forked from mirrors/linux
		
	 300d3739e8
			
		
	
	
		300d3739e8
		
	
	
	
	
		
			
			Revert commit 45226e9 (NMI watchdog: fix for lockup detector breakage
on resume) which breaks resume from system suspend on my SH7372
Mackerel board (by causing a NULL pointer dereference to happen) and
is generally wrong, because it abuses the CPU hotplug functionality
in a shamelessly blatant way.
The original issue should be addressed through appropriate syscore
resume callback instead.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
		
	
			
		
			
				
	
	
		
			2824 lines
		
	
	
	
		
			83 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2824 lines
		
	
	
	
		
			83 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _LINUX_SCHED_H
 | |
| #define _LINUX_SCHED_H
 | |
| 
 | |
| /*
 | |
|  * cloning flags:
 | |
|  */
 | |
| #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
 | |
| #define CLONE_VM	0x00000100	/* set if VM shared between processes */
 | |
| #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
 | |
| #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
 | |
| #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
 | |
| #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
 | |
| #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
 | |
| #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
 | |
| #define CLONE_THREAD	0x00010000	/* Same thread group? */
 | |
| #define CLONE_NEWNS	0x00020000	/* New namespace group? */
 | |
| #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
 | |
| #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
 | |
| #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
 | |
| #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
 | |
| #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
 | |
| #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
 | |
| #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
 | |
| /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
 | |
|    and is now available for re-use. */
 | |
| #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
 | |
| #define CLONE_NEWIPC		0x08000000	/* New ipcs */
 | |
| #define CLONE_NEWUSER		0x10000000	/* New user namespace */
 | |
| #define CLONE_NEWPID		0x20000000	/* New pid namespace */
 | |
| #define CLONE_NEWNET		0x40000000	/* New network namespace */
 | |
| #define CLONE_IO		0x80000000	/* Clone io context */
 | |
| 
 | |
| /*
 | |
|  * Scheduling policies
 | |
|  */
 | |
| #define SCHED_NORMAL		0
 | |
| #define SCHED_FIFO		1
 | |
| #define SCHED_RR		2
 | |
| #define SCHED_BATCH		3
 | |
| /* SCHED_ISO: reserved but not implemented yet */
 | |
| #define SCHED_IDLE		5
 | |
| /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
 | |
| #define SCHED_RESET_ON_FORK     0x40000000
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| struct sched_param {
 | |
| 	int sched_priority;
 | |
| };
 | |
| 
 | |
| #include <asm/param.h>	/* for HZ */
 | |
| 
 | |
| #include <linux/capability.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/thread_info.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/mm_types.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/cputime.h>
 | |
| 
 | |
| #include <linux/smp.h>
 | |
| #include <linux/sem.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/pid.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/proportions.h>
 | |
| #include <linux/seccomp.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/rtmutex.h>
 | |
| 
 | |
| #include <linux/time.h>
 | |
| #include <linux/param.h>
 | |
| #include <linux/resource.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/task_io_accounting.h>
 | |
| #include <linux/latencytop.h>
 | |
| #include <linux/cred.h>
 | |
| #include <linux/llist.h>
 | |
| #include <linux/uidgid.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| 
 | |
| struct exec_domain;
 | |
| struct futex_pi_state;
 | |
| struct robust_list_head;
 | |
| struct bio_list;
 | |
| struct fs_struct;
 | |
| struct perf_event_context;
 | |
| struct blk_plug;
 | |
| 
 | |
| /*
 | |
|  * List of flags we want to share for kernel threads,
 | |
|  * if only because they are not used by them anyway.
 | |
|  */
 | |
| #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 | |
| 
 | |
| /*
 | |
|  * These are the constant used to fake the fixed-point load-average
 | |
|  * counting. Some notes:
 | |
|  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 | |
|  *    a load-average precision of 10 bits integer + 11 bits fractional
 | |
|  *  - if you want to count load-averages more often, you need more
 | |
|  *    precision, or rounding will get you. With 2-second counting freq,
 | |
|  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 | |
|  *    11 bit fractions.
 | |
|  */
 | |
| extern unsigned long avenrun[];		/* Load averages */
 | |
| extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 | |
| 
 | |
| #define FSHIFT		11		/* nr of bits of precision */
 | |
| #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
 | |
| #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
 | |
| #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
 | |
| #define EXP_5		2014		/* 1/exp(5sec/5min) */
 | |
| #define EXP_15		2037		/* 1/exp(5sec/15min) */
 | |
| 
 | |
| #define CALC_LOAD(load,exp,n) \
 | |
| 	load *= exp; \
 | |
| 	load += n*(FIXED_1-exp); \
 | |
| 	load >>= FSHIFT;
 | |
| 
 | |
| extern unsigned long total_forks;
 | |
| extern int nr_threads;
 | |
| DECLARE_PER_CPU(unsigned long, process_counts);
 | |
| extern int nr_processes(void);
 | |
| extern unsigned long nr_running(void);
 | |
| extern unsigned long nr_uninterruptible(void);
 | |
| extern unsigned long nr_iowait(void);
 | |
| extern unsigned long nr_iowait_cpu(int cpu);
 | |
| extern unsigned long this_cpu_load(void);
 | |
| 
 | |
| 
 | |
| extern void calc_global_load(unsigned long ticks);
 | |
| extern void update_cpu_load_nohz(void);
 | |
| 
 | |
| extern unsigned long get_parent_ip(unsigned long addr);
 | |
| 
 | |
| struct seq_file;
 | |
| struct cfs_rq;
 | |
| struct task_group;
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 | |
| extern void proc_sched_set_task(struct task_struct *p);
 | |
| extern void
 | |
| print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 | |
| #else
 | |
| static inline void
 | |
| proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 | |
| {
 | |
| }
 | |
| static inline void proc_sched_set_task(struct task_struct *p)
 | |
| {
 | |
| }
 | |
| static inline void
 | |
| print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Task state bitmask. NOTE! These bits are also
 | |
|  * encoded in fs/proc/array.c: get_task_state().
 | |
|  *
 | |
|  * We have two separate sets of flags: task->state
 | |
|  * is about runnability, while task->exit_state are
 | |
|  * about the task exiting. Confusing, but this way
 | |
|  * modifying one set can't modify the other one by
 | |
|  * mistake.
 | |
|  */
 | |
| #define TASK_RUNNING		0
 | |
| #define TASK_INTERRUPTIBLE	1
 | |
| #define TASK_UNINTERRUPTIBLE	2
 | |
| #define __TASK_STOPPED		4
 | |
| #define __TASK_TRACED		8
 | |
| /* in tsk->exit_state */
 | |
| #define EXIT_ZOMBIE		16
 | |
| #define EXIT_DEAD		32
 | |
| /* in tsk->state again */
