forked from mirrors/linux
		
	Move numa_emulation code from arch/x86 to mm/numa_emulation.c This code will be later reused by arch_numa. No functional changes. Link: https://lkml.kernel.org/r/20240807064110.1003856-20-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64 Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU] Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David S. Miller <davem@davemloft.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Rob Herring (Arm) <robh@kernel.org> Cc: Samuel Holland <samuel.holland@sifive.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			571 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			571 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * NUMA emulation
 | 
						|
 */
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/topology.h>
 | 
						|
#include <linux/memblock.h>
 | 
						|
#include <linux/numa_memblks.h>
 | 
						|
#include <asm/numa.h>
 | 
						|
 | 
						|
#define FAKE_NODE_MIN_SIZE	((u64)32 << 20)
 | 
						|
#define FAKE_NODE_MIN_HASH_MASK	(~(FAKE_NODE_MIN_SIZE - 1UL))
 | 
						|
 | 
						|
static int emu_nid_to_phys[MAX_NUMNODES];
 | 
						|
static char *emu_cmdline __initdata;
 | 
						|
 | 
						|
int __init numa_emu_cmdline(char *str)
 | 
						|
{
 | 
						|
	emu_cmdline = str;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < mi->nr_blks; i++)
 | 
						|
		if (mi->blk[i].nid == nid)
 | 
						|
			return i;
 | 
						|
	return -ENOENT;
 | 
						|
}
 | 
						|
 | 
						|
static u64 __init mem_hole_size(u64 start, u64 end)
 | 
						|
{
 | 
						|
	unsigned long start_pfn = PFN_UP(start);
 | 
						|
	unsigned long end_pfn = PFN_DOWN(end);
 | 
						|
 | 
						|
	if (start_pfn < end_pfn)
 | 
						|
		return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sets up nid to range from @start to @end.  The return value is -errno if
 | 
						|
 * something went wrong, 0 otherwise.
 | 
						|
 */
 | 
						|
static int __init emu_setup_memblk(struct numa_meminfo *ei,
 | 
						|
				   struct numa_meminfo *pi,
 | 
						|
				   int nid, int phys_blk, u64 size)
 | 
						|
{
 | 
						|
	struct numa_memblk *eb = &ei->blk[ei->nr_blks];
 | 
						|
	struct numa_memblk *pb = &pi->blk[phys_blk];
 | 
						|
 | 
						|
	if (ei->nr_blks >= NR_NODE_MEMBLKS) {
 | 
						|
		pr_err("NUMA: Too many emulated memblks, failing emulation\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	ei->nr_blks++;
 | 
						|
	eb->start = pb->start;
 | 
						|
	eb->end = pb->start + size;
 | 
						|
	eb->nid = nid;
 | 
						|
 | 
						|
	if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
 | 
						|
		emu_nid_to_phys[nid] = pb->nid;
 | 
						|
 | 
						|
	pb->start += size;
 | 
						|
	if (pb->start >= pb->end) {
 | 
						|
		WARN_ON_ONCE(pb->start > pb->end);
 | 
						|
		numa_remove_memblk_from(phys_blk, pi);
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
 | 
						|
	       nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
 | 
						|
 * to max_addr.
 | 
						|
 *
 | 
						|
 * Returns zero on success or negative on error.
 | 
						|
 */
 | 
						|
static int __init split_nodes_interleave(struct numa_meminfo *ei,
 | 
						|
					 struct numa_meminfo *pi,
 | 
						|
					 u64 addr, u64 max_addr, int nr_nodes)
 | 
						|
{
 | 
						|
	nodemask_t physnode_mask = numa_nodes_parsed;
 | 
						|
	u64 size;
 | 
						|
	int big;
 | 
						|
	int nid = 0;
 | 
						|
	int i, ret;
 | 
						|
 | 
						|
	if (nr_nodes <= 0)
 | 
						|
		return -1;
 | 
						|
	if (nr_nodes > MAX_NUMNODES) {
 | 
						|
		pr_info("numa=fake=%d too large, reducing to %d\n",
 | 
						|
			nr_nodes, MAX_NUMNODES);
 | 
						|
		nr_nodes = MAX_NUMNODES;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate target node size.  x86_32 freaks on __udivdi3() so do
 | 
						|
	 * the division in ulong number of pages and convert back.
 | 
						|
	 */
 | 
						|
	size = max_addr - addr - mem_hole_size(addr, max_addr);
 | 
						|
	size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate the number of big nodes that can be allocated as a result
 | 
						|
	 * of consolidating the remainder.
