forked from mirrors/linux
		
	 72f2bae3c1
			
		
	
	
		72f2bae3c1
		
	
	
	
	
		
			
			This is the trivial pattern for path auto free, initialize at the beginning and free at the end with simple goto -> return conversions. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			4954 lines
		
	
	
	
		
			139 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4954 lines
		
	
	
	
		
			139 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/radix-tree.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/uuid.h>
 | |
| #include <linux/semaphore.h>
 | |
| #include <linux/error-injection.h>
 | |
| #include <linux/crc32c.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/unaligned.h>
 | |
| #include <crypto/hash.h>
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "bio.h"
 | |
| #include "print-tree.h"
 | |
| #include "locking.h"
 | |
| #include "tree-log.h"
 | |
| #include "free-space-cache.h"
 | |
| #include "free-space-tree.h"
 | |
| #include "dev-replace.h"
 | |
| #include "raid56.h"
 | |
| #include "sysfs.h"
 | |
| #include "qgroup.h"
 | |
| #include "compression.h"
 | |
| #include "tree-checker.h"
 | |
| #include "ref-verify.h"
 | |
| #include "block-group.h"
 | |
| #include "discard.h"
 | |
| #include "space-info.h"
 | |
| #include "zoned.h"
 | |
| #include "subpage.h"
 | |
| #include "fs.h"
 | |
| #include "accessors.h"
 | |
| #include "extent-tree.h"
 | |
| #include "root-tree.h"
 | |
| #include "defrag.h"
 | |
| #include "uuid-tree.h"
 | |
| #include "relocation.h"
 | |
| #include "scrub.h"
 | |
| #include "super.h"
 | |
| 
 | |
| #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
 | |
| 				 BTRFS_HEADER_FLAG_RELOC |\
 | |
| 				 BTRFS_SUPER_FLAG_ERROR |\
 | |
| 				 BTRFS_SUPER_FLAG_SEEDING |\
 | |
| 				 BTRFS_SUPER_FLAG_METADUMP |\
 | |
| 				 BTRFS_SUPER_FLAG_METADUMP_V2)
 | |
| 
 | |
| static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
 | |
| static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
 | |
| 
 | |
| static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	if (fs_info->csum_shash)
 | |
| 		crypto_free_shash(fs_info->csum_shash);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the csum of a btree block and store the result to provided buffer.
 | |
|  */
 | |
| static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = buf->fs_info;
 | |
| 	int num_pages;
 | |
| 	u32 first_page_part;
 | |
| 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 | |
| 	char *kaddr;
 | |
| 	int i;
 | |
| 
 | |
| 	shash->tfm = fs_info->csum_shash;
 | |
| 	crypto_shash_init(shash);
 | |
| 
 | |
| 	if (buf->addr) {
 | |
| 		/* Pages are contiguous, handle them as a big one. */
 | |
| 		kaddr = buf->addr;
 | |
| 		first_page_part = fs_info->nodesize;
 | |
| 		num_pages = 1;
 | |
| 	} else {
 | |
| 		kaddr = folio_address(buf->folios[0]);
 | |
| 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
 | |
| 		num_pages = num_extent_pages(buf);
 | |
| 	}
 | |
| 
 | |
| 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 | |
| 			    first_page_part - BTRFS_CSUM_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Multiple single-page folios case would reach here.
 | |
| 	 *
 | |
| 	 * nodesize <= PAGE_SIZE and large folio all handled by above
 | |
| 	 * crypto_shash_update() already.
 | |
| 	 */
 | |
| 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
 | |
| 		kaddr = folio_address(buf->folios[i]);
 | |
| 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 | |
| 	}
 | |
| 	memset(result, 0, BTRFS_CSUM_SIZE);
 | |
| 	crypto_shash_final(shash, result);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we can't consider a given block up to date unless the transid of the
 | |
|  * block matches the transid in the parent node's pointer.  This is how we
 | |
|  * detect blocks that either didn't get written at all or got written
 | |
|  * in the wrong place.
 | |
|  */
 | |
| int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
 | |
| {
 | |
| 	if (!extent_buffer_uptodate(eb))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (atomic)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (!extent_buffer_uptodate(eb) ||
 | |
| 	    btrfs_header_generation(eb) != parent_transid) {
 | |
| 		btrfs_err_rl(eb->fs_info,
 | |
| "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 | |
| 			eb->start, eb->read_mirror,
 | |
| 			parent_transid, btrfs_header_generation(eb));
 | |
| 		clear_extent_buffer_uptodate(eb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static bool btrfs_supported_super_csum(u16 csum_type)
 | |
| {
 | |
| 	switch (csum_type) {
 | |
| 	case BTRFS_CSUM_TYPE_CRC32:
 | |
| 	case BTRFS_CSUM_TYPE_XXHASH:
 | |
| 	case BTRFS_CSUM_TYPE_SHA256:
 | |
| 	case BTRFS_CSUM_TYPE_BLAKE2:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 0 if the superblock checksum type matches the checksum value of that
 | |
|  * algorithm. Pass the raw disk superblock data.
 | |
|  */
 | |
| int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 | |
| 			   const struct btrfs_super_block *disk_sb)
 | |
| {
 | |
| 	char result[BTRFS_CSUM_SIZE];
 | |
| 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 | |
| 
 | |
| 	shash->tfm = fs_info->csum_shash;
 | |
| 
 | |
| 	/*
 | |
| 	 * The super_block structure does not span the whole
 | |
| 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 | |
| 	 * filled with zeros and is included in the checksum.
 | |
| 	 */
 | |
| 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
 | |
| 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 | |
| 
 | |
| 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
 | |
| 				      int mirror_num)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (sb_rdonly(fs_info->sb))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	for (int i = 0; i < num_extent_folios(eb); i++) {
 | |
| 		struct folio *folio = eb->folios[i];
 | |
| 		u64 start = max_t(u64, eb->start, folio_pos(folio));
 | |
| 		u64 end = min_t(u64, eb->start + eb->len,
 | |
| 				folio_pos(folio) + eb->folio_size);
 | |
| 		u32 len = end - start;
 | |
| 
 | |
| 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
 | |
| 					      start, folio, offset_in_folio(folio, start),
 | |
| 					      mirror_num);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to read a given tree block, doing retries as required when
 | |
|  * the checksums don't match and we have alternate mirrors to try.
 | |
|  *
 | |
|  * @check:		expected tree parentness check, see the comments of the
 | |
|  *			structure for details.
 | |
|  */
 | |
| int btrfs_read_extent_buffer(struct extent_buffer *eb,
 | |
| 			     const struct btrfs_tree_parent_check *check)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	int failed = 0;
 | |
| 	int ret;
 | |
| 	int num_copies = 0;
 | |
| 	int mirror_num = 0;
 | |
| 	int failed_mirror = 0;
 | |
| 
 | |
| 	ASSERT(check);
 | |
| 
 | |
| 	while (1) {
 | |
| 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 | |
| 		ret = read_extent_buffer_pages(eb, mirror_num, check);
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 
 | |
| 		num_copies = btrfs_num_copies(fs_info,
 | |
| 					      eb->start, eb->len);
 | |
| 		if (num_copies == 1)
 | |
| 			break;
 | |
| 
 | |
| 		if (!failed_mirror) {
 | |
| 			failed = 1;
 | |
| 			failed_mirror = eb->read_mirror;
 | |
| 		}
 | |
| 
 | |
| 		mirror_num++;
 | |
| 		if (mirror_num == failed_mirror)
 | |
| 			mirror_num++;
 | |
| 
 | |
| 		if (mirror_num > num_copies)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (failed && !ret && failed_mirror)
 | |
| 		btrfs_repair_eb_io_failure(eb, failed_mirror);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checksum a dirty tree block before IO.
 | |
|  */
 | |
| blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct extent_buffer *eb = bbio->private;
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	u64 found_start = btrfs_header_bytenr(eb);
 | |
| 	u64 last_trans;
 | |
| 	u8 result[BTRFS_CSUM_SIZE];
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Btree blocks are always contiguous on disk. */
 | |
| 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
 | |
| 		return BLK_STS_IOERR;
 | |
| 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
 | |
| 		return BLK_STS_IOERR;
 | |
| 
 | |
| 	/*
 | |
| 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
 | |
| 	 * checksum it but zero-out its content. This is done to preserve
 | |
| 	 * ordering of I/O without unnecessarily writing out data.
 | |
| 	 */
 | |
| 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
 | |
| 		memzero_extent_buffer(eb, 0, eb->len);
 | |
| 		return BLK_STS_OK;
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON_ONCE(found_start != eb->start))
 | |
| 		return BLK_STS_IOERR;
 | |
| 	if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb)))
 | |
| 		return BLK_STS_IOERR;
 | |
| 
 | |
| 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 | |
| 				    offsetof(struct btrfs_header, fsid),
 | |
| 				    BTRFS_FSID_SIZE) == 0);
 | |
| 	csum_tree_block(eb, result);
 | |
| 
 | |
| 	if (btrfs_header_level(eb))
 | |
| 		ret = btrfs_check_node(eb);
 | |
| 	else
 | |
| 		ret = btrfs_check_leaf(eb);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Also check the generation, the eb reached here must be newer than
 | |
| 	 * last committed. Or something seriously wrong happened.
 | |
| 	 */
 | |
| 	last_trans = btrfs_get_last_trans_committed(fs_info);
 | |
| 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
 | |
| 		ret = -EUCLEAN;
 | |
| 		btrfs_err(fs_info,
 | |
| 			"block=%llu bad generation, have %llu expect > %llu",
 | |
| 			  eb->start, btrfs_header_generation(eb), last_trans);
 | |
| 		goto error;
 | |
| 	}
 | |
| 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
 | |
| 	return BLK_STS_OK;
 | |
| 
 | |
| error:
 | |
| 	btrfs_print_tree(eb, 0);
 | |
| 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
 | |
| 		  eb->start);
 | |
| 	/*
 | |
| 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
 | |
| 	 * a transaction in case there's a bad log tree extent buffer, we just
 | |
| 	 * fallback to a transaction commit. Still we want to know when there is
 | |
| 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
 | |
| 	 */
 | |
| 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
 | |
| 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
 | |
| 	return errno_to_blk_status(ret);
 | |
| }
 | |
| 
 | |
| static bool check_tree_block_fsid(struct extent_buffer *eb)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 | |
| 	u8 fsid[BTRFS_FSID_SIZE];
 | |
| 
 | |
| 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 | |
| 			   BTRFS_FSID_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
 | |
| 	 * This is then overwritten by metadata_uuid if it is present in the
 | |
| 	 * device_list_add(). The same true for a seed device as well. So use of
 | |
| 	 * fs_devices::metadata_uuid is appropriate here.
 | |
| 	 */
 | |
| 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 | |
| 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 | |
| 			return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Do basic extent buffer checks at read time */
 | |
| int btrfs_validate_extent_buffer(struct extent_buffer *eb,
 | |
| 				 const struct btrfs_tree_parent_check *check)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = eb->fs_info;
 | |
| 	u64 found_start;
 | |
| 	const u32 csum_size = fs_info->csum_size;
 | |
| 	u8 found_level;
 | |
| 	u8 result[BTRFS_CSUM_SIZE];
 | |
| 	const u8 *header_csum;
 | |
| 	int ret = 0;
 | |
| 	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
 | |
| 
 | |
| 	ASSERT(check);
 | |
| 
 | |
| 	found_start = btrfs_header_bytenr(eb);
 | |
| 	if (found_start != eb->start) {
 | |
| 		btrfs_err_rl(fs_info,
 | |
| 			"bad tree block start, mirror %u want %llu have %llu",
 | |
| 			     eb->read_mirror, eb->start, found_start);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (check_tree_block_fsid(eb)) {
 | |
| 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
 | |
| 			     eb->start, eb->read_mirror);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	found_level = btrfs_header_level(eb);
 | |
| 	if (found_level >= BTRFS_MAX_LEVEL) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			"bad tree block level, mirror %u level %d on logical %llu",
 | |
| 			eb->read_mirror, btrfs_header_level(eb), eb->start);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	csum_tree_block(eb, result);
 | |
| 	header_csum = folio_address(eb->folios[0]) +
 | |
| 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
 | |
| 
 | |
| 	if (memcmp(result, header_csum, csum_size) != 0) {
 | |
| 		btrfs_warn_rl(fs_info,
 | |
| "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
 | |
| 			      eb->start, eb->read_mirror,
 | |
| 			      CSUM_FMT_VALUE(csum_size, header_csum),
 | |
| 			      CSUM_FMT_VALUE(csum_size, result),
 | |
| 			      btrfs_header_level(eb),
 | |
| 			      ignore_csum ? ", ignored" : "");
 | |
| 		if (!ignore_csum) {
 | |
| 			ret = -EUCLEAN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (found_level != check->level) {
 | |
| 		btrfs_err(fs_info,
 | |
| 		"level verify failed on logical %llu mirror %u wanted %u found %u",
 | |
| 			  eb->start, eb->read_mirror, check->level, found_level);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (unlikely(check->transid &&
 | |
| 		     btrfs_header_generation(eb) != check->transid)) {
 | |
| 		btrfs_err_rl(eb->fs_info,
 | |
| "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 | |
| 				eb->start, eb->read_mirror, check->transid,
 | |
| 				btrfs_header_generation(eb));
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (check->has_first_key) {
 | |
| 		const struct btrfs_key *expect_key = &check->first_key;
 | |
| 		struct btrfs_key found_key;
 | |
| 
 | |
| 		if (found_level)
 | |
| 			btrfs_node_key_to_cpu(eb, &found_key, 0);
 | |
| 		else
 | |
| 			btrfs_item_key_to_cpu(eb, &found_key, 0);
 | |
| 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
 | |
| 			btrfs_err(fs_info,
 | |
| "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 | |
| 				  eb->start, check->transid,
 | |
| 				  expect_key->objectid,
 | |
| 				  expect_key->type, expect_key->offset,
 | |
| 				  found_key.objectid, found_key.type,
 | |
| 				  found_key.offset);
 | |
| 			ret = -EUCLEAN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	if (check->owner_root) {
 | |
| 		ret = btrfs_check_eb_owner(eb, check->owner_root);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 | |
| 	 * that we don't try and read the other copies of this block, just
 | |
| 	 * return -EIO.
 | |
| 	 */
 | |
| 	if (found_level == 0 && btrfs_check_leaf(eb)) {
 | |
| 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (found_level > 0 && btrfs_check_node(eb))
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	if (ret)
 | |
| 		btrfs_err(fs_info,
 | |
| 		"read time tree block corruption detected on logical %llu mirror %u",
 | |
| 			  eb->start, eb->read_mirror);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| static int btree_migrate_folio(struct address_space *mapping,
 | |
| 		struct folio *dst, struct folio *src, enum migrate_mode mode)
 | |
| {
 | |
| 	/*
 | |
| 	 * we can't safely write a btree page from here,
 | |
| 	 * we haven't done the locking hook
 | |
| 	 */
 | |
| 	if (folio_test_dirty(src))
 | |
| 		return -EAGAIN;
 | |
| 	/*
 | |
| 	 * Buffers may be managed in a filesystem specific way.
 | |
| 	 * We must have no buffers or drop them.
 | |
| 	 */
 | |
| 	if (folio_get_private(src) &&
 | |
| 	    !filemap_release_folio(src, GFP_KERNEL))
 | |
| 		return -EAGAIN;
 | |
| 	return migrate_folio(mapping, dst, src, mode);
 | |
| }
 | |
| #else
 | |
| #define btree_migrate_folio NULL
 | |
| #endif
 | |
| 
 | |
| static int btree_writepages(struct address_space *mapping,
 | |
| 			    struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (wbc->sync_mode == WB_SYNC_NONE) {
 | |
| 		struct btrfs_fs_info *fs_info;
 | |
| 
 | |
| 		if (wbc->for_kupdate)
 | |
| 			return 0;
 | |
| 
 | |
| 		fs_info = inode_to_fs_info(mapping->host);
 | |
| 		/* this is a bit racy, but that's ok */
 | |
| 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 | |
| 					     BTRFS_DIRTY_METADATA_THRESH,
 | |
| 					     fs_info->dirty_metadata_batch);
 | |
| 		if (ret < 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return btree_write_cache_pages(mapping, wbc);
 | |
| }
 | |
| 
 | |
| static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
 | |
| {
 | |
| 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	return try_release_extent_buffer(folio);
 | |
| }
 | |
| 
 | |
| static void btree_invalidate_folio(struct folio *folio, size_t offset,
 | |
| 				 size_t length)
 | |
| {
 | |
| 	struct extent_io_tree *tree;
 | |
| 
 | |
| 	tree = &folio_to_inode(folio)->io_tree;
 | |
| 	extent_invalidate_folio(tree, folio, offset);
 | |
| 	btree_release_folio(folio, GFP_NOFS);
 | |
| 	if (folio_get_private(folio)) {
 | |
| 		btrfs_warn(folio_to_fs_info(folio),
 | |
| 			   "folio private not zero on folio %llu",
 | |
| 			   (unsigned long long)folio_pos(folio));
 | |
| 		folio_detach_private(folio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG
 | |
| static bool btree_dirty_folio(struct address_space *mapping,
 | |
| 		struct folio *folio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 | |
| 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
 | |
| 	struct btrfs_subpage *subpage;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int cur_bit = 0;
 | |
| 	u64 page_start = folio_pos(folio);
 | |
| 
 | |
| 	if (fs_info->sectorsize == PAGE_SIZE) {
 | |
| 		eb = folio_get_private(folio);
 | |
| 		BUG_ON(!eb);
 | |
| 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 | |
| 		BUG_ON(!atomic_read(&eb->refs));
 | |
| 		btrfs_assert_tree_write_locked(eb);
 | |
| 		return filemap_dirty_folio(mapping, folio);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(spi);
 | |
| 	subpage = folio_get_private(folio);
 | |
| 
 | |
| 	for (cur_bit = spi->dirty_offset;
 | |
| 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
 | |
| 	     cur_bit++) {
 | |
| 		unsigned long flags;
 | |
| 		u64 cur;
 | |
| 
 | |
| 		spin_lock_irqsave(&subpage->lock, flags);
 | |
| 		if (!test_bit(cur_bit, subpage->bitmaps)) {
 | |
| 			spin_unlock_irqrestore(&subpage->lock, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&subpage->lock, flags);
 | |
| 		cur = page_start + cur_bit * fs_info->sectorsize;
 | |
| 
 | |
| 		eb = find_extent_buffer(fs_info, cur);
 | |
| 		ASSERT(eb);
 | |
| 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 | |
| 		ASSERT(atomic_read(&eb->refs));
 | |
| 		btrfs_assert_tree_write_locked(eb);
 | |
| 		free_extent_buffer(eb);
 | |
| 
 | |
| 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
 | |
| 	}
 | |
| 	return filemap_dirty_folio(mapping, folio);
 | |
| }
 | |
| #else
 | |
| #define btree_dirty_folio filemap_dirty_folio
 | |
| #endif
 | |
| 
 | |
| static const struct address_space_operations btree_aops = {
 | |
| 	.writepages	= btree_writepages,
 | |
| 	.release_folio	= btree_release_folio,
 | |
| 	.invalidate_folio = btree_invalidate_folio,
 | |
| 	.migrate_folio	= btree_migrate_folio,
 | |
| 	.dirty_folio	= btree_dirty_folio,
 | |
| };
 | |
| 
 | |
| struct extent_buffer *btrfs_find_create_tree_block(
 | |
| 						struct btrfs_fs_info *fs_info,
 | |
| 						u64 bytenr, u64 owner_root,
 | |
| 						int level)
 | |
| {
 | |
| 	if (btrfs_is_testing(fs_info))
 | |
| 		return alloc_test_extent_buffer(fs_info, bytenr);
 | |
| 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read tree block at logical address @bytenr and do variant basic but critical
 | |
|  * verification.
