forked from mirrors/linux
		
	 c51a4f11e6
			
		
	
	
		c51a4f11e6
		
	
	
	
	
		
			
			Some architectures have special handling after clearing user folios:
architectures, which set cpu_dcache_is_aliasing() to true, require
flushing dcache; arc, which sets cpu_icache_is_aliasing() to true, changes
folio->flags to make icache coherent to dcache.  So __GFP_ZERO using only
clear_page() is not enough to zero user folios and clear_user_(high)page()
must be used.  Otherwise, user data will be corrupted.
Fix it by always clearing user folios with clear_user_(high)page() when
cpu_dcache_is_aliasing() is true or cpu_icache_is_aliasing() is true. 
Rename alloc_zeroed() to user_alloc_needs_zeroing() and invert the logic
to clarify its intend.
Link: https://lkml.kernel.org/r/20241209182326.2955963-2-ziy@nvidia.com
Fixes: 5708d96da2 ("mm: avoid zeroing user movable page twice with init_on_alloc=1")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reported-by: Geert Uytterhoeven <geert+renesas@glider.be>
Closes: https://lore.kernel.org/linux-mm/CAMuHMdV1hRp_NtR5YnJo=HsfgKQeH91J537Gh4gKk3PFZhSkbA@mail.gmail.com/
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Potapenko <glider@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			4209 lines
		
	
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4209 lines
		
	
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_MM_H
 | |
| #define _LINUX_MM_H
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/mmdebug.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/pgalloc_tag.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/debug_locks.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/mmap_lock.h>
 | |
| #include <linux/range.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/percpu-refcount.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/shrinker.h>
 | |
| #include <linux/resource.h>
 | |
| #include <linux/page_ext.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/page_ref.h>
 | |
| #include <linux/overflow.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/pgtable.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/cacheinfo.h>
 | |
| 
 | |
| struct mempolicy;
 | |
| struct anon_vma;
 | |
| struct anon_vma_chain;
 | |
| struct user_struct;
 | |
| struct pt_regs;
 | |
| struct folio_batch;
 | |
| 
 | |
| extern int sysctl_page_lock_unfairness;
 | |
| 
 | |
| void mm_core_init(void);
 | |
| void init_mm_internals(void);
 | |
| 
 | |
| #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
 | |
| extern unsigned long max_mapnr;
 | |
| 
 | |
| static inline void set_max_mapnr(unsigned long limit)
 | |
| {
 | |
| 	max_mapnr = limit;
 | |
| }
 | |
| #else
 | |
| static inline void set_max_mapnr(unsigned long limit) { }
 | |
| #endif
 | |
| 
 | |
| extern atomic_long_t _totalram_pages;
 | |
| static inline unsigned long totalram_pages(void)
 | |
| {
 | |
| 	return (unsigned long)atomic_long_read(&_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_inc(void)
 | |
| {
 | |
| 	atomic_long_inc(&_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_dec(void)
 | |
| {
 | |
| 	atomic_long_dec(&_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_add(long count)
 | |
| {
 | |
| 	atomic_long_add(count, &_totalram_pages);
 | |
| }
 | |
| 
 | |
| extern void * high_memory;
 | |
| extern int page_cluster;
 | |
| extern const int page_cluster_max;
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| extern int sysctl_legacy_va_layout;
 | |
| #else
 | |
| #define sysctl_legacy_va_layout 0
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
 | |
| extern const int mmap_rnd_bits_min;
 | |
| extern int mmap_rnd_bits_max __ro_after_init;
 | |
| extern int mmap_rnd_bits __read_mostly;
 | |
| #endif
 | |
| #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
 | |
| extern const int mmap_rnd_compat_bits_min;
 | |
| extern const int mmap_rnd_compat_bits_max;
 | |
| extern int mmap_rnd_compat_bits __read_mostly;
 | |
| #endif
 | |
| 
 | |
| #ifndef DIRECT_MAP_PHYSMEM_END
 | |
| # ifdef MAX_PHYSMEM_BITS
 | |
| # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
 | |
| # else
 | |
| # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/processor.h>
 | |
| 
 | |
| #ifndef __pa_symbol
 | |
| #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
 | |
| #endif
 | |
| 
 | |
| #ifndef page_to_virt
 | |
| #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
 | |
| #endif
 | |
| 
 | |
| #ifndef lm_alias
 | |
| #define lm_alias(x)	__va(__pa_symbol(x))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * To prevent common memory management code establishing
 | |
|  * a zero page mapping on a read fault.
 | |
|  * This macro should be defined within <asm/pgtable.h>.
 | |
|  * s390 does this to prevent multiplexing of hardware bits
 | |
|  * related to the physical page in case of virtualization.
 | |
|  */
 | |
| #ifndef mm_forbids_zeropage
 | |
| #define mm_forbids_zeropage(X)	(0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On some architectures it is expensive to call memset() for small sizes.
 | |
|  * If an architecture decides to implement their own version of
 | |
|  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
 | |
|  * define their own version of this macro in <asm/pgtable.h>
 | |
|  */
 | |
| #if BITS_PER_LONG == 64
 | |
| /* This function must be updated when the size of struct page grows above 96
 | |
|  * or reduces below 56. The idea that compiler optimizes out switch()
 | |
|  * statement, and only leaves move/store instructions. Also the compiler can
 | |
|  * combine write statements if they are both assignments and can be reordered,
 | |
|  * this can result in several of the writes here being dropped.
 | |
|  */
 | |
| #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
 | |
| static inline void __mm_zero_struct_page(struct page *page)
 | |
| {
 | |
| 	unsigned long *_pp = (void *)page;
 | |
| 
 | |
| 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
 | |
| 	BUILD_BUG_ON(sizeof(struct page) & 7);
 | |
| 	BUILD_BUG_ON(sizeof(struct page) < 56);
 | |
| 	BUILD_BUG_ON(sizeof(struct page) > 96);
 | |
| 
 | |
| 	switch (sizeof(struct page)) {
 | |
| 	case 96:
 | |
| 		_pp[11] = 0;
 | |
| 		fallthrough;
 | |
| 	case 88:
 | |
| 		_pp[10] = 0;
 | |
| 		fallthrough;
 | |
| 	case 80:
 | |
| 		_pp[9] = 0;
 | |
| 		fallthrough;
 | |
| 	case 72:
 | |
| 		_pp[8] = 0;
 | |
| 		fallthrough;
 | |
| 	case 64:
 | |
| 		_pp[7] = 0;
 | |
| 		fallthrough;
 | |
| 	case 56:
 | |
| 		_pp[6] = 0;
 | |
| 		_pp[5] = 0;
 | |
| 		_pp[4] = 0;
 | |
| 		_pp[3] = 0;
 | |
| 		_pp[2] = 0;
 | |
| 		_pp[1] = 0;
 | |
| 		_pp[0] = 0;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Default maximum number of active map areas, this limits the number of vmas
 | |
|  * per mm struct. Users can overwrite this number by sysctl but there is a
 | |
|  * problem.
 | |
|  *
 | |
|  * When a program's coredump is generated as ELF format, a section is created
 | |
|  * per a vma. In ELF, the number of sections is represented in unsigned short.
 | |
|  * This means the number of sections should be smaller than 65535 at coredump.
 | |
|  * Because the kernel adds some informative sections to a image of program at
 | |
|  * generating coredump, we need some margin. The number of extra sections is
 | |
|  * 1-3 now and depends on arch. We use "5" as safe margin, here.
 | |
|  *
 | |
|  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
 | |
|  * not a hard limit any more. Although some userspace tools can be surprised by
 | |
|  * that.
 | |
|  */
 | |
| #define MAPCOUNT_ELF_CORE_MARGIN	(5)
 | |
| #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 | |
| 
 | |
| extern int sysctl_max_map_count;
 | |
| 
 | |
| extern unsigned long sysctl_user_reserve_kbytes;
 | |
| extern unsigned long sysctl_admin_reserve_kbytes;
 | |
| 
 | |
| extern int sysctl_overcommit_memory;
 | |
| extern int sysctl_overcommit_ratio;
 | |
| extern unsigned long sysctl_overcommit_kbytes;
 | |
| 
 | |
| int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
 | |
| 		loff_t *);
 | |
| int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
 | |
| 		loff_t *);
 | |
| int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
 | |
| 		loff_t *);
 | |
| 
 | |
| #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 | |
| #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
 | |
| #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
 | |
| #else
 | |
| #define nth_page(page,n) ((page) + (n))
 | |
| #define folio_page_idx(folio, p)	((p) - &(folio)->page)
 | |
| #endif
 | |
| 
 | |
| /* to align the pointer to the (next) page boundary */
 | |
| #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
 | |
| 
 | |
| /* to align the pointer to the (prev) page boundary */
 | |
| #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
 | |
| 
 | |
| /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
 | |
| #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
 | |
| 
 | |
| static inline struct folio *lru_to_folio(struct list_head *head)
 | |
| {
 | |
| 	return list_entry((head)->prev, struct folio, lru);
 | |
| }
 | |
| 
 | |
| void setup_initial_init_mm(void *start_code, void *end_code,
 | |
| 			   void *end_data, void *brk);
 | |
| 
 | |
| /*
 | |
|  * Linux kernel virtual memory manager primitives.
 | |
|  * The idea being to have a "virtual" mm in the same way
 | |
|  * we have a virtual fs - giving a cleaner interface to the
 | |
|  * mm details, and allowing different kinds of memory mappings
 | |
|  * (from shared memory to executable loading to arbitrary
 | |
|  * mmap() functions).
 | |
|  */
 | |
| 
 | |
| struct vm_area_struct *vm_area_alloc(struct mm_struct *);
 | |
| struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
 | |
| void vm_area_free(struct vm_area_struct *);
 | |
| /* Use only if VMA has no other users */
 | |
| void __vm_area_free(struct vm_area_struct *vma);
 | |
| 
 | |
| #ifndef CONFIG_MMU
 | |
| extern struct rb_root nommu_region_tree;
 | |
| extern struct rw_semaphore nommu_region_sem;
 | |
| 
 | |
| extern unsigned int kobjsize(const void *objp);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * vm_flags in vm_area_struct, see mm_types.h.
 | |
|  * When changing, update also include/trace/events/mmflags.h
 | |
|  */
 | |
| #define VM_NONE		0x00000000
 | |
| 
 | |
| #define VM_READ		0x00000001	/* currently active flags */
 | |
| #define VM_WRITE	0x00000002
 | |
| #define VM_EXEC		0x00000004
 | |
| #define VM_SHARED	0x00000008
 | |
| 
 | |
| /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 | |
| #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
 | |
| #define VM_MAYWRITE	0x00000020
 | |
| #define VM_MAYEXEC	0x00000040
 | |
| #define VM_MAYSHARE	0x00000080
 | |
| 
 | |
| #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
 | |
| #ifdef CONFIG_MMU
 | |
| #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
 | |
| #else /* CONFIG_MMU */
 | |
| #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
 | |
| #define VM_UFFD_MISSING	0
 | |
| #endif /* CONFIG_MMU */
 | |
| #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
 | |
| #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
 | |
| 
 | |
| #define VM_LOCKED	0x00002000
 | |
| #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
 | |
| 
 | |
| 					/* Used by sys_madvise() */
 | |
| #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
 | |
| #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
 | |
| 
 | |
| #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
 | |
| #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
 | |
| #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
 | |
| #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
 | |
| #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
 | |
| #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
 | |
| #define VM_SYNC		0x00800000	/* Synchronous page faults */
 | |
| #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
 | |
| #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
 | |
| #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
 | |
| 
 | |
| #ifdef CONFIG_MEM_SOFT_DIRTY
 | |
| # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
 | |
| #else
 | |
| # define VM_SOFTDIRTY	0
 | |
| #endif
 | |
| 
 | |
| #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
 | |
| #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
 | |
| #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
 | |
| #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
 | |
| #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
 | |
| #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
 | |
| #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
 | |
| #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
 | |
| #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
 | |
| #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
 | |
| #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
 | |
| #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_PKEYS
 | |
| # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
 | |
| # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
 | |
| # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
 | |
| # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
 | |
| #if CONFIG_ARCH_PKEY_BITS > 3
 | |
| # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
 | |
| #else
 | |
| # define VM_PKEY_BIT3  0
 | |
| #endif
 | |
| #if CONFIG_ARCH_PKEY_BITS > 4
 | |
| # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
 | |
| #else
 | |
| # define VM_PKEY_BIT4  0
 | |
| #endif
 | |
| #endif /* CONFIG_ARCH_HAS_PKEYS */
 | |
| 
 | |
| #ifdef CONFIG_X86_USER_SHADOW_STACK
 | |
| /*
 | |
|  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
 | |
|  * support core mm.
 | |
|  *
 | |
|  * These VMAs will get a single end guard page. This helps userspace protect
 | |
|  * itself from attacks. A single page is enough for current shadow stack archs
 | |
|  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
 | |
|  * for more details on the guard size.
 | |
|  */
 | |
| # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_ARM64_GCS)
 | |
| /*
 | |
|  * arm64's Guarded Control Stack implements similar functionality and
 | |
|  * has similar constraints to shadow stacks.
 | |
|  */
 | |
| # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
 | |
| #endif
 | |
| 
 | |
| #ifndef VM_SHADOW_STACK
 | |
| # define VM_SHADOW_STACK	VM_NONE
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_X86)
 | |
| # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
 | |
| #elif defined(CONFIG_PPC64)
 | |
| # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
 | |
| #elif defined(CONFIG_PARISC)
 | |
| # define VM_GROWSUP	VM_ARCH_1
 | |
| #elif defined(CONFIG_SPARC64)
 | |
| # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
 | |
| # define VM_ARCH_CLEAR	VM_SPARC_ADI
 | |
| #elif defined(CONFIG_ARM64)
 | |
| # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
 | |
| # define VM_ARCH_CLEAR	VM_ARM64_BTI
 | |
| #elif !defined(CONFIG_MMU)
 | |
| # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_ARM64_MTE)
 | |
| # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
 | |
| # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
 | |
| #else
 | |
| # define VM_MTE		VM_NONE
 | |
| # define VM_MTE_ALLOWED	VM_NONE
 | |
| #endif
 | |
| 
 | |
| #ifndef VM_GROWSUP
 | |
| # define VM_GROWSUP	VM_NONE
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 | |
| # define VM_UFFD_MINOR_BIT	38
 | |
| # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
 | |
| #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
 | |
| # define VM_UFFD_MINOR		VM_NONE
 | |
| #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
 | |
| 
 | |
| /*
 | |
|  * This flag is used to connect VFIO to arch specific KVM code. It
 | |
|  * indicates that the memory under this VMA is safe for use with any
 | |
|  * non-cachable memory type inside KVM. Some VFIO devices, on some
 | |
|  * platforms, are thought to be unsafe and can cause machine crashes
 | |
|  * if KVM does not lock down the memory type.
 | |
|  */
 | |
| #ifdef CONFIG_64BIT
 | |
| #define VM_ALLOW_ANY_UNCACHED_BIT	39
 | |
| #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
 | |
| #else
 | |
| #define VM_ALLOW_ANY_UNCACHED		VM_NONE
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| #define VM_DROPPABLE_BIT	40
 | |
| #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
 | |
| #elif defined(CONFIG_PPC32)
 | |
| #define VM_DROPPABLE		VM_ARCH_1
 | |
| #else
 | |
| #define VM_DROPPABLE		VM_NONE
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| /* VM is sealed, in vm_flags */
 | |
| #define VM_SEALED	_BITUL(63)
 | |
| #endif
 | |
| 
 | |
| /* Bits set in the VMA until the stack is in its final location */
 | |
| #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
 | |
| 
 | |
| #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
 | |
| 
 | |
| /* Common data flag combinations */
 | |
| #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
 | |
| 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 | |
| #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
 | |
| 				 VM_MAYWRITE | VM_MAYEXEC)
 | |
| #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
 | |
| 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 | |
| 
 | |
| #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
 | |
| #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
 | |
| #endif
 | |
| 
 | |
| #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
 | |
| #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 | |
| #endif
 | |
| 
 | |
| #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
 | |
| 
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| #define VM_STACK	VM_GROWSUP
 | |
| #define VM_STACK_EARLY	VM_GROWSDOWN
 | |
| #else
 | |
| #define VM_STACK	VM_GROWSDOWN
 | |
| #define VM_STACK_EARLY	0
 | |
| #endif
 | |
| 
 | |
| #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 | |
| 
 | |
| /* VMA basic access permission flags */
 | |
| #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Special vmas that are non-mergable, non-mlock()able.
 | |
|  */
 | |
| #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 | |
| 
 | |
| /* This mask prevents VMA from being scanned with khugepaged */
 | |
| #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
 | |
| 
 | |
| /* This mask defines which mm->def_flags a process can inherit its parent */
 | |
| #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
 | |
| 
 | |
| /* This mask represents all the VMA flag bits used by mlock */
 | |
| #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
 | |
| 
 | |
| /* Arch-specific flags to clear when updating VM flags on protection change */
 | |
| #ifndef VM_ARCH_CLEAR
 | |
| # define VM_ARCH_CLEAR	VM_NONE
 | |
| #endif
 | |
| #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
 | |
| 
 | |
| /*
 | |
|  * mapping from the currently active vm_flags protection bits (the
 | |
|  * low four bits) to a page protection mask..