 | |
| #define TASK_DEAD		64
 | |
| #define TASK_WAKEKILL		128
 | |
| #define TASK_WAKING		256
 | |
| #define TASK_STATE_MAX		512
 | |
| 
 | |
| #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
 | |
| 
 | |
| extern char ___assert_task_state[1 - 2*!!(
 | |
| 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 | |
| 
 | |
| /* Convenience macros for the sake of set_task_state */
 | |
| #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 | |
| #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
 | |
| #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
 | |
| 
 | |
| /* Convenience macros for the sake of wake_up */
 | |
| #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 | |
| #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 | |
| 
 | |
| /* get_task_state() */
 | |
| #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
 | |
| 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 | |
| 				 __TASK_TRACED)
 | |
| 
 | |
| #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
 | |
| #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
 | |
| #define task_is_dead(task)	((task)->exit_state != 0)
 | |
| #define task_is_stopped_or_traced(task)	\
 | |
| 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 | |
| #define task_contributes_to_load(task)	\
 | |
| 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 | |
| 				 (task->flags & PF_FROZEN) == 0)
 | |
| 
 | |
| #define __set_task_state(tsk, state_value)		\
 | |
| 	do { (tsk)->state = (state_value); } while (0)
 | |
| #define set_task_state(tsk, state_value)		\
 | |
| 	set_mb((tsk)->state, (state_value))
 | |
| 
 | |
| /*
 | |
|  * set_current_state() includes a barrier so that the write of current->state
 | |
|  * is correctly serialised wrt the caller's subsequent test of whether to
 | |
|  * actually sleep:
 | |
|  *
 | |
|  *	set_current_state(TASK_UNINTERRUPTIBLE);
 | |
|  *	if (do_i_need_to_sleep())
 | |
|  *		schedule();
 | |
|  *
 | |
|  * If the caller does not need such serialisation then use __set_current_state()
 | |
|  */
 | |
| #define __set_current_state(state_value)			\
 | |
| 	do { current->state = (state_value); } while (0)
 | |
| #define set_current_state(state_value)		\
 | |
| 	set_mb(current->state, (state_value))
 | |
| 
 | |
| /* Task command name length */
 | |
| #define TASK_COMM_LEN 16
 | |
| 
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| /*
 | |
|  * This serializes "schedule()" and also protects
 | |
|  * the run-queue from deletions/modifications (but
 | |
|  * _adding_ to the beginning of the run-queue has
 | |
|  * a separate lock).
 | |
|  */
 | |
| extern rwlock_t tasklist_lock;
 | |
| extern spinlock_t mmlist_lock;
 | |
| 
 | |
| struct task_struct;
 | |
| 
 | |
| #ifdef CONFIG_PROVE_RCU
 | |
| extern int lockdep_tasklist_lock_is_held(void);
 | |
| #endif /* #ifdef CONFIG_PROVE_RCU */
 | |
| 
 | |
| extern void sched_init(void);
 | |
| extern void sched_init_smp(void);
 | |
| extern asmlinkage void schedule_tail(struct task_struct *prev);
 | |
| extern void init_idle(struct task_struct *idle, int cpu);
 | |
| extern void init_idle_bootup_task(struct task_struct *idle);
 | |
| 
 | |
| extern int runqueue_is_locked(int cpu);
 | |
| 
 | |
| #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 | |
| extern void select_nohz_load_balancer(int stop_tick);
 | |
| extern void set_cpu_sd_state_idle(void);
 | |
| extern int get_nohz_timer_target(void);
 | |
| #else
 | |
| static inline void select_nohz_load_balancer(int stop_tick) { }
 | |
| static inline void set_cpu_sd_state_idle(void) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Only dump TASK_* tasks. (0 for all tasks)
 | |
|  */
 | |
| extern void show_state_filter(unsigned long state_filter);
 | |
| 
 | |
| static inline void show_state(void)
 | |
| {
 | |
| 	show_state_filter(0);
 | |
| }
 | |
| 
 | |
| extern void show_regs(struct pt_regs *);
 | |
| 
 | |
| /*
 | |
|  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 | |
|  * task), SP is the stack pointer of the first frame that should be shown in the back
 | |
|  * trace (or NULL if the entire call-chain of the task should be shown).
 | |
|  */
 | |
| extern void show_stack(struct task_struct *task, unsigned long *sp);
 | |
| 
 | |
| void io_schedule(void);
 | |
| long io_schedule_timeout(long timeout);
 | |
| 
 | |
| extern void cpu_init (void);
 | |
| extern void trap_init(void);
 | |
| extern void update_process_times(int user);
 | |
| extern void scheduler_tick(void);
 | |
| 
 | |
| extern void sched_show_task(struct task_struct *p);
 | |
| 
 | |
| #ifdef CONFIG_LOCKUP_DETECTOR
 | |
| extern void touch_softlockup_watchdog(void);
 | |
| extern void touch_softlockup_watchdog_sync(void);
 | |
| extern void touch_all_softlockup_watchdogs(void);
 | |
| extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 | |
| 				  void __user *buffer,
 | |
| 				  size_t *lenp, loff_t *ppos);
 | |
| extern unsigned int  softlockup_panic;
 | |
| void lockup_detector_init(void);
 | |
| #else
 | |
| static inline void touch_softlockup_watchdog(void)
 | |
| {
 | |
| }
 | |
| static inline void touch_softlockup_watchdog_sync(void)
 | |
| {
 | |
| }
 | |
| static inline void touch_all_softlockup_watchdogs(void)
 | |
| {
 | |
| }
 | |
| static inline void lockup_detector_init(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DETECT_HUNG_TASK
 | |
| extern unsigned int  sysctl_hung_task_panic;
 | |
| extern unsigned long sysctl_hung_task_check_count;
 | |
| extern unsigned long sysctl_hung_task_timeout_secs;
 | |
| extern unsigned long sysctl_hung_task_warnings;
 | |
| extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
 | |
| 					 void __user *buffer,
 | |
| 					 size_t *lenp, loff_t *ppos);
 | |
| #else
 | |
| /* Avoid need for ifdefs elsewhere in the code */
 | |
| enum { sysctl_hung_task_timeout_secs = 0 };
 | |
| #endif
 | |
| 
 | |
| /* Attach to any functions which should be ignored in wchan output. */
 | |
| #define __sched		__attribute__((__section__(".sched.text")))
 | |
| 
 | |
| /* Linker adds these: start and end of __sched functions */
 | |
| extern char __sched_text_start[], __sched_text_end[];
 | |
| 
 | |
| /* Is this address in the __sched functions? */
 | |
| extern int in_sched_functions(unsigned long addr);
 | |
| 
 | |
| #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
 | |
| extern signed long schedule_timeout(signed long timeout);
 | |
| extern signed long schedule_timeout_interruptible(signed long timeout);
 | |
| extern signed long schedule_timeout_killable(signed long timeout);
 | |
| extern signed long schedule_timeout_uninterruptible(signed long timeout);
 | |
| asmlinkage void schedule(void);
 | |
| extern void schedule_preempt_disabled(void);
 | |
| extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
 | |
| 
 | |
| struct nsproxy;
 | |
| struct user_namespace;
 | |
| 
 | |
| /*
 | |
|  * Default maximum number of active map areas, this limits the number of vmas
 | |
|  * per mm struct. Users can overwrite this number by sysctl but there is a
 | |
|  * problem.
 | |
|  *
 | |
|  * When a program's coredump is generated as ELF format, a section is created
 | |