 | |
|  *
 | |
|  * @check:		expected tree parentness check, see comments of the
 | |
|  *			structure for details.
 | |
|  */
 | |
| struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 				      struct btrfs_tree_parent_check *check)
 | |
| {
 | |
| 	struct extent_buffer *buf = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(check);
 | |
| 
 | |
| 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
 | |
| 					   check->level);
 | |
| 	if (IS_ERR(buf))
 | |
| 		return buf;
 | |
| 
 | |
| 	ret = btrfs_read_extent_buffer(buf, check);
 | |
| 	if (ret) {
 | |
| 		free_extent_buffer_stale(buf);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 	return buf;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
 | |
| 			 u64 objectid)
 | |
| {
 | |
| 	bool dummy = btrfs_is_testing(fs_info);
 | |
| 
 | |
| 	memset(&root->root_key, 0, sizeof(root->root_key));
 | |
| 	memset(&root->root_item, 0, sizeof(root->root_item));
 | |
| 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 | |
| 	root->fs_info = fs_info;
 | |
| 	root->root_key.objectid = objectid;
 | |
| 	root->node = NULL;
 | |
| 	root->commit_root = NULL;
 | |
| 	root->state = 0;
 | |
| 	RB_CLEAR_NODE(&root->rb_node);
 | |
| 
 | |
| 	btrfs_set_root_last_trans(root, 0);
 | |
| 	root->free_objectid = 0;
 | |
| 	root->nr_delalloc_inodes = 0;
 | |
| 	root->nr_ordered_extents = 0;
 | |
| 	xa_init(&root->inodes);
 | |
| 	xa_init(&root->delayed_nodes);
 | |
| 
 | |
| 	btrfs_init_root_block_rsv(root);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&root->dirty_list);
 | |
| 	INIT_LIST_HEAD(&root->root_list);
 | |
| 	INIT_LIST_HEAD(&root->delalloc_inodes);
 | |
| 	INIT_LIST_HEAD(&root->delalloc_root);
 | |
| 	INIT_LIST_HEAD(&root->ordered_extents);
 | |
| 	INIT_LIST_HEAD(&root->ordered_root);
 | |
| 	INIT_LIST_HEAD(&root->reloc_dirty_list);
 | |
| 	spin_lock_init(&root->delalloc_lock);
 | |
| 	spin_lock_init(&root->ordered_extent_lock);
 | |
| 	spin_lock_init(&root->accounting_lock);
 | |
| 	spin_lock_init(&root->qgroup_meta_rsv_lock);
 | |
| 	mutex_init(&root->objectid_mutex);
 | |
| 	mutex_init(&root->log_mutex);
 | |
| 	mutex_init(&root->ordered_extent_mutex);
 | |
| 	mutex_init(&root->delalloc_mutex);
 | |
| 	init_waitqueue_head(&root->qgroup_flush_wait);
 | |
| 	init_waitqueue_head(&root->log_writer_wait);
 | |
| 	init_waitqueue_head(&root->log_commit_wait[0]);
 | |
| 	init_waitqueue_head(&root->log_commit_wait[1]);
 | |
| 	INIT_LIST_HEAD(&root->log_ctxs[0]);
 | |
| 	INIT_LIST_HEAD(&root->log_ctxs[1]);
 | |
| 	atomic_set(&root->log_commit[0], 0);
 | |
| 	atomic_set(&root->log_commit[1], 0);
 | |
| 	atomic_set(&root->log_writers, 0);
 | |
| 	atomic_set(&root->log_batch, 0);
 | |
| 	refcount_set(&root->refs, 1);
 | |
| 	atomic_set(&root->snapshot_force_cow, 0);
 | |
| 	atomic_set(&root->nr_swapfiles, 0);
 | |
| 	btrfs_set_root_log_transid(root, 0);
 | |
| 	root->log_transid_committed = -1;
 | |
| 	btrfs_set_root_last_log_commit(root, 0);
 | |
| 	root->anon_dev = 0;
 | |
| 	if (!dummy) {
 | |
| 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
 | |
| 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
 | |
| 		extent_io_tree_init(fs_info, &root->log_csum_range,
 | |
| 				    IO_TREE_LOG_CSUM_RANGE);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&root->root_item_lock);
 | |
| 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| 	INIT_LIST_HEAD(&root->leak_list);
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
 | |
| 					   u64 objectid, gfp_t flags)
 | |
| {
 | |
| 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
 | |
| 	if (root)
 | |
| 		__setup_root(root, fs_info, objectid);
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| /* Should only be used by the testing infrastructure */
 | |
| struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 
 | |
| 	if (!fs_info)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
 | |
| 	if (!root)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/* We don't use the stripesize in selftest, set it as sectorsize */
 | |
| 	root->alloc_bytenr = 0;
 | |
| 
 | |
| 	return root;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
 | |
| {
 | |
| 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
 | |
| 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
 | |
| 
 | |
| 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
 | |
| }
 | |
| 
 | |
| static int global_root_key_cmp(const void *k, const struct rb_node *node)
 | |
| {
 | |
| 	const struct btrfs_key *key = k;
 | |
| 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
 | |
| 
 | |
| 	return btrfs_comp_cpu_keys(key, &root->root_key);
 | |
| }
 | |
| 
 | |
| int btrfs_global_root_insert(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct rb_node *tmp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	write_lock(&fs_info->global_root_lock);
 | |
| 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
 | |
| 	write_unlock(&fs_info->global_root_lock);
 | |
| 
 | |
| 	if (tmp) {
 | |
| 		ret = -EEXIST;
 | |
| 		btrfs_warn(fs_info, "global root %llu %llu already exists",
 | |
| 			   btrfs_root_id(root), root->root_key.offset);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_global_root_delete(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 
 | |
| 	write_lock(&fs_info->global_root_lock);
 | |
| 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
 | |
| 	write_unlock(&fs_info->global_root_lock);
 | |
| }
 | |
| 
 | |
| struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
 | |
| 				     struct btrfs_key *key)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_root *root = NULL;
 | |
| 
 | |
| 	read_lock(&fs_info->global_root_lock);
 | |
| 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
 | |
| 	if (node)
 | |
| 		root = container_of(node, struct btrfs_root, rb_node);
 | |
| 	read_unlock(&fs_info->global_root_lock);
 | |
| 
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	u64 ret;
 | |
| 
 | |
| 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (bytenr)
 | |
| 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
 | |
| 	else
 | |
| 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
 | |
| 	ASSERT(block_group);
 | |
| 	if (!block_group)
 | |
| 		return 0;
 | |
| 	ret = block_group->global_root_id;
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_key key = {
 | |
| 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
 | |
| 		.type = BTRFS_ROOT_ITEM_KEY,
 | |
| 		.offset = btrfs_global_root_id(fs_info, bytenr),
 | |
| 	};
 | |
| 
 | |
| 	return btrfs_global_root(fs_info, &key);
 | |
| }
 | |
| 
 | |
| struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 | |
| {
 | |
| 	struct btrfs_key key = {
 | |
| 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
 | |
| 		.type = BTRFS_ROOT_ITEM_KEY,
 | |
| 		.offset = btrfs_global_root_id(fs_info, bytenr),
 | |
| 	};
 | |
| 
 | |
| 	return btrfs_global_root(fs_info, &key);
 | |
| }
 | |
| 
 | |
| struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 | |
| 				     u64 objectid)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_root *tree_root = fs_info->tree_root;
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_key key;
 | |
| 	unsigned int nofs_flag;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're holding a transaction handle, so use a NOFS memory allocation
 | |
| 	 * context to avoid deadlock if reclaim happens.
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 	if (!root)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	root->root_key.objectid = objectid;
 | |
| 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	root->root_key.offset = 0;
 | |
| 
 | |
| 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 | |
| 				      0, BTRFS_NESTING_NORMAL);
 | |
| 	if (IS_ERR(leaf)) {
 | |
| 		ret = PTR_ERR(leaf);
 | |
| 		leaf = NULL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	root->node = leaf;
 | |
| 	btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 
 | |
| 	root->commit_root = btrfs_root_node(root);
 | |
| 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 
 | |
| 	btrfs_set_root_flags(&root->root_item, 0);
 | |
| 	btrfs_set_root_limit(&root->root_item, 0);
 | |
| 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
 | |
| 	btrfs_set_root_generation(&root->root_item, trans->transid);
 | |
| 	btrfs_set_root_level(&root->root_item, 0);
 | |
| 	btrfs_set_root_refs(&root->root_item, 1);
 | |
| 	btrfs_set_root_used(&root->root_item, leaf->len);
 | |
| 	btrfs_set_root_last_snapshot(&root->root_item, 0);
 | |
| 	btrfs_set_root_dirid(&root->root_item, 0);
 | |
| 	if (is_fstree(objectid))
 | |
| 		generate_random_guid(root->root_item.uuid);
 | |
| 	else
 | |
| 		export_guid(root->root_item.uuid, &guid_null);
 | |
| 	btrfs_set_root_drop_level(&root->root_item, 0);
 | |
| 
 | |
| 	btrfs_tree_unlock(leaf);
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	return root;
 | |
| 
 | |
| fail:
 | |
| 	btrfs_put_root(root);
 | |
| 
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 
 | |
| 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
 | |
| 	if (!root)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
 | |
| 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 | |
| 
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_root *root)
 | |
| {
 | |
| 	struct extent_buffer *leaf;
 | |
| 
 | |
| 	/*
 | |
| 	 * DON'T set SHAREABLE bit for log trees.
 | |
| 	 *
 | |
| 	 * Log trees are not exposed to user space thus can't be snapshotted,
 | |
| 	 * and they go away before a real commit is actually done.
 | |
| 	 *
 | |
| 	 * They do store pointers to file data extents, and those reference
 | |
| 	 * counts still get updated (along with back refs to the log tree).
 | |
| 	 */
 | |
| 
 | |
| 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
 | |
| 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
 | |
| 	if (IS_ERR(leaf))
 | |
| 		return PTR_ERR(leaf);
 | |
| 
 | |
| 	root->node = leaf;
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(trans, root->node);
 | |
| 	btrfs_tree_unlock(root->node);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *log_root;
 | |
| 
 | |
| 	log_root = alloc_log_tree(fs_info);
 | |
| 	if (IS_ERR(log_root))
 | |
| 		return PTR_ERR(log_root);
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info)) {
 | |
| 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			btrfs_put_root(log_root);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(fs_info->log_root_tree);
 | |
| 	fs_info->log_root_tree = log_root;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
 | |
| 		       struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_root *log_root;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	int ret;
 | |
| 
 | |
| 	log_root = alloc_log_tree(fs_info);
 | |
| 	if (IS_ERR(log_root))
 | |
| 		return PTR_ERR(log_root);
 | |
| 
 | |
| 	ret = btrfs_alloc_log_tree_node(trans, log_root);
 | |
| 	if (ret) {
 | |
| 		btrfs_put_root(log_root);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_root_last_trans(log_root, trans->transid);
 | |
| 	log_root->root_key.offset = btrfs_root_id(root);
 | |
| 
 | |
| 	inode_item = &log_root->root_item.inode;
 | |
| 	btrfs_set_stack_inode_generation(inode_item, 1);
 | |
| 	btrfs_set_stack_inode_size(inode_item, 3);
 | |
| 	btrfs_set_stack_inode_nlink(inode_item, 1);
 | |
| 	btrfs_set_stack_inode_nbytes(inode_item,
 | |
| 				     fs_info->nodesize);
 | |
| 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 | |
| 
 | |
| 	btrfs_set_root_node(&log_root->root_item, log_root->node);
 | |
| 
 | |
| 	WARN_ON(root->log_root);
 | |
| 	root->log_root = log_root;
 | |
| 	btrfs_set_root_log_transid(root, 0);
 | |
| 	root->log_transid_committed = -1;
 | |
| 	btrfs_set_root_last_log_commit(root, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
 | |
| 					      struct btrfs_path *path,
 | |
| 					      const struct btrfs_key *key)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_tree_parent_check check = { 0 };
 | |
| 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 | |
| 	u64 generation;
 | |
| 	int ret;
 | |
| 	int level;
 | |
| 
 | |
| 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
 | |
| 	if (!root)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ret = btrfs_find_root(tree_root, key, path,
 | |
| 			      &root->root_item, &root->root_key);
 | |
| 	if (ret) {
 | |
| 		if (ret > 0)
 | |
| 			ret = -ENOENT;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	generation = btrfs_root_generation(&root->root_item);
 | |
| 	level = btrfs_root_level(&root->root_item);
 | |
| 	check.level = level;
 | |
| 	check.transid = generation;
 | |
| 	check.owner_root = key->objectid;
 | |
| 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
 | |
| 				     &check);
 | |
| 	if (IS_ERR(root->node)) {
 | |
| 		ret = PTR_ERR(root->node);
 | |
| 		root->node = NULL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
 | |
| 		ret = -EIO;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For real fs, and not log/reloc trees, root owner must
 | |
| 	 * match its root node owner
 | |
| 	 */
 | |
| 	if (!btrfs_is_testing(fs_info) &&
 | |
| 	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
 | |
| 	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
 | |
| 	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
 | |
| 		btrfs_crit(fs_info,
 | |
| "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
 | |
| 			   btrfs_root_id(root), root->node->start,
 | |
| 			   btrfs_header_owner(root->node),
 | |
| 			   btrfs_root_id(root));
 | |
| 		ret = -EUCLEAN;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	root->commit_root = btrfs_root_node(root);
 | |
| 	return root;
 | |
| fail:
 | |
| 	btrfs_put_root(root);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
 | |
| 					const struct btrfs_key *key)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	BTRFS_PATH_AUTO_FREE(path);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	root = read_tree_root_path(tree_root, path, key);
 | |
| 
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize subvolume root in-memory structure.
 | |
|  *
 | |
|  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
 | |
|  *
 | |
|  * In case of failure the caller is responsible to call btrfs_free_fs_root()
 | |
|  */
 | |
| static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	btrfs_drew_lock_init(&root->snapshot_lock);
 | |
| 
 | |
| 	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
 | |
| 	    !btrfs_is_data_reloc_root(root) &&
 | |
| 	    is_fstree(btrfs_root_id(root))) {
 | |
| 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
 | |
| 		btrfs_check_and_init_root_item(&root->root_item);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't assign anonymous block device to roots that are not exposed to
 | |
| 	 * userspace, the id pool is limited to 1M
 | |
| 	 */
 | |
| 	if (is_fstree(btrfs_root_id(root)) &&
 | |
| 	    btrfs_root_refs(&root->root_item) > 0) {
 | |
| 		if (!anon_dev) {
 | |
| 			ret = get_anon_bdev(&root->anon_dev);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		} else {
 | |
| 			root->anon_dev = anon_dev;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&root->objectid_mutex);
 | |
| 	ret = btrfs_init_root_free_objectid(root);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&root->objectid_mutex);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
 | |
| 
 | |
| 	mutex_unlock(&root->objectid_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
 | |
| 					       u64 root_id)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
 | |
| 				 (unsigned long)root_id);
 | |
| 	root = btrfs_grab_root(root);
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
 | |
| 						u64 objectid)
 | |
| {
 | |
| 	struct btrfs_key key = {
 | |
| 		.objectid = objectid,
 | |
| 		.type = BTRFS_ROOT_ITEM_KEY,
 | |
| 		.offset = 0,
 | |
| 	};
 | |
| 
 | |
| 	switch (objectid) {
 | |
| 	case BTRFS_ROOT_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(fs_info->tree_root);
 | |
| 	case BTRFS_EXTENT_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
 | |
| 	case BTRFS_CHUNK_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(fs_info->chunk_root);
 | |
| 	case BTRFS_DEV_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(fs_info->dev_root);
 | |
| 	case BTRFS_CSUM_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
 | |
| 	case BTRFS_QUOTA_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(fs_info->quota_root);
 | |
| 	case BTRFS_UUID_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(fs_info->uuid_root);
 | |
| 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(fs_info->block_group_root);
 | |
| 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
 | |
| 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
 | |
| 		return btrfs_grab_root(fs_info->stripe_root);
 | |
| 	default:
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
 | |
| 			 struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = radix_tree_preload(GFP_NOFS);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
 | |
| 				(unsigned long)btrfs_root_id(root),
 | |
| 				root);
 | |
| 	if (ret == 0) {
 | |
| 		btrfs_grab_root(root);
 | |
| 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| 	struct btrfs_root *root;
 | |
| 
 | |
| 	while (!list_empty(&fs_info->allocated_roots)) {
 | |
| 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
 | |
| 
 | |
| 		root = list_first_entry(&fs_info->allocated_roots,
 | |
| 					struct btrfs_root, leak_list);
 | |
| 		btrfs_err(fs_info, "leaked root %s refcount %d",
 | |
| 			  btrfs_root_name(&root->root_key, buf),
 | |
| 			  refcount_read(&root->refs));
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		while (refcount_read(&root->refs) > 1)
 | |
| 			btrfs_put_root(root);
 | |
| 		btrfs_put_root(root);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void free_global_roots(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
 | |
| 		root = rb_entry(node, struct btrfs_root, rb_node);
 | |
| 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
 | |
| 		btrfs_put_root(root);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
 | |
| 
 | |
| 	percpu_counter_destroy(&fs_info->stats_read_blocks);
 | |
| 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
 | |
| 	percpu_counter_destroy(&fs_info->delalloc_bytes);
 | |
| 	percpu_counter_destroy(&fs_info->ordered_bytes);
 | |
| 	if (percpu_counter_initialized(em_counter))
 | |
| 		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
 | |
| 	percpu_counter_destroy(em_counter);
 | |
| 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
 | |
| 	btrfs_free_csum_hash(fs_info);
 | |
| 	btrfs_free_stripe_hash_table(fs_info);
 | |
| 	btrfs_free_ref_cache(fs_info);
 | |
| 	kfree(fs_info->balance_ctl);
 | |
| 	kfree(fs_info->delayed_root);
 | |
| 	free_global_roots(fs_info);
 | |
| 	btrfs_put_root(fs_info->tree_root);
 | |
| 	btrfs_put_root(fs_info->chunk_root);
 | |
| 	btrfs_put_root(fs_info->dev_root);
 | |
| 	btrfs_put_root(fs_info->quota_root);
 | |
| 	btrfs_put_root(fs_info->uuid_root);
 | |
| 	btrfs_put_root(fs_info->fs_root);
 | |
| 	btrfs_put_root(fs_info->data_reloc_root);
 | |
| 	btrfs_put_root(fs_info->block_group_root);
 | |
| 	btrfs_put_root(fs_info->stripe_root);
 | |
| 	btrfs_check_leaked_roots(fs_info);
 | |
| 	btrfs_extent_buffer_leak_debug_check(fs_info);
 | |
| 	kfree(fs_info->super_copy);
 | |
| 	kfree(fs_info->super_for_commit);
 | |
| 	kvfree(fs_info);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Get an in-memory reference of a root structure.