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The default fault flags that should be used by most of the
 | |
|  * arch-specific page fault handlers.
 | |
|  */
 | |
| #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
 | |
| 			     FAULT_FLAG_KILLABLE | \
 | |
| 			     FAULT_FLAG_INTERRUPTIBLE)
 | |
| 
 | |
| /**
 | |
|  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
 | |
|  * @flags: Fault flags.
 | |
|  *
 | |
|  * This is mostly used for places where we want to try to avoid taking
 | |
|  * the mmap_lock for too long a time when waiting for another condition
 | |
|  * to change, in which case we can try to be polite to release the
 | |
|  * mmap_lock in the first round to avoid potential starvation of other
 | |
|  * processes that would also want the mmap_lock.
 | |
|  *
 | |
|  * Return: true if the page fault allows retry and this is the first
 | |
|  * attempt of the fault handling; false otherwise.
 | |
|  */
 | |
| static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
 | |
| {
 | |
| 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
 | |
| 	    (!(flags & FAULT_FLAG_TRIED));
 | |
| }
 | |
| 
 | |
| #define FAULT_FLAG_TRACE \
 | |
| 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
 | |
| 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
 | |
| 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
 | |
| 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
 | |
| 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
 | |
| 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
 | |
| 	{ FAULT_FLAG_USER,		"USER" }, \
 | |
| 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
 | |
| 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
 | |
| 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
 | |
| 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
 | |
| 
 | |
| /*
 | |
|  * vm_fault is filled by the pagefault handler and passed to the vma's
 | |
|  * ->fault function. The vma's ->fault is responsible for returning a bitmask
 | |
|  * of VM_FAULT_xxx flags that give details about how the fault was handled.
 | |
|  *
 | |
|  * MM layer fills up gfp_mask for page allocations but fault handler might
 | |
|  * alter it if its implementation requires a different allocation context.
 | |
|  *
 | |
|  * pgoff should be used in favour of virtual_address, if possible.
 | |
|  */
 | |
| struct vm_fault {
 | |
| 	const struct {
 | |
| 		struct vm_area_struct *vma;	/* Target VMA */
 | |
| 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
 | |
| 		pgoff_t pgoff;			/* Logical page offset based on vma */
 | |
| 		unsigned long address;		/* Faulting virtual address - masked */
 | |
| 		unsigned long real_address;	/* Faulting virtual address - unmasked */
 | |
| 	};
 | |
| 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
 | |
| 					 * XXX: should really be 'const' */
 | |
| 	pmd_t *pmd;			/* Pointer to pmd entry matching
 | |
| 					 * the 'address' */
 | |
| 	pud_t *pud;			/* Pointer to pud entry matching
 | |
| 					 * the 'address'
 | |
| 					 */
 | |
| 	union {
 | |
| 		pte_t orig_pte;		/* Value of PTE at the time of fault */
 | |
| 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
 | |
| 					 * used by PMD fault only.
 | |
| 					 */
 | |
| 	};
 | |
| 
 | |
| 	struct page *cow_page;		/* Page handler may use for COW fault */
 | |
| 	struct page *page;		/* ->fault handlers should return a
 | |
| 					 * page here, unless VM_FAULT_NOPAGE
 | |
| 					 * is set (which is also implied by
 | |
| 					 * VM_FAULT_ERROR).
 | |
| 					 */
 | |
| 	/* These three entries are valid only while holding ptl lock */
 | |
| 	pte_t *pte;			/* Pointer to pte entry matching
 | |
| 					 * the 'address'. NULL if the page
 | |
| 					 * table hasn't been allocated.
 | |
| 					 */
 | |
| 	spinlock_t *ptl;		/* Page table lock.
 | |
| 					 * Protects pte page table if 'pte'
 | |
| 					 * is not NULL, otherwise pmd.
 | |
| 					 */
 | |
| 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
 | |
| 					 * vm_ops->map_pages() sets up a page
 | |
| 					 * table from atomic context.
 | |
| 					 * do_fault_around() pre-allocates
 | |
| 					 * page table to avoid allocation from
 | |
| 					 * atomic context.
 | |
| 					 */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * These are the virtual MM functions - opening of an area, closing and
 | |
|  * unmapping it (needed to keep files on disk up-to-date etc), pointer
 | |
|  * to the functions called when a no-page or a wp-page exception occurs.
 | |
|  */
 | |
| struct vm_operations_struct {
 | |
| 	void (*open)(struct vm_area_struct * area);
 | |
| 	/**
 | |
| 	 * @close: Called when the VMA is being removed from the MM.
 | |
| 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
 | |
| 	 */
 | |
| 	void (*close)(struct vm_area_struct * area);
 | |
| 	/* Called any time before splitting to check if it's allowed */
 | |
| 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
 | |
| 	int (*mremap)(struct vm_area_struct *area);
 | |
| 	/*
 | |
| 	 * Called by mprotect() to make driver-specific permission
 | |
| 	 * checks before mprotect() is finalised.   The VMA must not
 | |
| 	 * be modified.  Returns 0 if mprotect() can proceed.
 | |
| 	 */
 | |
| 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
 | |
| 			unsigned long end, unsigned long newflags);
 | |
| 	vm_fault_t (*fault)(struct vm_fault *vmf);
 | |
| 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
 | |
| 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
 | |
| 			pgoff_t start_pgoff, pgoff_t end_pgoff);
 | |
| 	unsigned long (*pagesize)(struct vm_area_struct * area);
 | |
| 
 | |
| 	/* notification that a previously read-only page is about to become
 | |
| 	 * writable, if an error is returned it will cause a SIGBUS */
 | |
| 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
 | |
| 
 | |
| 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 | |
| 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
 | |
| 
 | |
| 	/* called by access_process_vm when get_user_pages() fails, typically
 | |
| 	 * for use by special VMAs. See also generic_access_phys() for a generic
 | |
| 	 * implementation useful for any iomem mapping.
 | |
| 	 */
 | |
| 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		      void *buf, int len, int write);
 | |
| 
 | |
| 	/* Called by the /proc/PID/maps code to ask the vma whether it
 | |
| 	 * has a special name.  Returning non-NULL will also cause this
 | |
| 	 * vma to be dumped unconditionally. */
 | |
| 	const char *(*name)(struct vm_area_struct *vma);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	/*
 | |
| 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
 | |
| 	 * to hold the policy upon return.  Caller should pass NULL @new to
 | |
| 	 * remove a policy and fall back to surrounding context--i.e. do not
 | |
| 	 * install a MPOL_DEFAULT policy, nor the task or system default
 | |
| 	 * mempolicy.
 | |
| 	 */
 | |
| 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 | |
| 
 | |
| 	/*
 | |
| 	 * get_policy() op must add reference [mpol_get()] to any policy at
 | |
| 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 | |
| 	 * in mm/mempolicy.c will do this automatically.
 | |
| 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 | |
| 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
 | |
| 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 | |
| 	 * must return NULL--i.e., do not "fallback" to task or system default
 | |
| 	 * policy.
 | |
| 	 */
 | |
| 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 | |
| 					unsigned long addr, pgoff_t *ilx);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Called by vm_normal_page() for special PTEs to find the
 | |
| 	 * page for @addr.  This is useful if the default behavior
 | |
| 	 * (using pte_page()) would not find the correct page.
 | |
| 	 */
 | |
| 	struct page *(*find_special_page)(struct vm_area_struct *vma,
 | |
| 					  unsigned long addr);
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| static inline void vma_numab_state_init(struct vm_area_struct *vma)
 | |
| {
 | |
| 	vma->numab_state = NULL;
 | |
| }
 | |
| static inline void vma_numab_state_free(struct vm_area_struct *vma)
 | |
| {
 | |
| 	kfree(vma->numab_state);
 | |
| }
 | |
| #else
 | |
| static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
 | |
| static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #ifdef CONFIG_PER_VMA_LOCK
 | |
| /*
 | |
|  * Try to read-lock a vma. The function is allowed to occasionally yield false
 | |
|  * locked result to avoid performance overhead, in which case we fall back to
 | |
|  * using mmap_lock. The function should never yield false unlocked result.
 | |
|  */
 | |
| static inline bool vma_start_read(struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * Check before locking. A race might cause false locked result.
 | |
| 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
 | |
| 	 * ACQUIRE semantics, because this is just a lockless check whose result
 | |
| 	 * we don't rely on for anything - the mm_lock_seq read against which we
 | |
| 	 * need ordering is below.
 | |
| 	 */
 | |
| 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
 | |
| 		return false;
 | |
| 
 | |
| 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Overflow might produce false locked result.
 | |
| 	 * False unlocked result is impossible because we modify and check
 | |
| 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
 | |
| 	 * modification invalidates all existing locks.
 | |
| 	 *
 | |
| 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
 | |
| 	 * racing with vma_end_write_all(), we only start reading from the VMA
 | |
| 	 * after it has been unlocked.
 | |
| 	 * This pairs with RELEASE semantics in vma_end_write_all().
 | |
| 	 */
 | |
| 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
 | |
| 		up_read(&vma->vm_lock->lock);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void vma_end_read(struct vm_area_struct *vma)
 | |
| {
 | |
| 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
 | |
| 	up_read(&vma->vm_lock->lock);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
 | |
| static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
 | |
| {
 | |
| 	mmap_assert_write_locked(vma->vm_mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
 | |
| 	 * mm->mm_lock_seq can't be concurrently modified.
 | |
| 	 */
 | |
| 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
 | |
| 	return (vma->vm_lock_seq == *mm_lock_seq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Begin writing to a VMA.
 | |
|  * Exclude concurrent readers under the per-VMA lock until the currently
 | |
|  * write-locked mmap_lock is dropped or downgraded.
 | |
|  */
 | |
| static inline void vma_start_write(struct vm_area_struct *vma)
 | |
| {
 | |
| 	int mm_lock_seq;
 | |
| 
 | |
| 	if (__is_vma_write_locked(vma, &mm_lock_seq))
 | |
| 		return;
 | |
| 
 | |
| 	down_write(&vma->vm_lock->lock);
 | |
| 	/*
 | |
| 	 * We should use WRITE_ONCE() here because we can have concurrent reads
 | |
| 	 * from the early lockless pessimistic check in vma_start_read().
 | |
| 	 * We don't really care about the correctness of that early check, but
 | |
| 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
 | |
| 	 */
 | |
| 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
 | |
| 	up_write(&vma->vm_lock->lock);
 | |
| }
 | |
| 
 | |
| static inline void vma_assert_write_locked(struct vm_area_struct *vma)
 | |
| {
 | |
| 	int mm_lock_seq;
 | |
| 
 | |
| 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
 | |
| }
 | |
| 
 | |
| static inline void vma_assert_locked(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (!rwsem_is_locked(&vma->vm_lock->lock))
 | |
| 		vma_assert_write_locked(vma);
 | |
| }
 | |
| 
 | |
| static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
 | |
| {
 | |
| 	/* When detaching vma should be write-locked */
 | |
| 	if (detached)
 | |
| 		vma_assert_write_locked(vma);
 | |
| 	vma->detached = detached;
 | |
| }
 | |
| 
 | |
| static inline void release_fault_lock(struct vm_fault *vmf)
 | |
| {
 | |
| 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
 | |
| 		vma_end_read(vmf->vma);
 | |
| 	else
 | |
| 		mmap_read_unlock(vmf->vma->vm_mm);
 | |
| }
 | |
| 
 | |
| static inline void assert_fault_locked(struct vm_fault *vmf)
 | |
| {
 | |
| 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
 | |
| 		vma_assert_locked(vmf->vma);
 | |
| 	else
 | |
| 		mmap_assert_locked(vmf->vma->vm_mm);
 | |
| }
 | |
| 
 | |
| struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
 | |
| 					  unsigned long address);
 | |
| 
 | |
| #else /* CONFIG_PER_VMA_LOCK */
 | |
| 
 | |
| static inline bool vma_start_read(struct vm_area_struct *vma)
 | |
| 		{ return false; }
 | |
| static inline void vma_end_read(struct vm_area_struct *vma) {}
 | |
| static inline void vma_start_write(struct vm_area_struct *vma) {}
 | |
| static inline void vma_assert_write_locked(struct vm_area_struct *vma)
 | |
| 		{ mmap_assert_write_locked(vma->vm_mm); }
 | |
| static inline void vma_mark_detached(struct vm_area_struct *vma,
 | |
| 				     bool detached) {}
 | |
| 
 | |
| static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void vma_assert_locked(struct vm_area_struct *vma)
 | |
| {
 | |
| 	mmap_assert_locked(vma->vm_mm);
 | |
| }
 | |
| 
 | |
| static inline void release_fault_lock(struct vm_fault *vmf)
 | |
| {
 | |
| 	mmap_read_unlock(vmf->vma->vm_mm);
 | |
| }
 | |
| 
 | |
| static inline void assert_fault_locked(struct vm_fault *vmf)
 | |
| {
 | |
| 	mmap_assert_locked(vmf->vma->vm_mm);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PER_VMA_LOCK */
 | |
| 
 | |
| extern const struct vm_operations_struct vma_dummy_vm_ops;
 | |
| 
 | |
| /*
 | |
|  * WARNING: vma_init does not initialize vma->vm_lock.
 | |
|  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
 | |
|  */
 | |
| static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
 | |
| {
 | |
| 	memset(vma, 0, sizeof(*vma));
 | |
| 	vma->vm_mm = mm;
 | |
| 	vma->vm_ops = &vma_dummy_vm_ops;
 | |
| 	INIT_LIST_HEAD(&vma->anon_vma_chain);
 | |
| 	vma_mark_detached(vma, false);
 | |
| 	vma_numab_state_init(vma);
 | |
| }
 | |
| 
 | |
| /* Use when VMA is not part of the VMA tree and needs no locking */
 | |
| static inline void vm_flags_init(struct vm_area_struct *vma,
 | |
| 				 vm_flags_t flags)
 | |
| {
 | |
| 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use when VMA is part of the VMA tree and modifications need coordination
 | |
|  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
 | |
|  * it should be locked explicitly beforehand.
 | |
|  */
 | |
| static inline void vm_flags_reset(struct vm_area_struct *vma,
 | |
| 				  vm_flags_t flags)
 | |
| {
 | |
| 	vma_assert_write_locked(vma);
 | |
| 	vm_flags_init(vma, flags);
 | |
| }
 | |
| 
 | |
| static inline void vm_flags_reset_once(struct vm_area_struct *vma,
 | |
| 				       vm_flags_t flags)
 | |
| {
 | |
| 	vma_assert_write_locked(vma);
 | |
| 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
 | |
| }
 | |
| 
 | |
| static inline void vm_flags_set(struct vm_area_struct *vma,
 | |
| 				vm_flags_t flags)
 | |
| {
 | |
| 	vma_start_write(vma);
 | |
| 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
 | |
| }
 | |
| 
 | |
| static inline void vm_flags_clear(struct vm_area_struct *vma,
 | |
| 				  vm_flags_t flags)
 | |
| {
 | |
| 	vma_start_write(vma);
 | |
| 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use only if VMA is not part of the VMA tree or has no other users and
 | |
|  * therefore needs no locking.
 | |
|  */
 | |
| static inline void __vm_flags_mod(struct vm_area_struct *vma,
 | |
| 				  vm_flags_t set, vm_flags_t clear)
 | |
| {
 | |
| 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use only when the order of set/clear operations is unimportant, otherwise
 | |
|  * use vm_flags_{set|clear} explicitly.
 | |
|  */
 | |
| static inline void vm_flags_mod(struct vm_area_struct *vma,
 | |
| 				vm_flags_t set, vm_flags_t clear)
 | |
| {
 | |
| 	vma_start_write(vma);
 | |
| 	__vm_flags_mod(vma, set, clear);
 | |
| }
 | |
| 
 | |
| static inline void vma_set_anonymous(struct vm_area_struct *vma)
 | |
| {
 | |
| 	vma->vm_ops = NULL;
 | |
| }
 | |
| 
 | |
| static inline bool vma_is_anonymous(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return !vma->vm_ops;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indicate if the VMA is a heap for the given task; for
 | |
|  * /proc/PID/maps that is the heap of the main task.
 | |
|  */
 | |
| static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
 | |
| {
 | |
| 	return vma->vm_start < vma->vm_mm->brk &&
 | |
| 		vma->vm_end > vma->vm_mm->start_brk;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indicate if the VMA is a stack for the given task; for
 | |
|  * /proc/PID/maps that is the stack of the main task.
 | |
|  */
 | |
| static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * We make no effort to guess what a given thread considers to be
 | |
| 	 * its "stack".  It's not even well-defined for programs written
 | |
| 	 * languages like Go.