|  * per a vma. In ELF, the number of sections is represented in unsigned short.
 | |
|  * This means the number of sections should be smaller than 65535 at coredump.
 | |
|  * Because the kernel adds some informative sections to a image of program at
 | |
|  * generating coredump, we need some margin. The number of extra sections is
 | |
|  * 1-3 now and depends on arch. We use "5" as safe margin, here.
 | |
|  */
 | |
| #define MAPCOUNT_ELF_CORE_MARGIN	(5)
 | |
| #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 | |
| 
 | |
| extern int sysctl_max_map_count;
 | |
| 
 | |
| #include <linux/aio.h>
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern void arch_pick_mmap_layout(struct mm_struct *mm);
 | |
| extern unsigned long
 | |
| arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 | |
| 		       unsigned long, unsigned long);
 | |
| extern unsigned long
 | |
| arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 | |
| 			  unsigned long len, unsigned long pgoff,
 | |
| 			  unsigned long flags);
 | |
| extern void arch_unmap_area(struct mm_struct *, unsigned long);
 | |
| extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 | |
| #else
 | |
| static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 | |
| #endif
 | |
| 
 | |
| 
 | |
| extern void set_dumpable(struct mm_struct *mm, int value);
 | |
| extern int get_dumpable(struct mm_struct *mm);
 | |
| 
 | |
| /* get/set_dumpable() values */
 | |
| #define SUID_DUMPABLE_DISABLED	0
 | |
| #define SUID_DUMPABLE_ENABLED	1
 | |
| #define SUID_DUMPABLE_SAFE	2
 | |
| 
 | |
| /* mm flags */
 | |
| /* dumpable bits */
 | |
| #define MMF_DUMPABLE      0  /* core dump is permitted */
 | |
| #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 | |
| 
 | |
| #define MMF_DUMPABLE_BITS 2
 | |
| #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 | |
| 
 | |
| /* coredump filter bits */
 | |
| #define MMF_DUMP_ANON_PRIVATE	2
 | |
| #define MMF_DUMP_ANON_SHARED	3
 | |
| #define MMF_DUMP_MAPPED_PRIVATE	4
 | |
| #define MMF_DUMP_MAPPED_SHARED	5
 | |
| #define MMF_DUMP_ELF_HEADERS	6
 | |
| #define MMF_DUMP_HUGETLB_PRIVATE 7
 | |
| #define MMF_DUMP_HUGETLB_SHARED  8
 | |
| 
 | |
| #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
 | |
| #define MMF_DUMP_FILTER_BITS	7
 | |
| #define MMF_DUMP_FILTER_MASK \
 | |
| 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 | |
| #define MMF_DUMP_FILTER_DEFAULT \
 | |
| 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
 | |
| 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 | |
| 
 | |
| #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 | |
| # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
 | |
| #else
 | |
| # define MMF_DUMP_MASK_DEFAULT_ELF	0
 | |
| #endif
 | |
| 					/* leave room for more dump flags */
 | |
| #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
 | |
| #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
 | |
| #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
 | |
| 
 | |
| #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 | |
| 
 | |
| struct sighand_struct {
 | |
| 	atomic_t		count;
 | |
| 	struct k_sigaction	action[_NSIG];
 | |
| 	spinlock_t		siglock;
 | |
| 	wait_queue_head_t	signalfd_wqh;
 | |
| };
 | |
| 
 | |
| struct pacct_struct {
 | |
| 	int			ac_flag;
 | |
| 	long			ac_exitcode;
 | |
| 	unsigned long		ac_mem;
 | |
| 	cputime_t		ac_utime, ac_stime;
 | |
| 	unsigned long		ac_minflt, ac_majflt;
 | |
| };
 | |
| 
 | |
| struct cpu_itimer {
 | |
| 	cputime_t expires;
 | |
| 	cputime_t incr;
 | |
| 	u32 error;
 | |
| 	u32 incr_error;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct task_cputime - collected CPU time counts
 | |
|  * @utime:		time spent in user mode, in &cputime_t units
 | |
|  * @stime:		time spent in kernel mode, in &cputime_t units
 | |
|  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
 | |
|  *
 | |
|  * This structure groups together three kinds of CPU time that are
 | |
|  * tracked for threads and thread groups.  Most things considering
 | |
|  * CPU time want to group these counts together and treat all three
 | |
|  * of them in parallel.
 | |
|  */
 | |
| struct task_cputime {
 | |
| 	cputime_t utime;
 | |
| 	cputime_t stime;
 | |
| 	unsigned long long sum_exec_runtime;
 | |
| };
 | |
| /* Alternate field names when used to cache expirations. */
 | |
| #define prof_exp	stime
 | |
| #define virt_exp	utime
 | |
| #define sched_exp	sum_exec_runtime
 | |
| 
 | |
| #define INIT_CPUTIME	\
 | |
| 	(struct task_cputime) {					\
 | |
| 		.utime = 0,					\
 | |
| 		.stime = 0,					\
 | |
| 		.sum_exec_runtime = 0,				\
 | |
| 	}
 | |
| 
 | |
| /*
 | |
|  * Disable preemption until the scheduler is running.
 | |
|  * Reset by start_kernel()->sched_init()->init_idle().
 | |
|  *
 | |
|  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 | |
|  * before the scheduler is active -- see should_resched().
 | |
|  */
 | |
| #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
 | |
| 
 | |
| /**
 | |
|  * struct thread_group_cputimer - thread group interval timer counts
 | |
|  * @cputime:		thread group interval timers.
 | |
|  * @running:		non-zero when there are timers running and
 | |
|  * 			@cputime receives updates.
 | |
|  * @lock:		lock for fields in this struct.
 | |
|  *
 | |
|  * This structure contains the version of task_cputime, above, that is
 | |
|  * used for thread group CPU timer calculations.
 | |
|  */
 | |
| struct thread_group_cputimer {
 | |
| 	struct task_cputime cputime;
 | |
| 	int running;
 | |
| 	raw_spinlock_t lock;
 | |
| };
 | |
| 
 | |
| #include <linux/rwsem.h>
 | |
| struct autogroup;
 | |
| 
 | |
| /*
 | |
|  * NOTE! "signal_struct" does not have its own
 | |
|  * locking, because a shared signal_struct always
 | |
|  * implies a shared sighand_struct, so locking
 | |
|  * sighand_struct is always a proper superset of
 | |
|  * the locking of signal_struct.
 | |
|  */
 | |
| struct signal_struct {
 | |
| 	atomic_t		sigcnt;
 | |
| 	atomic_t		live;
 | |
| 	int			nr_threads;
 | |
| 
 | |
| 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
 | |
| 
 | |
| 	/* current thread group signal load-balancing target: */
 | |
| 	struct task_struct	*curr_target;
 | |
| 
 | |
| 	/* shared signal handling: */
 | |
| 	struct sigpending	shared_pending;
 | |
| 
 | |
| 	/* thread group exit support */
 | |
| 	int			group_exit_code;
 | |
| 	/* overloaded:
 | |
| 	 * - notify group_exit_task when ->count is equal to notify_count
 | |
| 	 * - everyone except group_exit_task is stopped during signal delivery
 | |
| 	 *   of fatal signals, group_exit_task processes the signal.
 | |
| 	 */
 | |
| 	int			notify_count;
 | |
| 	struct task_struct	*group_exit_task;
 | |
| 
 | |
| 	/* thread group stop support, overloads group_exit_code too */
 | |
| 	int			group_stop_count;
 | |
| 	unsigned int		flags; /* see SIGNAL_* flags below */
 | |
| 
 | |
| 	/*
 | |
| 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
 | |
| 	 * manager, to re-parent orphan (double-forking) child processes
 | |
| 	 * to this process instead of 'init'. The service manager is
 | |
| 	 * able to receive SIGCHLD signals and is able to investigate
 | |
| 	 * the process until it calls wait(). All children of this