 | |
|  *
 | |
|  * For essential trees like root/extent tree, we grab it from fs_info directly.
 | |
|  * For subvolume trees, we check the cached filesystem roots first. If not
 | |
|  * found, then read it from disk and add it to cached fs roots.
 | |
|  *
 | |
|  * Caller should release the root by calling btrfs_put_root() after the usage.
 | |
|  *
 | |
|  * NOTE: Reloc and log trees can't be read by this function as they share the
 | |
|  *	 same root objectid.
 | |
|  *
 | |
|  * @objectid:	root id
 | |
|  * @anon_dev:	preallocated anonymous block device number for new roots,
 | |
|  *		pass NULL for a new allocation.
 | |
|  * @check_ref:	whether to check root item references, If true, return -ENOENT
 | |
|  *		for orphan roots
 | |
|  */
 | |
| static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
 | |
| 					     u64 objectid, dev_t *anon_dev,
 | |
| 					     bool check_ref)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	root = btrfs_get_global_root(fs_info, objectid);
 | |
| 	if (root)
 | |
| 		return root;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're called for non-subvolume trees, and above function didn't
 | |
| 	 * find one, do not try to read it from disk.
 | |
| 	 *
 | |
| 	 * This is namely for free-space-tree and quota tree, which can change
 | |
| 	 * at runtime and should only be grabbed from fs_info.
 | |
| 	 */
 | |
| 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| again:
 | |
| 	root = btrfs_lookup_fs_root(fs_info, objectid);
 | |
| 	if (root) {
 | |
| 		/*
 | |
| 		 * Some other caller may have read out the newly inserted
 | |
| 		 * subvolume already (for things like backref walk etc).  Not
 | |
| 		 * that common but still possible.  In that case, we just need
 | |
| 		 * to free the anon_dev.
 | |
| 		 */
 | |
| 		if (unlikely(anon_dev && *anon_dev)) {
 | |
| 			free_anon_bdev(*anon_dev);
 | |
| 			*anon_dev = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
 | |
| 			btrfs_put_root(root);
 | |
| 			return ERR_PTR(-ENOENT);
 | |
| 		}
 | |
| 		return root;
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
 | |
| 	if (IS_ERR(root))
 | |
| 		return root;
 | |
| 
 | |
| 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	key.objectid = BTRFS_ORPHAN_OBJECTID;
 | |
| 	key.type = BTRFS_ORPHAN_ITEM_KEY;
 | |
| 	key.offset = objectid;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
 | |
| 	btrfs_free_path(path);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 	if (ret == 0)
 | |
| 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
 | |
| 
 | |
| 	ret = btrfs_insert_fs_root(fs_info, root);
 | |
| 	if (ret) {
 | |
| 		if (ret == -EEXIST) {
 | |
| 			btrfs_put_root(root);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	return root;
 | |
| fail:
 | |
| 	/*
 | |
| 	 * If our caller provided us an anonymous device, then it's his
 | |
| 	 * responsibility to free it in case we fail. So we have to set our
 | |
| 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
 | |
| 	 * and once again by our caller.
 | |
| 	 */
 | |
| 	if (anon_dev && *anon_dev)
 | |
| 		root->anon_dev = 0;
 | |
| 	btrfs_put_root(root);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get in-memory reference of a root structure
 | |
|  *
 | |
|  * @objectid:	tree objectid
 | |
|  * @check_ref:	if set, verify that the tree exists and the item has at least
 | |
|  *		one reference
 | |
|  */
 | |
| struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
 | |
| 				     u64 objectid, bool check_ref)
 | |
| {
 | |
| 	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get in-memory reference of a root structure, created as new, optionally pass
 | |
|  * the anonymous block device id
 | |
|  *
 | |
|  * @objectid:	tree objectid
 | |
|  * @anon_dev:	if NULL, allocate a new anonymous block device or use the
 | |
|  *		parameter value if not NULL
 | |
|  */
 | |
| struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
 | |
| 					 u64 objectid, dev_t *anon_dev)
 | |
| {
 | |
| 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a root for the given objectid.
 | |
|  *
 | |
|  * @fs_info:	the fs_info
 | |
|  * @objectid:	the objectid we need to lookup
 | |
|  *
 | |
|  * This is exclusively used for backref walking, and exists specifically because
 | |
|  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
 | |
|  * creation time, which means we may have to read the tree_root in order to look
 | |
|  * up a fs root that is not in memory.  If the root is not in memory we will
 | |
|  * read the tree root commit root and look up the fs root from there.  This is a
 | |
|  * temporary root, it will not be inserted into the radix tree as it doesn't
 | |
|  * have the most uptodate information, it'll simply be discarded once the
 | |
|  * backref code is finished using the root.
 | |
|  */
 | |
| struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
 | |
| 						 struct btrfs_path *path,
 | |
| 						 u64 objectid)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	ASSERT(path->search_commit_root && path->skip_locking);
 | |
| 
 | |
| 	/*
 | |
| 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
 | |
| 	 * since this is called via the backref walking code we won't be looking
 | |
| 	 * up a root that doesn't exist, unless there's corruption.  So if root
 | |
| 	 * != NULL just return it.
 | |
| 	 */
 | |
| 	root = btrfs_get_global_root(fs_info, objectid);
 | |
| 	if (root)
 | |
| 		return root;
 | |
| 
 | |
| 	root = btrfs_lookup_fs_root(fs_info, objectid);
 | |
| 	if (root)
 | |
| 		return root;
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 	root = read_tree_root_path(fs_info->tree_root, path, &key);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| static int cleaner_kthread(void *arg)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = arg;
 | |
| 	int again;
 | |
| 
 | |
| 	while (1) {
 | |
| 		again = 0;
 | |
| 
 | |
| 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
 | |
| 
 | |
| 		/* Make the cleaner go to sleep early. */
 | |
| 		if (btrfs_need_cleaner_sleep(fs_info))
 | |
| 			goto sleep;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not do anything if we might cause open_ctree() to block
 | |
| 		 * before we have finished mounting the filesystem.
 | |
| 		 */
 | |
| 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
 | |
| 			goto sleep;
 | |
| 
 | |
| 		if (!mutex_trylock(&fs_info->cleaner_mutex))
 | |
| 			goto sleep;
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid the problem that we change the status of the fs
 | |
| 		 * during the above check and trylock.
 | |
| 		 */
 | |
| 		if (btrfs_need_cleaner_sleep(fs_info)) {
 | |
| 			mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 			goto sleep;
 | |
| 		}
 | |
| 
 | |
| 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
 | |
| 			btrfs_sysfs_feature_update(fs_info);
 | |
| 
 | |
| 		btrfs_run_delayed_iputs(fs_info);
 | |
| 
 | |
| 		again = btrfs_clean_one_deleted_snapshot(fs_info);
 | |
| 		mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 
 | |
| 		/*
 | |
| 		 * The defragger has dealt with the R/O remount and umount,
 | |
| 		 * needn't do anything special here.
 | |
| 		 */
 | |
| 		btrfs_run_defrag_inodes(fs_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
 | |
| 		 * with relocation (btrfs_relocate_chunk) and relocation
 | |
| 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
 | |
| 		 * after acquiring fs_info->reclaim_bgs_lock. So we
 | |
| 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
 | |
| 		 * unused block groups.
 | |
| 		 */
 | |
| 		btrfs_delete_unused_bgs(fs_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * Reclaim block groups in the reclaim_bgs list after we deleted
 | |
| 		 * all unused block_groups. This possibly gives us some more free
 | |
| 		 * space.
 | |
| 		 */
 | |
| 		btrfs_reclaim_bgs(fs_info);
 | |
| sleep:
 | |
| 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
 | |
| 		if (kthread_should_park())
 | |
| 			kthread_parkme();
 | |
| 		if (kthread_should_stop())
 | |
| 			return 0;
 | |
| 		if (!again) {
 | |
| 			set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			schedule();
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int transaction_kthread(void *arg)
 | |
| {
 | |
| 	struct btrfs_root *root = arg;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_transaction *cur;
 | |
| 	u64 transid;
 | |
| 	time64_t delta;
 | |
| 	unsigned long delay;
 | |
| 	bool cannot_commit;
 | |
| 
 | |
| 	do {
 | |
| 		cannot_commit = false;
 | |
| 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
 | |
| 		mutex_lock(&fs_info->transaction_kthread_mutex);
 | |
| 
 | |
| 		spin_lock(&fs_info->trans_lock);
 | |
| 		cur = fs_info->running_transaction;
 | |
| 		if (!cur) {
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			goto sleep;
 | |
| 		}
 | |
| 
 | |
| 		delta = ktime_get_seconds() - cur->start_time;
 | |
| 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
 | |
| 		    cur->state < TRANS_STATE_COMMIT_PREP &&
 | |
| 		    delta < fs_info->commit_interval) {
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			delay -= msecs_to_jiffies((delta - 1) * 1000);
 | |
| 			delay = min(delay,
 | |
| 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
 | |
| 			goto sleep;
 | |
| 		}
 | |
| 		transid = cur->transid;
 | |
| 		spin_unlock(&fs_info->trans_lock);
 | |
| 
 | |
| 		/* If the file system is aborted, this will always fail. */
 | |
| 		trans = btrfs_attach_transaction(root);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			if (PTR_ERR(trans) != -ENOENT)
 | |
| 				cannot_commit = true;
 | |
| 			goto sleep;
 | |
| 		}
 | |
| 		if (transid == trans->transid) {
 | |
| 			btrfs_commit_transaction(trans);
 | |
| 		} else {
 | |
| 			btrfs_end_transaction(trans);
 | |
| 		}
 | |
| sleep:
 | |
| 		wake_up_process(fs_info->cleaner_kthread);
 | |
| 		mutex_unlock(&fs_info->transaction_kthread_mutex);
 | |
| 
 | |
| 		if (BTRFS_FS_ERROR(fs_info))
 | |
| 			btrfs_cleanup_transaction(fs_info);
 | |
| 		if (!kthread_should_stop() &&
 | |
| 				(!btrfs_transaction_blocked(fs_info) ||
 | |
| 				 cannot_commit))
 | |
| 			schedule_timeout_interruptible(delay);
 | |
| 	} while (!kthread_should_stop());
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This will find the highest generation in the array of root backups.  The
 | |
|  * index of the highest array is returned, or -EINVAL if we can't find
 | |
|  * anything.
 | |
|  *
 | |
|  * We check to make sure the array is valid by comparing the
 | |
|  * generation of the latest  root in the array with the generation
 | |
|  * in the super block.  If they don't match we pitch it.
 | |
|  */
 | |
| static int find_newest_super_backup(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
 | |
| 	u64 cur;
 | |
| 	struct btrfs_root_backup *root_backup;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
 | |
| 		root_backup = info->super_copy->super_roots + i;
 | |
| 		cur = btrfs_backup_tree_root_gen(root_backup);
 | |
| 		if (cur == newest_gen)
 | |
| 			return i;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * copy all the root pointers into the super backup array.
 | |
|  * this will bump the backup pointer by one when it is
 | |
|  * done
 | |
|  */
 | |
| static void backup_super_roots(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	const int next_backup = info->backup_root_index;
 | |
| 	struct btrfs_root_backup *root_backup;
 | |
| 
 | |
| 	root_backup = info->super_for_commit->super_roots + next_backup;
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure all of our padding and empty slots get zero filled
 | |
| 	 * regardless of which ones we use today
 | |
| 	 */
 | |
| 	memset(root_backup, 0, sizeof(*root_backup));
 | |
| 
 | |
| 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
 | |
| 
 | |
| 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
 | |
| 	btrfs_set_backup_tree_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->tree_root->node));
 | |
| 
 | |
| 	btrfs_set_backup_tree_root_level(root_backup,
 | |
| 			       btrfs_header_level(info->tree_root->node));
 | |
| 
 | |
| 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
 | |
| 	btrfs_set_backup_chunk_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->chunk_root->node));
 | |
| 	btrfs_set_backup_chunk_root_level(root_backup,
 | |
| 			       btrfs_header_level(info->chunk_root->node));
 | |
| 
 | |
| 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
 | |
| 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
 | |
| 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
 | |
| 
 | |
| 		btrfs_set_backup_extent_root(root_backup,
 | |
| 					     extent_root->node->start);
 | |
| 		btrfs_set_backup_extent_root_gen(root_backup,
 | |
| 				btrfs_header_generation(extent_root->node));
 | |
| 		btrfs_set_backup_extent_root_level(root_backup,
 | |
| 					btrfs_header_level(extent_root->node));
 | |
| 
 | |
| 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
 | |
| 		btrfs_set_backup_csum_root_gen(root_backup,
 | |
| 					       btrfs_header_generation(csum_root->node));
 | |
| 		btrfs_set_backup_csum_root_level(root_backup,
 | |
| 						 btrfs_header_level(csum_root->node));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we might commit during log recovery, which happens before we set
 | |
| 	 * the fs_root.  Make sure it is valid before we fill it in.
 | |
| 	 */
 | |
| 	if (info->fs_root && info->fs_root->node) {
 | |
| 		btrfs_set_backup_fs_root(root_backup,
 | |
| 					 info->fs_root->node->start);
 | |
| 		btrfs_set_backup_fs_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->fs_root->node));
 | |
| 		btrfs_set_backup_fs_root_level(root_backup,
 | |
| 			       btrfs_header_level(info->fs_root->node));
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
 | |
| 	btrfs_set_backup_dev_root_gen(root_backup,
 | |
| 			       btrfs_header_generation(info->dev_root->node));
 | |
| 	btrfs_set_backup_dev_root_level(root_backup,
 | |
| 				       btrfs_header_level(info->dev_root->node));
 | |
| 
 | |
| 	btrfs_set_backup_total_bytes(root_backup,
 | |
| 			     btrfs_super_total_bytes(info->super_copy));
 | |
| 	btrfs_set_backup_bytes_used(root_backup,
 | |
| 			     btrfs_super_bytes_used(info->super_copy));
 | |
| 	btrfs_set_backup_num_devices(root_backup,
 | |
| 			     btrfs_super_num_devices(info->super_copy));
 | |
| 
 | |
| 	/*
 | |
| 	 * if we don't copy this out to the super_copy, it won't get remembered
 | |
| 	 * for the next commit
 | |
| 	 */
 | |
| 	memcpy(&info->super_copy->super_roots,
 | |
| 	       &info->super_for_commit->super_roots,
 | |
| 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
 | |
|  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 | |
|  *
 | |
|  * @fs_info:  filesystem whose backup roots need to be read
 | |
|  * @priority: priority of backup root required
 | |
|  *
 | |
|  * Returns backup root index on success and -EINVAL otherwise.
 | |
|  */
 | |
| static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 | |
| {
 | |
| 	int backup_index = find_newest_super_backup(fs_info);
 | |
| 	struct btrfs_super_block *super = fs_info->super_copy;
 | |
| 	struct btrfs_root_backup *root_backup;
 | |
| 
 | |
| 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
 | |
| 		if (priority == 0)
 | |
| 			return backup_index;
 | |
| 
 | |
| 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
 | |
| 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 | |
| 	} else {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	root_backup = super->super_roots + backup_index;
 | |
| 
 | |
| 	btrfs_set_super_generation(super,
 | |
| 				   btrfs_backup_tree_root_gen(root_backup));
 | |
| 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
 | |
| 	btrfs_set_super_root_level(super,
 | |
| 				   btrfs_backup_tree_root_level(root_backup));
 | |
| 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
 | |
| 
 | |
| 	/*
 | |
| 	 * Fixme: the total bytes and num_devices need to match or we should
 | |
| 	 * need a fsck
 | |
| 	 */
 | |
| 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
 | |
| 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
 | |
| 
 | |
| 	return backup_index;
 | |
| }
 | |
| 
 | |
| /* helper to cleanup workers */
 | |
| static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	btrfs_destroy_workqueue(fs_info->fixup_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->workers);
 | |
| 	if (fs_info->endio_workers)
 | |
| 		destroy_workqueue(fs_info->endio_workers);
 | |
| 	if (fs_info->rmw_workers)
 | |
| 		destroy_workqueue(fs_info->rmw_workers);
 | |
| 	if (fs_info->compressed_write_workers)
 | |
| 		destroy_workqueue(fs_info->compressed_write_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 | |
| 	btrfs_destroy_workqueue(fs_info->delayed_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->caching_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->flush_workers);
 | |
| 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
 | |
| 	if (fs_info->discard_ctl.discard_workers)
 | |
| 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
 | |
| 	/*
 | |
| 	 * Now that all other work queues are destroyed, we can safely destroy
 | |
| 	 * the queues used for metadata I/O, since tasks from those other work
 | |
| 	 * queues can do metadata I/O operations.
 | |
| 	 */
 | |
| 	if (fs_info->endio_meta_workers)
 | |
| 		destroy_workqueue(fs_info->endio_meta_workers);
 | |
| }
 | |
| 
 | |
| static void free_root_extent_buffers(struct btrfs_root *root)
 | |
| {
 | |
| 	if (root) {
 | |
| 		free_extent_buffer(root->node);
 | |
| 		free_extent_buffer(root->commit_root);
 | |
| 		root->node = NULL;
 | |
| 		root->commit_root = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root, *tmp;
 | |
| 
 | |
| 	rbtree_postorder_for_each_entry_safe(root, tmp,
 | |
| 					     &fs_info->global_root_tree,
 | |
| 					     rb_node)
 | |
| 		free_root_extent_buffers(root);
 | |
| }
 | |
| 
 | |
| /* helper to cleanup tree roots */
 | |
| static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
 | |
| {
 | |
| 	free_root_extent_buffers(info->tree_root);
 | |
| 
 | |
| 	free_global_root_pointers(info);
 | |
| 	free_root_extent_buffers(info->dev_root);
 | |
| 	free_root_extent_buffers(info->quota_root);
 | |
| 	free_root_extent_buffers(info->uuid_root);
 | |
| 	free_root_extent_buffers(info->fs_root);
 | |
| 	free_root_extent_buffers(info->data_reloc_root);
 | |
| 	free_root_extent_buffers(info->block_group_root);
 | |
| 	free_root_extent_buffers(info->stripe_root);
 | |
| 	if (free_chunk_root)
 | |
| 		free_root_extent_buffers(info->chunk_root);
 | |
| }
 | |
| 
 | |
| void btrfs_put_root(struct btrfs_root *root)
 | |
| {
 | |
| 	if (!root)
 | |
| 		return;
 | |
| 
 | |
| 	if (refcount_dec_and_test(&root->refs)) {
 | |
| 		if (WARN_ON(!xa_empty(&root->inodes)))
 | |
| 			xa_destroy(&root->inodes);
 | |
| 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
 | |
| 		if (root->anon_dev)
 | |
| 			free_anon_bdev(root->anon_dev);
 | |
| 		free_root_extent_buffers(root);
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| 		spin_lock(&root->fs_info->fs_roots_radix_lock);
 | |
| 		list_del_init(&root->leak_list);
 | |
| 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
 | |
| #endif
 | |
| 		kfree(root);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_root *gang[8];
 | |
| 	int i;
 | |
| 
 | |
| 	while (!list_empty(&fs_info->dead_roots)) {
 | |
| 		gang[0] = list_entry(fs_info->dead_roots.next,
 | |
| 				     struct btrfs_root, root_list);
 | |
| 		list_del(&gang[0]->root_list);
 | |
| 
 | |
| 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
 | |
| 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
 | |
| 		btrfs_put_root(gang[0]);
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
 | |
| 					     (void **)gang, 0,
 | |
| 					     ARRAY_SIZE(gang));
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 		for (i = 0; i < ret; i++)
 | |
| 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_init(&fs_info->scrub_lock);
 | |
| 	atomic_set(&fs_info->scrubs_running, 0);
 | |
| 	atomic_set(&fs_info->scrub_pause_req, 0);
 | |
| 	atomic_set(&fs_info->scrubs_paused, 0);
 | |
| 	atomic_set(&fs_info->scrub_cancel_req, 0);
 | |
| 	init_waitqueue_head(&fs_info->scrub_pause_wait);
 | |
| 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
 | |
| }
 | |
| 
 | |
| static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	spin_lock_init(&fs_info->balance_lock);
 | |
| 	mutex_init(&fs_info->balance_mutex);
 | |
| 	atomic_set(&fs_info->balance_pause_req, 0);
 | |
| 	atomic_set(&fs_info->balance_cancel_req, 0);
 | |
| 	fs_info->balance_ctl = NULL;
 | |
| 	init_waitqueue_head(&fs_info->balance_wait_q);
 | |
| 	atomic_set(&fs_info->reloc_cancel_req, 0);
 | |
| }
 | |
| 
 | |
| static int btrfs_init_btree_inode(struct super_block *sb)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 | |
| 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
 | |
| 					      fs_info->tree_root);
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = new_inode(sb);
 | |
| 	if (!inode)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
 | |
| 	set_nlink(inode, 1);
 | |
| 	/*
 | |
| 	 * we set the i_size on the btree inode to the max possible int.