 | |
| 	 */
 | |
| 	return vma->vm_start <= vma->vm_mm->start_stack &&
 | |
| 		vma->vm_end >= vma->vm_mm->start_stack;
 | |
| }
 | |
| 
 | |
| static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
 | |
| {
 | |
| 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
 | |
| 
 | |
| 	if (!maybe_stack)
 | |
| 		return false;
 | |
| 
 | |
| 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
 | |
| 						VM_STACK_INCOMPLETE_SETUP)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool vma_is_foreign(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (!current->mm)
 | |
| 		return true;
 | |
| 
 | |
| 	if (current->mm != vma->vm_mm)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool vma_is_accessible(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return vma->vm_flags & VM_ACCESS_FLAGS;
 | |
| }
 | |
| 
 | |
| static inline bool is_shared_maywrite(vm_flags_t vm_flags)
 | |
| {
 | |
| 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
 | |
| 		(VM_SHARED | VM_MAYWRITE);
 | |
| }
 | |
| 
 | |
| static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return is_shared_maywrite(vma->vm_flags);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
 | |
| {
 | |
| 	return mas_find(&vmi->mas, max - 1);
 | |
| }
 | |
| 
 | |
| static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
 | |
| {
 | |
| 	/*
 | |
| 	 * Uses mas_find() to get the first VMA when the iterator starts.
 | |
| 	 * Calling mas_next() could skip the first entry.
 | |
| 	 */
 | |
| 	return mas_find(&vmi->mas, ULONG_MAX);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
 | |
| {
 | |
| 	return mas_next_range(&vmi->mas, ULONG_MAX);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
 | |
| {
 | |
| 	return mas_prev(&vmi->mas, 0);
 | |
| }
 | |
| 
 | |
| static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
 | |
| 			unsigned long start, unsigned long end, gfp_t gfp)
 | |
| {
 | |
| 	__mas_set_range(&vmi->mas, start, end - 1);
 | |
| 	mas_store_gfp(&vmi->mas, NULL, gfp);
 | |
| 	if (unlikely(mas_is_err(&vmi->mas)))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Free any unused preallocations */
 | |
| static inline void vma_iter_free(struct vma_iterator *vmi)
 | |
| {
 | |
| 	mas_destroy(&vmi->mas);
 | |
| }
 | |
| 
 | |
| static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
 | |
| 				      struct vm_area_struct *vma)
 | |
| {
 | |
| 	vmi->mas.index = vma->vm_start;
 | |
| 	vmi->mas.last = vma->vm_end - 1;
 | |
| 	mas_store(&vmi->mas, vma);
 | |
| 	if (unlikely(mas_is_err(&vmi->mas)))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void vma_iter_invalidate(struct vma_iterator *vmi)
 | |
| {
 | |
| 	mas_pause(&vmi->mas);
 | |
| }
 | |
| 
 | |
| static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
 | |
| {
 | |
| 	mas_set(&vmi->mas, addr);
 | |
| }
 | |
| 
 | |
| #define for_each_vma(__vmi, __vma)					\
 | |
| 	while (((__vma) = vma_next(&(__vmi))) != NULL)
 | |
| 
 | |
| /* The MM code likes to work with exclusive end addresses */
 | |
| #define for_each_vma_range(__vmi, __vma, __end)				\
 | |
| 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
 | |
| 
 | |
| #ifdef CONFIG_SHMEM
 | |
| /*
 | |
|  * The vma_is_shmem is not inline because it is used only by slow
 | |
|  * paths in userfault.
 | |
|  */
 | |
| bool vma_is_shmem(struct vm_area_struct *vma);
 | |
| bool vma_is_anon_shmem(struct vm_area_struct *vma);
 | |
| #else
 | |
| static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
 | |
| static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
 | |
| #endif
 | |
| 
 | |
| int vma_is_stack_for_current(struct vm_area_struct *vma);
 | |
| 
 | |
| /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
 | |
| #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
 | |
| 
 | |
| struct mmu_gather;
 | |
| struct inode;
 | |
| 
 | |
| /*
 | |
|  * compound_order() can be called without holding a reference, which means
 | |
|  * that niceties like page_folio() don't work.  These callers should be
 | |
|  * prepared to handle wild return values.  For example, PG_head may be
 | |
|  * set before the order is initialised, or this may be a tail page.
 | |
|  * See compaction.c for some good examples.
 | |
|  */
 | |
| static inline unsigned int compound_order(struct page *page)
 | |
| {
 | |
| 	struct folio *folio = (struct folio *)page;
 | |
| 
 | |
| 	if (!test_bit(PG_head, &folio->flags))
 | |
| 		return 0;
 | |
| 	return folio->_flags_1 & 0xff;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_order - The allocation order of a folio.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * A folio is composed of 2^order pages.  See get_order() for the definition
 | |
|  * of order.
 | |
|  *
 | |
|  * Return: The order of the folio.
 | |
|  */
 | |
| static inline unsigned int folio_order(const struct folio *folio)
 | |
| {
 | |
| 	if (!folio_test_large(folio))
 | |
| 		return 0;
 | |
| 	return folio->_flags_1 & 0xff;
 | |
| }
 | |
| 
 | |
| #include <linux/huge_mm.h>
 | |
| 
 | |
| /*
 | |
|  * Methods to modify the page usage count.
 | |
|  *
 | |
|  * What counts for a page usage:
 | |
|  * - cache mapping   (page->mapping)
 | |
|  * - private data    (page->private)
 | |
|  * - page mapped in a task's page tables, each mapping
 | |
|  *   is counted separately
 | |
|  *
 | |
|  * Also, many kernel routines increase the page count before a critical
 | |
|  * routine so they can be sure the page doesn't go away from under them.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Drop a ref, return true if the refcount fell to zero (the page has no users)
 | |
|  */
 | |
| static inline int put_page_testzero(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
 | |
| 	return page_ref_dec_and_test(page);
 | |
| }
 | |
| 
 | |
| static inline int folio_put_testzero(struct folio *folio)
 | |
| {
 | |
| 	return put_page_testzero(&folio->page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to grab a ref unless the page has a refcount of zero, return false if
 | |
|  * that is the case.
 | |
|  * This can be called when MMU is off so it must not access
 | |
|  * any of the virtual mappings.
 | |
|  */
 | |
| static inline bool get_page_unless_zero(struct page *page)
 | |
| {
 | |
| 	return page_ref_add_unless(page, 1, 0);
 | |
| }
 | |
| 
 | |
| static inline struct folio *folio_get_nontail_page(struct page *page)
 | |
| {
 | |
| 	if (unlikely(!get_page_unless_zero(page)))
 | |
| 		return NULL;
 | |
| 	return (struct folio *)page;
 | |
| }
 | |
| 
 | |
| extern int page_is_ram(unsigned long pfn);
 | |
| 
 | |
| enum {
 | |
| 	REGION_INTERSECTS,
 | |
| 	REGION_DISJOINT,
 | |
| 	REGION_MIXED,
 | |
| };
 | |
| 
 | |
| int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
 | |
| 		      unsigned long desc);
 | |
| 
 | |
| /* Support for virtually mapped pages */
 | |
| struct page *vmalloc_to_page(const void *addr);
 | |
| unsigned long vmalloc_to_pfn(const void *addr);
 | |
| 
 | |
| /*
 | |
|  * Determine if an address is within the vmalloc range
 | |
|  *
 | |
|  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 | |
|  * is no special casing required.
 | |
|  */
 | |
| #ifdef CONFIG_MMU
 | |
| extern bool is_vmalloc_addr(const void *x);
 | |
| extern int is_vmalloc_or_module_addr(const void *x);
 | |
| #else
 | |
| static inline bool is_vmalloc_addr(const void *x)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| static inline int is_vmalloc_or_module_addr(const void *x)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * How many times the entire folio is mapped as a single unit (eg by a
 | |
|  * PMD or PUD entry).  This is probably not what you want, except for
 | |
|  * debugging purposes or implementation of other core folio_*() primitives.
 | |
|  */
 | |
| static inline int folio_entire_mapcount(const struct folio *folio)
 | |
| {
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 | |
| 	return atomic_read(&folio->_entire_mapcount) + 1;
 | |
| }
 | |
| 
 | |
| static inline int folio_large_mapcount(const struct folio *folio)
 | |
| {
 | |
| 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
 | |
| 	return atomic_read(&folio->_large_mapcount) + 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_mapcount() - Number of mappings of this folio.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * The folio mapcount corresponds to the number of present user page table
 | |
|  * entries that reference any part of a folio. Each such present user page
 | |
|  * table entry must be paired with exactly on folio reference.
 | |
|  *
 | |
|  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
 | |
|  * exactly once.
 | |
|  *
 | |
|  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
 | |
|  * references the entire folio counts exactly once, even when such special
 | |
|  * page table entries are comprised of multiple ordinary page table entries.
 | |
|  *
 | |
|  * Will report 0 for pages which cannot be mapped into userspace, such as
 | |
|  * slab, page tables and similar.
 | |
|  *
 | |
|  * Return: The number of times this folio is mapped.
 | |
|  */
 | |
| static inline int folio_mapcount(const struct folio *folio)
 | |
| {
 | |
| 	int mapcount;
 | |
| 
 | |
| 	if (likely(!folio_test_large(folio))) {
 | |
| 		mapcount = atomic_read(&folio->_mapcount) + 1;
 | |
| 		if (page_mapcount_is_type(mapcount))
 | |
| 			mapcount = 0;
 | |
| 		return mapcount;
 | |
| 	}
 | |
| 	return folio_large_mapcount(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_mapped - Is this folio mapped into userspace?
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * Return: True if any page in this folio is referenced by user page tables.
 | |
|  */
 | |
| static inline bool folio_mapped(const struct folio *folio)
 | |
| {
 | |
| 	return folio_mapcount(folio) >= 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if this page is mapped into pagetables.
 | |
|  * For compound page it returns true if any sub-page of compound page is mapped,
 | |
|  * even if this particular sub-page is not itself mapped by any PTE or PMD.
 | |
|  */
 | |
| static inline bool page_mapped(const struct page *page)
 | |
| {
 | |
| 	return folio_mapped(page_folio(page));
 | |
| }
 | |
| 
 | |
| static inline struct page *virt_to_head_page(const void *x)
 | |
| {
 | |
| 	struct page *page = virt_to_page(x);
 | |
| 
 | |
| 	return compound_head(page);
 | |
| }
 | |
| 
 | |
| static inline struct folio *virt_to_folio(const void *x)
 | |
| {
 | |
| 	struct page *page = virt_to_page(x);
 | |
| 
 | |
| 	return page_folio(page);
 | |
| }
 | |
| 
 | |
| void __folio_put(struct folio *folio);
 | |
| 
 | |
| void split_page(struct page *page, unsigned int order);
 | |
| void folio_copy(struct folio *dst, struct folio *src);
 | |
| int folio_mc_copy(struct folio *dst, struct folio *src);
 | |
| 
 | |
| unsigned long nr_free_buffer_pages(void);
 | |
| 
 | |
| /* Returns the number of bytes in this potentially compound page. */
 | |
| static inline unsigned long page_size(struct page *page)
 | |
| {
 | |
| 	return PAGE_SIZE << compound_order(page);
 | |
| }
 | |
| 
 | |
| /* Returns the number of bits needed for the number of bytes in a page */
 | |
| static inline unsigned int page_shift(struct page *page)
 | |
| {
 | |
| 	return PAGE_SHIFT + compound_order(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * thp_order - Order of a transparent huge page.
 | |
|  * @page: Head page of a transparent huge page.
 | |
|  */
 | |
| static inline unsigned int thp_order(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
 | |
| 	return compound_order(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * thp_size - Size of a transparent huge page.
 | |
|  * @page: Head page of a transparent huge page.
 | |
|  *
 | |
|  * Return: Number of bytes in this page.
 | |
|  */
 | |
| static inline unsigned long thp_size(struct page *page)
 | |
| {
 | |
| 	return PAGE_SIZE << thp_order(page);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /*
 | |
|  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 | |
|  * servicing faults for write access.  In the normal case, do always want
 | |
|  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 | |
|  * that do not have writing enabled, when used by access_process_vm.
 | |
|  */
 | |
| static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (likely(vma->vm_flags & VM_WRITE))
 | |
| 		pte = pte_mkwrite(pte, vma);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
 | |
| void set_pte_range(struct vm_fault *vmf, struct folio *folio,
 | |
| 		struct page *page, unsigned int nr, unsigned long addr);
 | |
| 
 | |
| vm_fault_t finish_fault(struct vm_fault *vmf);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Multiple processes may "see" the same page. E.g. for untouched
 | |
|  * mappings of /dev/null, all processes see the same page full of
 | |
|  * zeroes, and text pages of executables and shared libraries have
 | |
|  * only one copy in memory, at most, normally.
 | |
|  *
 | |
|  * For the non-reserved pages, page_count(page) denotes a reference count.
 | |
|  *   page_count() == 0 means the page is free. page->lru is then used for
 | |
|  *   freelist management in the buddy allocator.
 | |
|  *   page_count() > 0  means the page has been allocated.
 | |
|  *
 | |
|  * Pages are allocated by the slab allocator in order to provide memory
 | |
|  * to kmalloc and kmem_cache_alloc. In this case, the management of the
 | |
|  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 | |
|  * unless a particular usage is carefully commented. (the responsibility of
 | |
|  * freeing the kmalloc memory is the caller's, of course).
 | |
|  *
 | |
|  * A page may be used by anyone else who does a __get_free_page().
 | |
|  * In this case, page_count still tracks the references, and should only
 | |
|  * be used through the normal accessor functions. The top bits of page->flags
 | |
|  * and page->virtual store page management information, but all other fields
 | |
|  * are unused and could be used privately, carefully. The management of this
 | |
|  * page is the responsibility of the one who allocated it, and those who have
 | |
|  * subsequently been given references to it.
 | |
|  *
 | |
|  * The other pages (we may call them "pagecache pages") are completely
 | |
|  * managed by the Linux memory manager: I/O, buffers, swapping etc.
 | |
|  * The following discussion applies only to them.
 | |
|  *
 | |
|  * A pagecache page contains an opaque `private' member, which belongs to the
 | |
|  * page's address_space. Usually, this is the address of a circular list of
 | |
|  * the page's disk buffers. PG_private must be set to tell the VM to call
 | |
|  * into the filesystem to release these pages.
 | |
|  *
 | |
|  * A page may belong to an inode's memory mapping. In this case, page->mapping
 | |
|  * is the pointer to the inode, and page->index is the file offset of the page,
 | |
|  * in units of PAGE_SIZE.
 | |
|  *
 | |
|  * If pagecache pages are not associated with an inode, they are said to be
 | |
|  * anonymous pages. These may become associated with the swapcache, and in that
 | |
|  * case PG_swapcache is set, and page->private is an offset into the swapcache.
 | |
|  *
 | |
|  * In either case (swapcache or inode backed), the pagecache itself holds one
 | |
|  * reference to the page. Setting PG_private should also increment the
 | |
|  * refcount. The each user mapping also has a reference to the page.
 | |
|  *
 | |
|  * The pagecache pages are stored in a per-mapping radix tree, which is
 | |
|  * rooted at mapping->i_pages, and indexed by offset.
 | |
|  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 | |
|  * lists, we instead now tag pages as dirty/writeback in the radix tree.
 | |
|  *
 | |
|  * All pagecache pages may be subject to I/O:
 | |
|  * - inode pages may need to be read from disk,
 | |
|  * - inode pages which have been modified and are MAP_SHARED may need
 | |
|  *   to be written back to the inode on disk,
 | |
|  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 | |
|  *   modified may need to be swapped out to swap space and (later) to be read
 | |
|  *   back into memory.
 | |
|  */
 | |
| 
 | |
| #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
 | |
| DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
 | |
| 
 | |
| bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
 | |
| static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
 | |
| {
 | |
| 	if (!static_branch_unlikely(&devmap_managed_key))
 | |
| 		return false;
 | |
| 	if (!folio_is_zone_device(folio))
 | |
| 		return false;
 | |
| 	return __put_devmap_managed_folio_refs(folio, refs);
 | |
| }
 | |
| #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
 | |
| static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
 | |
| 
 | |
| /* 127: arbitrary random number, small enough to assemble well */
 | |
| #define folio_ref_zero_or_close_to_overflow(folio) \
 | |
| 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
 | |
| 
 | |
| /**
 | |
|  * folio_get - Increment the reference count on a folio.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * Context: May be called in any context, as long as you know that
 | |
|  * you have a refcount on the folio.  If you do not already have one,
 | |
|  * folio_try_get() may be the right interface for you to use.