 | |
| 	 * process will inherit a flag if they should look for a
 | |
| 	 * child_subreaper process at exit.
 | |
| 	 */
 | |
| 	unsigned int		is_child_subreaper:1;
 | |
| 	unsigned int		has_child_subreaper:1;
 | |
| 
 | |
| 	/* POSIX.1b Interval Timers */
 | |
| 	struct list_head posix_timers;
 | |
| 
 | |
| 	/* ITIMER_REAL timer for the process */
 | |
| 	struct hrtimer real_timer;
 | |
| 	struct pid *leader_pid;
 | |
| 	ktime_t it_real_incr;
 | |
| 
 | |
| 	/*
 | |
| 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 | |
| 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 | |
| 	 * values are defined to 0 and 1 respectively
 | |
| 	 */
 | |
| 	struct cpu_itimer it[2];
 | |
| 
 | |
| 	/*
 | |
| 	 * Thread group totals for process CPU timers.
 | |
| 	 * See thread_group_cputimer(), et al, for details.
 | |
| 	 */
 | |
| 	struct thread_group_cputimer cputimer;
 | |
| 
 | |
| 	/* Earliest-expiration cache. */
 | |
| 	struct task_cputime cputime_expires;
 | |
| 
 | |
| 	struct list_head cpu_timers[3];
 | |
| 
 | |
| 	struct pid *tty_old_pgrp;
 | |
| 
 | |
| 	/* boolean value for session group leader */
 | |
| 	int leader;
 | |
| 
 | |
| 	struct tty_struct *tty; /* NULL if no tty */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_AUTOGROUP
 | |
| 	struct autogroup *autogroup;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Cumulative resource counters for dead threads in the group,
 | |
| 	 * and for reaped dead child processes forked by this group.
 | |
| 	 * Live threads maintain their own counters and add to these
 | |
| 	 * in __exit_signal, except for the group leader.
 | |
| 	 */
 | |
| 	cputime_t utime, stime, cutime, cstime;
 | |
| 	cputime_t gtime;
 | |
| 	cputime_t cgtime;
 | |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING
 | |
| 	cputime_t prev_utime, prev_stime;
 | |
| #endif
 | |
| 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 | |
| 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 | |
| 	unsigned long inblock, oublock, cinblock, coublock;
 | |
| 	unsigned long maxrss, cmaxrss;
 | |
| 	struct task_io_accounting ioac;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cumulative ns of schedule CPU time fo dead threads in the
 | |
| 	 * group, not including a zombie group leader, (This only differs
 | |
| 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
 | |
| 	 * other than jiffies.)
 | |
| 	 */
 | |
| 	unsigned long long sum_sched_runtime;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't bother to synchronize most readers of this at all,
 | |
| 	 * because there is no reader checking a limit that actually needs
 | |
| 	 * to get both rlim_cur and rlim_max atomically, and either one
 | |
| 	 * alone is a single word that can safely be read normally.
 | |
| 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
 | |
| 	 * protect this instead of the siglock, because they really
 | |
| 	 * have no need to disable irqs.
 | |
| 	 */
 | |
| 	struct rlimit rlim[RLIM_NLIMITS];
 | |
| 
 | |
| #ifdef CONFIG_BSD_PROCESS_ACCT
 | |
| 	struct pacct_struct pacct;	/* per-process accounting information */
 | |
| #endif
 | |
| #ifdef CONFIG_TASKSTATS
 | |
| 	struct taskstats *stats;
 | |
| #endif
 | |
| #ifdef CONFIG_AUDIT
 | |
| 	unsigned audit_tty;
 | |
| 	struct tty_audit_buf *tty_audit_buf;
 | |
| #endif
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 	/*
 | |
| 	 * group_rwsem prevents new tasks from entering the threadgroup and
 | |
| 	 * member tasks from exiting,a more specifically, setting of
 | |
| 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
 | |
| 	 * using threadgroup_change_begin/end().  Users which require
 | |
| 	 * threadgroup to remain stable should use threadgroup_[un]lock()
 | |
| 	 * which also takes care of exec path.  Currently, cgroup is the
 | |
| 	 * only user.
 | |
| 	 */
 | |
| 	struct rw_semaphore group_rwsem;
 | |
| #endif
 | |
| 
 | |
| 	int oom_adj;		/* OOM kill score adjustment (bit shift) */
 | |
| 	int oom_score_adj;	/* OOM kill score adjustment */
 | |
| 	int oom_score_adj_min;	/* OOM kill score adjustment minimum value.
 | |
| 				 * Only settable by CAP_SYS_RESOURCE. */
 | |
| 
 | |
| 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
 | |
| 					 * credential calculations
 | |
| 					 * (notably. ptrace) */
 | |
| };
 | |
| 
 | |
| /* Context switch must be unlocked if interrupts are to be enabled */
 | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 | |
| # define __ARCH_WANT_UNLOCKED_CTXSW
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Bits in flags field of signal_struct.
 | |
|  */
 | |
| #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
 | |
| #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
 | |
| #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
 | |
| /*
 | |
|  * Pending notifications to parent.
 | |
|  */
 | |
| #define SIGNAL_CLD_STOPPED	0x00000010
 | |
| #define SIGNAL_CLD_CONTINUED	0x00000020
 | |
| #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 | |
| 
 | |
| #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
 | |
| 
 | |
| /* If true, all threads except ->group_exit_task have pending SIGKILL */
 | |
| static inline int signal_group_exit(const struct signal_struct *sig)
 | |
| {
 | |
| 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
 | |
| 		(sig->group_exit_task != NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some day this will be a full-fledged user tracking system..
 | |
|  */
 | |
| struct user_struct {
 | |
| 	atomic_t __count;	/* reference count */
 | |
| 	atomic_t processes;	/* How many processes does this user have? */
 | |
| 	atomic_t files;		/* How many open files does this user have? */
 | |
| 	atomic_t sigpending;	/* How many pending signals does this user have? */
 | |
| #ifdef CONFIG_INOTIFY_USER
 | |
| 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
 | |
| 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
 | |
| #endif
 | |
| #ifdef CONFIG_FANOTIFY
 | |
| 	atomic_t fanotify_listeners;
 | |
| #endif
 | |
| #ifdef CONFIG_EPOLL
 | |
| 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 | |
| #endif
 | |
| #ifdef CONFIG_POSIX_MQUEUE
 | |
| 	/* protected by mq_lock	*/
 | |
| 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
 | |
| #endif
 | |
| 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
 | |
| 
 | |
| #ifdef CONFIG_KEYS
 | |
| 	struct key *uid_keyring;	/* UID specific keyring */
 | |
| 	struct key *session_keyring;	/* UID's default session keyring */
 | |
| #endif
 | |
| 
 | |
| 	/* Hash table maintenance information */
 | |
| 	struct hlist_node uidhash_node;
 | |
| 	kuid_t uid;
 | |
| 
 | |
| #ifdef CONFIG_PERF_EVENTS
 | |
| 	atomic_long_t locked_vm;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| extern int uids_sysfs_init(void);
 | |
| 
 | |
| extern struct user_struct *find_user(kuid_t);
 | |
| 
 | |
| extern struct user_struct root_user;
 | |
| #define INIT_USER (&root_user)
 | |
| 
 | |
| 
 | |
| struct backing_dev_info;
 | |
| struct reclaim_state;
 | |
| 
 | |
| #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 | |
| struct sched_info {
 | |
| 	/* cumulative counters */
 | |
| 	unsigned long pcount;	      /* # of times run on this cpu */