 | |
| 	 * the real end of the address space is determined by all of
 | |
| 	 * the devices in the system
 | |
| 	 */
 | |
| 	inode->i_size = OFFSET_MAX;
 | |
| 	inode->i_mapping->a_ops = &btree_aops;
 | |
| 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
 | |
| 
 | |
| 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
 | |
| 			    IO_TREE_BTREE_INODE_IO);
 | |
| 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
 | |
| 
 | |
| 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
 | |
| 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
 | |
| 	__insert_inode_hash(inode, hash);
 | |
| 	fs_info->btree_inode = inode;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
 | |
| 	init_rwsem(&fs_info->dev_replace.rwsem);
 | |
| 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
 | |
| }
 | |
| 
 | |
| static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	spin_lock_init(&fs_info->qgroup_lock);
 | |
| 	mutex_init(&fs_info->qgroup_ioctl_lock);
 | |
| 	fs_info->qgroup_tree = RB_ROOT;
 | |
| 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
 | |
| 	fs_info->qgroup_seq = 1;
 | |
| 	fs_info->qgroup_ulist = NULL;
 | |
| 	fs_info->qgroup_rescan_running = false;
 | |
| 	fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
 | |
| 	mutex_init(&fs_info->qgroup_rescan_lock);
 | |
| }
 | |
| 
 | |
| static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	u32 max_active = fs_info->thread_pool_size;
 | |
| 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
 | |
| 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
 | |
| 
 | |
| 	fs_info->workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
 | |
| 
 | |
| 	fs_info->delalloc_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "delalloc",
 | |
| 				      flags, max_active, 2);
 | |
| 
 | |
| 	fs_info->flush_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
 | |
| 				      flags, max_active, 0);
 | |
| 
 | |
| 	fs_info->caching_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
 | |
| 
 | |
| 	fs_info->fixup_workers =
 | |
| 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
 | |
| 
 | |
| 	fs_info->endio_workers =
 | |
| 		alloc_workqueue("btrfs-endio", flags, max_active);
 | |
| 	fs_info->endio_meta_workers =
 | |
| 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
 | |
| 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
 | |
| 	fs_info->endio_write_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
 | |
| 				      max_active, 2);
 | |
| 	fs_info->compressed_write_workers =
 | |
| 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
 | |
| 	fs_info->endio_freespace_worker =
 | |
| 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
 | |
| 				      max_active, 0);
 | |
| 	fs_info->delayed_workers =
 | |
| 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
 | |
| 				      max_active, 0);
 | |
| 	fs_info->qgroup_rescan_workers =
 | |
| 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
 | |
| 					      ordered_flags);
 | |
| 	fs_info->discard_ctl.discard_workers =
 | |
| 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
 | |
| 
 | |
| 	if (!(fs_info->workers &&
 | |
| 	      fs_info->delalloc_workers && fs_info->flush_workers &&
 | |
| 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
 | |
| 	      fs_info->compressed_write_workers &&
 | |
| 	      fs_info->endio_write_workers &&
 | |
| 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
 | |
| 	      fs_info->caching_workers && fs_info->fixup_workers &&
 | |
| 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
 | |
| 	      fs_info->discard_ctl.discard_workers)) {
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
 | |
| {
 | |
| 	struct crypto_shash *csum_shash;
 | |
| 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
 | |
| 
 | |
| 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
 | |
| 
 | |
| 	if (IS_ERR(csum_shash)) {
 | |
| 		btrfs_err(fs_info, "error allocating %s hash for checksum",
 | |
| 			  csum_driver);
 | |
| 		return PTR_ERR(csum_shash);
 | |
| 	}
 | |
| 
 | |
| 	fs_info->csum_shash = csum_shash;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the checksum implementation is a fast accelerated one.
 | |
| 	 * As-is this is a bit of a hack and should be replaced once the csum
 | |
| 	 * implementations provide that information themselves.
 | |
| 	 */
 | |
| 	switch (csum_type) {
 | |
| 	case BTRFS_CSUM_TYPE_CRC32:
 | |
| 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
 | |
| 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
 | |
| 		break;
 | |
| 	case BTRFS_CSUM_TYPE_XXHASH:
 | |
| 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
 | |
| 			btrfs_super_csum_name(csum_type),
 | |
| 			crypto_shash_driver_name(csum_shash));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
 | |
| 			    struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_tree_parent_check check = { 0 };
 | |
| 	struct btrfs_root *log_tree_root;
 | |
| 	struct btrfs_super_block *disk_super = fs_info->super_copy;
 | |
| 	u64 bytenr = btrfs_super_log_root(disk_super);
 | |
| 	int level = btrfs_super_log_root_level(disk_super);
 | |
| 
 | |
| 	if (fs_devices->rw_devices == 0) {
 | |
| 		btrfs_warn(fs_info, "log replay required on RO media");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
 | |
| 					 GFP_KERNEL);
 | |
| 	if (!log_tree_root)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	check.level = level;
 | |
| 	check.transid = fs_info->generation + 1;
 | |
| 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
 | |
| 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
 | |
| 	if (IS_ERR(log_tree_root->node)) {
 | |
| 		btrfs_warn(fs_info, "failed to read log tree");
 | |
| 		ret = PTR_ERR(log_tree_root->node);
 | |
| 		log_tree_root->node = NULL;
 | |
| 		btrfs_put_root(log_tree_root);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	if (!extent_buffer_uptodate(log_tree_root->node)) {
 | |
| 		btrfs_err(fs_info, "failed to read log tree");
 | |
| 		btrfs_put_root(log_tree_root);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* returns with log_tree_root freed on success */
 | |
| 	ret = btrfs_recover_log_trees(log_tree_root);
 | |
| 	if (ret) {
 | |
| 		btrfs_handle_fs_error(fs_info, ret,
 | |
| 				      "Failed to recover log tree");
 | |
| 		btrfs_put_root(log_tree_root);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (sb_rdonly(fs_info->sb)) {
 | |
| 		ret = btrfs_commit_super(fs_info);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int load_global_roots_objectid(struct btrfs_root *tree_root,
 | |
| 				      struct btrfs_path *path, u64 objectid,
 | |
| 				      const char *name)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 | |
| 	struct btrfs_root *root;
 | |
| 	u64 max_global_id = 0;
 | |
| 	int ret;
 | |
| 	struct btrfs_key key = {
 | |
| 		.objectid = objectid,
 | |
| 		.type = BTRFS_ROOT_ITEM_KEY,
 | |
| 		.offset = 0,
 | |
| 	};
 | |
| 	bool found = false;
 | |
| 
 | |
| 	/* If we have IGNOREDATACSUMS skip loading these roots. */
 | |
| 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
 | |
| 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
 | |
| 		set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 | |
| 			ret = btrfs_next_leaf(tree_root, path);
 | |
| 			if (ret) {
 | |
| 				if (ret > 0)
 | |
| 					ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		ret = 0;
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 		if (key.objectid != objectid)
 | |
| 			break;
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		/*
 | |
| 		 * Just worry about this for extent tree, it'll be the same for
 | |
| 		 * everybody.
 | |
| 		 */
 | |
| 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
 | |
| 			max_global_id = max(max_global_id, key.offset);
 | |
| 
 | |
| 		found = true;
 | |
| 		root = read_tree_root_path(tree_root, path, &key);
 | |
| 		if (IS_ERR(root)) {
 | |
| 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
 | |
| 				ret = PTR_ERR(root);
 | |
| 			break;
 | |
| 		}
 | |
| 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 		ret = btrfs_global_root_insert(root);
 | |
| 		if (ret) {
 | |
| 			btrfs_put_root(root);
 | |
| 			break;
 | |
| 		}
 | |
| 		key.offset++;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
 | |
| 		fs_info->nr_global_roots = max_global_id + 1;
 | |
| 
 | |
| 	if (!found || ret) {
 | |
| 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
 | |
| 			set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
 | |
| 
 | |
| 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
 | |
| 			ret = ret ? ret : -ENOENT;
 | |
| 		else
 | |
| 			ret = 0;
 | |
| 		btrfs_err(fs_info, "failed to load root %s", name);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int load_global_roots(struct btrfs_root *tree_root)
 | |
| {
 | |
| 	BTRFS_PATH_AUTO_FREE(path);
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = load_global_roots_objectid(tree_root, path,
 | |
| 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	ret = load_global_roots_objectid(tree_root, path,
 | |
| 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
 | |
| 		return ret;
 | |
| 	ret = load_global_roots_objectid(tree_root, path,
 | |
| 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
 | |
| 					 "free space");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *tree_root = fs_info->tree_root;
 | |
| 	struct btrfs_root *root;
 | |
| 	struct btrfs_key location;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(fs_info->tree_root);
 | |
| 
 | |
| 	ret = load_global_roots(tree_root);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	location.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	location.offset = 0;
 | |
| 
 | |
| 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
 | |
| 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
 | |
| 		root = btrfs_read_tree_root(tree_root, &location);
 | |
| 		if (IS_ERR(root)) {
 | |
| 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
 | |
| 				ret = PTR_ERR(root);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} else {
 | |
| 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 			fs_info->block_group_root = root;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
 | |
| 	root = btrfs_read_tree_root(tree_root, &location);
 | |
| 	if (IS_ERR(root)) {
 | |
| 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
 | |
| 			ret = PTR_ERR(root);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 		fs_info->dev_root = root;
 | |
| 	}
 | |
| 	/* Initialize fs_info for all devices in any case */
 | |
| 	ret = btrfs_init_devices_late(fs_info);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * This tree can share blocks with some other fs tree during relocation
 | |
| 	 * and we need a proper setup by btrfs_get_fs_root
 | |
| 	 */
 | |
| 	root = btrfs_get_fs_root(tree_root->fs_info,
 | |
| 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
 | |
| 	if (IS_ERR(root)) {
 | |
| 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
 | |
| 			ret = PTR_ERR(root);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 		fs_info->data_reloc_root = root;
 | |
| 	}
 | |
| 
 | |
| 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
 | |
| 	root = btrfs_read_tree_root(tree_root, &location);
 | |
| 	if (!IS_ERR(root)) {
 | |
| 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 		fs_info->quota_root = root;
 | |
| 	}
 | |
| 
 | |
| 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
 | |
| 	root = btrfs_read_tree_root(tree_root, &location);
 | |
| 	if (IS_ERR(root)) {
 | |
| 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
 | |
| 			ret = PTR_ERR(root);
 | |
| 			if (ret != -ENOENT)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 		fs_info->uuid_root = root;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
 | |
| 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
 | |
| 		root = btrfs_read_tree_root(tree_root, &location);
 | |
| 		if (IS_ERR(root)) {
 | |
| 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
 | |
| 				ret = PTR_ERR(root);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} else {
 | |
| 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 | |
| 			fs_info->stripe_root = root;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| out:
 | |
| 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
 | |
| 		   location.objectid, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
 | |
| 				    const struct btrfs_super_block *sb)
 | |
| {
 | |
| 	unsigned int cur = 0; /* Offset inside the sys chunk array */
 | |
| 	/*
 | |
| 	 * At sb read time, fs_info is not fully initialized. Thus we have
 | |
| 	 * to use super block sectorsize, which should have been validated.
 | |
| 	 */
 | |
| 	const u32 sectorsize = btrfs_super_sectorsize(sb);
 | |
| 	u32 sys_array_size = btrfs_super_sys_array_size(sb);
 | |
| 
 | |
| 	if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
 | |
| 		btrfs_err(fs_info, "system chunk array too big %u > %u",
 | |
| 			  sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	while (cur < sys_array_size) {
 | |
| 		struct btrfs_disk_key *disk_key;
 | |
| 		struct btrfs_chunk *chunk;
 | |
| 		struct btrfs_key key;
 | |
| 		u64 type;
 | |
| 		u16 num_stripes;
 | |
| 		u32 len;
 | |
| 		int ret;
 | |
| 
 | |
| 		disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
 | |
| 		len = sizeof(*disk_key);
 | |
| 
 | |
| 		if (cur + len > sys_array_size)
 | |
| 			goto short_read;
 | |
| 		cur += len;
 | |
| 
 | |
| 		btrfs_disk_key_to_cpu(&key, disk_key);
 | |
| 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			    "unexpected item type %u in sys_array at offset %u",
 | |
| 				  key.type, cur);
 | |
| 			return -EUCLEAN;
 | |
| 		}
 | |
| 		chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
 | |
| 		num_stripes = btrfs_stack_chunk_num_stripes(chunk);
 | |
| 		if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)
 | |
| 			goto short_read;
 | |
| 		type = btrfs_stack_chunk_type(chunk);
 | |
| 		if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			"invalid chunk type %llu in sys_array at offset %u",
 | |
| 				  type, cur);
 | |
| 			return -EUCLEAN;
 | |
| 		}
 | |
| 		ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
 | |
| 					      sectorsize);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		cur += btrfs_chunk_item_size(num_stripes);
 | |
| 	}
 | |
| 	return 0;
 | |
| short_read:
 | |
| 	btrfs_err(fs_info,
 | |
| 	"super block sys chunk array short read, cur=%u sys_array_size=%u",
 | |
| 		  cur, sys_array_size);
 | |
| 	return -EUCLEAN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Real super block validation
 | |
|  * NOTE: super csum type and incompat features will not be checked here.
 | |
|  *
 | |
|  * @sb:		super block to check
 | |
|  * @mirror_num:	the super block number to check its bytenr:
 | |
|  * 		0	the primary (1st) sb
 | |
|  * 		1, 2	2nd and 3rd backup copy
 | |
|  * 	       -1	skip bytenr check
 | |
|  */
 | |
| int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
 | |
| 			 const struct btrfs_super_block *sb, int mirror_num)
 | |
| {
 | |
| 	u64 nodesize = btrfs_super_nodesize(sb);
 | |
| 	u64 sectorsize = btrfs_super_sectorsize(sb);
 | |
| 	int ret = 0;
 | |
| 	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
 | |
| 
 | |
| 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
 | |
| 		btrfs_err(fs_info, "no valid FS found");
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
 | |
| 		if (!ignore_flags) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			"unrecognized or unsupported super flag 0x%llx",
 | |
| 				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
 | |
| 			ret = -EINVAL;
 | |
| 		} else {
 | |
| 			btrfs_info(fs_info,
 | |
| 			"unrecognized or unsupported super flags: 0x%llx, ignored",
 | |
| 				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
 | |
| 		}
 | |
| 	}
 | |
| 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
 | |
| 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
 | |
| 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
 | |
| 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
 | |
| 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
 | |
| 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
 | |
| 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check sectorsize and nodesize first, other check will need it.
 | |
| 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
 | |
| 	 */
 | |
| 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
 | |
| 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
 | |
| 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
 | |
| 	 *
 | |
| 	 * We can support 16K sectorsize with 64K page size without problem,
 | |
| 	 * but such sectorsize/pagesize combination doesn't make much sense.
 | |
| 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
 | |
| 	 * beginning.
 | |
| 	 */
 | |
| 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			"sectorsize %llu not yet supported for page size %lu",
 | |
| 			sectorsize, PAGE_SIZE);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
 | |
| 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
 | |
| 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
 | |
| 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
 | |
| 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Root alignment check */
 | |
| 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
 | |
| 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
 | |
| 			   btrfs_super_root(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
 | |
| 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
 | |
| 			   btrfs_super_chunk_root(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
 | |
| 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
 | |
| 			   btrfs_super_log_root(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!fs_info->fs_devices->temp_fsid &&
 | |
| 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
 | |
| 		btrfs_err(fs_info,
 | |
| 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
 | |
| 			  sb->fsid, fs_info->fs_devices->fsid);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
 | |
| 		   BTRFS_FSID_SIZE) != 0) {
 | |
| 		btrfs_err(fs_info,
 | |
| "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
 | |
| 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
 | |
| 		   BTRFS_FSID_SIZE) != 0) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			"dev_item UUID does not match metadata fsid: %pU != %pU",
 | |
| 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Artificial requirement for block-group-tree to force newer features
 | |
| 	 * (free-space-tree, no-holes) so the test matrix is smaller.
 | |
| 	 */
 | |
| 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
 | |
| 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
 | |
| 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
 | |
| 		btrfs_err(fs_info,
 | |
| 		"block-group-tree feature requires free-space-tree and no-holes");
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
 | |
| 	 * done later
 | |
| 	 */
 | |
| 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
 | |
| 		btrfs_err(fs_info, "bytes_used is too small %llu",
 | |
| 			  btrfs_super_bytes_used(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
 | |
| 		btrfs_err(fs_info, "invalid stripesize %u",
 | |
| 			  btrfs_super_stripesize(sb));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (btrfs_super_num_devices(sb) > (1UL << 31))
 | |
| 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
 | |
| 			   btrfs_super_num_devices(sb));
 | |
| 	if (btrfs_super_num_devices(sb) == 0) {
 | |
| 		btrfs_err(fs_info, "number of devices is 0");
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (mirror_num >= 0 &&
 | |
| 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
 | |
| 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
 | |
| 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = validate_sys_chunk_array(fs_info, sb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
 | |
| 	 * and one chunk
 | |
| 	 */
 | |
| 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
 | |
| 		btrfs_err(fs_info, "system chunk array too big %u > %u",
 | |
| 			  btrfs_super_sys_array_size(sb),
 | |
| 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
 | |
| 			+ sizeof(struct btrfs_chunk)) {
 | |
| 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
 | |
| 			  btrfs_super_sys_array_size(sb),
 | |
| 			  sizeof(struct btrfs_disk_key)
 | |
| 			  + sizeof(struct btrfs_chunk));
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The generation is a global counter, we'll trust it more than the others
 | |
| 	 * but it's still possible that it's the one that's wrong.