 | |
|  */
 | |
| static inline void folio_get(struct folio *folio)
 | |
| {
 | |
| 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
 | |
| 	folio_ref_inc(folio);
 | |
| }
 | |
| 
 | |
| static inline void get_page(struct page *page)
 | |
| {
 | |
| 	folio_get(page_folio(page));
 | |
| }
 | |
| 
 | |
| static inline __must_check bool try_get_page(struct page *page)
 | |
| {
 | |
| 	page = compound_head(page);
 | |
| 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
 | |
| 		return false;
 | |
| 	page_ref_inc(page);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_put - Decrement the reference count on a folio.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * If the folio's reference count reaches zero, the memory will be
 | |
|  * released back to the page allocator and may be used by another
 | |
|  * allocation immediately.  Do not access the memory or the struct folio
 | |
|  * after calling folio_put() unless you can be sure that it wasn't the
 | |
|  * last reference.
 | |
|  *
 | |
|  * Context: May be called in process or interrupt context, but not in NMI
 | |
|  * context.  May be called while holding a spinlock.
 | |
|  */
 | |
| static inline void folio_put(struct folio *folio)
 | |
| {
 | |
| 	if (folio_put_testzero(folio))
 | |
| 		__folio_put(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_put_refs - Reduce the reference count on a folio.
 | |
|  * @folio: The folio.
 | |
|  * @refs: The amount to subtract from the folio's reference count.
 | |
|  *
 | |
|  * If the folio's reference count reaches zero, the memory will be
 | |
|  * released back to the page allocator and may be used by another
 | |
|  * allocation immediately.  Do not access the memory or the struct folio
 | |
|  * after calling folio_put_refs() unless you can be sure that these weren't
 | |
|  * the last references.
 | |
|  *
 | |
|  * Context: May be called in process or interrupt context, but not in NMI
 | |
|  * context.  May be called while holding a spinlock.
 | |
|  */
 | |
| static inline void folio_put_refs(struct folio *folio, int refs)
 | |
| {
 | |
| 	if (folio_ref_sub_and_test(folio, refs))
 | |
| 		__folio_put(folio);
 | |
| }
 | |
| 
 | |
| void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
 | |
| 
 | |
| /*
 | |
|  * union release_pages_arg - an array of pages or folios
 | |
|  *
 | |
|  * release_pages() releases a simple array of multiple pages, and
 | |
|  * accepts various different forms of said page array: either
 | |
|  * a regular old boring array of pages, an array of folios, or
 | |
|  * an array of encoded page pointers.
 | |
|  *
 | |
|  * The transparent union syntax for this kind of "any of these
 | |
|  * argument types" is all kinds of ugly, so look away.
 | |
|  */
 | |
| typedef union {
 | |
| 	struct page **pages;
 | |
| 	struct folio **folios;
 | |
| 	struct encoded_page **encoded_pages;
 | |
| } release_pages_arg __attribute__ ((__transparent_union__));
 | |
| 
 | |
| void release_pages(release_pages_arg, int nr);
 | |
| 
 | |
| /**
 | |
|  * folios_put - Decrement the reference count on an array of folios.
 | |
|  * @folios: The folios.
 | |
|  *
 | |
|  * Like folio_put(), but for a batch of folios.  This is more efficient
 | |
|  * than writing the loop yourself as it will optimise the locks which need
 | |
|  * to be taken if the folios are freed.  The folios batch is returned
 | |
|  * empty and ready to be reused for another batch; there is no need to
 | |
|  * reinitialise it.
 | |
|  *
 | |
|  * Context: May be called in process or interrupt context, but not in NMI
 | |
|  * context.  May be called while holding a spinlock.
 | |
|  */
 | |
| static inline void folios_put(struct folio_batch *folios)
 | |
| {
 | |
| 	folios_put_refs(folios, NULL);
 | |
| }
 | |
| 
 | |
| static inline void put_page(struct page *page)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * For some devmap managed pages we need to catch refcount transition
 | |
| 	 * from 2 to 1:
 | |
| 	 */
 | |
| 	if (put_devmap_managed_folio_refs(folio, 1))
 | |
| 		return;
 | |
| 	folio_put(folio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
 | |
|  * the page's refcount so that two separate items are tracked: the original page
 | |
|  * reference count, and also a new count of how many pin_user_pages() calls were
 | |
|  * made against the page. ("gup-pinned" is another term for the latter).
 | |
|  *
 | |
|  * With this scheme, pin_user_pages() becomes special: such pages are marked as
 | |
|  * distinct from normal pages. As such, the unpin_user_page() call (and its
 | |
|  * variants) must be used in order to release gup-pinned pages.
 | |
|  *
 | |
|  * Choice of value:
 | |
|  *
 | |
|  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
 | |
|  * counts with respect to pin_user_pages() and unpin_user_page() becomes
 | |
|  * simpler, due to the fact that adding an even power of two to the page
 | |
|  * refcount has the effect of using only the upper N bits, for the code that
 | |
|  * counts up using the bias value. This means that the lower bits are left for
 | |
|  * the exclusive use of the original code that increments and decrements by one
 | |
|  * (or at least, by much smaller values than the bias value).
 | |
|  *
 | |
|  * Of course, once the lower bits overflow into the upper bits (and this is
 | |
|  * OK, because subtraction recovers the original values), then visual inspection
 | |
|  * no longer suffices to directly view the separate counts. However, for normal
 | |
|  * applications that don't have huge page reference counts, this won't be an
 | |
|  * issue.
 | |
|  *
 | |
|  * Locking: the lockless algorithm described in folio_try_get_rcu()
 | |
|  * provides safe operation for get_user_pages(), folio_mkclean() and
 | |
|  * other calls that race to set up page table entries.
 | |
|  */
 | |
| #define GUP_PIN_COUNTING_BIAS (1U << 10)
 | |
| 
 | |
| void unpin_user_page(struct page *page);
 | |
| void unpin_folio(struct folio *folio);
 | |
| void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 | |
| 				 bool make_dirty);
 | |
| void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
 | |
| 				      bool make_dirty);
 | |
| void unpin_user_pages(struct page **pages, unsigned long npages);
 | |
| void unpin_user_folio(struct folio *folio, unsigned long npages);
 | |
| void unpin_folios(struct folio **folios, unsigned long nfolios);
 | |
| 
 | |
| static inline bool is_cow_mapping(vm_flags_t flags)
 | |
| {
 | |
| 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_MMU
 | |
| static inline bool is_nommu_shared_mapping(vm_flags_t flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
 | |
| 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
 | |
| 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
 | |
| 	 * underlying memory if ptrace is active, so this is only possible if
 | |
| 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
 | |
| 	 * write permissions later.
 | |
| 	 */
 | |
| 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 | |
| #define SECTION_IN_PAGE_FLAGS
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The identification function is mainly used by the buddy allocator for
 | |
|  * determining if two pages could be buddies. We are not really identifying
 | |
|  * the zone since we could be using the section number id if we do not have
 | |
|  * node id available in page flags.
 | |
|  * We only guarantee that it will return the same value for two combinable
 | |
|  * pages in a zone.
 | |
|  */
 | |
| static inline int page_zone_id(struct page *page)
 | |
| {
 | |
| 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 | |
| }
 | |
| 
 | |
| #ifdef NODE_NOT_IN_PAGE_FLAGS
 | |
| int page_to_nid(const struct page *page);
 | |
| #else
 | |
| static inline int page_to_nid(const struct page *page)
 | |
| {
 | |
| 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline int folio_nid(const struct folio *folio)
 | |
| {
 | |
| 	return page_to_nid(&folio->page);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| /* page access time bits needs to hold at least 4 seconds */
 | |
| #define PAGE_ACCESS_TIME_MIN_BITS	12
 | |
| #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
 | |
| #define PAGE_ACCESS_TIME_BUCKETS				\
 | |
| 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
 | |
| #else
 | |
| #define PAGE_ACCESS_TIME_BUCKETS	0
 | |
| #endif
 | |
| 
 | |
| #define PAGE_ACCESS_TIME_MASK				\
 | |
| 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
 | |
| 
 | |
| static inline int cpu_pid_to_cpupid(int cpu, int pid)
 | |
| {
 | |
| 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_pid(int cpupid)
 | |
| {
 | |
| 	return cpupid & LAST__PID_MASK;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_cpu(int cpupid)
 | |
| {
 | |
| 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_nid(int cpupid)
 | |
| {
 | |
| 	return cpu_to_node(cpupid_to_cpu(cpupid));
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_pid_unset(int cpupid)
 | |
| {
 | |
| 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_cpu_unset(int cpupid)
 | |
| {
 | |
| 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
 | |
| {
 | |
| 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
 | |
| }
 | |
| 
 | |
| #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
 | |
| #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 | |
| static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
 | |
| {
 | |
| 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
 | |
| }
 | |
| 
 | |
| static inline int folio_last_cpupid(struct folio *folio)
 | |
| {
 | |
| 	return folio->_last_cpupid;
 | |
| }
 | |
| static inline void page_cpupid_reset_last(struct page *page)
 | |
| {
 | |
| 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
 | |
| }
 | |
| #else
 | |
| static inline int folio_last_cpupid(struct folio *folio)
 | |
| {
 | |
| 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
 | |
| }
 | |
| 
 | |
| int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
 | |
| 
 | |
| static inline void page_cpupid_reset_last(struct page *page)
 | |
| {
 | |
| 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
 | |
| }
 | |
| #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
 | |
| 
 | |
| static inline int folio_xchg_access_time(struct folio *folio, int time)
 | |
| {
 | |
| 	int last_time;
 | |
| 
 | |
| 	last_time = folio_xchg_last_cpupid(folio,
 | |
| 					   time >> PAGE_ACCESS_TIME_BUCKETS);
 | |
| 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
 | |
| }
 | |
| 
 | |
| static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned int pid_bit;
 | |
| 
 | |
| 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
 | |
| 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
 | |
| 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool folio_use_access_time(struct folio *folio);
 | |
| #else /* !CONFIG_NUMA_BALANCING */
 | |
| static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
 | |
| {
 | |
| 	return folio_nid(folio); /* XXX */
 | |
| }
 | |
| 
 | |
| static inline int folio_xchg_access_time(struct folio *folio, int time)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int folio_last_cpupid(struct folio *folio)
 | |
| {
 | |
| 	return folio_nid(folio); /* XXX */
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_nid(int cpupid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_pid(int cpupid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_cpu(int cpupid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline int cpu_pid_to_cpupid(int nid, int pid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_pid_unset(int cpupid)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void page_cpupid_reset_last(struct page *page)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
 | |
| {
 | |
| }
 | |
| static inline bool folio_use_access_time(struct folio *folio)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
 | |
| 
 | |
| /*
 | |
|  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
 | |
|  * setting tags for all pages to native kernel tag value 0xff, as the default
 | |
|  * value 0x00 maps to 0xff.
 | |
|  */
 | |
| 
 | |
| static inline u8 page_kasan_tag(const struct page *page)
 | |
| {
 | |
| 	u8 tag = KASAN_TAG_KERNEL;
 | |
| 
 | |
| 	if (kasan_enabled()) {
 | |
| 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
 | |
| 		tag ^= 0xff;
 | |
| 	}
 | |
| 
 | |
| 	return tag;
 | |
| }
 | |
| 
 | |
| static inline void page_kasan_tag_set(struct page *page, u8 tag)
 | |
| {
 | |
| 	unsigned long old_flags, flags;
 | |
| 
 | |
| 	if (!kasan_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	tag ^= 0xff;
 | |
| 	old_flags = READ_ONCE(page->flags);
 | |
| 	do {
 | |
| 		flags = old_flags;
 | |
| 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
 | |
| 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
 | |
| 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
 | |
| }
 | |
| 
 | |
| static inline void page_kasan_tag_reset(struct page *page)
 | |
| {
 | |
| 	if (kasan_enabled())
 | |
| 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
 | |
| 
 | |
| static inline u8 page_kasan_tag(const struct page *page)
 | |
| {
 | |
| 	return 0xff;
 | |
| }
 | |
| 
 | |
| static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
 | |
| static inline void page_kasan_tag_reset(struct page *page) { }
 | |
| 
 | |
| #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
 | |
| 
 | |
| static inline struct zone *page_zone(const struct page *page)
 | |
| {
 | |
| 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 | |
| }
 | |
| 
 | |
| static inline pg_data_t *page_pgdat(const struct page *page)
 | |
| {
 | |
| 	return NODE_DATA(page_to_nid(page));
 | |
| }
 | |
| 
 | |
| static inline struct zone *folio_zone(const struct folio *folio)
 | |
| {
 | |
| 	return page_zone(&folio->page);
 | |
| }
 | |
| 
 | |
| static inline pg_data_t *folio_pgdat(const struct folio *folio)
 | |
| {
 | |
| 	return page_pgdat(&folio->page);
 | |
| }
 | |
| 
 | |
| #ifdef SECTION_IN_PAGE_FLAGS
 | |
| static inline void set_page_section(struct page *page, unsigned long section)
 | |
| {
 | |
| 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 | |
| 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned long page_to_section(const struct page *page)
 | |
| {
 | |
| 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * folio_pfn - Return the Page Frame Number of a folio.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * A folio may contain multiple pages.  The pages have consecutive
 | |
|  * Page Frame Numbers.
 | |
|  *
 | |
|  * Return: The Page Frame Number of the first page in the folio.
 | |
|  */
 | |
| static inline unsigned long folio_pfn(const struct folio *folio)
 | |
| {
 | |
| 	return page_to_pfn(&folio->page);
 | |
| }
 | |
| 
 | |
| static inline struct folio *pfn_folio(unsigned long pfn)
 | |
| {
 | |
| 	return page_folio(pfn_to_page(pfn));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * This function checks if a folio has been pinned via a call to
 | |
|  * a function in the pin_user_pages() family.
 | |
|  *
 | |
|  * For small folios, the return value is partially fuzzy: false is not fuzzy,
 | |
|  * because it means "definitely not pinned for DMA", but true means "probably
 | |
|  * pinned for DMA, but possibly a false positive due to having at least
 | |
|  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
 | |
|  *
 | |
|  * False positives are OK, because: a) it's unlikely for a folio to
 | |
|  * get that many refcounts, and b) all the callers of this routine are
 | |
|  * expected to be able to deal gracefully with a false positive.
 | |
|  *
 | |
|  * For large folios, the result will be exactly correct. That's because
 | |
|  * we have more tracking data available: the _pincount field is used
 | |
|  * instead of the GUP_PIN_COUNTING_BIAS scheme.
 | |
|  *
 | |
|  * For more information, please see Documentation/core-api/pin_user_pages.rst.
 | |
|  *
 | |
|  * Return: True, if it is likely that the folio has been "dma-pinned".
 | |
|  * False, if the folio is definitely not dma-pinned.
 | |
|  */
 | |
| static inline bool folio_maybe_dma_pinned(struct folio *folio)
 | |
| {
 | |
| 	if (folio_test_large(folio))
 | |
| 		return atomic_read(&folio->_pincount) > 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * folio_ref_count() is signed. If that refcount overflows, then
 | |
| 	 * folio_ref_count() returns a negative value, and callers will avoid
 | |
| 	 * further incrementing the refcount.
 | |
| 	 *
 | |
| 	 * Here, for that overflow case, use the sign bit to count a little
 | |
| 	 * bit higher via unsigned math, and thus still get an accurate result.
 | |
| 	 */
 | |
| 	return ((unsigned int)folio_ref_count(folio)) >=
 | |
| 		GUP_PIN_COUNTING_BIAS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This should most likely only be called during fork() to see whether we
 | |
|  * should break the cow immediately for an anon page on the src mm.
 | |
|  *
 | |
|  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
 | |
|  */
 | |
| static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
 | |
| 					  struct folio *folio)
 | |
| {
 | |
| 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
 | |
| 
 | |
| 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
 | |
| 		return false;
 | |
| 
 | |
| 	return folio_maybe_dma_pinned(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_zero_page - Query if a page is a zero page
 | |
|  * @page: The page to query
 | |
|  *
 | |
|  * This returns true if @page is one of the permanent zero pages.
 | |
|  */
 | |
| static inline bool is_zero_page(const struct page *page)
 | |
| {
 | |
| 	return is_zero_pfn(page_to_pfn(page));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_zero_folio - Query if a folio is a zero page
 | |
|  * @folio: The folio to query
 | |
|  *
 | |
|  * This returns true if @folio is one of the permanent zero pages.