 | 
						|
	 */
 | 
						|
	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
 | 
						|
		FAKE_NODE_MIN_SIZE;
 | 
						|
 | 
						|
	size &= FAKE_NODE_MIN_HASH_MASK;
 | 
						|
	if (!size) {
 | 
						|
		pr_err("Not enough memory for each node.  "
 | 
						|
			"NUMA emulation disabled.\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Continue to fill physical nodes with fake nodes until there is no
 | 
						|
	 * memory left on any of them.
 | 
						|
	 */
 | 
						|
	while (!nodes_empty(physnode_mask)) {
 | 
						|
		for_each_node_mask(i, physnode_mask) {
 | 
						|
			u64 dma32_end = numa_emu_dma_end();
 | 
						|
			u64 start, limit, end;
 | 
						|
			int phys_blk;
 | 
						|
 | 
						|
			phys_blk = emu_find_memblk_by_nid(i, pi);
 | 
						|
			if (phys_blk < 0) {
 | 
						|
				node_clear(i, physnode_mask);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			start = pi->blk[phys_blk].start;
 | 
						|
			limit = pi->blk[phys_blk].end;
 | 
						|
			end = start + size;
 | 
						|
 | 
						|
			if (nid < big)
 | 
						|
				end += FAKE_NODE_MIN_SIZE;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Continue to add memory to this fake node if its
 | 
						|
			 * non-reserved memory is less than the per-node size.
 | 
						|
			 */
 | 
						|
			while (end - start - mem_hole_size(start, end) < size) {
 | 
						|
				end += FAKE_NODE_MIN_SIZE;
 | 
						|
				if (end > limit) {
 | 
						|
					end = limit;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If there won't be at least FAKE_NODE_MIN_SIZE of
 | 
						|
			 * non-reserved memory in ZONE_DMA32 for the next node,
 | 
						|
			 * this one must extend to the boundary.
 | 
						|
			 */
 | 
						|
			if (end < dma32_end && dma32_end - end -
 | 
						|
			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
 | 
						|
				end = dma32_end;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If there won't be enough non-reserved memory for the
 | 
						|
			 * next node, this one must extend to the end of the
 | 
						|
			 * physical node.
 | 
						|
			 */
 | 
						|
			if (limit - end - mem_hole_size(end, limit) < size)
 | 
						|
				end = limit;
 | 
						|
 | 
						|
			ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
 | 
						|
					       phys_blk,
 | 
						|
					       min(end, limit) - start);
 | 
						|
			if (ret < 0)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the end address of a node so that there is at least `size' amount of
 | 
						|
 * non-reserved memory or `max_addr' is reached.
 | 
						|
 */
 | 
						|
static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
 | 
						|
{
 | 
						|
	u64 end = start + size;
 | 
						|
 | 
						|
	while (end - start - mem_hole_size(start, end) < size) {
 | 
						|
		end += FAKE_NODE_MIN_SIZE;
 | 
						|
		if (end > max_addr) {
 | 
						|
			end = max_addr;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return end;
 | 
						|
}
 | 
						|
 | 
						|
static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
 | 
						|
{
 | 
						|
	unsigned long max_pfn = PHYS_PFN(max_addr);
 | 
						|
	unsigned long base_pfn = PHYS_PFN(base);
 | 
						|
	unsigned long hole_pfns = PHYS_PFN(hole);
 | 
						|
 | 
						|
	return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sets up fake nodes of `size' interleaved over physical nodes ranging from
 | 
						|
 * `addr' to `max_addr'.
 | 
						|
 *
 | 
						|
 * Returns zero on success or negative on error.
 | 
						|
 */
 | 
						|
static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
 | 
						|
					      struct numa_meminfo *pi,
 | 
						|
					      u64 addr, u64 max_addr, u64 size,
 | 
						|
					      int nr_nodes, struct numa_memblk *pblk,
 | 
						|
					      int nid)
 | 
						|
{
 | 
						|
	nodemask_t physnode_mask = numa_nodes_parsed;
 | 
						|
	int i, ret, uniform = 0;
 | 
						|
	u64 min_size;
 | 
						|
 | 
						|
	if ((!size && !nr_nodes) || (nr_nodes && !pblk))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In the 'uniform' case split the passed in physical node by
 | 
						|
	 * nr_nodes, in the non-uniform case, ignore the passed in
 | 
						|
	 * physical block and try to create nodes of at least size
 | 
						|
	 * @size.