 | |
| 	unsigned long long run_delay; /* time spent waiting on a runqueue */
 | |
| 
 | |
| 	/* timestamps */
 | |
| 	unsigned long long last_arrival,/* when we last ran on a cpu */
 | |
| 			   last_queued;	/* when we were last queued to run */
 | |
| };
 | |
| #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 | |
| 
 | |
| #ifdef CONFIG_TASK_DELAY_ACCT
 | |
| struct task_delay_info {
 | |
| 	spinlock_t	lock;
 | |
| 	unsigned int	flags;	/* Private per-task flags */
 | |
| 
 | |
| 	/* For each stat XXX, add following, aligned appropriately
 | |
| 	 *
 | |
| 	 * struct timespec XXX_start, XXX_end;
 | |
| 	 * u64 XXX_delay;
 | |
| 	 * u32 XXX_count;
 | |
| 	 *
 | |
| 	 * Atomicity of updates to XXX_delay, XXX_count protected by
 | |
| 	 * single lock above (split into XXX_lock if contention is an issue).
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX_count is incremented on every XXX operation, the delay
 | |
| 	 * associated with the operation is added to XXX_delay.
 | |
| 	 * XXX_delay contains the accumulated delay time in nanoseconds.
 | |
| 	 */
 | |
| 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
 | |
| 	u64 blkio_delay;	/* wait for sync block io completion */
 | |
| 	u64 swapin_delay;	/* wait for swapin block io completion */
 | |
| 	u32 blkio_count;	/* total count of the number of sync block */
 | |
| 				/* io operations performed */
 | |
| 	u32 swapin_count;	/* total count of the number of swapin block */
 | |
| 				/* io operations performed */
 | |
| 
 | |
| 	struct timespec freepages_start, freepages_end;
 | |
| 	u64 freepages_delay;	/* wait for memory reclaim */
 | |
| 	u32 freepages_count;	/* total count of memory reclaim */
 | |
| };
 | |
| #endif	/* CONFIG_TASK_DELAY_ACCT */
 | |
| 
 | |
| static inline int sched_info_on(void)
 | |
| {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	return 1;
 | |
| #elif defined(CONFIG_TASK_DELAY_ACCT)
 | |
| 	extern int delayacct_on;
 | |
| 	return delayacct_on;
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| enum cpu_idle_type {
 | |
| 	CPU_IDLE,
 | |
| 	CPU_NOT_IDLE,
 | |
| 	CPU_NEWLY_IDLE,
 | |
| 	CPU_MAX_IDLE_TYPES
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Increase resolution of nice-level calculations for 64-bit architectures.
 | |
|  * The extra resolution improves shares distribution and load balancing of
 | |
|  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 | |
|  * hierarchies, especially on larger systems. This is not a user-visible change
 | |
|  * and does not change the user-interface for setting shares/weights.
 | |
|  *
 | |
|  * We increase resolution only if we have enough bits to allow this increased
 | |
|  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
 | |
|  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
 | |
|  * increased costs.
 | |
|  */
 | |
| #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
 | |
| # define SCHED_LOAD_RESOLUTION	10
 | |
| # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
 | |
| # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
 | |
| #else
 | |
| # define SCHED_LOAD_RESOLUTION	0
 | |
| # define scale_load(w)		(w)
 | |
| # define scale_load_down(w)	(w)
 | |
| #endif
 | |
| 
 | |
| #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
 | |
| #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * Increase resolution of cpu_power calculations
 | |
|  */
 | |
| #define SCHED_POWER_SHIFT	10
 | |
| #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * sched-domains (multiprocessor balancing) declarations:
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
 | |
| #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
 | |
| #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
 | |
| #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
 | |
| #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
 | |
| #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
 | |
| #define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
 | |
| #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
 | |
| #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
 | |
| #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
 | |
| #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
 | |
| #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
 | |
| #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
 | |
| 
 | |
| extern int __weak arch_sd_sibiling_asym_packing(void);
 | |
| 
 | |
| struct sched_group_power {
 | |
| 	atomic_t ref;
 | |
| 	/*
 | |
| 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 | |
| 	 * single CPU.
 | |
| 	 */
 | |
| 	unsigned int power, power_orig;
 | |
| 	unsigned long next_update;
 | |
| 	/*
 | |
| 	 * Number of busy cpus in this group.
 | |
| 	 */
 | |
| 	atomic_t nr_busy_cpus;
 | |
| 
 | |
| 	unsigned long cpumask[0]; /* iteration mask */
 | |
| };
 | |
| 
 | |
| struct sched_group {
 | |
| 	struct sched_group *next;	/* Must be a circular list */
 | |
| 	atomic_t ref;
 | |
| 
 | |
| 	unsigned int group_weight;
 | |
| 	struct sched_group_power *sgp;
 | |
| 
 | |
| 	/*
 | |
| 	 * The CPUs this group covers.
 | |
| 	 *
 | |
| 	 * NOTE: this field is variable length. (Allocated dynamically
 | |
| 	 * by attaching extra space to the end of the structure,
 | |
| 	 * depending on how many CPUs the kernel has booted up with)
 | |
| 	 */
 | |
| 	unsigned long cpumask[0];
 | |
| };
 | |
| 
 | |
| static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 | |
| {
 | |
| 	return to_cpumask(sg->cpumask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpumask masking which cpus in the group are allowed to iterate up the domain
 | |
|  * tree.
 | |
|  */
 | |
| static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 | |
| {
 | |
| 	return to_cpumask(sg->sgp->cpumask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 | |
|  * @group: The group whose first cpu is to be returned.
 | |
|  */
 | |
| static inline unsigned int group_first_cpu(struct sched_group *group)
 | |
| {
 | |
| 	return cpumask_first(sched_group_cpus(group));
 | |
| }
 | |
| 
 | |
| struct sched_domain_attr {
 | |
| 	int relax_domain_level;
 | |
| };
 | |
| 
 | |
| #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
 | |
| 	.relax_domain_level = -1,			\
 | |
| }
 | |
| 
 | |
| extern int sched_domain_level_max;
 | |
| 
 | |
| struct sched_domain {
 | |
| 	/* These fields must be setup */
 | |
| 	struct sched_domain *parent;	/* top domain must be null terminated */
 | |
| 	struct sched_domain *child;	/* bottom domain must be null terminated */
 | |
| 	struct sched_group *groups;	/* the balancing groups of the domain */
 | |
| 	unsigned long min_interval;	/* Minimum balance interval ms */
 | |
| 	unsigned long max_interval;	/* Maximum balance interval ms */
 | |
| 	unsigned int busy_factor;	/* less balancing by factor if busy */
 | |
| 	unsigned int imbalance_pct;	/* No balance until over watermark */
 | |
| 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
 | |
| 	unsigned int busy_idx;
 | |
| 	unsigned int idle_idx;
 | |
| 	unsigned int newidle_idx;
 | |
| 	unsigned int wake_idx;
 | |
| 	unsigned int forkexec_idx;
 | |
| 	unsigned int smt_gain;
 | |
| 	int flags;			/* See SD_* */