 | |
|  */
 | |
| static inline bool is_zero_folio(const struct folio *folio)
 | |
| {
 | |
| 	return is_zero_page(&folio->page);
 | |
| }
 | |
| 
 | |
| /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
 | |
| #ifdef CONFIG_MIGRATION
 | |
| static inline bool folio_is_longterm_pinnable(struct folio *folio)
 | |
| {
 | |
| #ifdef CONFIG_CMA
 | |
| 	int mt = folio_migratetype(folio);
 | |
| 
 | |
| 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
 | |
| 		return false;
 | |
| #endif
 | |
| 	/* The zero page can be "pinned" but gets special handling. */
 | |
| 	if (is_zero_folio(folio))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Coherent device memory must always allow eviction. */
 | |
| 	if (folio_is_device_coherent(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Otherwise, non-movable zone folios can be pinned. */
 | |
| 	return !folio_is_zone_movable(folio);
 | |
| 
 | |
| }
 | |
| #else
 | |
| static inline bool folio_is_longterm_pinnable(struct folio *folio)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void set_page_zone(struct page *page, enum zone_type zone)
 | |
| {
 | |
| 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 | |
| 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline void set_page_node(struct page *page, unsigned long node)
 | |
| {
 | |
| 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 | |
| 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline void set_page_links(struct page *page, enum zone_type zone,
 | |
| 	unsigned long node, unsigned long pfn)
 | |
| {
 | |
| 	set_page_zone(page, zone);
 | |
| 	set_page_node(page, node);
 | |
| #ifdef SECTION_IN_PAGE_FLAGS
 | |
| 	set_page_section(page, pfn_to_section_nr(pfn));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_nr_pages - The number of pages in the folio.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * Return: A positive power of two.
 | |
|  */
 | |
| static inline long folio_nr_pages(const struct folio *folio)
 | |
| {
 | |
| 	if (!folio_test_large(folio))
 | |
| 		return 1;
 | |
| #ifdef CONFIG_64BIT
 | |
| 	return folio->_folio_nr_pages;
 | |
| #else
 | |
| 	return 1L << (folio->_flags_1 & 0xff);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
 | |
| #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
 | |
| #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
 | |
| #else
 | |
| #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * compound_nr() returns the number of pages in this potentially compound
 | |
|  * page.  compound_nr() can be called on a tail page, and is defined to
 | |
|  * return 1 in that case.
 | |
|  */
 | |
| static inline unsigned long compound_nr(struct page *page)
 | |
| {
 | |
| 	struct folio *folio = (struct folio *)page;
 | |
| 
 | |
| 	if (!test_bit(PG_head, &folio->flags))
 | |
| 		return 1;
 | |
| #ifdef CONFIG_64BIT
 | |
| 	return folio->_folio_nr_pages;
 | |
| #else
 | |
| 	return 1L << (folio->_flags_1 & 0xff);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * thp_nr_pages - The number of regular pages in this huge page.
 | |
|  * @page: The head page of a huge page.
 | |
|  */
 | |
| static inline int thp_nr_pages(struct page *page)
 | |
| {
 | |
| 	return folio_nr_pages((struct folio *)page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_next - Move to the next physical folio.
 | |
|  * @folio: The folio we're currently operating on.
 | |
|  *
 | |
|  * If you have physically contiguous memory which may span more than
 | |
|  * one folio (eg a &struct bio_vec), use this function to move from one
 | |
|  * folio to the next.  Do not use it if the memory is only virtually
 | |
|  * contiguous as the folios are almost certainly not adjacent to each
 | |
|  * other.  This is the folio equivalent to writing ``page++``.
 | |
|  *
 | |
|  * Context: We assume that the folios are refcounted and/or locked at a
 | |
|  * higher level and do not adjust the reference counts.
 | |
|  * Return: The next struct folio.
 | |
|  */
 | |
| static inline struct folio *folio_next(struct folio *folio)
 | |
| {
 | |
| 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_shift - The size of the memory described by this folio.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * A folio represents a number of bytes which is a power-of-two in size.
 | |
|  * This function tells you which power-of-two the folio is.  See also
 | |
|  * folio_size() and folio_order().
 | |
|  *
 | |
|  * Context: The caller should have a reference on the folio to prevent
 | |
|  * it from being split.  It is not necessary for the folio to be locked.
 | |
|  * Return: The base-2 logarithm of the size of this folio.
 | |
|  */
 | |
| static inline unsigned int folio_shift(const struct folio *folio)
 | |
| {
 | |
| 	return PAGE_SHIFT + folio_order(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_size - The number of bytes in a folio.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * Context: The caller should have a reference on the folio to prevent
 | |
|  * it from being split.  It is not necessary for the folio to be locked.
 | |
|  * Return: The number of bytes in this folio.
 | |
|  */
 | |
| static inline size_t folio_size(const struct folio *folio)
 | |
| {
 | |
| 	return PAGE_SIZE << folio_order(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
 | |
|  *				tables of more than one MM
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * This function checks if the folio is currently mapped into more than one
 | |
|  * MM ("mapped shared"), or if the folio is only mapped into a single MM
 | |
|  * ("mapped exclusively").
 | |
|  *
 | |
|  * For KSM folios, this function also returns "mapped shared" when a folio is
 | |
|  * mapped multiple times into the same MM, because the individual page mappings
 | |
|  * are independent.
 | |
|  *
 | |
|  * As precise information is not easily available for all folios, this function
 | |
|  * estimates the number of MMs ("sharers") that are currently mapping a folio
 | |
|  * using the number of times the first page of the folio is currently mapped
 | |
|  * into page tables.
 | |
|  *
 | |
|  * For small anonymous folios and anonymous hugetlb folios, the return
 | |
|  * value will be exactly correct: non-KSM folios can only be mapped at most once
 | |
|  * into an MM, and they cannot be partially mapped. KSM folios are
 | |
|  * considered shared even if mapped multiple times into the same MM.
 | |
|  *
 | |
|  * For other folios, the result can be fuzzy:
 | |
|  *    #. For partially-mappable large folios (THP), the return value can wrongly
 | |
|  *       indicate "mapped exclusively" (false negative) when the folio is
 | |
|  *       only partially mapped into at least one MM.
 | |
|  *    #. For pagecache folios (including hugetlb), the return value can wrongly
 | |
|  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
 | |
|  *       cover the same file range.
 | |
|  *
 | |
|  * Further, this function only considers current page table mappings that
 | |
|  * are tracked using the folio mapcount(s).
 | |
|  *
 | |
|  * This function does not consider:
 | |
|  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
 | |
|  *       pagecache, temporary unmapping for migration).
 | |
|  *    #. If the folio is mapped differently (VM_PFNMAP).
 | |
|  *    #. If hugetlb page table sharing applies. Callers might want to check
 | |
|  *       hugetlb_pmd_shared().
 | |
|  *
 | |
|  * Return: Whether the folio is estimated to be mapped into more than one MM.
 | |
|  */
 | |
| static inline bool folio_likely_mapped_shared(struct folio *folio)
 | |
| {
 | |
| 	int mapcount = folio_mapcount(folio);
 | |
| 
 | |
| 	/* Only partially-mappable folios require more care. */
 | |
| 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
 | |
| 		return mapcount > 1;
 | |
| 
 | |
| 	/* A single mapping implies "mapped exclusively". */
 | |
| 	if (mapcount <= 1)
 | |
| 		return false;
 | |
| 
 | |
| 	/* If any page is mapped more than once we treat it "mapped shared". */
 | |
| 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Let's guess based on the first subpage. */
 | |
| 	return atomic_read(&folio->_mapcount) > 0;
 | |
| }
 | |
| 
 | |
| #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
 | |
| static inline int arch_make_folio_accessible(struct folio *folio)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some inline functions in vmstat.h depend on page_zone()
 | |
|  */
 | |
| #include <linux/vmstat.h>
 | |
| 
 | |
| #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 | |
| #define HASHED_PAGE_VIRTUAL
 | |
| #endif
 | |
| 
 | |
| #if defined(WANT_PAGE_VIRTUAL)
 | |
| static inline void *page_address(const struct page *page)
 | |
| {
 | |
| 	return page->virtual;
 | |
| }
 | |
| static inline void set_page_address(struct page *page, void *address)
 | |
| {
 | |
| 	page->virtual = address;
 | |
| }
 | |
| #define page_address_init()  do { } while(0)
 | |
| #endif
 | |
| 
 | |
| #if defined(HASHED_PAGE_VIRTUAL)
 | |
| void *page_address(const struct page *page);
 | |
| void set_page_address(struct page *page, void *virtual);
 | |
| void page_address_init(void);
 | |
| #endif
 | |
| 
 | |
| static __always_inline void *lowmem_page_address(const struct page *page)
 | |
| {
 | |
| 	return page_to_virt(page);
 | |
| }
 | |
| 
 | |
| #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 | |
| #define page_address(page) lowmem_page_address(page)
 | |
| #define set_page_address(page, address)  do { } while(0)
 | |
| #define page_address_init()  do { } while(0)
 | |
| #endif
 | |
| 
 | |
| static inline void *folio_address(const struct folio *folio)
 | |
| {
 | |
| 	return page_address(&folio->page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true only if the page has been allocated with
 | |
|  * ALLOC_NO_WATERMARKS and the low watermark was not
 | |
|  * met implying that the system is under some pressure.
 | |
|  */
 | |
| static inline bool page_is_pfmemalloc(const struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * lru.next has bit 1 set if the page is allocated from the
 | |
| 	 * pfmemalloc reserves.  Callers may simply overwrite it if
 | |
| 	 * they do not need to preserve that information.
 | |
| 	 */
 | |
| 	return (uintptr_t)page->lru.next & BIT(1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true only if the folio has been allocated with
 | |
|  * ALLOC_NO_WATERMARKS and the low watermark was not
 | |
|  * met implying that the system is under some pressure.
 | |
|  */
 | |
| static inline bool folio_is_pfmemalloc(const struct folio *folio)
 | |
| {
 | |
| 	/*
 | |
| 	 * lru.next has bit 1 set if the page is allocated from the
 | |
| 	 * pfmemalloc reserves.  Callers may simply overwrite it if
 | |
| 	 * they do not need to preserve that information.
 | |
| 	 */
 | |
| 	return (uintptr_t)folio->lru.next & BIT(1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only to be called by the page allocator on a freshly allocated
 | |
|  * page.
 | |
|  */
 | |
| static inline void set_page_pfmemalloc(struct page *page)
 | |
| {
 | |
| 	page->lru.next = (void *)BIT(1);
 | |
| }
 | |
| 
 | |
| static inline void clear_page_pfmemalloc(struct page *page)
 | |
| {
 | |
| 	page->lru.next = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 | |
|  */
 | |
| extern void pagefault_out_of_memory(void);
 | |
| 
 | |
| #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
 | |
| #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
 | |
| #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
 | |
| 
 | |
| /*
 | |
|  * Parameter block passed down to zap_pte_range in exceptional cases.
 | |
|  */
 | |
| struct zap_details {
 | |
| 	struct folio *single_folio;	/* Locked folio to be unmapped */
 | |
| 	bool even_cows;			/* Zap COWed private pages too? */
 | |
| 	zap_flags_t zap_flags;		/* Extra flags for zapping */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Whether to drop the pte markers, for example, the uffd-wp information for
 | |
|  * file-backed memory.  This should only be specified when we will completely
 | |
|  * drop the page in the mm, either by truncation or unmapping of the vma.  By
 | |
|  * default, the flag is not set.
 | |
|  */
 | |
| #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
 | |
| /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
 | |
| #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
 | |
| 
 | |
| #ifdef CONFIG_SCHED_MM_CID
 | |
| void sched_mm_cid_before_execve(struct task_struct *t);
 | |
| void sched_mm_cid_after_execve(struct task_struct *t);
 | |
| void sched_mm_cid_fork(struct task_struct *t);
 | |
| void sched_mm_cid_exit_signals(struct task_struct *t);
 | |
| static inline int task_mm_cid(struct task_struct *t)
 | |
| {
 | |
| 	return t->mm_cid;
 | |
| }
 | |
| #else
 | |
| static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
 | |
| static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
 | |
| static inline void sched_mm_cid_fork(struct task_struct *t) { }
 | |
| static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
 | |
| static inline int task_mm_cid(struct task_struct *t)
 | |
| {
 | |
| 	/*
 | |
| 	 * Use the processor id as a fall-back when the mm cid feature is
 | |
| 	 * disabled. This provides functional per-cpu data structure accesses
 | |
| 	 * in user-space, althrough it won't provide the memory usage benefits.
 | |
| 	 */
 | |
| 	return raw_smp_processor_id();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern bool can_do_mlock(void);
 | |
| #else
 | |
| static inline bool can_do_mlock(void) { return false; }
 | |
| #endif
 | |
| extern int user_shm_lock(size_t, struct ucounts *);
 | |
| extern void user_shm_unlock(size_t, struct ucounts *);
 | |
| 
 | |
| struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			     pte_t pte);
 | |
| struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			     pte_t pte);
 | |
| struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
 | |
| 				  unsigned long addr, pmd_t pmd);
 | |
| struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 				pmd_t pmd);
 | |
| 
 | |
| void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
 | |
| 		  unsigned long size);
 | |
| void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
 | |
| 			   unsigned long size, struct zap_details *details);
 | |
| static inline void zap_vma_pages(struct vm_area_struct *vma)
 | |
| {
 | |
| 	zap_page_range_single(vma, vma->vm_start,
 | |
| 			      vma->vm_end - vma->vm_start, NULL);
 | |
| }
 | |
| void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
 | |
| 		struct vm_area_struct *start_vma, unsigned long start,
 | |
| 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
 | |
| 
 | |
| struct mmu_notifier_range;
 | |
| 
 | |
| void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
 | |
| 		unsigned long end, unsigned long floor, unsigned long ceiling);
 | |
| int
 | |
| copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
 | |
| int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			void *buf, int len, int write);
 | |
| 
 | |
| struct follow_pfnmap_args {
 | |
| 	/**
 | |
| 	 * Inputs:
 | |
| 	 * @vma: Pointer to @vm_area_struct struct
 | |
| 	 * @address: the virtual address to walk
 | |
| 	 */
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long address;
 | |
| 	/**
 | |
| 	 * Internals:
 | |
| 	 *
 | |
| 	 * The caller shouldn't touch any of these.
 | |
| 	 */
 | |
| 	spinlock_t *lock;
 | |
| 	pte_t *ptep;
 | |
| 	/**
 | |
| 	 * Outputs:
 | |
| 	 *
 | |
| 	 * @pfn: the PFN of the address
 | |
| 	 * @pgprot: the pgprot_t of the mapping
 | |
| 	 * @writable: whether the mapping is writable
 | |
| 	 * @special: whether the mapping is a special mapping (real PFN maps)
 | |
| 	 */
 | |
| 	unsigned long pfn;
 | |
| 	pgprot_t pgprot;
 | |
| 	bool writable;
 | |
| 	bool special;
 | |
| };
 | |
| int follow_pfnmap_start(struct follow_pfnmap_args *args);
 | |
| void follow_pfnmap_end(struct follow_pfnmap_args *args);
 | |
| 
 | |
| extern void truncate_pagecache(struct inode *inode, loff_t new);
 | |
| extern void truncate_setsize(struct inode *inode, loff_t newsize);
 | |
| void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
 | |
| void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
 | |
| int generic_error_remove_folio(struct address_space *mapping,
 | |
| 		struct folio *folio);
 | |
| 
 | |
| struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
 | |
| 		unsigned long address, struct pt_regs *regs);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
 | |
| 				  unsigned long address, unsigned int flags,
 | |
| 				  struct pt_regs *regs);
 | |
| extern int fixup_user_fault(struct mm_struct *mm,
 | |
| 			    unsigned long address, unsigned int fault_flags,
 | |
| 			    bool *unlocked);
 | |
| void unmap_mapping_pages(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t nr, bool even_cows);
 | |
| void unmap_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen, int even_cows);
 | |
| #else
 | |
| static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
 | |
| 					 unsigned long address, unsigned int flags,
 | |
| 					 struct pt_regs *regs)
 | |
| {
 | |
| 	/* should never happen if there's no MMU */
 | |
| 	BUG();
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
 | |
| 		unsigned int fault_flags, bool *unlocked)
 | |
| {
 | |
| 	/* should never happen if there's no MMU */
 | |
| 	BUG();
 | |
| 	return -EFAULT;
 | |
| }
 | |
| static inline void unmap_mapping_pages(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t nr, bool even_cows) { }
 | |
| static inline void unmap_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
 | |
| #endif
 | |
| 
 | |
| static inline void unmap_shared_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen)
 | |
| {
 | |
| 	unmap_mapping_range(mapping, holebegin, holelen, 0);
 | |
| }
 | |
| 
 | |
| static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
 | |
| 						unsigned long addr);
 | |
| 
 | |
| extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
 | |
| 		void *buf, int len, unsigned int gup_flags);
 | |
| extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
 | |
| 		void *buf, int len, unsigned int gup_flags);
 | |
| 
 | |
| long get_user_pages_remote(struct mm_struct *mm,
 | |
| 			   unsigned long start, unsigned long nr_pages,
 | |
| 			   unsigned int gup_flags, struct page **pages,
 | |
| 			   int *locked);
 | |
| long pin_user_pages_remote(struct mm_struct *mm,
 | |
| 			   unsigned long start, unsigned long nr_pages,
 | |
| 			   unsigned int gup_flags, struct page **pages,
 | |
| 			   int *locked);
 | |
| 
 | |
| /*
 | |
|  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
 | |
|  */
 | |
| static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
 | |
| 						    unsigned long addr,
 | |
| 						    int gup_flags,
 | |
| 						    struct vm_area_struct **vmap)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int got;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
 | |
| 
 | |
| 	if (got < 0)
 | |
| 		return ERR_PTR(got);
 | |
| 
 | |
| 	vma = vma_lookup(mm, addr);
 | |
| 	if (WARN_ON_ONCE(!vma)) {
 | |
| 		put_page(page);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	*vmap = vma;
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| long get_user_pages(unsigned long start, unsigned long nr_pages,
 | |
| 		    unsigned int gup_flags, struct page **pages);
 | |
| long pin_user_pages(unsigned long start, unsigned long nr_pages,
 | |
| 		    unsigned int gup_flags, struct page **pages);
 | |
| long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 | |
| 		    struct page **pages, unsigned int gup_flags);
 | |
| long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 | |
| 		    struct page **pages, unsigned int gup_flags);
 | |
| long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
 | |
| 		      struct folio **folios, unsigned int max_folios,
 | |
| 		      pgoff_t *offset);
 | |
| int folio_add_pins(struct folio *folio, unsigned int pins);
 | |
| 
 | |
| int get_user_pages_fast(unsigned long start, int nr_pages,
 | |
| 			unsigned int gup_flags, struct page **pages);
 | |
| int pin_user_pages_fast(unsigned long start, int nr_pages,
 | |
| 			unsigned int gup_flags, struct page **pages);
 | |
| void folio_add_pin(struct folio *folio);
 | |
| 
 | |
| int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
 | |
| int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
 | |
| 			struct task_struct *task, bool bypass_rlim);
 | |
| 
 | |
| struct kvec;
 | |
| struct page *get_dump_page(unsigned long addr);
 | |
| 
 | |
| bool folio_mark_dirty(struct folio *folio);
 | |
| bool folio_mark_dirty_lock(struct folio *folio);
 | |
| bool set_page_dirty(struct page *page);
 | |
| int set_page_dirty_lock(struct page *page);
 | |
| 
 | |
| int get_cmdline(struct task_struct *task, char *buffer, int buflen);
 | |
| 
 | |
| /*
 | |
|  * Flags used by change_protection().  For now we make it a bitmap so
 | |
|  * that we can pass in multiple flags just like parameters.  However
 | |
|  * for now all the callers are only use one of the flags at the same
 | |
|  * time.