 | 
						|
	 *
 | 
						|
	 * In the uniform case, split the nodes strictly by physical
 | 
						|
	 * capacity, i.e. ignore holes. In the non-uniform case account
 | 
						|
	 * for holes and treat @size as a minimum floor.
 | 
						|
	 */
 | 
						|
	if (!nr_nodes)
 | 
						|
		nr_nodes = MAX_NUMNODES;
 | 
						|
	else {
 | 
						|
		nodes_clear(physnode_mask);
 | 
						|
		node_set(pblk->nid, physnode_mask);
 | 
						|
		uniform = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (uniform) {
 | 
						|
		min_size = uniform_size(max_addr, addr, 0, nr_nodes);
 | 
						|
		size = min_size;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * The limit on emulated nodes is MAX_NUMNODES, so the
 | 
						|
		 * size per node is increased accordingly if the
 | 
						|
		 * requested size is too small.  This creates a uniform
 | 
						|
		 * distribution of node sizes across the entire machine
 | 
						|
		 * (but not necessarily over physical nodes).
 | 
						|
		 */
 | 
						|
		min_size = uniform_size(max_addr, addr,
 | 
						|
				mem_hole_size(addr, max_addr), nr_nodes);
 | 
						|
	}
 | 
						|
	min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
 | 
						|
	if (size < min_size) {
 | 
						|
		pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
 | 
						|
			size >> 20, min_size >> 20);
 | 
						|
		size = min_size;
 | 
						|
	}
 | 
						|
	size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Fill physical nodes with fake nodes of size until there is no memory
 | 
						|
	 * left on any of them.
 | 
						|
	 */
 | 
						|
	while (!nodes_empty(physnode_mask)) {
 | 
						|
		for_each_node_mask(i, physnode_mask) {
 | 
						|
			u64 dma32_end = numa_emu_dma_end();
 | 
						|
			u64 start, limit, end;
 | 
						|
			int phys_blk;
 | 
						|
 | 
						|
			phys_blk = emu_find_memblk_by_nid(i, pi);
 | 
						|
			if (phys_blk < 0) {
 | 
						|
				node_clear(i, physnode_mask);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			start = pi->blk[phys_blk].start;
 | 
						|
			limit = pi->blk[phys_blk].end;
 | 
						|
 | 
						|
			if (uniform)
 | 
						|
				end = start + size;
 | 
						|
			else
 | 
						|
				end = find_end_of_node(start, limit, size);
 | 
						|
			/*
 | 
						|
			 * If there won't be at least FAKE_NODE_MIN_SIZE of
 | 
						|
			 * non-reserved memory in ZONE_DMA32 for the next node,
 | 
						|
			 * this one must extend to the boundary.
 | 
						|
			 */
 | 
						|
			if (end < dma32_end && dma32_end - end -
 | 
						|
			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
 | 
						|
				end = dma32_end;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If there won't be enough non-reserved memory for the
 | 
						|
			 * next node, this one must extend to the end of the
 | 
						|
			 * physical node.
 | 
						|
			 */
 | 
						|
			if ((limit - end - mem_hole_size(end, limit) < size)
 | 
						|
					&& !uniform)
 | 
						|
				end = limit;
 | 
						|
 | 
						|
			ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
 | 
						|
					       phys_blk,
 | 
						|
					       min(end, limit) - start);
 | 
						|
			if (ret < 0)
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
 | 
						|
					      struct numa_meminfo *pi,
 | 
						|
					      u64 addr, u64 max_addr, u64 size)
 | 
						|
{
 | 
						|
	return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
 | 
						|
			0, NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int __init setup_emu2phys_nid(int *dfl_phys_nid)
 | 
						|
{
 | 
						|
	int i, max_emu_nid = 0;
 | 
						|
 | 
						|
	*dfl_phys_nid = NUMA_NO_NODE;
 | 
						|
	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
 | 
						|
		if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
 | 
						|
			max_emu_nid = i;
 | 
						|
			if (*dfl_phys_nid == NUMA_NO_NODE)
 | 
						|
				*dfl_phys_nid = emu_nid_to_phys[i];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return max_emu_nid;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * numa_emulation - Emulate NUMA nodes
 | 
						|
 * @numa_meminfo: NUMA configuration to massage
 | 
						|
 * @numa_dist_cnt: The size of the physical NUMA distance table
 | 
						|
 *
 | 
						|
 * Emulate NUMA nodes according to the numa=fake kernel parameter.