 | |
| 	 */
 | |
| 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
 | |
| 		btrfs_warn(fs_info,
 | |
| 			"suspicious: generation < chunk_root_generation: %llu < %llu",
 | |
| 			btrfs_super_generation(sb),
 | |
| 			btrfs_super_chunk_root_generation(sb));
 | |
| 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
 | |
| 	    && btrfs_super_cache_generation(sb) != (u64)-1)
 | |
| 		btrfs_warn(fs_info,
 | |
| 			"suspicious: generation < cache_generation: %llu < %llu",
 | |
| 			btrfs_super_generation(sb),
 | |
| 			btrfs_super_cache_generation(sb));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validation of super block at mount time.
 | |
|  * Some checks already done early at mount time, like csum type and incompat
 | |
|  * flags will be skipped.
 | |
|  */
 | |
| static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validation of super block at write time.
 | |
|  * Some checks like bytenr check will be skipped as their values will be
 | |
|  * overwritten soon.
 | |
|  * Extra checks like csum type and incompat flags will be done here.
 | |
|  */
 | |
| static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
 | |
| 				      struct btrfs_super_block *sb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_validate_super(fs_info, sb, -1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
 | |
| 		ret = -EUCLEAN;
 | |
| 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
 | |
| 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
 | |
| 		ret = -EUCLEAN;
 | |
| 		btrfs_err(fs_info,
 | |
| 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
 | |
| 			  btrfs_super_incompat_flags(sb),
 | |
| 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
 | |
| 		goto out;
 | |
| 	}
 | |
| out:
 | |
| 	if (ret < 0)
 | |
| 		btrfs_err(fs_info,
 | |
| 		"super block corruption detected before writing it to disk");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
 | |
| {
 | |
| 	struct btrfs_tree_parent_check check = {
 | |
| 		.level = level,
 | |
| 		.transid = gen,
 | |
| 		.owner_root = btrfs_root_id(root)
 | |
| 	};
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	root->node = read_tree_block(root->fs_info, bytenr, &check);
 | |
| 	if (IS_ERR(root->node)) {
 | |
| 		ret = PTR_ERR(root->node);
 | |
| 		root->node = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 	if (!extent_buffer_uptodate(root->node)) {
 | |
| 		free_extent_buffer(root->node);
 | |
| 		root->node = NULL;
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_root_node(&root->root_item, root->node);
 | |
| 	root->commit_root = btrfs_root_node(root);
 | |
| 	btrfs_set_root_refs(&root->root_item, 1);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int load_important_roots(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_super_block *sb = fs_info->super_copy;
 | |
| 	u64 gen, bytenr;
 | |
| 	int level, ret;
 | |
| 
 | |
| 	bytenr = btrfs_super_root(sb);
 | |
| 	gen = btrfs_super_generation(sb);
 | |
| 	level = btrfs_super_root_level(sb);
 | |
| 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
 | |
| 	if (ret) {
 | |
| 		btrfs_warn(fs_info, "couldn't read tree root");
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	int backup_index = find_newest_super_backup(fs_info);
 | |
| 	struct btrfs_super_block *sb = fs_info->super_copy;
 | |
| 	struct btrfs_root *tree_root = fs_info->tree_root;
 | |
| 	bool handle_error = false;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
 | |
| 		if (handle_error) {
 | |
| 			if (!IS_ERR(tree_root->node))
 | |
| 				free_extent_buffer(tree_root->node);
 | |
| 			tree_root->node = NULL;
 | |
| 
 | |
| 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
 | |
| 				break;
 | |
| 
 | |
| 			free_root_pointers(fs_info, 0);
 | |
| 
 | |
| 			/*
 | |
| 			 * Don't use the log in recovery mode, it won't be
 | |
| 			 * valid
 | |
| 			 */
 | |
| 			btrfs_set_super_log_root(sb, 0);
 | |
| 
 | |
| 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
 | |
| 			ret = read_backup_root(fs_info, i);
 | |
| 			backup_index = ret;
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		ret = load_important_roots(fs_info);
 | |
| 		if (ret) {
 | |
| 			handle_error = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to hold btrfs_root::objectid_mutex since the fs
 | |
| 		 * hasn't been fully initialised and we are the only user
 | |
| 		 */
 | |
| 		ret = btrfs_init_root_free_objectid(tree_root);
 | |
| 		if (ret < 0) {
 | |
| 			handle_error = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
 | |
| 
 | |
| 		ret = btrfs_read_roots(fs_info);
 | |
| 		if (ret < 0) {
 | |
| 			handle_error = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* All successful */
 | |
| 		fs_info->generation = btrfs_header_generation(tree_root->node);
 | |
| 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
 | |
| 		fs_info->last_reloc_trans = 0;
 | |
| 
 | |
| 		/* Always begin writing backup roots after the one being used */
 | |
| 		if (backup_index < 0) {
 | |
| 			fs_info->backup_root_index = 0;
 | |
| 		} else {
 | |
| 			fs_info->backup_root_index = backup_index + 1;
 | |
| 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
 | |
| 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
 | |
| 	INIT_LIST_HEAD(&fs_info->trans_list);
 | |
| 	INIT_LIST_HEAD(&fs_info->dead_roots);
 | |
| 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
 | |
| 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
 | |
| 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
 | |
| 	spin_lock_init(&fs_info->delalloc_root_lock);
 | |
| 	spin_lock_init(&fs_info->trans_lock);
 | |
| 	spin_lock_init(&fs_info->fs_roots_radix_lock);
 | |
| 	spin_lock_init(&fs_info->delayed_iput_lock);
 | |
| 	spin_lock_init(&fs_info->defrag_inodes_lock);
 | |
| 	spin_lock_init(&fs_info->super_lock);
 | |
| 	spin_lock_init(&fs_info->buffer_lock);
 | |
| 	spin_lock_init(&fs_info->unused_bgs_lock);
 | |
| 	spin_lock_init(&fs_info->treelog_bg_lock);
 | |
| 	spin_lock_init(&fs_info->zone_active_bgs_lock);
 | |
| 	spin_lock_init(&fs_info->relocation_bg_lock);
 | |
| 	rwlock_init(&fs_info->tree_mod_log_lock);
 | |
| 	rwlock_init(&fs_info->global_root_lock);
 | |
| 	mutex_init(&fs_info->unused_bg_unpin_mutex);
 | |
| 	mutex_init(&fs_info->reclaim_bgs_lock);
 | |
| 	mutex_init(&fs_info->reloc_mutex);
 | |
| 	mutex_init(&fs_info->delalloc_root_mutex);
 | |
| 	mutex_init(&fs_info->zoned_meta_io_lock);
 | |
| 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
 | |
| 	seqlock_init(&fs_info->profiles_lock);
 | |
| 
 | |
| 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
 | |
| 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
 | |
| 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
 | |
| 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
 | |
| 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
 | |
| 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
 | |
| 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
 | |
| 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
 | |
| 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
 | |
| 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
 | |
| 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
 | |
| 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
 | |
| 	INIT_LIST_HEAD(&fs_info->space_info);
 | |
| 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
 | |
| 	INIT_LIST_HEAD(&fs_info->unused_bgs);
 | |
| 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
 | |
| 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| 	INIT_LIST_HEAD(&fs_info->allocated_roots);
 | |
| 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
 | |
| 	spin_lock_init(&fs_info->eb_leak_lock);
 | |
| #endif
 | |
| 	fs_info->mapping_tree = RB_ROOT_CACHED;
 | |
| 	rwlock_init(&fs_info->mapping_tree_lock);
 | |
| 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
 | |
| 			     BTRFS_BLOCK_RSV_GLOBAL);
 | |
| 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
 | |
| 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
 | |
| 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
 | |
| 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
 | |
| 			     BTRFS_BLOCK_RSV_DELOPS);
 | |
| 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
 | |
| 			     BTRFS_BLOCK_RSV_DELREFS);
 | |
| 
 | |
| 	atomic_set(&fs_info->async_delalloc_pages, 0);
 | |
| 	atomic_set(&fs_info->defrag_running, 0);
 | |
| 	atomic_set(&fs_info->nr_delayed_iputs, 0);
 | |
| 	atomic64_set(&fs_info->tree_mod_seq, 0);
 | |
| 	fs_info->global_root_tree = RB_ROOT;
 | |
| 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
 | |
| 	fs_info->metadata_ratio = 0;
 | |
| 	fs_info->defrag_inodes = RB_ROOT;
 | |
| 	atomic64_set(&fs_info->free_chunk_space, 0);
 | |
| 	fs_info->tree_mod_log = RB_ROOT;
 | |
| 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 | |
| 	btrfs_init_ref_verify(fs_info);
 | |
| 
 | |
| 	fs_info->thread_pool_size = min_t(unsigned long,
 | |
| 					  num_online_cpus() + 2, 8);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&fs_info->ordered_roots);
 | |
| 	spin_lock_init(&fs_info->ordered_root_lock);
 | |
| 
 | |
| 	btrfs_init_scrub(fs_info);
 | |
| 	btrfs_init_balance(fs_info);
 | |
| 	btrfs_init_async_reclaim_work(fs_info);
 | |
| 	btrfs_init_extent_map_shrinker_work(fs_info);
 | |
| 
 | |
| 	rwlock_init(&fs_info->block_group_cache_lock);
 | |
| 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
 | |
| 
 | |
| 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
 | |
| 			    IO_TREE_FS_EXCLUDED_EXTENTS);
 | |
| 
 | |
| 	mutex_init(&fs_info->ordered_operations_mutex);
 | |
| 	mutex_init(&fs_info->tree_log_mutex);
 | |
| 	mutex_init(&fs_info->chunk_mutex);
 | |
| 	mutex_init(&fs_info->transaction_kthread_mutex);
 | |
| 	mutex_init(&fs_info->cleaner_mutex);
 | |
| 	mutex_init(&fs_info->ro_block_group_mutex);
 | |
| 	init_rwsem(&fs_info->commit_root_sem);
 | |
| 	init_rwsem(&fs_info->cleanup_work_sem);
 | |
| 	init_rwsem(&fs_info->subvol_sem);
 | |
| 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
 | |
| 
 | |
| 	btrfs_init_dev_replace_locks(fs_info);
 | |
| 	btrfs_init_qgroup(fs_info);
 | |
| 	btrfs_discard_init(fs_info);
 | |
| 
 | |
| 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
 | |
| 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
 | |
| 
 | |
| 	init_waitqueue_head(&fs_info->transaction_throttle);
 | |
| 	init_waitqueue_head(&fs_info->transaction_wait);
 | |
| 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
 | |
| 	init_waitqueue_head(&fs_info->async_submit_wait);
 | |
| 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
 | |
| 
 | |
| 	/* Usable values until the real ones are cached from the superblock */
 | |
| 	fs_info->nodesize = 4096;
 | |
| 	fs_info->sectorsize = 4096;
 | |
| 	fs_info->sectorsize_bits = ilog2(4096);
 | |
| 	fs_info->stripesize = 4096;
 | |
| 
 | |
| 	/* Default compress algorithm when user does -o compress */
 | |
| 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
 | |
| 
 | |
| 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
 | |
| 
 | |
| 	spin_lock_init(&fs_info->swapfile_pins_lock);
 | |
| 	fs_info->swapfile_pins = RB_ROOT;
 | |
| 
 | |
| 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
 | |
| 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
 | |
| }
 | |
| 
 | |
| static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	fs_info->sb = sb;
 | |
| 	/* Temporary fixed values for block size until we read the superblock. */
 | |
| 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
 | |
| 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
 | |
| 
 | |
| 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	fs_info->dirty_metadata_batch = PAGE_SIZE *
 | |
| 					(1 + ilog2(nr_cpu_ids));
 | |
| 
 | |
| 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
 | |
| 			GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
 | |
| 					GFP_KERNEL);
 | |
| 	if (!fs_info->delayed_root)
 | |
| 		return -ENOMEM;
 | |
| 	btrfs_init_delayed_root(fs_info->delayed_root);
 | |
| 
 | |
| 	if (sb_rdonly(sb))
 | |
| 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
 | |
| 	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
 | |
| 		set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
 | |
| 
 | |
| 	return btrfs_alloc_stripe_hash_table(fs_info);
 | |
| }
 | |
| 
 | |
| static int btrfs_uuid_rescan_kthread(void *data)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = data;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * 1st step is to iterate through the existing UUID tree and
 | |
| 	 * to delete all entries that contain outdated data.
 | |
| 	 * 2nd step is to add all missing entries to the UUID tree.
 | |
| 	 */
 | |
| 	ret = btrfs_uuid_tree_iterate(fs_info);
 | |
| 	if (ret < 0) {
 | |
| 		if (ret != -EINTR)
 | |
| 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
 | |
| 				   ret);
 | |
| 		up(&fs_info->uuid_tree_rescan_sem);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return btrfs_uuid_scan_kthread(data);
 | |
| }
 | |
| 
 | |
| static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	down(&fs_info->uuid_tree_rescan_sem);
 | |
| 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
 | |
| 	if (IS_ERR(task)) {
 | |
| 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
 | |
| 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
 | |
| 		up(&fs_info->uuid_tree_rescan_sem);
 | |
| 		return PTR_ERR(task);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	u64 root_objectid = 0;
 | |
| 	struct btrfs_root *gang[8];
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned int found;
 | |
| 
 | |
| 		spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
 | |
| 					     (void **)gang, root_objectid,
 | |
| 					     ARRAY_SIZE(gang));
 | |
| 		if (!found) {
 | |
| 			spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		root_objectid = btrfs_root_id(gang[found - 1]) + 1;
 | |
| 
 | |
| 		for (int i = 0; i < found; i++) {
 | |
| 			/* Avoid to grab roots in dead_roots. */
 | |
| 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
 | |
| 				gang[i] = NULL;
 | |
| 				continue;
 | |
| 			}
 | |
| 			/* Grab all the search result for later use. */
 | |
| 			gang[i] = btrfs_grab_root(gang[i]);
 | |
| 		}
 | |
| 		spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 
 | |
| 		for (int i = 0; i < found; i++) {
 | |
| 			if (!gang[i])
 | |
| 				continue;
 | |
| 			root_objectid = btrfs_root_id(gang[i]);
 | |
| 			/*
 | |
| 			 * Continue to release the remaining roots after the first
 | |
| 			 * error without cleanup and preserve the first error
 | |
| 			 * for the return.
 | |
| 			 */
 | |
| 			if (!ret)
 | |
| 				ret = btrfs_orphan_cleanup(gang[i]);
 | |
| 			btrfs_put_root(gang[i]);
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		root_objectid++;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mounting logic specific to read-write file systems. Shared by open_ctree
 | |
|  * and btrfs_remount when remounting from read-only to read-write.
 | |
|  */
 | |
| int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	int ret;
 | |
| 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
 | |
| 	bool rebuild_free_space_tree = false;
 | |
| 
 | |
| 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
 | |
| 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
 | |
| 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "'clear_cache' option is ignored with extent tree v2");
 | |
| 		else
 | |
| 			rebuild_free_space_tree = true;
 | |
| 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
 | |
| 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
 | |
| 		btrfs_warn(fs_info, "free space tree is invalid");
 | |
| 		rebuild_free_space_tree = true;
 | |
| 	}
 | |
| 
 | |
| 	if (rebuild_free_space_tree) {
 | |
| 		btrfs_info(fs_info, "rebuilding free space tree");
 | |
| 		ret = btrfs_rebuild_free_space_tree(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "failed to rebuild free space tree: %d", ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
 | |
| 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
 | |
| 		btrfs_info(fs_info, "disabling free space tree");
 | |
| 		ret = btrfs_delete_free_space_tree(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "failed to disable free space tree: %d", ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
 | |
| 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
 | |
| 	 * them into the fs_info->fs_roots_radix tree. This must be done before
 | |
| 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
 | |
| 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
 | |
| 	 * item before the root's tree is deleted - this means that if we unmount
 | |
| 	 * or crash before the deletion completes, on the next mount we will not
 | |
| 	 * delete what remains of the tree because the orphan item does not
 | |
| 	 * exists anymore, which is what tells us we have a pending deletion.
 | |
| 	 */
 | |
| 	ret = btrfs_find_orphan_roots(fs_info);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = btrfs_cleanup_fs_roots(fs_info);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	down_read(&fs_info->cleanup_work_sem);
 | |
| 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
 | |
| 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
 | |
| 		up_read(&fs_info->cleanup_work_sem);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	up_read(&fs_info->cleanup_work_sem);
 | |
| 
 | |
| 	mutex_lock(&fs_info->cleaner_mutex);
 | |
| 	ret = btrfs_recover_relocation(fs_info);
 | |
| 	mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
 | |
| 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
 | |
| 		btrfs_info(fs_info, "creating free space tree");
 | |
| 		ret = btrfs_create_free_space_tree(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				"failed to create free space tree: %d", ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
 | |
| 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_resume_balance_async(fs_info);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = btrfs_resume_dev_replace_async(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_warn(fs_info, "failed to resume dev_replace");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_qgroup_rescan_resume(fs_info);
 | |
| 
 | |
| 	if (!fs_info->uuid_root) {
 | |
| 		btrfs_info(fs_info, "creating UUID tree");
 | |
| 		ret = btrfs_create_uuid_tree(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "failed to create the UUID tree %d", ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do various sanity and dependency checks of different features.
 | |
|  *
 | |
|  * @is_rw_mount:	If the mount is read-write.
 | |
|  *
 | |
|  * This is the place for less strict checks (like for subpage or artificial
 | |
|  * feature dependencies).
 | |
|  *
 | |
|  * For strict checks or possible corruption detection, see
 | |
|  * btrfs_validate_super().
 | |
|  *
 | |
|  * This should be called after btrfs_parse_options(), as some mount options
 | |
|  * (space cache related) can modify on-disk format like free space tree and
 | |
|  * screw up certain feature dependencies.
 | |
|  */
 | |
| int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
 | |
| {
 | |
| 	struct btrfs_super_block *disk_super = fs_info->super_copy;
 | |
| 	u64 incompat = btrfs_super_incompat_flags(disk_super);
 | |
| 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
 | |
| 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
 | |
| 
 | |
| 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
 | |
| 		btrfs_err(fs_info,
 | |
| 		"cannot mount because of unknown incompat features (0x%llx)",
 | |
| 		    incompat);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Runtime limitation for mixed block groups. */
 | |
| 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
 | |
| 	    (fs_info->sectorsize != fs_info->nodesize)) {
 | |
| 		btrfs_err(fs_info,
 | |
| "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
 | |
| 			fs_info->nodesize, fs_info->sectorsize);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Mixed backref is an always-enabled feature. */
 | |
| 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
 | |
| 
 | |
| 	/* Set compression related flags just in case. */
 | |
| 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
 | |
| 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
 | |
| 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
 | |
| 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
 | |
| 
 | |
| 	/*
 | |
| 	 * An ancient flag, which should really be marked deprecated.
 | |
| 	 * Such runtime limitation doesn't really need a incompat flag.