 | |
|  */
 | |
| /*
 | |
|  * Whether we should manually check if we can map individual PTEs writable,
 | |
|  * because something (e.g., COW, uffd-wp) blocks that from happening for all
 | |
|  * PTEs automatically in a writable mapping.
 | |
|  */
 | |
| #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
 | |
| /* Whether this protection change is for NUMA hints */
 | |
| #define  MM_CP_PROT_NUMA                   (1UL << 1)
 | |
| /* Whether this change is for write protecting */
 | |
| #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
 | |
| #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
 | |
| #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
 | |
| 					    MM_CP_UFFD_WP_RESOLVE)
 | |
| 
 | |
| bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			     pte_t pte);
 | |
| extern long change_protection(struct mmu_gather *tlb,
 | |
| 			      struct vm_area_struct *vma, unsigned long start,
 | |
| 			      unsigned long end, unsigned long cp_flags);
 | |
| extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
 | |
| 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
 | |
| 	  unsigned long start, unsigned long end, unsigned long newflags);
 | |
| 
 | |
| /*
 | |
|  * doesn't attempt to fault and will return short.
 | |
|  */
 | |
| int get_user_pages_fast_only(unsigned long start, int nr_pages,
 | |
| 			     unsigned int gup_flags, struct page **pages);
 | |
| 
 | |
| static inline bool get_user_page_fast_only(unsigned long addr,
 | |
| 			unsigned int gup_flags, struct page **pagep)
 | |
| {
 | |
| 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
 | |
| }
 | |
| /*
 | |
|  * per-process(per-mm_struct) statistics.
 | |
|  */
 | |
| static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
 | |
| {
 | |
| 	return percpu_counter_read_positive(&mm->rss_stat[member]);
 | |
| }
 | |
| 
 | |
| void mm_trace_rss_stat(struct mm_struct *mm, int member);
 | |
| 
 | |
| static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
 | |
| {
 | |
| 	percpu_counter_add(&mm->rss_stat[member], value);
 | |
| 
 | |
| 	mm_trace_rss_stat(mm, member);
 | |
| }
 | |
| 
 | |
| static inline void inc_mm_counter(struct mm_struct *mm, int member)
 | |
| {
 | |
| 	percpu_counter_inc(&mm->rss_stat[member]);
 | |
| 
 | |
| 	mm_trace_rss_stat(mm, member);
 | |
| }
 | |
| 
 | |
| static inline void dec_mm_counter(struct mm_struct *mm, int member)
 | |
| {
 | |
| 	percpu_counter_dec(&mm->rss_stat[member]);
 | |
| 
 | |
| 	mm_trace_rss_stat(mm, member);
 | |
| }
 | |
| 
 | |
| /* Optimized variant when folio is already known not to be anon */
 | |
| static inline int mm_counter_file(struct folio *folio)
 | |
| {
 | |
| 	if (folio_test_swapbacked(folio))
 | |
| 		return MM_SHMEMPAGES;
 | |
| 	return MM_FILEPAGES;
 | |
| }
 | |
| 
 | |
| static inline int mm_counter(struct folio *folio)
 | |
| {
 | |
| 	if (folio_test_anon(folio))
 | |
| 		return MM_ANONPAGES;
 | |
| 	return mm_counter_file(folio);
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_mm_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	return get_mm_counter(mm, MM_FILEPAGES) +
 | |
| 		get_mm_counter(mm, MM_ANONPAGES) +
 | |
| 		get_mm_counter(mm, MM_SHMEMPAGES);
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	return max(mm->hiwater_rss, get_mm_rss(mm));
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
 | |
| {
 | |
| 	return max(mm->hiwater_vm, mm->total_vm);
 | |
| }
 | |
| 
 | |
| static inline void update_hiwater_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long _rss = get_mm_rss(mm);
 | |
| 
 | |
| 	if ((mm)->hiwater_rss < _rss)
 | |
| 		(mm)->hiwater_rss = _rss;
 | |
| }
 | |
| 
 | |
| static inline void update_hiwater_vm(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm->hiwater_vm < mm->total_vm)
 | |
| 		mm->hiwater_vm = mm->total_vm;
 | |
| }
 | |
| 
 | |
| static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	mm->hiwater_rss = get_mm_rss(mm);
 | |
| }
 | |
| 
 | |
| static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
 | |
| 					 struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
 | |
| 
 | |
| 	if (*maxrss < hiwater_rss)
 | |
| 		*maxrss = hiwater_rss;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
 | |
| static inline int pte_special(pte_t pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkspecial(pte_t pte)
 | |
| {
 | |
| 	return pte;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
 | |
| static inline bool pmd_special(pmd_t pmd)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline pmd_t pmd_mkspecial(pmd_t pmd)
 | |
| {
 | |
| 	return pmd;
 | |
| }
 | |
| #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
 | |
| 
 | |
| #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
 | |
| static inline bool pud_special(pud_t pud)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline pud_t pud_mkspecial(pud_t pud)
 | |
| {
 | |
| 	return pud;
 | |
| }
 | |
| #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
 | |
| 
 | |
| #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
 | |
| static inline int pte_devmap(pte_t pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
 | |
| 			       spinlock_t **ptl);
 | |
| static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
 | |
| 				    spinlock_t **ptl)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
 | |
| 	return ptep;
 | |
| }
 | |
| 
 | |
| #ifdef __PAGETABLE_P4D_FOLDED
 | |
| static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
 | |
| 						unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
 | |
| #endif
 | |
| 
 | |
| #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
 | |
| static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
 | |
| 						unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
 | |
| static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
 | |
| 
 | |
| #else
 | |
| int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
 | |
| 
 | |
| static inline void mm_inc_nr_puds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pud_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_dec_nr_puds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pud_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
 | |
| static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
 | |
| 						unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
 | |
| static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
 | |
| 
 | |
| #else
 | |
| int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
 | |
| 
 | |
| static inline void mm_inc_nr_pmds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pmd_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_dec_nr_pmds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pmd_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_long_set(&mm->pgtables_bytes, 0);
 | |
| }
 | |
| 
 | |
| static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
 | |
| {
 | |
| 	return atomic_long_read(&mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_inc_nr_ptes(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_dec_nr_ptes(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
 | |
| }
 | |
| #else
 | |
| 
 | |
| static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
 | |
| static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
 | |
| static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
 | |
| #endif
 | |
| 
 | |
| int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
 | |
| int __pte_alloc_kernel(pmd_t *pmd);
 | |
| 
 | |
| #if defined(CONFIG_MMU)
 | |
| 
 | |
| static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
 | |
| 		NULL : p4d_offset(pgd, address);
 | |
| }
 | |
| 
 | |
| static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
 | |
| 		NULL : pud_offset(p4d, address);
 | |
| }
 | |
| 
 | |
| static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
 | |
| {
 | |
| 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
 | |
| 		NULL: pmd_offset(pud, address);
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| static inline struct ptdesc *virt_to_ptdesc(const void *x)
 | |
| {
 | |
| 	return page_ptdesc(virt_to_page(x));
 | |
| }
 | |
| 
 | |
| static inline void *ptdesc_to_virt(const struct ptdesc *pt)
 | |
| {
 | |
| 	return page_to_virt(ptdesc_page(pt));
 | |
| }
 | |
| 
 | |
| static inline void *ptdesc_address(const struct ptdesc *pt)
 | |
| {
 | |
| 	return folio_address(ptdesc_folio(pt));
 | |
| }
 | |
| 
 | |
| static inline bool pagetable_is_reserved(struct ptdesc *pt)
 | |
| {
 | |
| 	return folio_test_reserved(ptdesc_folio(pt));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pagetable_alloc - Allocate pagetables
 | |
|  * @gfp:    GFP flags
 | |
|  * @order:  desired pagetable order
 | |
|  *
 | |
|  * pagetable_alloc allocates memory for page tables as well as a page table
 | |
|  * descriptor to describe that memory.
 | |
|  *
 | |
|  * Return: The ptdesc describing the allocated page tables.
 | |
|  */
 | |
| static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
 | |
| {
 | |
| 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
 | |
| 
 | |
| 	return page_ptdesc(page);
 | |
| }
 | |
| #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
 | |
| 
 | |
| /**
 | |
|  * pagetable_free - Free pagetables
 | |
|  * @pt:	The page table descriptor
 | |
|  *
 | |
|  * pagetable_free frees the memory of all page tables described by a page
 | |
|  * table descriptor and the memory for the descriptor itself.
 | |
|  */
 | |
| static inline void pagetable_free(struct ptdesc *pt)
 | |
| {
 | |
| 	struct page *page = ptdesc_page(pt);
 | |
| 
 | |
| 	__free_pages(page, compound_order(page));
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
 | |
| #if ALLOC_SPLIT_PTLOCKS
 | |
| void __init ptlock_cache_init(void);
 | |
| bool ptlock_alloc(struct ptdesc *ptdesc);
 | |
| void ptlock_free(struct ptdesc *ptdesc);
 | |
| 
 | |
| static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	return ptdesc->ptl;
 | |
| }
 | |
| #else /* ALLOC_SPLIT_PTLOCKS */
 | |
| static inline void ptlock_cache_init(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool ptlock_alloc(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void ptlock_free(struct ptdesc *ptdesc)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	return &ptdesc->ptl;
 | |
| }
 | |
| #endif /* ALLOC_SPLIT_PTLOCKS */
 | |
| 
 | |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
 | |
| {
 | |
| 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
 | |
| 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
 | |
| 	return ptlock_ptr(virt_to_ptdesc(pte));
 | |
| }
 | |
| 
 | |
| static inline bool ptlock_init(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	/*
 | |
| 	 * prep_new_page() initialize page->private (and therefore page->ptl)
 | |
| 	 * with 0. Make sure nobody took it in use in between.
 | |
| 	 *
 | |
| 	 * It can happen if arch try to use slab for page table allocation:
 | |
| 	 * slab code uses page->slab_cache, which share storage with page->ptl.
 | |
| 	 */
 | |
| 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
 | |
| 	if (!ptlock_alloc(ptdesc))
 | |
| 		return false;
 | |
| 	spin_lock_init(ptlock_ptr(ptdesc));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
 | |
| /*
 | |
|  * We use mm->page_table_lock to guard all pagetable pages of the mm.
 | |
|  */
 | |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| static inline void ptlock_cache_init(void) {}
 | |
| static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
 | |
| static inline void ptlock_free(struct ptdesc *ptdesc) {}
 | |
| #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
 | |
| 
 | |
| static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	struct folio *folio = ptdesc_folio(ptdesc);
 | |
| 
 | |
| 	if (!ptlock_init(ptdesc))
 | |
| 		return false;
 | |
| 	__folio_set_pgtable(folio);
 | |
| 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	struct folio *folio = ptdesc_folio(ptdesc);
 | |
| 
 | |
| 	ptlock_free(ptdesc);
 | |
| 	__folio_clear_pgtable(folio);
 | |
| 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
 | |
| }
 | |
| 
 | |
| pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
 | |
| static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
 | |
| 			pmd_t *pmdvalp)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
 | |
| 	return pte;
 | |
| }
 | |
| static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
 | |
| {
 | |
| 	return __pte_offset_map(pmd, addr, NULL);
 | |
| }
 | |
| 
 | |
| pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
 | |
| 			unsigned long addr, spinlock_t **ptlp);
 | |
| static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
 | |
| 			unsigned long addr, spinlock_t **ptlp)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	__cond_lock(RCU, __cond_lock(*ptlp,
 | |
| 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
 | |
| 				unsigned long addr, spinlock_t **ptlp);
 | |
| pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
 | |
| 				unsigned long addr, pmd_t *pmdvalp,
 | |
| 				spinlock_t **ptlp);
 | |
| 
 | |
| #define pte_unmap_unlock(pte, ptl)	do {		\
 | |
| 	spin_unlock(ptl);				\
 | |
| 	pte_unmap(pte);					\
 | |
| } while (0)
 | |
| 
 | |
| #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
 | |
| 
 | |
| #define pte_alloc_map(mm, pmd, address)			\
 | |
| 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
 | |
| 
 | |
| #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
 | |
| 	(pte_alloc(mm, pmd) ?			\
 | |
| 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
 | |
| 
 | |
| #define pte_alloc_kernel(pmd, address)			\
 | |
| 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
 | |
| 		NULL: pte_offset_kernel(pmd, address))
 | |
| 
 | |
| #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
 | |
| 
 | |
| static inline struct page *pmd_pgtable_page(pmd_t *pmd)
 | |
| {
 | |
| 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
 | |
| 	return virt_to_page((void *)((unsigned long) pmd & mask));
 | |
| }
 | |
| 
 | |
| static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
 | |
| {
 | |
| 	return page_ptdesc(pmd_pgtable_page(pmd));
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return ptlock_ptr(pmd_ptdesc(pmd));
 | |
| }
 | |
| 
 | |
| static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
 | |
| {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	ptdesc->pmd_huge_pte = NULL;
 | |
| #endif
 | |
| 	return ptlock_init(ptdesc);
 | |
| }
 | |
| 
 | |
| static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
 | |
| {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
 | |
| #endif
 | |
| 	ptlock_free(ptdesc);
 | |
| }
 | |
| 
 | |
| #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| 
 | |
| static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
 | |
| static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
 | |
| 
 | |
| #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
 | |
| 	spin_lock(ptl);
 | |
| 	return ptl;
 | |
| }
 | |
| 
 | |
| static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	struct folio *folio = ptdesc_folio(ptdesc);
 | |
| 
 | |
| 	if (!pmd_ptlock_init(ptdesc))
 | |
| 		return false;
 | |
| 	__folio_set_pgtable(folio);
 | |
| 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	struct folio *folio = ptdesc_folio(ptdesc);
 | |
| 
 | |
| 	pmd_ptlock_free(ptdesc);
 | |
| 	__folio_clear_pgtable(folio);
 | |
| 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No scalability reason to split PUD locks yet, but follow the same pattern
 | |
|  * as the PMD locks to make it easier if we decide to.  The VM should not be
 | |
|  * considered ready to switch to split PUD locks yet; there may be places
 | |
|  * which need to be converted from page_table_lock.
 | |
|  */
 | |
| static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
 | |
| {
 | |
| 	spinlock_t *ptl = pud_lockptr(mm, pud);
 | |
| 
 | |
| 	spin_lock(ptl);
 | |
| 	return ptl;
 | |
| }
 | |
| 
 | |
| static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	struct folio *folio = ptdesc_folio(ptdesc);
 | |
| 
 | |
| 	__folio_set_pgtable(folio);
 | |
| 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
 | |
| }
 | |
| 
 | |
| static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
 | |
| {
 | |
| 	struct folio *folio = ptdesc_folio(ptdesc);
 | |
| 
 | |
| 	__folio_clear_pgtable(folio);
 | |
| 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
 | |
| }
 | |
| 
 | |
| extern void __init pagecache_init(void);
 | |
| extern void free_initmem(void);
 | |
| 
 | |
| /*
 | |
|  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
 | |
|  * into the buddy system. The freed pages will be poisoned with pattern
 | |
|  * "poison" if it's within range [0, UCHAR_MAX].