 | 
						|
 * @numa_meminfo contains the physical memory configuration and is modified
 | 
						|
 * to reflect the emulated configuration on success.  @numa_dist_cnt is
 | 
						|
 * used to determine the size of the physical distance table.
 | 
						|
 *
 | 
						|
 * On success, the following modifications are made.
 | 
						|
 *
 | 
						|
 * - @numa_meminfo is updated to reflect the emulated nodes.
 | 
						|
 *
 | 
						|
 * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
 | 
						|
 *   emulated nodes.
 | 
						|
 *
 | 
						|
 * - NUMA distance table is rebuilt to represent distances between emulated
 | 
						|
 *   nodes.  The distances are determined considering how emulated nodes
 | 
						|
 *   are mapped to physical nodes and match the actual distances.
 | 
						|
 *
 | 
						|
 * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
 | 
						|
 *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu().
 | 
						|
 *
 | 
						|
 * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
 | 
						|
 * identity mapping and no other modification is made.
 | 
						|
 */
 | 
						|
void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
 | 
						|
{
 | 
						|
	static struct numa_meminfo ei __initdata;
 | 
						|
	static struct numa_meminfo pi __initdata;
 | 
						|
	const u64 max_addr = PFN_PHYS(max_pfn);
 | 
						|
	u8 *phys_dist = NULL;
 | 
						|
	size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
 | 
						|
	int max_emu_nid, dfl_phys_nid;
 | 
						|
	int i, j, ret;
 | 
						|
 | 
						|
	if (!emu_cmdline)
 | 
						|
		goto no_emu;
 | 
						|
 | 
						|
	memset(&ei, 0, sizeof(ei));
 | 
						|
	pi = *numa_meminfo;
 | 
						|
 | 
						|
	for (i = 0; i < MAX_NUMNODES; i++)
 | 
						|
		emu_nid_to_phys[i] = NUMA_NO_NODE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the numa=fake command-line contains a 'M' or 'G', it represents
 | 
						|
	 * the fixed node size.  Otherwise, if it is just a single number N,
 | 
						|
	 * split the system RAM into N fake nodes.
 | 
						|
	 */
 | 
						|
	if (strchr(emu_cmdline, 'U')) {
 | 
						|
		nodemask_t physnode_mask = numa_nodes_parsed;
 | 
						|
		unsigned long n;
 | 
						|
		int nid = 0;
 | 
						|
 | 
						|
		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
 | 
						|
		ret = -1;
 | 
						|
		for_each_node_mask(i, physnode_mask) {
 | 
						|
			/*
 | 
						|
			 * The reason we pass in blk[0] is due to
 | 
						|
			 * numa_remove_memblk_from() called by
 | 
						|
			 * emu_setup_memblk() will delete entry 0
 | 
						|
			 * and then move everything else up in the pi.blk
 | 
						|
			 * array. Therefore we should always be looking
 | 
						|
			 * at blk[0].
 | 
						|
			 */
 | 
						|
			ret = split_nodes_size_interleave_uniform(&ei, &pi,
 | 
						|
					pi.blk[0].start, pi.blk[0].end, 0,
 | 
						|
					n, &pi.blk[0], nid);
 | 
						|
			if (ret < 0)
 | 
						|
				break;
 | 
						|
			if (ret < n) {
 | 
						|
				pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
 | 
						|
						__func__, i, ret, n);
 | 
						|
				ret = -1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			nid = ret;
 | 
						|
		}
 | 
						|
	} else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
 | 
						|
		u64 size;
 | 
						|
 | 
						|
		size = memparse(emu_cmdline, &emu_cmdline);
 | 
						|
		ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
 | 
						|
	} else {
 | 
						|
		unsigned long n;
 | 
						|
 | 
						|
		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
 | 
						|
		ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
 | 
						|
	}
 | 
						|
	if (*emu_cmdline == ':')
 | 
						|
		emu_cmdline++;
 | 
						|
 | 
						|
	if (ret < 0)
 | 
						|
		goto no_emu;
 | 
						|
 | 
						|
	if (numa_cleanup_meminfo(&ei) < 0) {
 | 
						|
		pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
 | 
						|
		goto no_emu;
 | 
						|
	}
 | 
						|
 | 
						|
	/* copy the physical distance table */
 | 
						|
	if (numa_dist_cnt) {
 | 
						|
		phys_dist = memblock_alloc(phys_size, PAGE_SIZE);
 | 
						|
		if (!phys_dist) {
 | 
						|
			pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
 | 
						|
			goto no_emu;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; i < numa_dist_cnt; i++)
 | 
						|
			for (j = 0; j < numa_dist_cnt; j++)
 | 
						|
				phys_dist[i * numa_dist_cnt + j] =
 | 
						|
					node_distance(i, j);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine the max emulated nid and the default phys nid to use
 | 
						|
	 * for unmapped nodes.