 | |
| 	 */
 | |
| 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
 | |
| 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
 | |
| 
 | |
| 	if (compat_ro_unsupp && is_rw_mount) {
 | |
| 		btrfs_err(fs_info,
 | |
| 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
 | |
| 		       compat_ro);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have unsupported RO compat features, although RO mounted, we
 | |
| 	 * should not cause any metadata writes, including log replay.
 | |
| 	 * Or we could screw up whatever the new feature requires.
 | |
| 	 */
 | |
| 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
 | |
| 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
 | |
| 		btrfs_err(fs_info,
 | |
| "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
 | |
| 			  compat_ro);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Artificial limitations for block group tree, to force
 | |
| 	 * block-group-tree to rely on no-holes and free-space-tree.
 | |
| 	 */
 | |
| 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
 | |
| 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
 | |
| 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
 | |
| 		btrfs_err(fs_info,
 | |
| "block-group-tree feature requires no-holes and free-space-tree features");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Subpage runtime limitation on v1 cache.
 | |
| 	 *
 | |
| 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
 | |
| 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
 | |
| 	 * going to be deprecated anyway.
 | |
| 	 */
 | |
| 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
 | |
| 		btrfs_warn(fs_info,
 | |
| 	"v1 space cache is not supported for page size %lu with sectorsize %u",
 | |
| 			   PAGE_SIZE, fs_info->sectorsize);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* This can be called by remount, we need to protect the super block. */
 | |
| 	spin_lock(&fs_info->super_lock);
 | |
| 	btrfs_set_super_incompat_flags(disk_super, incompat);
 | |
| 	spin_unlock(&fs_info->super_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	u32 sectorsize;
 | |
| 	u32 nodesize;
 | |
| 	u32 stripesize;
 | |
| 	u64 generation;
 | |
| 	u16 csum_type;
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 | |
| 	struct btrfs_root *tree_root;
 | |
| 	struct btrfs_root *chunk_root;
 | |
| 	int ret;
 | |
| 	int level;
 | |
| 
 | |
| 	ret = init_mount_fs_info(fs_info, sb);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/* These need to be init'ed before we start creating inodes and such. */
 | |
| 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
 | |
| 				     GFP_KERNEL);
 | |
| 	fs_info->tree_root = tree_root;
 | |
| 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
 | |
| 				      GFP_KERNEL);
 | |
| 	fs_info->chunk_root = chunk_root;
 | |
| 	if (!tree_root || !chunk_root) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_init_btree_inode(sb);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	invalidate_bdev(fs_devices->latest_dev->bdev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read super block and check the signature bytes only
 | |
| 	 */
 | |
| 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
 | |
| 	if (IS_ERR(disk_super)) {
 | |
| 		ret = PTR_ERR(disk_super);
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
 | |
| 	/*
 | |
| 	 * Verify the type first, if that or the checksum value are
 | |
| 	 * corrupted, we'll find out
 | |
| 	 */
 | |
| 	csum_type = btrfs_super_csum_type(disk_super);
 | |
| 	if (!btrfs_supported_super_csum(csum_type)) {
 | |
| 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
 | |
| 			  csum_type);
 | |
| 		ret = -EINVAL;
 | |
| 		btrfs_release_disk_super(disk_super);
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
 | |
| 
 | |
| 	ret = btrfs_init_csum_hash(fs_info, csum_type);
 | |
| 	if (ret) {
 | |
| 		btrfs_release_disk_super(disk_super);
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to check superblock checksum, the type is stored inside.
 | |
| 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
 | |
| 	 */
 | |
| 	if (btrfs_check_super_csum(fs_info, disk_super)) {
 | |
| 		btrfs_err(fs_info, "superblock checksum mismatch");
 | |
| 		ret = -EINVAL;
 | |
| 		btrfs_release_disk_super(disk_super);
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * super_copy is zeroed at allocation time and we never touch the
 | |
| 	 * following bytes up to INFO_SIZE, the checksum is calculated from
 | |
| 	 * the whole block of INFO_SIZE
 | |
| 	 */
 | |
| 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
 | |
| 	btrfs_release_disk_super(disk_super);
 | |
| 
 | |
| 	disk_super = fs_info->super_copy;
 | |
| 
 | |
| 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
 | |
| 	       sizeof(*fs_info->super_for_commit));
 | |
| 
 | |
| 	ret = btrfs_validate_mount_super(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "superblock contains fatal errors");
 | |
| 		ret = -EINVAL;
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	if (!btrfs_super_root(disk_super)) {
 | |
| 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
 | |
| 		ret = -EINVAL;
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/* check FS state, whether FS is broken. */
 | |
| 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
 | |
| 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
 | |
| 
 | |
| 	/* Set up fs_info before parsing mount options */
 | |
| 	nodesize = btrfs_super_nodesize(disk_super);
 | |
| 	sectorsize = btrfs_super_sectorsize(disk_super);
 | |
| 	stripesize = sectorsize;
 | |
| 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
 | |
| 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
 | |
| 
 | |
| 	fs_info->nodesize = nodesize;
 | |
| 	fs_info->sectorsize = sectorsize;
 | |
| 	fs_info->sectorsize_bits = ilog2(sectorsize);
 | |
| 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
 | |
| 	fs_info->stripesize = stripesize;
 | |
| 	fs_info->fs_devices->fs_info = fs_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the space caching options appropriately now that we have the
 | |
| 	 * super block loaded and validated.
 | |
| 	 */
 | |
| 	btrfs_set_free_space_cache_settings(fs_info);
 | |
| 
 | |
| 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto fail_alloc;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
 | |
| 	if (ret < 0)
 | |
| 		goto fail_alloc;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point our mount options are validated, if we set ->max_inline
 | |
| 	 * to something non-standard make sure we truncate it to sectorsize.
 | |
| 	 */
 | |
| 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
 | |
| 
 | |
| 	if (sectorsize < PAGE_SIZE)
 | |
| 		btrfs_warn(fs_info,
 | |
| 		"read-write for sector size %u with page size %lu is experimental",
 | |
| 			   sectorsize, PAGE_SIZE);
 | |
| 
 | |
| 	ret = btrfs_init_workqueues(fs_info);
 | |
| 	if (ret)
 | |
| 		goto fail_sb_buffer;
 | |
| 
 | |
| 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
 | |
| 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
 | |
| 
 | |
| 	/* Update the values for the current filesystem. */
 | |
| 	sb->s_blocksize = sectorsize;
 | |
| 	sb->s_blocksize_bits = blksize_bits(sectorsize);
 | |
| 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
 | |
| 
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	ret = btrfs_read_sys_array(fs_info);
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
 | |
| 		goto fail_sb_buffer;
 | |
| 	}
 | |
| 
 | |
| 	generation = btrfs_super_chunk_root_generation(disk_super);
 | |
| 	level = btrfs_super_chunk_root_level(disk_super);
 | |
| 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
 | |
| 			      generation, level);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to read chunk root");
 | |
| 		goto fail_tree_roots;
 | |
| 	}
 | |
| 
 | |
| 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
 | |
| 			   offsetof(struct btrfs_header, chunk_tree_uuid),
 | |
| 			   BTRFS_UUID_SIZE);
 | |
| 
 | |
| 	ret = btrfs_read_chunk_tree(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
 | |
| 		goto fail_tree_roots;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we know all the devices that make this filesystem,
 | |
| 	 * including the seed devices but we don't know yet if the replace
 | |
| 	 * target is required. So free devices that are not part of this
 | |
| 	 * filesystem but skip the replace target device which is checked
 | |
| 	 * below in btrfs_init_dev_replace().
 | |
| 	 */
 | |
| 	btrfs_free_extra_devids(fs_devices);
 | |
| 	if (!fs_devices->latest_dev->bdev) {
 | |
| 		btrfs_err(fs_info, "failed to read devices");
 | |
| 		ret = -EIO;
 | |
| 		goto fail_tree_roots;
 | |
| 	}
 | |
| 
 | |
| 	ret = init_tree_roots(fs_info);
 | |
| 	if (ret)
 | |
| 		goto fail_tree_roots;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get zone type information of zoned block devices. This will also
 | |
| 	 * handle emulation of a zoned filesystem if a regular device has the
 | |
| 	 * zoned incompat feature flag set.
 | |
| 	 */
 | |
| 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "zoned: failed to read device zone info: %d", ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a uuid root and we're not being told to rescan we need to
 | |
| 	 * check the generation here so we can set the
 | |
| 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
 | |
| 	 * transaction during a balance or the log replay without updating the
 | |
| 	 * uuid generation, and then if we crash we would rescan the uuid tree,
 | |
| 	 * even though it was perfectly fine.
 | |
| 	 */
 | |
| 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
 | |
| 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
 | |
| 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
 | |
| 
 | |
| 	ret = btrfs_verify_dev_extents(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "failed to verify dev extents against chunks: %d",
 | |
| 			  ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 	ret = btrfs_recover_balance(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_init_dev_stats(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_init_dev_replace(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_check_zoned_mode(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
 | |
| 			  ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_sysfs_add_fsid(fs_devices);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
 | |
| 				ret);
 | |
| 		goto fail_block_groups;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_sysfs_add_mounted(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
 | |
| 		goto fail_fsdev_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_init_space_info(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
 | |
| 		goto fail_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_read_block_groups(fs_info);
 | |
| 	if (ret) {
 | |
| 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
 | |
| 		goto fail_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_zone_cache(fs_info);
 | |
| 
 | |
| 	btrfs_check_active_zone_reservation(fs_info);
 | |
| 
 | |
| 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
 | |
| 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
 | |
| 		btrfs_warn(fs_info,
 | |
| 		"writable mount is not allowed due to too many missing devices");
 | |
| 		ret = -EINVAL;
 | |
| 		goto fail_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
 | |
| 					       "btrfs-cleaner");
 | |
| 	if (IS_ERR(fs_info->cleaner_kthread)) {
 | |
| 		ret = PTR_ERR(fs_info->cleaner_kthread);
 | |
| 		goto fail_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
 | |
| 						   tree_root,
 | |
| 						   "btrfs-transaction");
 | |
| 	if (IS_ERR(fs_info->transaction_kthread)) {
 | |
| 		ret = PTR_ERR(fs_info->transaction_kthread);
 | |
| 		goto fail_cleaner;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_read_qgroup_config(fs_info);
 | |
| 	if (ret)
 | |
| 		goto fail_trans_kthread;
 | |
| 
 | |
| 	if (btrfs_build_ref_tree(fs_info))
 | |
| 		btrfs_err(fs_info, "couldn't build ref tree");
 | |
| 
 | |
| 	/* do not make disk changes in broken FS or nologreplay is given */
 | |
| 	if (btrfs_super_log_root(disk_super) != 0 &&
 | |
| 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
 | |
| 		btrfs_info(fs_info, "start tree-log replay");
 | |
| 		ret = btrfs_replay_log(fs_info, fs_devices);
 | |
| 		if (ret)
 | |
| 			goto fail_qgroup;
 | |
| 	}
 | |
| 
 | |
| 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 | |
| 	if (IS_ERR(fs_info->fs_root)) {
 | |
| 		ret = PTR_ERR(fs_info->fs_root);
 | |
| 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
 | |
| 		fs_info->fs_root = NULL;
 | |
| 		goto fail_qgroup;
 | |
| 	}
 | |
| 
 | |
| 	if (sb_rdonly(sb))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = btrfs_start_pre_rw_mount(fs_info);
 | |
| 	if (ret) {
 | |
| 		close_ctree(fs_info);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	btrfs_discard_resume(fs_info);
 | |
| 
 | |
| 	if (fs_info->uuid_root &&
 | |
| 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
 | |
| 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
 | |
| 		btrfs_info(fs_info, "checking UUID tree");
 | |
| 		ret = btrfs_check_uuid_tree(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				"failed to check the UUID tree: %d", ret);
 | |
| 			close_ctree(fs_info);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
 | |
| 
 | |
| 	/* Kick the cleaner thread so it'll start deleting snapshots. */
 | |
| 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
 | |
| 		wake_up_process(fs_info->cleaner_kthread);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail_qgroup:
 | |
| 	btrfs_free_qgroup_config(fs_info);
 | |
| fail_trans_kthread:
 | |
| 	kthread_stop(fs_info->transaction_kthread);
 | |
| 	btrfs_cleanup_transaction(fs_info);
 | |
| 	btrfs_free_fs_roots(fs_info);
 | |
| fail_cleaner:
 | |
| 	kthread_stop(fs_info->cleaner_kthread);
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure we're done with the btree inode before we stop our
 | |
| 	 * kthreads
 | |
| 	 */
 | |
| 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
 | |
| 
 | |
| fail_sysfs:
 | |
| 	btrfs_sysfs_remove_mounted(fs_info);
 | |
| 
 | |
| fail_fsdev_sysfs:
 | |
| 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
 | |
| 
 | |
| fail_block_groups:
 | |
| 	btrfs_put_block_group_cache(fs_info);
 | |
| 
 | |
| fail_tree_roots:
 | |
| 	if (fs_info->data_reloc_root)
 | |
| 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
 | |
| 	free_root_pointers(fs_info, true);
 | |
| 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 | |
| 
 | |
| fail_sb_buffer:
 | |
| 	btrfs_stop_all_workers(fs_info);
 | |
| 	btrfs_free_block_groups(fs_info);
 | |
| fail_alloc:
 | |
| 	btrfs_mapping_tree_free(fs_info);
 | |
| 
 | |
| 	iput(fs_info->btree_inode);
 | |
| fail:
 | |
| 	btrfs_close_devices(fs_info->fs_devices);
 | |
| 	ASSERT(ret < 0);
 | |
| 	return ret;
 | |
| }
 | |
| ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
 | |
| 
 | |
| static void btrfs_end_super_write(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_device *device = bio->bi_private;
 | |
| 	struct folio_iter fi;
 | |
| 
 | |
| 	bio_for_each_folio_all(fi, bio) {
 | |
| 		if (bio->bi_status) {
 | |
| 			btrfs_warn_rl_in_rcu(device->fs_info,
 | |
| 				"lost super block write due to IO error on %s (%d)",
 | |
| 				btrfs_dev_name(device),
 | |
| 				blk_status_to_errno(bio->bi_status));
 | |
| 			btrfs_dev_stat_inc_and_print(device,
 | |
| 						     BTRFS_DEV_STAT_WRITE_ERRS);
 | |
| 			/* Ensure failure if the primary sb fails. */
 | |
| 			if (bio->bi_opf & REQ_FUA)
 | |
| 				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
 | |
| 					   &device->sb_write_errors);
 | |
| 			else
 | |
| 				atomic_inc(&device->sb_write_errors);
 | |
| 		}
 | |
| 		folio_unlock(fi.folio);
 | |
| 		folio_put(fi.folio);
 | |
| 	}
 | |
| 
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
 | |
| 						   int copy_num, bool drop_cache)
 | |
| {
 | |
| 	struct btrfs_super_block *super;
 | |
| 	struct page *page;
 | |
| 	u64 bytenr, bytenr_orig;
 | |
| 	struct address_space *mapping = bdev->bd_mapping;
 | |
| 	int ret;
 | |
| 
 | |
| 	bytenr_orig = btrfs_sb_offset(copy_num);
 | |
| 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
 | |
| 	if (ret == -ENOENT)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	else if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	if (drop_cache) {
 | |
| 		/* This should only be called with the primary sb. */
 | |
| 		ASSERT(copy_num == 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * Drop the page of the primary superblock, so later read will
 | |
| 		 * always read from the device.
 | |
| 		 */
 | |
| 		invalidate_inode_pages2_range(mapping,
 | |
| 				bytenr >> PAGE_SHIFT,
 | |
| 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
 | |
| 	if (IS_ERR(page))
 | |
| 		return ERR_CAST(page);
 | |
| 
 | |
| 	super = page_address(page);
 | |
| 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
 | |
| 		btrfs_release_disk_super(super);
 | |
| 		return ERR_PTR(-ENODATA);
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_super_bytenr(super) != bytenr_orig) {
 | |
| 		btrfs_release_disk_super(super);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	return super;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
 | |
| {
 | |
| 	struct btrfs_super_block *super, *latest = NULL;
 | |
| 	int i;
 | |
| 	u64 transid = 0;
 | |
| 
 | |
| 	/* we would like to check all the supers, but that would make
 | |
| 	 * a btrfs mount succeed after a mkfs from a different FS.
 | |
| 	 * So, we need to add a special mount option to scan for
 | |
| 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
 | |
| 	 */
 | |
| 	for (i = 0; i < 1; i++) {
 | |
| 		super = btrfs_read_dev_one_super(bdev, i, false);
 | |
| 		if (IS_ERR(super))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!latest || btrfs_super_generation(super) > transid) {
 | |
| 			if (latest)
 | |
| 				btrfs_release_disk_super(super);
 | |
| 
 | |
| 			latest = super;
 | |
| 			transid = btrfs_super_generation(super);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return super;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write superblock @sb to the @device. Do not wait for completion, all the
 | |
|  * folios we use for writing are locked.
 | |
|  *
 | |
|  * Write @max_mirrors copies of the superblock, where 0 means default that fit
 | |
|  * the expected device size at commit time. Note that max_mirrors must be
 | |
|  * same for write and wait phases.
 | |
|  *
 | |
|  * Return number of errors when folio is not found or submission fails.
 | |
|  */
 | |
| static int write_dev_supers(struct btrfs_device *device,
 | |
| 			    struct btrfs_super_block *sb, int max_mirrors)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = device->fs_info;
 | |
| 	struct address_space *mapping = device->bdev->bd_mapping;
 | |
| 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	u64 bytenr, bytenr_orig;
 | |
| 
 | |
| 	atomic_set(&device->sb_write_errors, 0);
 | |
| 
 | |
| 	if (max_mirrors == 0)
 | |
| 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
 | |
| 
 | |
| 	shash->tfm = fs_info->csum_shash;
 | |
| 
 | |
| 	for (i = 0; i < max_mirrors; i++) {
 | |
| 		struct folio *folio;
 | |
| 		struct bio *bio;
 | |
| 		struct btrfs_super_block *disk_super;
 | |
| 		size_t offset;
 | |
| 
 | |
| 		bytenr_orig = btrfs_sb_offset(i);
 | |
| 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
 | |
| 		if (ret == -ENOENT) {
 | |
| 			continue;
 | |
| 		} else if (ret < 0) {
 | |
| 			btrfs_err(device->fs_info,
 | |
| 				"couldn't get super block location for mirror %d",
 | |
| 				i);
 | |
| 			atomic_inc(&device->sb_write_errors);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
 | |
| 		    device->commit_total_bytes)
 | |
| 			break;
 | |
| 
 | |
| 		btrfs_set_super_bytenr(sb, bytenr_orig);
 | |
| 
 | |
| 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
 | |
| 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
 | |
| 				    sb->csum);
 | |
| 
 | |
| 		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
 | |
| 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
 | |
| 					    GFP_NOFS);
 | |
| 		if (IS_ERR(folio)) {
 | |
| 			btrfs_err(device->fs_info,
 | |
| 			    "couldn't get super block page for bytenr %llu",
 | |
| 			    bytenr);
 | |
| 			atomic_inc(&device->sb_write_errors);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ASSERT(folio_order(folio) == 0);
 | |
| 
 | |
| 		offset = offset_in_folio(folio, bytenr);
 | |
| 		disk_super = folio_address(folio) + offset;
 | |
| 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Directly use bios here instead of relying on the page cache
 | |
| 		 * to do I/O, so we don't lose the ability to do integrity
 | |
| 		 * checking.
