is taken out of card_list
 | 
						|
 * before switching to the dummy driver.
 | 
						|
 */
 | 
						|
 | 
						|
static int dummy_read_phy_reg(struct fw_card *card, int address)
 | 
						|
{
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
static int dummy_update_phy_reg(struct fw_card *card, int address,
 | 
						|
				int clear_bits, int set_bits)
 | 
						|
{
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
 | 
						|
{
 | 
						|
	packet->callback(packet, card, RCODE_CANCELLED);
 | 
						|
}
 | 
						|
 | 
						|
static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
 | 
						|
{
 | 
						|
	packet->callback(packet, card, RCODE_CANCELLED);
 | 
						|
}
 | 
						|
 | 
						|
static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
 | 
						|
{
 | 
						|
	return -ENOENT;
 | 
						|
}
 | 
						|
 | 
						|
static int dummy_enable_phys_dma(struct fw_card *card,
 | 
						|
				 int node_id, int generation)
 | 
						|
{
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
 | 
						|
				int type, int channel, size_t header_size)
 | 
						|
{
 | 
						|
	return ERR_PTR(-ENODEV);
 | 
						|
}
 | 
						|
 | 
						|
static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static int dummy_start_iso(struct fw_iso_context *ctx,
 | 
						|
			   s32 cycle, u32 sync, u32 tags)
 | 
						|
{
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
 | 
						|
{
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
 | 
						|
			   struct fw_iso_buffer *buffer, unsigned long payload)
 | 
						|
{
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
 | 
						|
{
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
static const struct fw_card_driver dummy_driver_template = {
 | 
						|
	.read_phy_reg		= dummy_read_phy_reg,
 | 
						|
	.update_phy_reg		= dummy_update_phy_reg,
 | 
						|
	.send_request		= dummy_send_request,
 | 
						|
	.send_response		= dummy_send_response,
 | 
						|
	.cancel_packet		= dummy_cancel_packet,
 | 
						|
	.enable_phys_dma	= dummy_enable_phys_dma,
 | 
						|
	.read_csr		= dummy_read_csr,
 | 
						|
	.write_csr		= dummy_write_csr,
 | 
						|
	.allocate_iso_context	= dummy_allocate_iso_context,
 | 
						|
	.start_iso		= dummy_start_iso,
 | 
						|
	.set_iso_channels	= dummy_set_iso_channels,
 | 
						|
	.queue_iso		= dummy_queue_iso,
 | 
						|
	.flush_queue_iso	= dummy_flush_queue_iso,
 | 
						|
	.flush_iso_completions	= dummy_flush_iso_completions,
 | 
						|
};
 | 
						|
 | 
						|
void fw_card_release(struct kref *kref)
 | 
						|
{
 | 
						|
	struct fw_card *card = container_of(kref, struct fw_card, kref);
 | 
						|
 | 
						|
	complete(&card->done);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(fw_card_release);
 | 
						|
 | 
						|
void fw_core_remove_card(struct fw_card *card)
 | 
						|
{
 | 
						|
	struct fw_card_driver dummy_driver = dummy_driver_template;
 | 
						|
 | 
						|
	might_sleep();
 | 
						|
 | 
						|
	card->driver->update_phy_reg(card, 4,
 | 
						|
				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
 | 
						|
	fw_schedule_bus_reset(card, false, true);
 | 
						|
 | 
						|
	scoped_guard(mutex, &card_mutex)
 | 
						|
		list_del_init(&card->link);
 | 
						|
 | 
						|
	/* Switch off most of the card driver interface. */
 | 
						|
	dummy_driver.free_iso_context	= card->driver->free_iso_context;
 | 
						|
	dummy_driver.stop_iso		= card->driver->stop_iso;
 | 
						|
	card->driver = &dummy_driver;
 | 
						|
	drain_workqueue(card->isoc_wq);
 | 
						|
 | 
						|
	scoped_guard(spinlock_irqsave, &card->lock)
 | 
						|
		fw_destroy_nodes(card);
 | 
						|
 | 
						|
	/* Wait for all users, especially device workqueue jobs, to finish. */
 | 
						|
	fw_card_put(card);
 | 
						|
	wait_for_completion(&card->done);
 | 
						|
 | 
						|
	destroy_workqueue(card->isoc_wq);
 | 
						|
 | 
						|
	WARN_ON(!list_empty(&card->transaction_list));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(fw_core_remove_card);
 | 
						|
 | 
						|
/**
 | 
						|
 * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
 | 
						|
 *			    for controller card.
 | 
						|
 * @card: The instance of card for 1394 OHCI controller.
 | 
						|
 * @cycle_time: The mutual reference to value of cycle time for the read operation.
 | 
						|
 *
 | 
						|
 * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
 | 
						|
 * controller card. This function accesses the region without any lock primitives or IRQ mask.
 | 
						|
 * When returning successfully, the content of @value argument has value aligned to host endianness,
 | 
						|
 * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
 | 
						|
 *
 | 
						|
 * Context: Any context.
 | 
						|
 * Return:
 | 
						|
 * * 0 - Read successfully.
 | 
						|
 * * -ENODEV - The controller is unavailable due to being removed or unbound.
 | 
						|
 */
 | 
						|
int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
 | 
						|
{
 | 
						|
	if (card->driver->read_csr == dummy_read_csr)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	// It's possible to switch to dummy driver between the above and the below. This is the best
 | 
						|
	// effort to return -ENODEV.
 | 
						|
	*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
 |