 | |
| 	int level;
 | |
| 	int idle_buddy;			/* cpu assigned to select_idle_sibling() */
 | |
| 
 | |
| 	/* Runtime fields. */
 | |
| 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
 | |
| 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
 | |
| 	unsigned int nr_balance_failed; /* initialise to 0 */
 | |
| 
 | |
| 	u64 last_update;
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	/* load_balance() stats */
 | |
| 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 | |
| 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 | |
| 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 | |
| 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 | |
| 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 | |
| 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 | |
| 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 | |
| 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 | |
| 
 | |
| 	/* Active load balancing */
 | |
| 	unsigned int alb_count;
 | |
| 	unsigned int alb_failed;
 | |
| 	unsigned int alb_pushed;
 | |
| 
 | |
| 	/* SD_BALANCE_EXEC stats */
 | |
| 	unsigned int sbe_count;
 | |
| 	unsigned int sbe_balanced;
 | |
| 	unsigned int sbe_pushed;
 | |
| 
 | |
| 	/* SD_BALANCE_FORK stats */
 | |
| 	unsigned int sbf_count;
 | |
| 	unsigned int sbf_balanced;
 | |
| 	unsigned int sbf_pushed;
 | |
| 
 | |
| 	/* try_to_wake_up() stats */
 | |
| 	unsigned int ttwu_wake_remote;
 | |
| 	unsigned int ttwu_move_affine;
 | |
| 	unsigned int ttwu_move_balance;
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	char *name;
 | |
| #endif
 | |
| 	union {
 | |
| 		void *private;		/* used during construction */
 | |
| 		struct rcu_head rcu;	/* used during destruction */
 | |
| 	};
 | |
| 
 | |
| 	unsigned int span_weight;
 | |
| 	/*
 | |
| 	 * Span of all CPUs in this domain.
 | |
| 	 *
 | |
| 	 * NOTE: this field is variable length. (Allocated dynamically
 | |
| 	 * by attaching extra space to the end of the structure,
 | |
| 	 * depending on how many CPUs the kernel has booted up with)
 | |
| 	 */
 | |
| 	unsigned long span[0];
 | |
| };
 | |
| 
 | |
| static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 | |
| {
 | |
| 	return to_cpumask(sd->span);
 | |
| }
 | |
| 
 | |
| extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 | |
| 				    struct sched_domain_attr *dattr_new);
 | |
| 
 | |
| /* Allocate an array of sched domains, for partition_sched_domains(). */
 | |
| cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 | |
| void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 | |
| 
 | |
| /* Test a flag in parent sched domain */
 | |
| static inline int test_sd_parent(struct sched_domain *sd, int flag)
 | |
| {
 | |
| 	if (sd->parent && (sd->parent->flags & flag))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
 | |
| unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
 | |
| 
 | |
| bool cpus_share_cache(int this_cpu, int that_cpu);
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| struct sched_domain_attr;
 | |
| 
 | |
| static inline void
 | |
| partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 | |
| 			struct sched_domain_attr *dattr_new)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool cpus_share_cache(int this_cpu, int that_cpu)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #endif	/* !CONFIG_SMP */
 | |
| 
 | |
| 
 | |
| struct io_context;			/* See blkdev.h */
 | |
| 
 | |
| 
 | |
| #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
 | |
| extern void prefetch_stack(struct task_struct *t);
 | |
| #else
 | |
| static inline void prefetch_stack(struct task_struct *t) { }
 | |
| #endif
 | |
| 
 | |
| struct audit_context;		/* See audit.c */
 | |
| struct mempolicy;
 | |
| struct pipe_inode_info;
 | |
| struct uts_namespace;
 | |
| 
 | |
| struct rq;
 | |
| struct sched_domain;
 | |
| 
 | |
| /*
 | |
|  * wake flags
 | |
|  */
 | |
| #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
 | |
| #define WF_FORK		0x02		/* child wakeup after fork */
 | |
| #define WF_MIGRATED	0x04		/* internal use, task got migrated */
 | |
| 
 | |
| #define ENQUEUE_WAKEUP		1
 | |
| #define ENQUEUE_HEAD		2
 | |
| #ifdef CONFIG_SMP
 | |
| #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
 | |
| #else
 | |
| #define ENQUEUE_WAKING		0
 | |
| #endif
 | |
| 
 | |
| #define DEQUEUE_SLEEP		1
 | |
| 
 | |
| struct sched_class {
 | |
| 	const struct sched_class *next;
 | |
| 
 | |
| 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
 | |
| 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
 | |
| 	void (*yield_task) (struct rq *rq);
 | |
| 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
 | |
| 
 | |
| 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
 | |
| 
 | |
| 	struct task_struct * (*pick_next_task) (struct rq *rq);
 | |
| 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
 | |
| 
 | |
| 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
 | |
| 	void (*post_schedule) (struct rq *this_rq);
 | |
| 	void (*task_waking) (struct task_struct *task);
 | |
| 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
 | |
| 
 | |
| 	void (*set_cpus_allowed)(struct task_struct *p,
 | |
| 				 const struct cpumask *newmask);
 | |
| 
 | |
| 	void (*rq_online)(struct rq *rq);
 | |
| 	void (*rq_offline)(struct rq *rq);
 | |
| #endif
 | |
| 
 | |
| 	void (*set_curr_task) (struct rq *rq);
 | |
| 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
 | |
| 	void (*task_fork) (struct task_struct *p);
 | |
| 
 | |
| 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
 | |
| 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
 | |
| 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
 | |
| 			     int oldprio);
 | |
| 
 | |
| 	unsigned int (*get_rr_interval) (struct rq *rq,
 | |
| 					 struct task_struct *task);
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	void (*task_move_group) (struct task_struct *p, int on_rq);
 | |
| #endif
 | |
| };
 | |
| 
 | |
| struct load_weight {
 | |
| 	unsigned long weight, inv_weight;
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| struct sched_statistics {
 | |
| 	u64			wait_start;
 | |
| 	u64			wait_max;
 | |
| 	u64			wait_count;
 | |
| 	u64			wait_sum;
 | |
| 	u64			iowait_count;
 | |
| 	u64			iowait_sum;
 | |
| 
 | |
| 	u64			sleep_start;
 | |
| 	u64			sleep_max;
 | |
| 	s64			sum_sleep_runtime;
 | |
| 
 | |
| 	u64			block_start;
 | |
| 	u64			block_max;
 | |
| 	u64			exec_max;
 | |
| 	u64			slice_max;
 | |
| 
 | |
| 	u64			nr_migrations_cold;
 | |
| 	u64			nr_failed_migrations_affine;
 | |
| 	u64			nr_failed_migrations_running;
 | |
| 	u64			nr_failed_migrations_hot;
 | |
| 	u64			nr_forced_migrations;
 | |
| 
 | |
| 	u64			nr_wakeups;
 | |
| 	u64			nr_wakeups_sync;
 | |
| 	u64			nr_wakeups_migrate;
 | |
| 	u64			nr_wakeups_local;
 | |
| 	u64			nr_wakeups_remote;
 | |
| 	u64			nr_wakeups_affine;
 | |
| 	u64			nr_wakeups_affine_attempts;
 | |
| 	u64			nr_wakeups_passive;
 | |
| 	u64			nr_wakeups_idle;
 | |
| };
 | |
| #endif
 | |
| 
 | |
| struct sched_entity {
 | |
| 	struct load_weight	load;		/* for load-balancing */
 | |
| 	struct rb_node		run_node;
 | |
| 	struct list_head	group_node;
 | |
| 	unsigned int		on_rq;
 | |
| 
 | |
| 	u64			exec_start;
