forked from mirrors/linux
		
	Fix a MIPS `dma_alloc_coherent' regression from commitbc3ec75de5("dma-mapping: merge direct and noncoherent ops") that causes a cached allocation to be returned on noncoherent cache systems. This is due to an inverted check now used in the MIPS implementation of `arch_dma_alloc' on the result from `dma_direct_alloc_pages' before doing the cached-to-uncached mapping of the allocation address obtained. The mapping has to be done for a non-NULL rather than NULL result, because a NULL result means the allocation has failed. Invert the check for correct operation then. Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org> Signed-off-by: Paul Burton <paul.burton@mips.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Fixes:bc3ec75de5("dma-mapping: merge direct and noncoherent ops") Patchwork: https://patchwork.linux-mips.org/patch/20965/
		
			
				
	
	
		
			161 lines
		
	
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
 | 
						|
 * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
 | 
						|
 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
 | 
						|
 */
 | 
						|
#include <linux/dma-direct.h>
 | 
						|
#include <linux/dma-noncoherent.h>
 | 
						|
#include <linux/dma-contiguous.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
 | 
						|
#include <asm/cache.h>
 | 
						|
#include <asm/cpu-type.h>
 | 
						|
#include <asm/dma-coherence.h>
 | 
						|
#include <asm/io.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
 | 
						|
 * fill random cachelines with stale data at any time, requiring an extra
 | 
						|
 * flush post-DMA.
 | 
						|
 *
 | 
						|
 * Warning on the terminology - Linux calls an uncached area coherent;  MIPS
 | 
						|
 * terminology calls memory areas with hardware maintained coherency coherent.
 | 
						|
 *
 | 
						|
 * Note that the R14000 and R16000 should also be checked for in this condition.
 | 
						|
 * However this function is only called on non-I/O-coherent systems and only the
 | 
						|
 * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
 | 
						|
 * SGI IP32 aka O2.
 | 
						|
 */
 | 
						|
static inline bool cpu_needs_post_dma_flush(struct device *dev)
 | 
						|
{
 | 
						|
	switch (boot_cpu_type()) {
 | 
						|
	case CPU_R10000:
 | 
						|
	case CPU_R12000:
 | 
						|
	case CPU_BMIPS5000:
 | 
						|
		return true;
 | 
						|
	default:
 | 
						|
		/*
 | 
						|
		 * Presence of MAARs suggests that the CPU supports
 | 
						|
		 * speculatively prefetching data, and therefore requires
 | 
						|
		 * the post-DMA flush/invalidate.
 | 
						|
		 */
 | 
						|
		return cpu_has_maar;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void *arch_dma_alloc(struct device *dev, size_t size,
 | 
						|
		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	ret = dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
 | 
						|
	if (ret && !(attrs & DMA_ATTR_NON_CONSISTENT)) {
 | 
						|
		dma_cache_wback_inv((unsigned long) ret, size);
 | 
						|
		ret = (void *)UNCAC_ADDR(ret);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
 | 
						|
		dma_addr_t dma_addr, unsigned long attrs)
 | 
						|
{
 | 
						|
	if (!(attrs & DMA_ATTR_NON_CONSISTENT))
 | 
						|
		cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr);
 | 
						|
	dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
 | 
						|
}
 | 
						|
 | 
						|
long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
 | 
						|
		dma_addr_t dma_addr)
 | 
						|
{
 | 
						|
	unsigned long addr = CAC_ADDR((unsigned long)cpu_addr);
 | 
						|
	return page_to_pfn(virt_to_page((void *)addr));
 | 
						|
}
 | 
						|
 | 
						|
pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot,
 | 
						|
		unsigned long attrs)
 | 
						|
{
 | 
						|
	if (attrs & DMA_ATTR_WRITE_COMBINE)
 | 
						|
		return pgprot_writecombine(prot);
 | 
						|
	return pgprot_noncached(prot);
 | 
						|
}
 | 
						|
 | 
						|
static inline void dma_sync_virt(void *addr, size_t size,
 | 
						|
		enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	switch (dir) {
 | 
						|
	case DMA_TO_DEVICE:
 | 
						|
		dma_cache_wback((unsigned long)addr, size);
 | 
						|
		break;
 | 
						|
 | 
						|
	case DMA_FROM_DEVICE:
 | 
						|
		dma_cache_inv((unsigned long)addr, size);
 | 
						|
		break;
 | 
						|
 | 
						|
	case DMA_BIDIRECTIONAL:
 | 
						|
		dma_cache_wback_inv((unsigned long)addr, size);
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		BUG();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A single sg entry may refer to multiple physically contiguous pages.  But
 | 
						|
 * we still need to process highmem pages individually.  If highmem is not
 | 
						|
 * configured then the bulk of this loop gets optimized out.
 | 
						|
 */
 | 
						|
static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
 | 
						|
		enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
 | 
						|
	unsigned long offset = paddr & ~PAGE_MASK;
 | 
						|
	size_t left = size;
 | 
						|
 | 
						|
	do {
 | 
						|
		size_t len = left;
 | 
						|
 | 
						|
		if (PageHighMem(page)) {
 | 
						|
			void *addr;
 | 
						|
 | 
						|
			if (offset + len > PAGE_SIZE) {
 | 
						|
				if (offset >= PAGE_SIZE) {
 | 
						|
					page += offset >> PAGE_SHIFT;
 | 
						|
					offset &= ~PAGE_MASK;
 | 
						|
				}
 | 
						|
				len = PAGE_SIZE - offset;
 | 
						|
			}
 | 
						|
 | 
						|
			addr = kmap_atomic(page);
 | 
						|
			dma_sync_virt(addr + offset, len, dir);
 | 
						|
			kunmap_atomic(addr);
 | 
						|
		} else
 | 
						|
			dma_sync_virt(page_address(page) + offset, size, dir);
 | 
						|
		offset = 0;
 | 
						|
		page++;
 | 
						|
		left -= len;
 | 
						|
	} while (left);
 | 
						|
}
 | 
						|
 | 
						|
void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
 | 
						|
		size_t size, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	dma_sync_phys(paddr, size, dir);
 | 
						|
}
 | 
						|
 | 
						|
void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
 | 
						|
		size_t size, enum dma_data_direction dir)
 | 
						|
{
 | 
						|
	if (cpu_needs_post_dma_flush(dev))
 | 
						|
		dma_sync_phys(paddr, size, dir);
 | 
						|
}
 | 
						|
 | 
						|
void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 | 
						|
		enum dma_data_direction direction)
 | 
						|
{
 | 
						|
	BUG_ON(direction == DMA_NONE);
 | 
						|
 | 
						|
	dma_sync_virt(vaddr, size, direction);
 | 
						|
}
 |