 | |
| 		 */
 | |
| 		bio = bio_alloc(device->bdev, 1,
 | |
| 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
 | |
| 				GFP_NOFS);
 | |
| 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
 | |
| 		bio->bi_private = device;
 | |
| 		bio->bi_end_io = btrfs_end_super_write;
 | |
| 		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
 | |
| 
 | |
| 		/*
 | |
| 		 * We FUA only the first super block.  The others we allow to
 | |
| 		 * go down lazy and there's a short window where the on-disk
 | |
| 		 * copies might still contain the older version.
 | |
| 		 */
 | |
| 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
 | |
| 			bio->bi_opf |= REQ_FUA;
 | |
| 		submit_bio(bio);
 | |
| 
 | |
| 		if (btrfs_advance_sb_log(device, i))
 | |
| 			atomic_inc(&device->sb_write_errors);
 | |
| 	}
 | |
| 	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for write completion of superblocks done by write_dev_supers,
 | |
|  * @max_mirrors same for write and wait phases.
 | |
|  *
 | |
|  * Return -1 if primary super block write failed or when there were no super block
 | |
|  * copies written. Otherwise 0.
 | |
|  */
 | |
| static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
 | |
| {
 | |
| 	int i;
 | |
| 	int errors = 0;
 | |
| 	bool primary_failed = false;
 | |
| 	int ret;
 | |
| 	u64 bytenr;
 | |
| 
 | |
| 	if (max_mirrors == 0)
 | |
| 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
 | |
| 
 | |
| 	for (i = 0; i < max_mirrors; i++) {
 | |
| 		struct folio *folio;
 | |
| 
 | |
| 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
 | |
| 		if (ret == -ENOENT) {
 | |
| 			break;
 | |
| 		} else if (ret < 0) {
 | |
| 			errors++;
 | |
| 			if (i == 0)
 | |
| 				primary_failed = true;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
 | |
| 		    device->commit_total_bytes)
 | |
| 			break;
 | |
| 
 | |
| 		folio = filemap_get_folio(device->bdev->bd_mapping,
 | |
| 					  bytenr >> PAGE_SHIFT);
 | |
| 		/* If the folio has been removed, then we know it completed. */
 | |
| 		if (IS_ERR(folio))
 | |
| 			continue;
 | |
| 		ASSERT(folio_order(folio) == 0);
 | |
| 
 | |
| 		/* Folio will be unlocked once the write completes. */
 | |
| 		folio_wait_locked(folio);
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 
 | |
| 	errors += atomic_read(&device->sb_write_errors);
 | |
| 	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
 | |
| 		primary_failed = true;
 | |
| 	if (primary_failed) {
 | |
| 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
 | |
| 			  device->devid);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	return errors < i ? 0 : -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * endio for the write_dev_flush, this will wake anyone waiting
 | |
|  * for the barrier when it is done
 | |
|  */
 | |
| static void btrfs_end_empty_barrier(struct bio *bio)
 | |
| {
 | |
| 	bio_uninit(bio);
 | |
| 	complete(bio->bi_private);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit a flush request to the device if it supports it. Error handling is
 | |
|  * done in the waiting counterpart.
 | |
|  */
 | |
| static void write_dev_flush(struct btrfs_device *device)
 | |
| {
 | |
| 	struct bio *bio = &device->flush_bio;
 | |
| 
 | |
| 	device->last_flush_error = BLK_STS_OK;
 | |
| 
 | |
| 	bio_init(bio, device->bdev, NULL, 0,
 | |
| 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
 | |
| 	bio->bi_end_io = btrfs_end_empty_barrier;
 | |
| 	init_completion(&device->flush_wait);
 | |
| 	bio->bi_private = &device->flush_wait;
 | |
| 	submit_bio(bio);
 | |
| 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the flush bio has been submitted by write_dev_flush, wait for it.
 | |
|  * Return true for any error, and false otherwise.
 | |
|  */
 | |
| static bool wait_dev_flush(struct btrfs_device *device)
 | |
| {
 | |
| 	struct bio *bio = &device->flush_bio;
 | |
| 
 | |
| 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
 | |
| 		return false;
 | |
| 
 | |
| 	wait_for_completion_io(&device->flush_wait);
 | |
| 
 | |
| 	if (bio->bi_status) {
 | |
| 		device->last_flush_error = bio->bi_status;
 | |
| 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * send an empty flush down to each device in parallel,
 | |
|  * then wait for them
 | |
|  */
 | |
| static int barrier_all_devices(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct list_head *head;
 | |
| 	struct btrfs_device *dev;
 | |
| 	int errors_wait = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
 | |
| 	/* send down all the barriers */
 | |
| 	head = &info->fs_devices->devices;
 | |
| 	list_for_each_entry(dev, head, dev_list) {
 | |
| 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
 | |
| 			continue;
 | |
| 		if (!dev->bdev)
 | |
| 			continue;
 | |
| 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
 | |
| 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
 | |
| 			continue;
 | |
| 
 | |
| 		write_dev_flush(dev);
 | |
| 	}
 | |
| 
 | |
| 	/* wait for all the barriers */
 | |
| 	list_for_each_entry(dev, head, dev_list) {
 | |
| 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
 | |
| 			continue;
 | |
| 		if (!dev->bdev) {
 | |
| 			errors_wait++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
 | |
| 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
 | |
| 			continue;
 | |
| 
 | |
| 		if (wait_dev_flush(dev))
 | |
| 			errors_wait++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Checks last_flush_error of disks in order to determine the device
 | |
| 	 * state.
 | |
| 	 */
 | |
| 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
 | |
| {
 | |
| 	int raid_type;
 | |
| 	int min_tolerated = INT_MAX;
 | |
| 
 | |
| 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
 | |
| 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
 | |
| 		min_tolerated = min_t(int, min_tolerated,
 | |
| 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
 | |
| 				    tolerated_failures);
 | |
| 
 | |
| 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
 | |
| 		if (raid_type == BTRFS_RAID_SINGLE)
 | |
| 			continue;
 | |
| 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
 | |
| 			continue;
 | |
| 		min_tolerated = min_t(int, min_tolerated,
 | |
| 				    btrfs_raid_array[raid_type].
 | |
| 				    tolerated_failures);
 | |
| 	}
 | |
| 
 | |
| 	if (min_tolerated == INT_MAX) {
 | |
| 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
 | |
| 		min_tolerated = 0;
 | |
| 	}
 | |
| 
 | |
| 	return min_tolerated;
 | |
| }
 | |
| 
 | |
| int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
 | |
| {
 | |
| 	struct list_head *head;
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct btrfs_super_block *sb;
 | |
| 	struct btrfs_dev_item *dev_item;
 | |
| 	int ret;
 | |
| 	int do_barriers;
 | |
| 	int max_errors;
 | |
| 	int total_errors = 0;
 | |
| 	u64 flags;
 | |
| 
 | |
| 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
 | |
| 
 | |
| 	/*
 | |
| 	 * max_mirrors == 0 indicates we're from commit_transaction,
 | |
| 	 * not from fsync where the tree roots in fs_info have not
 | |
| 	 * been consistent on disk.
 | |
| 	 */
 | |
| 	if (max_mirrors == 0)
 | |
| 		backup_super_roots(fs_info);
 | |
| 
 | |
| 	sb = fs_info->super_for_commit;
 | |
| 	dev_item = &sb->dev_item;
 | |
| 
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	head = &fs_info->fs_devices->devices;
 | |
| 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
 | |
| 
 | |
| 	if (do_barriers) {
 | |
| 		ret = barrier_all_devices(fs_info);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(
 | |
| 				&fs_info->fs_devices->device_list_mutex);
 | |
| 			btrfs_handle_fs_error(fs_info, ret,
 | |
| 					      "errors while submitting device barriers.");
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(dev, head, dev_list) {
 | |
| 		if (!dev->bdev) {
 | |
| 			total_errors++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
 | |
| 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
 | |
| 			continue;
 | |
| 
 | |
| 		btrfs_set_stack_device_generation(dev_item, 0);
 | |
| 		btrfs_set_stack_device_type(dev_item, dev->type);
 | |
| 		btrfs_set_stack_device_id(dev_item, dev->devid);
 | |
| 		btrfs_set_stack_device_total_bytes(dev_item,
 | |
| 						   dev->commit_total_bytes);
 | |
| 		btrfs_set_stack_device_bytes_used(dev_item,
 | |
| 						  dev->commit_bytes_used);
 | |
| 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
 | |
| 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
 | |
| 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
 | |
| 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
 | |
| 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
 | |
| 		       BTRFS_FSID_SIZE);
 | |
| 
 | |
| 		flags = btrfs_super_flags(sb);
 | |
| 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
 | |
| 
 | |
| 		ret = btrfs_validate_write_super(fs_info, sb);
 | |
| 		if (ret < 0) {
 | |
| 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
 | |
| 				"unexpected superblock corruption detected");
 | |
| 			return -EUCLEAN;
 | |
| 		}
 | |
| 
 | |
| 		ret = write_dev_supers(dev, sb, max_mirrors);
 | |
| 		if (ret)
 | |
| 			total_errors++;
 | |
| 	}
 | |
| 	if (total_errors > max_errors) {
 | |
| 		btrfs_err(fs_info, "%d errors while writing supers",
 | |
| 			  total_errors);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 		/* FUA is masked off if unsupported and can't be the reason */
 | |
| 		btrfs_handle_fs_error(fs_info, -EIO,
 | |
| 				      "%d errors while writing supers",
 | |
| 				      total_errors);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	total_errors = 0;
 | |
| 	list_for_each_entry(dev, head, dev_list) {
 | |
| 		if (!dev->bdev)
 | |
| 			continue;
 | |
| 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
 | |
| 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
 | |
| 			continue;
 | |
| 
 | |
| 		ret = wait_dev_supers(dev, max_mirrors);
 | |
| 		if (ret)
 | |
| 			total_errors++;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	if (total_errors > max_errors) {
 | |
| 		btrfs_handle_fs_error(fs_info, -EIO,
 | |
| 				      "%d errors while writing supers",
 | |
| 				      total_errors);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Drop a fs root from the radix tree and free it. */
 | |
| void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
 | |
| 				  struct btrfs_root *root)
 | |
| {
 | |
| 	bool drop_ref = false;
 | |
| 
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	radix_tree_delete(&fs_info->fs_roots_radix,
 | |
| 			  (unsigned long)btrfs_root_id(root));
 | |
| 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
 | |
| 		drop_ref = true;
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 
 | |
| 	if (BTRFS_FS_ERROR(fs_info)) {
 | |
| 		ASSERT(root->log_root == NULL);
 | |
| 		if (root->reloc_root) {
 | |
| 			btrfs_put_root(root->reloc_root);
 | |
| 			root->reloc_root = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (drop_ref)
 | |
| 		btrfs_put_root(root);
 | |
| }
 | |
| 
 | |
| int btrfs_commit_super(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->cleaner_mutex);
 | |
| 	btrfs_run_delayed_iputs(fs_info);
 | |
| 	mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 	wake_up_process(fs_info->cleaner_kthread);
 | |
| 
 | |
| 	/* wait until ongoing cleanup work done */
 | |
| 	down_write(&fs_info->cleanup_work_sem);
 | |
| 	up_write(&fs_info->cleanup_work_sem);
 | |
| 
 | |
| 	return btrfs_commit_current_transaction(fs_info->tree_root);
 | |
| }
 | |
| 
 | |
| static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_transaction *trans;
 | |
| 	struct btrfs_transaction *tmp;
 | |
| 	bool found = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function is only called at the very end of close_ctree(),
 | |
| 	 * thus no other running transaction, no need to take trans_lock.
 | |
| 	 */
 | |
| 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
 | |
| 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
 | |
| 		struct extent_state *cached = NULL;
 | |
| 		u64 dirty_bytes = 0;
 | |
| 		u64 cur = 0;
 | |
| 		u64 found_start;
 | |
| 		u64 found_end;
 | |
| 
 | |
| 		found = true;
 | |
| 		while (find_first_extent_bit(&trans->dirty_pages, cur,
 | |
| 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
 | |
| 			dirty_bytes += found_end + 1 - found_start;
 | |
| 			cur = found_end + 1;
 | |
| 		}
 | |
| 		btrfs_warn(fs_info,
 | |
| 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
 | |
| 			   trans->transid, dirty_bytes);
 | |
| 		btrfs_cleanup_one_transaction(trans);
 | |
| 
 | |
| 		if (trans == fs_info->running_transaction)
 | |
| 			fs_info->running_transaction = NULL;
 | |
| 		list_del_init(&trans->list);
 | |
| 
 | |
| 		btrfs_put_transaction(trans);
 | |
| 		trace_btrfs_transaction_commit(fs_info);
 | |
| 	}
 | |
| 	ASSERT(!found);
 | |
| }
 | |
| 
 | |
| void __cold close_ctree(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we had UNFINISHED_DROPS we could still be processing them, so
 | |
| 	 * clear that bit and wake up relocation so it can stop.
 | |
| 	 * We must do this before stopping the block group reclaim task, because
 | |
| 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
 | |
| 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
 | |
| 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
 | |
| 	 * return 1.
 | |
| 	 */
 | |
| 	btrfs_wake_unfinished_drop(fs_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have the reclaim task running and relocating a data block group,
 | |
| 	 * in which case it may create delayed iputs. So stop it before we park
 | |
| 	 * the cleaner kthread otherwise we can get new delayed iputs after
 | |
| 	 * parking the cleaner, and that can make the async reclaim task to hang
 | |
| 	 * if it's waiting for delayed iputs to complete, since the cleaner is
 | |
| 	 * parked and can not run delayed iputs - this will make us hang when
 | |
| 	 * trying to stop the async reclaim task.
 | |
| 	 */
 | |
| 	cancel_work_sync(&fs_info->reclaim_bgs_work);
 | |
| 	/*
 | |
| 	 * We don't want the cleaner to start new transactions, add more delayed
 | |
| 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
 | |
| 	 * because that frees the task_struct, and the transaction kthread might
 | |
| 	 * still try to wake up the cleaner.
 | |
| 	 */
 | |
| 	kthread_park(fs_info->cleaner_kthread);
 | |
| 
 | |
| 	/* wait for the qgroup rescan worker to stop */
 | |
| 	btrfs_qgroup_wait_for_completion(fs_info, false);
 | |
| 
 | |
| 	/* wait for the uuid_scan task to finish */
 | |
| 	down(&fs_info->uuid_tree_rescan_sem);
 | |
| 	/* avoid complains from lockdep et al., set sem back to initial state */
 | |
| 	up(&fs_info->uuid_tree_rescan_sem);
 | |
| 
 | |
| 	/* pause restriper - we want to resume on mount */
 | |
| 	btrfs_pause_balance(fs_info);
 | |
| 
 | |
| 	btrfs_dev_replace_suspend_for_unmount(fs_info);
 | |
| 
 | |
| 	btrfs_scrub_cancel(fs_info);
 | |
| 
 | |
| 	/* wait for any defraggers to finish */
 | |
| 	wait_event(fs_info->transaction_wait,
 | |
| 		   (atomic_read(&fs_info->defrag_running) == 0));
 | |
| 
 | |
| 	/* clear out the rbtree of defraggable inodes */
 | |
| 	btrfs_cleanup_defrag_inodes(fs_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for any fixup workers to complete.
 | |
| 	 * If we don't wait for them here and they are still running by the time
 | |
| 	 * we call kthread_stop() against the cleaner kthread further below, we
 | |
| 	 * get an use-after-free on the cleaner because the fixup worker adds an
 | |
| 	 * inode to the list of delayed iputs and then attempts to wakeup the
 | |
| 	 * cleaner kthread, which was already stopped and destroyed. We parked
 | |
| 	 * already the cleaner, but below we run all pending delayed iputs.
 | |
| 	 */
 | |
| 	btrfs_flush_workqueue(fs_info->fixup_workers);
 | |
| 	/*
 | |
| 	 * Similar case here, we have to wait for delalloc workers before we
 | |
| 	 * proceed below and stop the cleaner kthread, otherwise we trigger a
 | |
| 	 * use-after-tree on the cleaner kthread task_struct when a delalloc
 | |
| 	 * worker running submit_compressed_extents() adds a delayed iput, which
 | |
| 	 * does a wake up on the cleaner kthread, which was already freed below
 | |
| 	 * when we call kthread_stop().
 | |
| 	 */
 | |
| 	btrfs_flush_workqueue(fs_info->delalloc_workers);
 | |
| 
 | |
| 	/*
 | |
| 	 * After we parked the cleaner kthread, ordered extents may have
 | |
| 	 * completed and created new delayed iputs. If one of the async reclaim
 | |
| 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
 | |
| 	 * can hang forever trying to stop it, because if a delayed iput is
 | |
| 	 * added after it ran btrfs_run_delayed_iputs() and before it called
 | |
| 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
 | |
| 	 * no one else to run iputs.
 | |
| 	 *
 | |
| 	 * So wait for all ongoing ordered extents to complete and then run
 | |
| 	 * delayed iputs. This works because once we reach this point no one
 | |
| 	 * can either create new ordered extents nor create delayed iputs
 | |
| 	 * through some other means.
 | |
| 	 *
 | |
| 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
 | |
| 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
 | |
| 	 * but the delayed iput for the respective inode is made only when doing
 | |
| 	 * the final btrfs_put_ordered_extent() (which must happen at
 | |
| 	 * btrfs_finish_ordered_io() when we are unmounting).
 | |
| 	 */
 | |
| 	btrfs_flush_workqueue(fs_info->endio_write_workers);
 | |
| 	/* Ordered extents for free space inodes. */
 | |
| 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
 | |
| 	btrfs_run_delayed_iputs(fs_info);
 | |
| 
 | |
| 	cancel_work_sync(&fs_info->async_reclaim_work);
 | |
| 	cancel_work_sync(&fs_info->async_data_reclaim_work);
 | |
| 	cancel_work_sync(&fs_info->preempt_reclaim_work);
 | |
| 	cancel_work_sync(&fs_info->em_shrinker_work);
 | |
| 
 | |
| 	/* Cancel or finish ongoing discard work */
 | |
| 	btrfs_discard_cleanup(fs_info);
 | |
| 
 | |
| 	if (!sb_rdonly(fs_info->sb)) {
 | |
| 		/*
 | |
| 		 * The cleaner kthread is stopped, so do one final pass over
 | |
| 		 * unused block groups.
 | |
| 		 */
 | |
| 		btrfs_delete_unused_bgs(fs_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * There might be existing delayed inode workers still running
 | |
| 		 * and holding an empty delayed inode item. We must wait for
 | |
| 		 * them to complete first because they can create a transaction.
 | |
| 		 * This happens when someone calls btrfs_balance_delayed_items()
 | |
| 		 * and then a transaction commit runs the same delayed nodes
 | |
| 		 * before any delayed worker has done something with the nodes.
 | |
| 		 * We must wait for any worker here and not at transaction
 | |
| 		 * commit time since that could cause a deadlock.
 | |
| 		 * This is a very rare case.