 | |
| 	u64			sum_exec_runtime;
 | |
| 	u64			vruntime;
 | |
| 	u64			prev_sum_exec_runtime;
 | |
| 
 | |
| 	u64			nr_migrations;
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	struct sched_statistics statistics;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	struct sched_entity	*parent;
 | |
| 	/* rq on which this entity is (to be) queued: */
 | |
| 	struct cfs_rq		*cfs_rq;
 | |
| 	/* rq "owned" by this entity/group: */
 | |
| 	struct cfs_rq		*my_q;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| struct sched_rt_entity {
 | |
| 	struct list_head run_list;
 | |
| 	unsigned long timeout;
 | |
| 	unsigned int time_slice;
 | |
| 
 | |
| 	struct sched_rt_entity *back;
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	struct sched_rt_entity	*parent;
 | |
| 	/* rq on which this entity is (to be) queued: */
 | |
| 	struct rt_rq		*rt_rq;
 | |
| 	/* rq "owned" by this entity/group: */
 | |
| 	struct rt_rq		*my_q;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
 | |
|  * Timeslices get refilled after they expire.
 | |
|  */
 | |
| #define RR_TIMESLICE		(100 * HZ / 1000)
 | |
| 
 | |
| struct rcu_node;
 | |
| 
 | |
| enum perf_event_task_context {
 | |
| 	perf_invalid_context = -1,
 | |
| 	perf_hw_context = 0,
 | |
| 	perf_sw_context,
 | |
| 	perf_nr_task_contexts,
 | |
| };
 | |
| 
 | |
| struct task_struct {
 | |
| 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
 | |
| 	void *stack;
 | |
| 	atomic_t usage;
 | |
| 	unsigned int flags;	/* per process flags, defined below */
 | |
| 	unsigned int ptrace;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct llist_node wake_entry;
 | |
| 	int on_cpu;
 | |
| #endif
 | |
| 	int on_rq;
 | |
| 
 | |
| 	int prio, static_prio, normal_prio;
 | |
| 	unsigned int rt_priority;
 | |
| 	const struct sched_class *sched_class;
 | |
| 	struct sched_entity se;
 | |
| 	struct sched_rt_entity rt;
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 	struct task_group *sched_task_group;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_NOTIFIERS
 | |
| 	/* list of struct preempt_notifier: */
 | |
| 	struct hlist_head preempt_notifiers;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * fpu_counter contains the number of consecutive context switches
 | |
| 	 * that the FPU is used. If this is over a threshold, the lazy fpu
 | |
| 	 * saving becomes unlazy to save the trap. This is an unsigned char
 | |
| 	 * so that after 256 times the counter wraps and the behavior turns
 | |
| 	 * lazy again; this to deal with bursty apps that only use FPU for
 | |
| 	 * a short time
 | |
| 	 */
 | |
| 	unsigned char fpu_counter;
 | |
| #ifdef CONFIG_BLK_DEV_IO_TRACE
 | |
| 	unsigned int btrace_seq;
 | |
| #endif
 | |
| 
 | |
| 	unsigned int policy;
 | |
| 	int nr_cpus_allowed;
 | |
| 	cpumask_t cpus_allowed;
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_RCU
 | |
| 	int rcu_read_lock_nesting;
 | |
| 	char rcu_read_unlock_special;
 | |
| 	struct list_head rcu_node_entry;
 | |
| #endif /* #ifdef CONFIG_PREEMPT_RCU */
 | |
| #ifdef CONFIG_TREE_PREEMPT_RCU
 | |
| 	struct rcu_node *rcu_blocked_node;
 | |
| #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 	struct rt_mutex *rcu_boost_mutex;
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 | |
| 	struct sched_info sched_info;
 | |
| #endif
 | |
| 
 | |
| 	struct list_head tasks;
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct plist_node pushable_tasks;
 | |
| #endif
 | |
| 
 | |
| 	struct mm_struct *mm, *active_mm;
 | |
| #ifdef CONFIG_COMPAT_BRK
 | |
| 	unsigned brk_randomized:1;
 | |
| #endif
 | |
| #if defined(SPLIT_RSS_COUNTING)
 | |
| 	struct task_rss_stat	rss_stat;
 | |
| #endif
 | |
| /* task state */
 | |
| 	int exit_state;
 | |
| 	int exit_code, exit_signal;
 | |
| 	int pdeath_signal;  /*  The signal sent when the parent dies  */
 | |
| 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
 | |
| 	/* ??? */
 | |
| 	unsigned int personality;
 | |
| 	unsigned did_exec:1;
 | |
| 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
 | |
| 				 * execve */
 | |
| 	unsigned in_iowait:1;
 | |
| 
 | |
| 	/* task may not gain privileges */
 | |
| 	unsigned no_new_privs:1;
 | |
| 
 | |
| 	/* Revert to default priority/policy when forking */
 | |
| 	unsigned sched_reset_on_fork:1;
 | |
| 	unsigned sched_contributes_to_load:1;
 | |
| 
 | |
| 	pid_t pid;
 | |
| 	pid_t tgid;
 | |
| 
 | |
| #ifdef CONFIG_CC_STACKPROTECTOR
 | |
| 	/* Canary value for the -fstack-protector gcc feature */
 | |
| 	unsigned long stack_canary;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * pointers to (original) parent process, youngest child, younger sibling,
 | |
| 	 * older sibling, respectively.  (p->father can be replaced with
 | |
| 	 * p->real_parent->pid)
 | |
| 	 */
 | |
| 	struct task_struct __rcu *real_parent; /* real parent process */
 | |
| 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
 | |
| 	/*
 | |
| 	 * children/sibling forms the list of my natural children
 | |
| 	 */
 | |
| 	struct list_head children;	/* list of my children */
 | |
| 	struct list_head sibling;	/* linkage in my parent's children list */
 | |
| 	struct task_struct *group_leader;	/* threadgroup leader */
 | |
| 
 | |
| 	/*
 | |
| 	 * ptraced is the list of tasks this task is using ptrace on.
 | |
| 	 * This includes both natural children and PTRACE_ATTACH targets.
 | |
| 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
 | |
| 	 */
 | |
| 	struct list_head ptraced;
 | |
| 	struct list_head ptrace_entry;
 | |
| 
 | |
| 	/* PID/PID hash table linkage. */
 | |
| 	struct pid_link pids[PIDTYPE_MAX];
 | |
| 	struct list_head thread_group;
 | |
| 
 | |
| 	struct completion *vfork_done;		/* for vfork() */
 | |
| 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
 | |
| 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
 | |
| 
 | |
| 	cputime_t utime, stime, utimescaled, stimescaled;
 | |
| 	cputime_t gtime;
 | |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING
 | |
| 	cputime_t prev_utime, prev_stime;
 | |
| #endif
 | |
| 	unsigned long nvcsw, nivcsw; /* context switch counts */
 | |
| 	struct timespec start_time; 		/* monotonic time */
 | |
| 	struct timespec real_start_time;	/* boot based time */
 | |
| /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
 | |
| 	unsigned long min_flt, maj_flt;
 | |
| 
 | |
| 	struct task_cputime cputime_expires;
 | |
| 	struct list_head cpu_timers[3];
 | |
| 
 | |
| /* process credentials */
 | |
| 	const struct cred __rcu *real_cred; /* objective and real subjective task
 | |
| 					 * credentials (COW) */
 | |
| 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
 | |
| 					 * credentials (COW) */
 | |
| 	char comm[TASK_COMM_LEN]; /* executable name excluding path
 | |
| 				     - access with [gs]et_task_comm (which lock
 | |
| 				       it with task_lock())
 | |
| 				     - initialized normally by setup_new_exec */
 | |
| /* file system info */
 | |
| 	int link_count, total_link_count;
 | |
| #ifdef CONFIG_SYSVIPC
 | |
| /* ipc stuff */
 | |
| 	struct sysv_sem sysvsem;
 | |
| #endif
 | |
| #ifdef CONFIG_DETECT_HUNG_TASK
 | |
| /* hung task detection */
 | |
| 	unsigned long last_switch_count;
 | |
| #endif