 | 
						|
	 */
 | 
						|
	max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
 | 
						|
 | 
						|
	/* commit */
 | 
						|
	*numa_meminfo = ei;
 | 
						|
 | 
						|
	/* Make sure numa_nodes_parsed only contains emulated nodes */
 | 
						|
	nodes_clear(numa_nodes_parsed);
 | 
						|
	for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
 | 
						|
		if (ei.blk[i].start != ei.blk[i].end &&
 | 
						|
		    ei.blk[i].nid != NUMA_NO_NODE)
 | 
						|
			node_set(ei.blk[i].nid, numa_nodes_parsed);
 | 
						|
 | 
						|
	numa_emu_update_cpu_to_node(emu_nid_to_phys, ARRAY_SIZE(emu_nid_to_phys));
 | 
						|
 | 
						|
	/* make sure all emulated nodes are mapped to a physical node */
 | 
						|
	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
 | 
						|
		if (emu_nid_to_phys[i] == NUMA_NO_NODE)
 | 
						|
			emu_nid_to_phys[i] = dfl_phys_nid;
 | 
						|
 | 
						|
	/* transform distance table */
 | 
						|
	numa_reset_distance();
 | 
						|
	for (i = 0; i < max_emu_nid + 1; i++) {
 | 
						|
		for (j = 0; j < max_emu_nid + 1; j++) {
 | 
						|
			int physi = emu_nid_to_phys[i];
 | 
						|
			int physj = emu_nid_to_phys[j];
 | 
						|
			int dist;
 | 
						|
 | 
						|
			if (get_option(&emu_cmdline, &dist) == 2)
 | 
						|
				;
 | 
						|
			else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
 | 
						|
				dist = physi == physj ?
 | 
						|
					LOCAL_DISTANCE : REMOTE_DISTANCE;
 | 
						|
			else
 | 
						|
				dist = phys_dist[physi * numa_dist_cnt + physj];
 | 
						|
 | 
						|
			numa_set_distance(i, j, dist);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* free the copied physical distance table */
 | 
						|
	memblock_free(phys_dist, phys_size);
 | 
						|
	return;
 | 
						|
 | 
						|
no_emu:
 | 
						|
	/* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */
 | 
						|
	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
 | 
						|
		emu_nid_to_phys[i] = i;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_DEBUG_PER_CPU_MAPS
 | 
						|
void numa_add_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	int physnid, nid;
 | 
						|
 | 
						|
	nid = early_cpu_to_node(cpu);
 | 
						|
	BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
 | 
						|
 | 
						|
	physnid = emu_nid_to_phys[nid];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Map the cpu to each emulated node that is allocated on the physical
 | 
						|
	 * node of the cpu's apic id.
 | 
						|
	 */
 | 
						|
	for_each_online_node(nid)
 | 
						|
		if (emu_nid_to_phys[nid] == physnid)
 | 
						|
			cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
 | 
						|
}
 | 
						|
 | 
						|
void numa_remove_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for_each_online_node(i)
 | 
						|
		cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
 | 
						|
}
 | 
						|
#else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 | 
						|
static void numa_set_cpumask(unsigned int cpu, bool enable)
 | 
						|
{
 | 
						|
	int nid, physnid;
 | 
						|
 | 
						|
	nid = early_cpu_to_node(cpu);
 | 
						|
	if (nid == NUMA_NO_NODE) {
 | 
						|
		/* early_cpu_to_node() already emits a warning and trace */
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	physnid = emu_nid_to_phys[nid];
 | 
						|
 | 
						|
	for_each_online_node(nid) {
 | 
						|
		if (emu_nid_to_phys[nid] != physnid)
 | 
						|
			continue;
 | 
						|
 | 
						|
		debug_cpumask_set_cpu(cpu, nid, enable);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void numa_add_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	numa_set_cpumask(cpu, true);
 | 
						|
}
 | 
						|
 | 
						|
void numa_remove_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	numa_set_cpumask(cpu, false);
 | 
						|
}
 | 
						|
#endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 |