 | |
|  * Return pages freed into the buddy system.
 | |
|  */
 | |
| extern unsigned long free_reserved_area(void *start, void *end,
 | |
| 					int poison, const char *s);
 | |
| 
 | |
| extern void adjust_managed_page_count(struct page *page, long count);
 | |
| 
 | |
| extern void reserve_bootmem_region(phys_addr_t start,
 | |
| 				   phys_addr_t end, int nid);
 | |
| 
 | |
| /* Free the reserved page into the buddy system, so it gets managed. */
 | |
| void free_reserved_page(struct page *page);
 | |
| #define free_highmem_page(page) free_reserved_page(page)
 | |
| 
 | |
| static inline void mark_page_reserved(struct page *page)
 | |
| {
 | |
| 	SetPageReserved(page);
 | |
| 	adjust_managed_page_count(page, -1);
 | |
| }
 | |
| 
 | |
| static inline void free_reserved_ptdesc(struct ptdesc *pt)
 | |
| {
 | |
| 	free_reserved_page(ptdesc_page(pt));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Default method to free all the __init memory into the buddy system.
 | |
|  * The freed pages will be poisoned with pattern "poison" if it's within
 | |
|  * range [0, UCHAR_MAX].
 | |
|  * Return pages freed into the buddy system.
 | |
|  */
 | |
| static inline unsigned long free_initmem_default(int poison)
 | |
| {
 | |
| 	extern char __init_begin[], __init_end[];
 | |
| 
 | |
| 	return free_reserved_area(&__init_begin, &__init_end,
 | |
| 				  poison, "unused kernel image (initmem)");
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_num_physpages(void)
 | |
| {
 | |
| 	int nid;
 | |
| 	unsigned long phys_pages = 0;
 | |
| 
 | |
| 	for_each_online_node(nid)
 | |
| 		phys_pages += node_present_pages(nid);
 | |
| 
 | |
| 	return phys_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Using memblock node mappings, an architecture may initialise its
 | |
|  * zones, allocate the backing mem_map and account for memory holes in an
 | |
|  * architecture independent manner.
 | |
|  *
 | |
|  * An architecture is expected to register range of page frames backed by
 | |
|  * physical memory with memblock_add[_node]() before calling
 | |
|  * free_area_init() passing in the PFN each zone ends at. At a basic
 | |
|  * usage, an architecture is expected to do something like
 | |
|  *
 | |
|  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
 | |
|  * 							 max_highmem_pfn};
 | |
|  * for_each_valid_physical_page_range()
 | |
|  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
 | |
|  * free_area_init(max_zone_pfns);
 | |
|  */
 | |
| void free_area_init(unsigned long *max_zone_pfn);
 | |
| unsigned long node_map_pfn_alignment(void);
 | |
| extern unsigned long absent_pages_in_range(unsigned long start_pfn,
 | |
| 						unsigned long end_pfn);
 | |
| extern void get_pfn_range_for_nid(unsigned int nid,
 | |
| 			unsigned long *start_pfn, unsigned long *end_pfn);
 | |
| 
 | |
| #ifndef CONFIG_NUMA
 | |
| static inline int early_pfn_to_nid(unsigned long pfn)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| /* please see mm/page_alloc.c */
 | |
| extern int __meminit early_pfn_to_nid(unsigned long pfn);
 | |
| #endif
 | |
| 
 | |
| extern void mem_init(void);
 | |
| extern void __init mmap_init(void);
 | |
| 
 | |
| extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
 | |
| static inline void show_mem(void)
 | |
| {
 | |
| 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
 | |
| }
 | |
| extern long si_mem_available(void);
 | |
| extern void si_meminfo(struct sysinfo * val);
 | |
| extern void si_meminfo_node(struct sysinfo *val, int nid);
 | |
| 
 | |
| extern __printf(3, 4)
 | |
| void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
 | |
| 
 | |
| extern void setup_per_cpu_pageset(void);
 | |
| 
 | |
| /* nommu.c */
 | |
| extern atomic_long_t mmap_pages_allocated;
 | |
| extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
 | |
| 
 | |
| /* interval_tree.c */
 | |
| void vma_interval_tree_insert(struct vm_area_struct *node,
 | |
| 			      struct rb_root_cached *root);
 | |
| void vma_interval_tree_insert_after(struct vm_area_struct *node,
 | |
| 				    struct vm_area_struct *prev,
 | |
| 				    struct rb_root_cached *root);
 | |
| void vma_interval_tree_remove(struct vm_area_struct *node,
 | |
| 			      struct rb_root_cached *root);
 | |
| struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
 | |
| 				unsigned long start, unsigned long last);
 | |
| struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
 | |
| 				unsigned long start, unsigned long last);
 | |
| 
 | |
| #define vma_interval_tree_foreach(vma, root, start, last)		\
 | |
| 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
 | |
| 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
 | |
| 
 | |
| void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
 | |
| 				   struct rb_root_cached *root);
 | |
| void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
 | |
| 				   struct rb_root_cached *root);
 | |
| struct anon_vma_chain *
 | |
| anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
 | |
| 				  unsigned long start, unsigned long last);
 | |
| struct anon_vma_chain *anon_vma_interval_tree_iter_next(
 | |
| 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
 | |
| #ifdef CONFIG_DEBUG_VM_RB
 | |
| void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
 | |
| #endif
 | |
| 
 | |
| #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
 | |
| 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
 | |
| 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
 | |
| 
 | |
| /* mmap.c */
 | |
| extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
 | |
| extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
 | |
| extern void exit_mmap(struct mm_struct *);
 | |
| int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
 | |
| 
 | |
| static inline int check_data_rlimit(unsigned long rlim,
 | |
| 				    unsigned long new,
 | |
| 				    unsigned long start,
 | |
| 				    unsigned long end_data,
 | |
| 				    unsigned long start_data)
 | |
| {
 | |
| 	if (rlim < RLIM_INFINITY) {
 | |
| 		if (((new - start) + (end_data - start_data)) > rlim)
 | |
| 			return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| extern int mm_take_all_locks(struct mm_struct *mm);
 | |
| extern void mm_drop_all_locks(struct mm_struct *mm);
 | |
| 
 | |
| extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
 | |
| extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
 | |
| extern struct file *get_mm_exe_file(struct mm_struct *mm);
 | |
| extern struct file *get_task_exe_file(struct task_struct *task);
 | |
| 
 | |
| extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
 | |
| extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
 | |
| 
 | |
| extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
 | |
| 				   const struct vm_special_mapping *sm);
 | |
| extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
 | |
| 				   unsigned long addr, unsigned long len,
 | |
| 				   unsigned long flags,
 | |
| 				   const struct vm_special_mapping *spec);
 | |
| 
 | |
| unsigned long randomize_stack_top(unsigned long stack_top);
 | |
| unsigned long randomize_page(unsigned long start, unsigned long range);
 | |
| 
 | |
| unsigned long
 | |
| __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
 | |
| 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
 | |
| 
 | |
| static inline unsigned long
 | |
| get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
 | |
| 		  unsigned long pgoff, unsigned long flags)
 | |
| {
 | |
| 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
 | |
| }
 | |
| 
 | |
| extern unsigned long mmap_region(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
 | |
| 	struct list_head *uf);
 | |
| extern unsigned long do_mmap(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, unsigned long prot, unsigned long flags,
 | |
| 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
 | |
| 	struct list_head *uf);
 | |
| extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
 | |
| 			 unsigned long start, size_t len, struct list_head *uf,
 | |
| 			 bool unlock);
 | |
| int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
 | |
| 		    struct mm_struct *mm, unsigned long start,
 | |
| 		    unsigned long end, struct list_head *uf, bool unlock);
 | |
| extern int do_munmap(struct mm_struct *, unsigned long, size_t,
 | |
| 		     struct list_head *uf);
 | |
| extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern int __mm_populate(unsigned long addr, unsigned long len,
 | |
| 			 int ignore_errors);
 | |
| static inline void mm_populate(unsigned long addr, unsigned long len)
 | |
| {
 | |
| 	/* Ignore errors */
 | |
| 	(void) __mm_populate(addr, len, 1);
 | |
| }
 | |
| #else
 | |
| static inline void mm_populate(unsigned long addr, unsigned long len) {}
 | |
| #endif
 | |
| 
 | |
| /* This takes the mm semaphore itself */
 | |
| extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
 | |
| extern int vm_munmap(unsigned long, size_t);
 | |
| extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
 | |
|         unsigned long, unsigned long,
 | |
|         unsigned long, unsigned long);
 | |
| 
 | |
| struct vm_unmapped_area_info {
 | |
| #define VM_UNMAPPED_AREA_TOPDOWN 1
 | |
| 	unsigned long flags;
 | |
| 	unsigned long length;
 | |
| 	unsigned long low_limit;
 | |
| 	unsigned long high_limit;
 | |
| 	unsigned long align_mask;
 | |
| 	unsigned long align_offset;
 | |
| 	unsigned long start_gap;
 | |
| };
 | |
| 
 | |
| extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
 | |
| 
 | |
| /* truncate.c */
 | |
| extern void truncate_inode_pages(struct address_space *, loff_t);
 | |
| extern void truncate_inode_pages_range(struct address_space *,
 | |
| 				       loff_t lstart, loff_t lend);
 | |
| extern void truncate_inode_pages_final(struct address_space *);
 | |
| 
 | |
| /* generic vm_area_ops exported for stackable file systems */
 | |
| extern vm_fault_t filemap_fault(struct vm_fault *vmf);
 | |
| extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
 | |
| 		pgoff_t start_pgoff, pgoff_t end_pgoff);
 | |
| extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
 | |
| 
 | |
| extern unsigned long stack_guard_gap;
 | |
| /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
 | |
| int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
 | |
| struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
 | |
| 
 | |
| /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
 | |
| int expand_downwards(struct vm_area_struct *vma, unsigned long address);
 | |
| 
 | |
| /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
 | |
| extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
 | |
| extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
 | |
| 					     struct vm_area_struct **pprev);
 | |
| 
 | |
| /*
 | |
|  * Look up the first VMA which intersects the interval [start_addr, end_addr)
 | |
|  * NULL if none.  Assume start_addr < end_addr.
 | |
|  */
 | |
| struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
 | |
| 			unsigned long start_addr, unsigned long end_addr);
 | |
| 
 | |
| /**
 | |
|  * vma_lookup() - Find a VMA at a specific address
 | |
|  * @mm: The process address space.
 | |
|  * @addr: The user address.
 | |
|  *
 | |
|  * Return: The vm_area_struct at the given address, %NULL otherwise.
 | |
|  */
 | |
| static inline
 | |
| struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	return mtree_load(&mm->mm_mt, addr);
 | |
| }
 | |
| 
 | |
| static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (vma->vm_flags & VM_GROWSDOWN)
 | |
| 		return stack_guard_gap;
 | |
| 
 | |
| 	/* See reasoning around the VM_SHADOW_STACK definition */
 | |
| 	if (vma->vm_flags & VM_SHADOW_STACK)
 | |
| 		return PAGE_SIZE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned long gap = stack_guard_start_gap(vma);
 | |
| 	unsigned long vm_start = vma->vm_start;
 | |
| 
 | |
| 	vm_start -= gap;
 | |
| 	if (vm_start > vma->vm_start)
 | |
| 		vm_start = 0;
 | |
| 	return vm_start;
 | |
| }
 | |
| 
 | |
| static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned long vm_end = vma->vm_end;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_GROWSUP) {
 | |
| 		vm_end += stack_guard_gap;
 | |
| 		if (vm_end < vma->vm_end)
 | |
| 			vm_end = -PAGE_SIZE;
 | |
| 	}
 | |
| 	return vm_end;
 | |
| }
 | |
| 
 | |
| static inline unsigned long vma_pages(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
 | |
| static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
 | |
| 				unsigned long vm_start, unsigned long vm_end)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
 | |
| 
 | |
| 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
 | |
| 		vma = NULL;
 | |
| 
 | |
| 	return vma;
 | |
| }
 | |
| 
 | |
| static inline bool range_in_vma(struct vm_area_struct *vma,
 | |
| 				unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| pgprot_t vm_get_page_prot(unsigned long vm_flags);
 | |
| void vma_set_page_prot(struct vm_area_struct *vma);
 | |
| #else
 | |
| static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
 | |
| {
 | |
| 	return __pgprot(0);
 | |
| }
 | |
| static inline void vma_set_page_prot(struct vm_area_struct *vma)
 | |
| {
 | |
| 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void vma_set_file(struct vm_area_struct *vma, struct file *file);
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| unsigned long change_prot_numa(struct vm_area_struct *vma,
 | |
| 			unsigned long start, unsigned long end);
 | |
| #endif
 | |
| 
 | |
| struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
 | |
| 		unsigned long addr);
 | |
| int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
 | |
| 			unsigned long pfn, unsigned long size, pgprot_t);
 | |
| int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		unsigned long pfn, unsigned long size, pgprot_t prot);
 | |
| int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
 | |
| int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			struct page **pages, unsigned long *num);
 | |
| int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
 | |
| 				unsigned long num);
 | |
| int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
 | |
| 				unsigned long num);
 | |
| vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			unsigned long pfn);
 | |
| vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			unsigned long pfn, pgprot_t pgprot);
 | |
| vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			pfn_t pfn);
 | |
| vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
 | |
| 		unsigned long addr, pfn_t pfn);
 | |
| int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
 | |
| 
 | |
| static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
 | |
| 				unsigned long addr, struct page *page)
 | |
| {
 | |
| 	int err = vm_insert_page(vma, addr, page);
 | |
| 
 | |
| 	if (err == -ENOMEM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	if (err < 0 && err != -EBUSY)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	return VM_FAULT_NOPAGE;
 | |
| }
 | |
| 
 | |
| #ifndef io_remap_pfn_range
 | |
| static inline int io_remap_pfn_range(struct vm_area_struct *vma,
 | |
| 				     unsigned long addr, unsigned long pfn,
 | |
| 				     unsigned long size, pgprot_t prot)
 | |
| {
 | |
| 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline vm_fault_t vmf_error(int err)
 | |
| {
 | |
| 	if (err == -ENOMEM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	else if (err == -EHWPOISON)
 | |
| 		return VM_FAULT_HWPOISON;
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert errno to return value for ->page_mkwrite() calls.
 | |
|  *
 | |
|  * This should eventually be merged with vmf_error() above, but will need a
 | |
|  * careful audit of all vmf_error() callers.
 | |
|  */
 | |
| static inline vm_fault_t vmf_fs_error(int err)
 | |
| {
 | |
| 	if (err == 0)
 | |
| 		return VM_FAULT_LOCKED;
 | |
| 	if (err == -EFAULT || err == -EAGAIN)
 | |
| 		return VM_FAULT_NOPAGE;
 | |
| 	if (err == -ENOMEM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	/* -ENOSPC, -EDQUOT, -EIO ... */
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| 
 | |
| static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
 | |
| {
 | |
| 	if (vm_fault & VM_FAULT_OOM)
 | |
| 		return -ENOMEM;
 | |
| 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
 | |
| 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
 | |
| 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
 | |
|  * a (NUMA hinting) fault is required.
 | |
|  */
 | |
| static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
 | |
| 					   unsigned int flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * If callers don't want to honor NUMA hinting faults, no need to
 | |
| 	 * determine if we would actually have to trigger a NUMA hinting fault.
 | |
| 	 */
 | |
| 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
 | |
| 	 *
 | |
| 	 * Requiring a fault here even for inaccessible VMAs would mean that
 | |
| 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
 | |
| 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
 | |
| 	 */
 | |
| 	return !vma_is_accessible(vma);
 | |
| }
 | |
| 
 | |
| typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
 | |
| extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
 | |
| 			       unsigned long size, pte_fn_t fn, void *data);
 | |
| extern int apply_to_existing_page_range(struct mm_struct *mm,
 | |
| 				   unsigned long address, unsigned long size,
 | |
| 				   pte_fn_t fn, void *data);
 | |
| 
 | |
| #ifdef CONFIG_PAGE_POISONING
 | |
| extern void __kernel_poison_pages(struct page *page, int numpages);
 | |
| extern void __kernel_unpoison_pages(struct page *page, int numpages);
 | |
| extern bool _page_poisoning_enabled_early;
 | |
| DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
 | |
| static inline bool page_poisoning_enabled(void)
 | |
| {
 | |
| 	return _page_poisoning_enabled_early;
 | |
| }
 | |
| /*
 | |
|  * For use in fast paths after init_mem_debugging() has run, or when a
 | |
|  * false negative result is not harmful when called too early.