 | |
| 		 */
 | |
| 		btrfs_flush_workqueue(fs_info->delayed_workers);
 | |
| 
 | |
| 		ret = btrfs_commit_super(fs_info);
 | |
| 		if (ret)
 | |
| 			btrfs_err(fs_info, "commit super ret %d", ret);
 | |
| 	}
 | |
| 
 | |
| 	if (BTRFS_FS_ERROR(fs_info))
 | |
| 		btrfs_error_commit_super(fs_info);
 | |
| 
 | |
| 	kthread_stop(fs_info->transaction_kthread);
 | |
| 	kthread_stop(fs_info->cleaner_kthread);
 | |
| 
 | |
| 	ASSERT(list_empty(&fs_info->delayed_iputs));
 | |
| 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
 | |
| 
 | |
| 	if (btrfs_check_quota_leak(fs_info)) {
 | |
| 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 | |
| 		btrfs_err(fs_info, "qgroup reserved space leaked");
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_qgroup_config(fs_info);
 | |
| 	ASSERT(list_empty(&fs_info->delalloc_roots));
 | |
| 
 | |
| 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
 | |
| 		btrfs_info(fs_info, "at unmount delalloc count %lld",
 | |
| 		       percpu_counter_sum(&fs_info->delalloc_bytes));
 | |
| 	}
 | |
| 
 | |
| 	if (percpu_counter_sum(&fs_info->ordered_bytes))
 | |
| 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
 | |
| 			   percpu_counter_sum(&fs_info->ordered_bytes));
 | |
| 
 | |
| 	btrfs_sysfs_remove_mounted(fs_info);
 | |
| 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
 | |
| 
 | |
| 	btrfs_put_block_group_cache(fs_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * we must make sure there is not any read request to
 | |
| 	 * submit after we stopping all workers.
 | |
| 	 */
 | |
| 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 | |
| 	btrfs_stop_all_workers(fs_info);
 | |
| 
 | |
| 	/* We shouldn't have any transaction open at this point */
 | |
| 	warn_about_uncommitted_trans(fs_info);
 | |
| 
 | |
| 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
 | |
| 	free_root_pointers(fs_info, true);
 | |
| 	btrfs_free_fs_roots(fs_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must free the block groups after dropping the fs_roots as we could
 | |
| 	 * have had an IO error and have left over tree log blocks that aren't
 | |
| 	 * cleaned up until the fs roots are freed.  This makes the block group
 | |
| 	 * accounting appear to be wrong because there's pending reserved bytes,
 | |
| 	 * so make sure we do the block group cleanup afterwards.
 | |
| 	 */
 | |
| 	btrfs_free_block_groups(fs_info);
 | |
| 
 | |
| 	iput(fs_info->btree_inode);
 | |
| 
 | |
| 	btrfs_mapping_tree_free(fs_info);
 | |
| 	btrfs_close_devices(fs_info->fs_devices);
 | |
| }
 | |
| 
 | |
| void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
 | |
| 			     struct extent_buffer *buf)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = buf->fs_info;
 | |
| 	u64 transid = btrfs_header_generation(buf);
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| 	/*
 | |
| 	 * This is a fast path so only do this check if we have sanity tests
 | |
| 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
 | |
| 	 * outside of the sanity tests.
 | |
| 	 */
 | |
| 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
 | |
| 		return;
 | |
| #endif
 | |
| 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
 | |
| 	ASSERT(trans->transid == fs_info->generation);
 | |
| 	btrfs_assert_tree_write_locked(buf);
 | |
| 	if (unlikely(transid != fs_info->generation)) {
 | |
| 		btrfs_abort_transaction(trans, -EUCLEAN);
 | |
| 		btrfs_crit(fs_info,
 | |
| "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
 | |
| 			   buf->start, transid, fs_info->generation);
 | |
| 	}
 | |
| 	set_extent_buffer_dirty(buf);
 | |
| }
 | |
| 
 | |
| static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
 | |
| 					int flush_delayed)
 | |
| {
 | |
| 	/*
 | |
| 	 * looks as though older kernels can get into trouble with
 | |
| 	 * this code, they end up stuck in balance_dirty_pages forever
 | |
| 	 */
 | |
| 	int ret;
 | |
| 
 | |
| 	if (current->flags & PF_MEMALLOC)
 | |
| 		return;
 | |
| 
 | |
| 	if (flush_delayed)
 | |
| 		btrfs_balance_delayed_items(fs_info);
 | |
| 
 | |
| 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 | |
| 				     BTRFS_DIRTY_METADATA_THRESH,
 | |
| 				     fs_info->dirty_metadata_batch);
 | |
| 	if (ret > 0) {
 | |
| 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	__btrfs_btree_balance_dirty(fs_info, 1);
 | |
| }
 | |
| 
 | |
| void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	__btrfs_btree_balance_dirty(fs_info, 0);
 | |
| }
 | |
| 
 | |
| static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	/* cleanup FS via transaction */
 | |
| 	btrfs_cleanup_transaction(fs_info);
 | |
| 
 | |
| 	mutex_lock(&fs_info->cleaner_mutex);
 | |
| 	btrfs_run_delayed_iputs(fs_info);
 | |
| 	mutex_unlock(&fs_info->cleaner_mutex);
 | |
| 
 | |
| 	down_write(&fs_info->cleanup_work_sem);
 | |
| 	up_write(&fs_info->cleanup_work_sem);
 | |
| }
 | |
| 
 | |
| static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *gang[8];
 | |
| 	u64 root_objectid = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
 | |
| 					     (void **)gang, root_objectid,
 | |
| 					     ARRAY_SIZE(gang))) != 0) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < ret; i++)
 | |
| 			gang[i] = btrfs_grab_root(gang[i]);
 | |
| 		spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			if (!gang[i])
 | |
| 				continue;
 | |
| 			root_objectid = btrfs_root_id(gang[i]);
 | |
| 			btrfs_free_log(NULL, gang[i]);
 | |
| 			btrfs_put_root(gang[i]);
 | |
| 		}
 | |
| 		root_objectid++;
 | |
| 		spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| 	btrfs_free_log_root_tree(NULL, fs_info);
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 	spin_lock(&root->ordered_extent_lock);
 | |
| 	/*
 | |
| 	 * This will just short circuit the ordered completion stuff which will
 | |
| 	 * make sure the ordered extent gets properly cleaned up.
 | |
| 	 */
 | |
| 	list_for_each_entry(ordered, &root->ordered_extents,
 | |
| 			    root_extent_list)
 | |
| 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
 | |
| 	spin_unlock(&root->ordered_extent_lock);
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	LIST_HEAD(splice);
 | |
| 
 | |
| 	spin_lock(&fs_info->ordered_root_lock);
 | |
| 	list_splice_init(&fs_info->ordered_roots, &splice);
 | |
| 	while (!list_empty(&splice)) {
 | |
| 		root = list_first_entry(&splice, struct btrfs_root,
 | |
| 					ordered_root);
 | |
| 		list_move_tail(&root->ordered_root,
 | |
| 			       &fs_info->ordered_roots);
 | |
| 
 | |
| 		spin_unlock(&fs_info->ordered_root_lock);
 | |
| 		btrfs_destroy_ordered_extents(root);
 | |
| 
 | |
| 		cond_resched();
 | |
| 		spin_lock(&fs_info->ordered_root_lock);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->ordered_root_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need this here because if we've been flipped read-only we won't
 | |
| 	 * get sync() from the umount, so we need to make sure any ordered
 | |
| 	 * extents that haven't had their dirty pages IO start writeout yet
 | |
| 	 * actually get run and error out properly.
 | |
| 	 */
 | |
| 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_inode *btrfs_inode;
 | |
| 	LIST_HEAD(splice);
 | |
| 
 | |
| 	spin_lock(&root->delalloc_lock);
 | |
| 	list_splice_init(&root->delalloc_inodes, &splice);
 | |
| 
 | |
| 	while (!list_empty(&splice)) {
 | |
| 		struct inode *inode = NULL;
 | |
| 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
 | |
| 					       delalloc_inodes);
 | |
| 		btrfs_del_delalloc_inode(btrfs_inode);
 | |
| 		spin_unlock(&root->delalloc_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure we get a live inode and that it'll not disappear
 | |
| 		 * meanwhile.
 | |
| 		 */
 | |
| 		inode = igrab(&btrfs_inode->vfs_inode);
 | |
| 		if (inode) {
 | |
| 			unsigned int nofs_flag;
 | |
| 
 | |
| 			nofs_flag = memalloc_nofs_save();
 | |
| 			invalidate_inode_pages2(inode->i_mapping);
 | |
| 			memalloc_nofs_restore(nofs_flag);
 | |
| 			iput(inode);
 | |
| 		}
 | |
| 		spin_lock(&root->delalloc_lock);
 | |
| 	}
 | |
| 	spin_unlock(&root->delalloc_lock);
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	LIST_HEAD(splice);
 | |
| 
 | |
| 	spin_lock(&fs_info->delalloc_root_lock);
 | |
| 	list_splice_init(&fs_info->delalloc_roots, &splice);
 | |
| 	while (!list_empty(&splice)) {
 | |
| 		root = list_first_entry(&splice, struct btrfs_root,
 | |
| 					 delalloc_root);
 | |
| 		root = btrfs_grab_root(root);
 | |
| 		BUG_ON(!root);
 | |
| 		spin_unlock(&fs_info->delalloc_root_lock);
 | |
| 
 | |
| 		btrfs_destroy_delalloc_inodes(root);
 | |
| 		btrfs_put_root(root);
 | |
| 
 | |
| 		spin_lock(&fs_info->delalloc_root_lock);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->delalloc_root_lock);
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
 | |
| 					 struct extent_io_tree *dirty_pages,
 | |
| 					 int mark)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 	u64 start = 0;
 | |
| 	u64 end;
 | |
| 
 | |
| 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
 | |
| 				     mark, NULL)) {
 | |
| 		clear_extent_bits(dirty_pages, start, end, mark);
 | |
| 		while (start <= end) {
 | |
| 			eb = find_extent_buffer(fs_info, start);
 | |
| 			start += fs_info->nodesize;
 | |
| 			if (!eb)
 | |
| 				continue;
 | |
| 
 | |
| 			btrfs_tree_lock(eb);
 | |
| 			wait_on_extent_buffer_writeback(eb);
 | |
| 			btrfs_clear_buffer_dirty(NULL, eb);
 | |
| 			btrfs_tree_unlock(eb);
 | |
| 
 | |
| 			free_extent_buffer_stale(eb);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
 | |
| 					struct extent_io_tree *unpin)
 | |
| {
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct extent_state *cached_state = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * The btrfs_finish_extent_commit() may get the same range as
 | |
| 		 * ours between find_first_extent_bit and clear_extent_dirty.
 | |
| 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
 | |
| 		 * the same extent range.
 | |
| 		 */
 | |
| 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
 | |
| 		if (!find_first_extent_bit(unpin, 0, &start, &end,
 | |
| 					   EXTENT_DIRTY, &cached_state)) {
 | |
| 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		clear_extent_dirty(unpin, start, end, &cached_state);
 | |
| 		free_extent_state(cached_state);
 | |
| 		btrfs_error_unpin_extent_range(fs_info, start, end);
 | |
| 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = cache->io_ctl.inode;
 | |
| 	if (inode) {
 | |
| 		unsigned int nofs_flag;
 | |
| 
 | |
| 		nofs_flag = memalloc_nofs_save();
 | |
| 		invalidate_inode_pages2(inode->i_mapping);
 | |
| 		memalloc_nofs_restore(nofs_flag);
 | |
| 
 | |
| 		BTRFS_I(inode)->generation = 0;
 | |
| 		cache->io_ctl.inode = NULL;
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 	ASSERT(cache->io_ctl.pages == NULL);
 | |
| 	btrfs_put_block_group(cache);
 | |
| }
 | |
| 
 | |
| void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
 | |
| 			     struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 
 | |
| 	spin_lock(&cur_trans->dirty_bgs_lock);
 | |
| 	while (!list_empty(&cur_trans->dirty_bgs)) {
 | |
| 		cache = list_first_entry(&cur_trans->dirty_bgs,
 | |
| 					 struct btrfs_block_group,
 | |
| 					 dirty_list);
 | |
| 
 | |
| 		if (!list_empty(&cache->io_list)) {
 | |
| 			spin_unlock(&cur_trans->dirty_bgs_lock);
 | |
| 			list_del_init(&cache->io_list);
 | |
| 			btrfs_cleanup_bg_io(cache);
 | |
| 			spin_lock(&cur_trans->dirty_bgs_lock);
 | |
| 		}
 | |
| 
 | |
| 		list_del_init(&cache->dirty_list);
 | |
| 		spin_lock(&cache->lock);
 | |
| 		cache->disk_cache_state = BTRFS_DC_ERROR;
 | |
| 		spin_unlock(&cache->lock);
 | |
| 
 | |
| 		spin_unlock(&cur_trans->dirty_bgs_lock);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
 | |
| 		spin_lock(&cur_trans->dirty_bgs_lock);
 | |
| 	}
 | |
| 	spin_unlock(&cur_trans->dirty_bgs_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Refer to the definition of io_bgs member for details why it's safe
 | |
| 	 * to use it without any locking
 | |
| 	 */
 | |
| 	while (!list_empty(&cur_trans->io_bgs)) {
 | |
| 		cache = list_first_entry(&cur_trans->io_bgs,
 | |
| 					 struct btrfs_block_group,
 | |
| 					 io_list);
 | |
| 
 | |
| 		list_del_init(&cache->io_list);
 | |
| 		spin_lock(&cache->lock);
 | |
| 		cache->disk_cache_state = BTRFS_DC_ERROR;
 | |
| 		spin_unlock(&cache->lock);
 | |
| 		btrfs_cleanup_bg_io(cache);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *gang[8];
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&fs_info->fs_roots_radix_lock);
 | |
| 	while (1) {
 | |
| 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
 | |
| 						 (void **)gang, 0,
 | |
| 						 ARRAY_SIZE(gang),
 | |
| 						 BTRFS_ROOT_TRANS_TAG);
 | |
| 		if (ret == 0)
 | |
| 			break;
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			struct btrfs_root *root = gang[i];
 | |
| 
 | |
| 			btrfs_qgroup_free_meta_all_pertrans(root);
 | |
| 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
 | |
| 					(unsigned long)btrfs_root_id(root),
 | |
| 					BTRFS_ROOT_TRANS_TAG);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->fs_roots_radix_lock);
 | |
| }
 | |
| 
 | |
| void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = cur_trans->fs_info;
 | |
| 	struct btrfs_device *dev, *tmp;
 | |
| 
 | |
| 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
 | |
| 	ASSERT(list_empty(&cur_trans->dirty_bgs));
 | |
| 	ASSERT(list_empty(&cur_trans->io_bgs));
 | |
| 
 | |
| 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
 | |
| 				 post_commit_list) {
 | |
| 		list_del_init(&dev->post_commit_list);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_destroy_delayed_refs(cur_trans);
 | |
| 
 | |
| 	cur_trans->state = TRANS_STATE_COMMIT_START;
 | |
| 	wake_up(&fs_info->transaction_blocked_wait);
 | |
| 
 | |
| 	cur_trans->state = TRANS_STATE_UNBLOCKED;
 | |
| 	wake_up(&fs_info->transaction_wait);
 | |
| 
 | |
| 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
 | |
| 				     EXTENT_DIRTY);
 | |
| 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
 | |
| 
 | |
| 	cur_trans->state =TRANS_STATE_COMPLETED;
 | |
| 	wake_up(&cur_trans->commit_wait);
 | |
| }
 | |
| 
 | |
| static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_transaction *t;
 | |
| 
 | |
| 	mutex_lock(&fs_info->transaction_kthread_mutex);
 | |
| 
 | |
| 	spin_lock(&fs_info->trans_lock);
 | |
| 	while (!list_empty(&fs_info->trans_list)) {
 | |
| 		t = list_first_entry(&fs_info->trans_list,
 | |
| 				     struct btrfs_transaction, list);
 | |
| 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
 | |
| 			refcount_inc(&t->use_count);
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			btrfs_wait_for_commit(fs_info, t->transid);
 | |
| 			btrfs_put_transaction(t);
 | |
| 			spin_lock(&fs_info->trans_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (t == fs_info->running_transaction) {
 | |
| 			t->state = TRANS_STATE_COMMIT_DOING;
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 			/*
 | |
| 			 * We wait for 0 num_writers since we don't hold a trans
 | |
| 			 * handle open currently for this transaction.
 | |
| 			 */
 | |
| 			wait_event(t->writer_wait,
 | |
| 				   atomic_read(&t->num_writers) == 0);
 | |
| 		} else {
 | |
| 			spin_unlock(&fs_info->trans_lock);
 | |
| 		}
 | |
| 		btrfs_cleanup_one_transaction(t);
 | |
| 
 | |
| 		spin_lock(&fs_info->trans_lock);
 | |
| 		if (t == fs_info->running_transaction)
 | |
| 			fs_info->running_transaction = NULL;
 | |
| 		list_del_init(&t->list);
 | |
| 		spin_unlock(&fs_info->trans_lock);
 | |
| 
 | |
| 		btrfs_put_transaction(t);
 | |
| 		trace_btrfs_transaction_commit(fs_info);
 | |
| 		spin_lock(&fs_info->trans_lock);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->trans_lock);
 | |
| 	btrfs_destroy_all_ordered_extents(fs_info);
 | |
| 	btrfs_destroy_delayed_inodes(fs_info);
 | |
| 	btrfs_assert_delayed_root_empty(fs_info);
 | |
| 	btrfs_destroy_all_delalloc_inodes(fs_info);
 | |
| 	btrfs_drop_all_logs(fs_info);
 | |
| 	btrfs_free_all_qgroup_pertrans(fs_info);
 | |
| 	mutex_unlock(&fs_info->transaction_kthread_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_init_root_free_objectid(struct btrfs_root *root)
 | |
| {
 | |
| 	BTRFS_PATH_AUTO_FREE(path);
 | |
| 	int ret;
 | |
| 	struct extent_buffer *l;
 | |
| 	struct btrfs_key search_key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	int slot;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
 | |
| 	search_key.type = -1;
 | |
| 	search_key.offset = (u64)-1;
 | |
| 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	if (ret == 0) {
 | |
| 		/*
 | |
| 		 * Key with offset -1 found, there would have to exist a root
 | |
| 		 * with such id, but this is out of valid range.
 | |
| 		 */
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 	if (path->slots[0] > 0) {
 | |
| 		slot = path->slots[0] - 1;
 | |
| 		l = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(l, &found_key, slot);
 | |
| 		root->free_objectid = max_t(u64, found_key.objectid + 1,
 | |
| 					    BTRFS_FIRST_FREE_OBJECTID);
 | |
| 	} else {
 | |
| 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
 | |
| {
 | |
| 	int ret;
 | |
| 	mutex_lock(&root->objectid_mutex);
 | |
| 
 | |
| 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
 | |
| 		btrfs_warn(root->fs_info,
 | |
| 			   "the objectid of root %llu reaches its highest value",
 | |
| 			   btrfs_root_id(root));
 | |
| 		ret = -ENOSPC;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	*objectid = root->free_objectid++;
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	mutex_unlock(&root->objectid_mutex);
 | |
| 	return ret;
 | |
| }
 |