 | |
|  */
 | |
| static inline bool page_poisoning_enabled_static(void)
 | |
| {
 | |
| 	return static_branch_unlikely(&_page_poisoning_enabled);
 | |
| }
 | |
| static inline void kernel_poison_pages(struct page *page, int numpages)
 | |
| {
 | |
| 	if (page_poisoning_enabled_static())
 | |
| 		__kernel_poison_pages(page, numpages);
 | |
| }
 | |
| static inline void kernel_unpoison_pages(struct page *page, int numpages)
 | |
| {
 | |
| 	if (page_poisoning_enabled_static())
 | |
| 		__kernel_unpoison_pages(page, numpages);
 | |
| }
 | |
| #else
 | |
| static inline bool page_poisoning_enabled(void) { return false; }
 | |
| static inline bool page_poisoning_enabled_static(void) { return false; }
 | |
| static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
 | |
| static inline void kernel_poison_pages(struct page *page, int numpages) { }
 | |
| static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
 | |
| #endif
 | |
| 
 | |
| DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
 | |
| static inline bool want_init_on_alloc(gfp_t flags)
 | |
| {
 | |
| 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
 | |
| 				&init_on_alloc))
 | |
| 		return true;
 | |
| 	return flags & __GFP_ZERO;
 | |
| }
 | |
| 
 | |
| DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
 | |
| static inline bool want_init_on_free(void)
 | |
| {
 | |
| 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
 | |
| 				   &init_on_free);
 | |
| }
 | |
| 
 | |
| extern bool _debug_pagealloc_enabled_early;
 | |
| DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 | |
| 
 | |
| static inline bool debug_pagealloc_enabled(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
 | |
| 		_debug_pagealloc_enabled_early;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For use in fast paths after mem_debugging_and_hardening_init() has run,
 | |
|  * or when a false negative result is not harmful when called too early.
 | |
|  */
 | |
| static inline bool debug_pagealloc_enabled_static(void)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
 | |
| 		return false;
 | |
| 
 | |
| 	return static_branch_unlikely(&_debug_pagealloc_enabled);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To support DEBUG_PAGEALLOC architecture must ensure that
 | |
|  * __kernel_map_pages() never fails
 | |
|  */
 | |
| extern void __kernel_map_pages(struct page *page, int numpages, int enable);
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
 | |
| {
 | |
| 	if (debug_pagealloc_enabled_static())
 | |
| 		__kernel_map_pages(page, numpages, 1);
 | |
| }
 | |
| 
 | |
| static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
 | |
| {
 | |
| 	if (debug_pagealloc_enabled_static())
 | |
| 		__kernel_map_pages(page, numpages, 0);
 | |
| }
 | |
| 
 | |
| extern unsigned int _debug_guardpage_minorder;
 | |
| DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 | |
| 
 | |
| static inline unsigned int debug_guardpage_minorder(void)
 | |
| {
 | |
| 	return _debug_guardpage_minorder;
 | |
| }
 | |
| 
 | |
| static inline bool debug_guardpage_enabled(void)
 | |
| {
 | |
| 	return static_branch_unlikely(&_debug_guardpage_enabled);
 | |
| }
 | |
| 
 | |
| static inline bool page_is_guard(struct page *page)
 | |
| {
 | |
| 	if (!debug_guardpage_enabled())
 | |
| 		return false;
 | |
| 
 | |
| 	return PageGuard(page);
 | |
| }
 | |
| 
 | |
| bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
 | |
| static inline bool set_page_guard(struct zone *zone, struct page *page,
 | |
| 				  unsigned int order)
 | |
| {
 | |
| 	if (!debug_guardpage_enabled())
 | |
| 		return false;
 | |
| 	return __set_page_guard(zone, page, order);
 | |
| }
 | |
| 
 | |
| void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
 | |
| static inline void clear_page_guard(struct zone *zone, struct page *page,
 | |
| 				    unsigned int order)
 | |
| {
 | |
| 	if (!debug_guardpage_enabled())
 | |
| 		return;
 | |
| 	__clear_page_guard(zone, page, order);
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_DEBUG_PAGEALLOC */
 | |
| static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
 | |
| static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
 | |
| static inline unsigned int debug_guardpage_minorder(void) { return 0; }
 | |
| static inline bool debug_guardpage_enabled(void) { return false; }
 | |
| static inline bool page_is_guard(struct page *page) { return false; }
 | |
| static inline bool set_page_guard(struct zone *zone, struct page *page,
 | |
| 			unsigned int order) { return false; }
 | |
| static inline void clear_page_guard(struct zone *zone, struct page *page,
 | |
| 				unsigned int order) {}
 | |
| #endif	/* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| #ifdef __HAVE_ARCH_GATE_AREA
 | |
| extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
 | |
| extern int in_gate_area_no_mm(unsigned long addr);
 | |
| extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
 | |
| #else
 | |
| static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
 | |
| static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif	/* __HAVE_ARCH_GATE_AREA */
 | |
| 
 | |
| extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| extern int sysctl_drop_caches;
 | |
| int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
 | |
| 		loff_t *);
 | |
| #endif
 | |
| 
 | |
| void drop_slab(void);
 | |
| 
 | |
| #ifndef CONFIG_MMU
 | |
| #define randomize_va_space 0
 | |
| #else
 | |
| extern int randomize_va_space;
 | |
| #endif
 | |
| 
 | |
| const char * arch_vma_name(struct vm_area_struct *vma);
 | |
| #ifdef CONFIG_MMU
 | |
| void print_vma_addr(char *prefix, unsigned long rip);
 | |
| #else
 | |
| static inline void print_vma_addr(char *prefix, unsigned long rip)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void *sparse_buffer_alloc(unsigned long size);
 | |
| struct page * __populate_section_memmap(unsigned long pfn,
 | |
| 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
 | |
| 		struct dev_pagemap *pgmap);
 | |
| pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
 | |
| p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
 | |
| pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
 | |
| pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
 | |
| pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
 | |
| 			    struct vmem_altmap *altmap, struct page *reuse);
 | |
| void *vmemmap_alloc_block(unsigned long size, int node);
 | |
| struct vmem_altmap;
 | |
| void *vmemmap_alloc_block_buf(unsigned long size, int node,
 | |
| 			      struct vmem_altmap *altmap);
 | |
| void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
 | |
| void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
 | |
| 		     unsigned long addr, unsigned long next);
 | |
| int vmemmap_check_pmd(pmd_t *pmd, int node,
 | |
| 		      unsigned long addr, unsigned long next);
 | |
| int vmemmap_populate_basepages(unsigned long start, unsigned long end,
 | |
| 			       int node, struct vmem_altmap *altmap);
 | |
| int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
 | |
| 			       int node, struct vmem_altmap *altmap);
 | |
| int vmemmap_populate(unsigned long start, unsigned long end, int node,
 | |
| 		struct vmem_altmap *altmap);
 | |
| void vmemmap_populate_print_last(void);
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| void vmemmap_free(unsigned long start, unsigned long end,
 | |
| 		struct vmem_altmap *altmap);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
 | |
| {
 | |
| 	/* number of pfns from base where pfn_to_page() is valid */
 | |
| 	if (altmap)
 | |
| 		return altmap->reserve + altmap->free;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void vmem_altmap_free(struct vmem_altmap *altmap,
 | |
| 				    unsigned long nr_pfns)
 | |
| {
 | |
| 	altmap->alloc -= nr_pfns;
 | |
| }
 | |
| #else
 | |
| static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void vmem_altmap_free(struct vmem_altmap *altmap,
 | |
| 				    unsigned long nr_pfns)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define VMEMMAP_RESERVE_NR	2
 | |
| #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
 | |
| static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
 | |
| 					  struct dev_pagemap *pgmap)
 | |
| {
 | |
| 	unsigned long nr_pages;
 | |
| 	unsigned long nr_vmemmap_pages;
 | |
| 
 | |
| 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
 | |
| 		return false;
 | |
| 
 | |
| 	nr_pages = pgmap_vmemmap_nr(pgmap);
 | |
| 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
 | |
| 	/*
 | |
| 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
 | |
| 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
 | |
| 	 */
 | |
| 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
 | |
| }
 | |
| /*
 | |
|  * If we don't have an architecture override, use the generic rule
 | |
|  */
 | |
| #ifndef vmemmap_can_optimize
 | |
| #define vmemmap_can_optimize __vmemmap_can_optimize
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
 | |
| 					   struct dev_pagemap *pgmap)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
 | |
| 				  unsigned long nr_pages);
 | |
| 
 | |
| enum mf_flags {
 | |
| 	MF_COUNT_INCREASED = 1 << 0,
 | |
| 	MF_ACTION_REQUIRED = 1 << 1,
 | |
| 	MF_MUST_KILL = 1 << 2,
 | |
| 	MF_SOFT_OFFLINE = 1 << 3,
 | |
| 	MF_UNPOISON = 1 << 4,
 | |
| 	MF_SW_SIMULATED = 1 << 5,
 | |
| 	MF_NO_RETRY = 1 << 6,
 | |
| 	MF_MEM_PRE_REMOVE = 1 << 7,
 | |
| };
 | |
| int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
 | |
| 		      unsigned long count, int mf_flags);
 | |
| extern int memory_failure(unsigned long pfn, int flags);
 | |
| extern void memory_failure_queue_kick(int cpu);
 | |
| extern int unpoison_memory(unsigned long pfn);
 | |
| extern atomic_long_t num_poisoned_pages __read_mostly;
 | |
| extern int soft_offline_page(unsigned long pfn, int flags);
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| /*
 | |
|  * Sysfs entries for memory failure handling statistics.
 | |
|  */
 | |
| extern const struct attribute_group memory_failure_attr_group;
 | |
| extern void memory_failure_queue(unsigned long pfn, int flags);
 | |
| extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
 | |
| 					bool *migratable_cleared);
 | |
| void num_poisoned_pages_inc(unsigned long pfn);
 | |
| void num_poisoned_pages_sub(unsigned long pfn, long i);
 | |
| #else
 | |
| static inline void memory_failure_queue(unsigned long pfn, int flags)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
 | |
| 					bool *migratable_cleared)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void num_poisoned_pages_inc(unsigned long pfn)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
 | |
| extern void memblk_nr_poison_inc(unsigned long pfn);
 | |
| extern void memblk_nr_poison_sub(unsigned long pfn, long i);
 | |
| #else
 | |
| static inline void memblk_nr_poison_inc(unsigned long pfn)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef arch_memory_failure
 | |
| static inline int arch_memory_failure(unsigned long pfn, int flags)
 | |
| {
 | |
| 	return -ENXIO;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef arch_is_platform_page
 | |
| static inline bool arch_is_platform_page(u64 paddr)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Error handlers for various types of pages.
 | |
|  */
 | |
| enum mf_result {
 | |
| 	MF_IGNORED,	/* Error: cannot be handled */
 | |
| 	MF_FAILED,	/* Error: handling failed */
 | |
| 	MF_DELAYED,	/* Will be handled later */
 | |
| 	MF_RECOVERED,	/* Successfully recovered */
 | |
| };
 | |
| 
 | |
| enum mf_action_page_type {
 | |
| 	MF_MSG_KERNEL,
 | |
| 	MF_MSG_KERNEL_HIGH_ORDER,
 | |
| 	MF_MSG_DIFFERENT_COMPOUND,
 | |
| 	MF_MSG_HUGE,
 | |
| 	MF_MSG_FREE_HUGE,
 | |
| 	MF_MSG_GET_HWPOISON,
 | |
| 	MF_MSG_UNMAP_FAILED,
 | |
| 	MF_MSG_DIRTY_SWAPCACHE,
 | |
| 	MF_MSG_CLEAN_SWAPCACHE,
 | |
| 	MF_MSG_DIRTY_MLOCKED_LRU,
 | |
| 	MF_MSG_CLEAN_MLOCKED_LRU,
 | |
| 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
 | |
| 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
 | |
| 	MF_MSG_DIRTY_LRU,
 | |
| 	MF_MSG_CLEAN_LRU,
 | |
| 	MF_MSG_TRUNCATED_LRU,
 | |
| 	MF_MSG_BUDDY,
 | |
| 	MF_MSG_DAX,
 | |
| 	MF_MSG_UNSPLIT_THP,
 | |
| 	MF_MSG_ALREADY_POISONED,
 | |
| 	MF_MSG_UNKNOWN,
 | |
| };
 | |
| 
 | |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
 | |
| void folio_zero_user(struct folio *folio, unsigned long addr_hint);
 | |
| int copy_user_large_folio(struct folio *dst, struct folio *src,
 | |
| 			  unsigned long addr_hint,
 | |
| 			  struct vm_area_struct *vma);
 | |
| long copy_folio_from_user(struct folio *dst_folio,
 | |
| 			   const void __user *usr_src,
 | |
| 			   bool allow_pagefault);
 | |
| 
 | |
| /**
 | |
|  * vma_is_special_huge - Are transhuge page-table entries considered special?
 | |
|  * @vma: Pointer to the struct vm_area_struct to consider
 | |
|  *
 | |
|  * Whether transhuge page-table entries are considered "special" following
 | |
|  * the definition in vm_normal_page().
 | |
|  *
 | |
|  * Return: true if transhuge page-table entries should be considered special,
 | |
|  * false otherwise.
 | |
|  */
 | |
| static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
 | |
| {
 | |
| 	return vma_is_dax(vma) || (vma->vm_file &&
 | |
| 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| void __init setup_nr_node_ids(void);
 | |
| #else
 | |
| static inline void setup_nr_node_ids(void) {}
 | |
| #endif
 | |
| 
 | |
| extern int memcmp_pages(struct page *page1, struct page *page2);
 | |
| 
 | |
| static inline int pages_identical(struct page *page1, struct page *page2)
 | |
| {
 | |
| 	return !memcmp_pages(page1, page2);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MAPPING_DIRTY_HELPERS
 | |
| unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
 | |
| 						pgoff_t first_index, pgoff_t nr,
 | |
| 						pgoff_t bitmap_pgoff,
 | |
| 						unsigned long *bitmap,
 | |
| 						pgoff_t *start,
 | |
| 						pgoff_t *end);
 | |
| 
 | |
| unsigned long wp_shared_mapping_range(struct address_space *mapping,
 | |
| 				      pgoff_t first_index, pgoff_t nr);
 | |
| #endif
 | |
| 
 | |
| extern int sysctl_nr_trim_pages;
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| void mem_dump_obj(void *object);
 | |
| #else
 | |
| static inline void mem_dump_obj(void *object) {}
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
 | |
|  *                    handle them.
 | |
|  * @seals: the seals to check
 | |
|  * @vma: the vma to operate on
 | |
|  *
 | |
|  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
 | |
|  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
 | |
|  */
 | |
| static inline int seal_check_write(int seals, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
 | |
| 		/*
 | |
| 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
 | |
| 		 * write seals are active.
 | |
| 		 */
 | |
| 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		/*
 | |
| 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
 | |
| 		 * MAP_SHARED and read-only, take care to not allow mprotect to
 | |
| 		 * revert protections on such mappings. Do this only for shared
 | |
| 		 * mappings. For private mappings, don't need to mask
 | |
| 		 * VM_MAYWRITE as we still want them to be COW-writable.
 | |
| 		 */
 | |
| 		if (vma->vm_flags & VM_SHARED)
 | |
| 			vm_flags_clear(vma, VM_MAYWRITE);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ANON_VMA_NAME
 | |
| int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
 | |
| 			  unsigned long len_in,
 | |
| 			  struct anon_vma_name *anon_name);
 | |
| #else
 | |
| static inline int
 | |
| madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
 | |
| 		      unsigned long len_in, struct anon_vma_name *anon_name) {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_UNACCEPTED_MEMORY
 | |
| 
 | |
| bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
 | |
| void accept_memory(phys_addr_t start, unsigned long size);
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline bool range_contains_unaccepted_memory(phys_addr_t start,
 | |
| 						    unsigned long size)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void accept_memory(phys_addr_t start, unsigned long size)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
 | |
| {
 | |
| 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| void vma_pgtable_walk_begin(struct vm_area_struct *vma);
 | |
| void vma_pgtable_walk_end(struct vm_area_struct *vma);
 | |
| 
 | |
| int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
 | |
| #else
 | |
| static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
 | |
| {
 | |
| 	/* noop on 32 bit */
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
 | |
|  * be zeroed or not.
 | |
|  */
 | |
| static inline bool user_alloc_needs_zeroing(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * for user folios, arch with cache aliasing requires cache flush and
 | |
| 	 * arc changes folio->flags to make icache coherent with dcache, so
 | |
| 	 * always return false to make caller use
 | |
| 	 * clear_user_page()/clear_user_highpage().
 | |
| 	 */
 | |
| 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
 | |
| 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
 | |
| 				   &init_on_alloc);
 | |
| }
 | |
| 
 | |
| int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
 | |
| int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
 | |
| int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
 | |
| 
 | |
| #endif /* _LINUX_MM_H */
 |