 | |
| /* CPU-specific state of this task */
 | |
| 	struct thread_struct thread;
 | |
| /* filesystem information */
 | |
| 	struct fs_struct *fs;
 | |
| /* open file information */
 | |
| 	struct files_struct *files;
 | |
| /* namespaces */
 | |
| 	struct nsproxy *nsproxy;
 | |
| /* signal handlers */
 | |
| 	struct signal_struct *signal;
 | |
| 	struct sighand_struct *sighand;
 | |
| 
 | |
| 	sigset_t blocked, real_blocked;
 | |
| 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
 | |
| 	struct sigpending pending;
 | |
| 
 | |
| 	unsigned long sas_ss_sp;
 | |
| 	size_t sas_ss_size;
 | |
| 	int (*notifier)(void *priv);
 | |
| 	void *notifier_data;
 | |
| 	sigset_t *notifier_mask;
 | |
| 	struct callback_head *task_works;
 | |
| 
 | |
| 	struct audit_context *audit_context;
 | |
| #ifdef CONFIG_AUDITSYSCALL
 | |
| 	uid_t loginuid;
 | |
| 	unsigned int sessionid;
 | |
| #endif
 | |
| 	struct seccomp seccomp;
 | |
| 
 | |
| /* Thread group tracking */
 | |
|    	u32 parent_exec_id;
 | |
|    	u32 self_exec_id;
 | |
| /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
 | |
|  * mempolicy */
 | |
| 	spinlock_t alloc_lock;
 | |
| 
 | |
| 	/* Protection of the PI data structures: */
 | |
| 	raw_spinlock_t pi_lock;
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 	/* PI waiters blocked on a rt_mutex held by this task */
 | |
| 	struct plist_head pi_waiters;
 | |
| 	/* Deadlock detection and priority inheritance handling */
 | |
| 	struct rt_mutex_waiter *pi_blocked_on;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_MUTEXES
 | |
| 	/* mutex deadlock detection */
 | |
| 	struct mutex_waiter *blocked_on;
 | |
| #endif
 | |
| #ifdef CONFIG_TRACE_IRQFLAGS
 | |
| 	unsigned int irq_events;
 | |
| 	unsigned long hardirq_enable_ip;
 | |
| 	unsigned long hardirq_disable_ip;
 | |
| 	unsigned int hardirq_enable_event;
 | |
| 	unsigned int hardirq_disable_event;
 | |
| 	int hardirqs_enabled;
 | |
| 	int hardirq_context;
 | |
| 	unsigned long softirq_disable_ip;
 | |
| 	unsigned long softirq_enable_ip;
 | |
| 	unsigned int softirq_disable_event;
 | |
| 	unsigned int softirq_enable_event;
 | |
| 	int softirqs_enabled;
 | |
| 	int softirq_context;
 | |
| #endif
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| # define MAX_LOCK_DEPTH 48UL
 | |
| 	u64 curr_chain_key;
 | |
| 	int lockdep_depth;
 | |
| 	unsigned int lockdep_recursion;
 | |
| 	struct held_lock held_locks[MAX_LOCK_DEPTH];
 | |
| 	gfp_t lockdep_reclaim_gfp;
 | |
| #endif
 | |
| 
 | |
| /* journalling filesystem info */
 | |
| 	void *journal_info;
 | |
| 
 | |
| /* stacked block device info */
 | |
| 	struct bio_list *bio_list;
 | |
| 
 | |
| #ifdef CONFIG_BLOCK
 | |
| /* stack plugging */
 | |
| 	struct blk_plug *plug;
 | |
| #endif
 | |
| 
 | |
| /* VM state */
 | |
| 	struct reclaim_state *reclaim_state;
 | |
| 
 | |
| 	struct backing_dev_info *backing_dev_info;
 | |
| 
 | |
| 	struct io_context *io_context;
 | |
| 
 | |
| 	unsigned long ptrace_message;
 | |
| 	siginfo_t *last_siginfo; /* For ptrace use.  */
 | |
| 	struct task_io_accounting ioac;
 | |
| #if defined(CONFIG_TASK_XACCT)
 | |
| 	u64 acct_rss_mem1;	/* accumulated rss usage */
 | |
| 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
 | |
| 	cputime_t acct_timexpd;	/* stime + utime since last update */
 | |
| #endif
 | |
| #ifdef CONFIG_CPUSETS
 | |
| 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
 | |
| 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
 | |
| 	int cpuset_mem_spread_rotor;
 | |
| 	int cpuset_slab_spread_rotor;
 | |
| #endif
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 	/* Control Group info protected by css_set_lock */
 | |
| 	struct css_set __rcu *cgroups;
 | |
| 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
 | |
| 	struct list_head cg_list;
 | |
| #endif
 | |
| #ifdef CONFIG_FUTEX
 | |
| 	struct robust_list_head __user *robust_list;
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	struct compat_robust_list_head __user *compat_robust_list;
 | |
| #endif
 | |
| 	struct list_head pi_state_list;
 | |
| 	struct futex_pi_state *pi_state_cache;
 | |
| #endif
 | |
| #ifdef CONFIG_PERF_EVENTS
 | |
| 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
 | |
| 	struct mutex perf_event_mutex;
 | |
| 	struct list_head perf_event_list;
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA
 | |
| 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
 | |
| 	short il_next;
 | |
| 	short pref_node_fork;
 | |
| #endif
 | |
| 	struct rcu_head rcu;
 | |
| 
 | |
| 	/*
 | |
| 	 * cache last used pipe for splice
 | |
| 	 */
 | |
| 	struct pipe_inode_info *splice_pipe;
 | |
| #ifdef	CONFIG_TASK_DELAY_ACCT
 | |
| 	struct task_delay_info *delays;
 | |
| #endif
 | |
| #ifdef CONFIG_FAULT_INJECTION
 | |
| 	int make_it_fail;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
 | |
| 	 * balance_dirty_pages() for some dirty throttling pause
 | |
| 	 */
 | |
| 	int nr_dirtied;
 | |
| 	int nr_dirtied_pause;
 | |
| 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
 | |
| 
 | |
| #ifdef CONFIG_LATENCYTOP
 | |
| 	int latency_record_count;
 | |
| 	struct latency_record latency_record[LT_SAVECOUNT];
 | |
| #endif
 | |
| 	/*
 | |
| 	 * time slack values; these are used to round up poll() and
 | |
| 	 * select() etc timeout values. These are in nanoseconds.
 | |
| 	 */
 | |
| 	unsigned long timer_slack_ns;
 | |
| 	unsigned long default_timer_slack_ns;
 | |
| 
 | |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER
 | |
| 	/* Index of current stored address in ret_stack */
 | |
| 	int curr_ret_stack;
 | |
| 	/* Stack of return addresses for return function tracing */
 | |
| 	struct ftrace_ret_stack	*ret_stack;
 | |
| 	/* time stamp for last schedule */
 | |
| 	unsigned long long ftrace_timestamp;
 | |
| 	/*
 | |
| 	 * Number of functions that haven't been traced
 | |
| 	 * because of depth overrun.
 | |
| 	 */
 | |
| 	atomic_t trace_overrun;
 | |
| 	/* Pause for the tracing */
 | |
| 	atomic_t tracing_graph_pause;
 | |
| #endif
 | |
| #ifdef CONFIG_TRACING
 | |
| 	/* state flags for use by tracers */
 | |
| 	unsigned long trace;
 | |
| 	/* bitmask and counter of trace recursion */
 | |
| 	unsigned long trace_recursion;
 | |
| #endif /* CONFIG_TRACING */
 | |
| #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
 | |
| 	struct memcg_batch_info {
 | |
| 		int do_batch;	/* incremented when batch uncharge started */
 | |
| 		struct mem_cgroup *memcg; /* target memcg of uncharge */
 | |
| 		unsigned long nr_pages;	/* uncharged usage */
 | |
| 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
 | |
| 	} memcg_batch;
 | |
| #endif
 | |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT
 | |
| 	atomic_t ptrace_bp_refcnt;
 | |
| #endif
 | |
| #ifdef CONFIG_UPROBES
 | |
| 	struct uprobe_task *utask;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* Future-safe accessor for struct task_struct's cpus_allowed. */
 | |
| #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
 | |
| 
 | |
| /*
 | |
|  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
 | |
|  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
 | |
|  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
 | |
|  * values are inverted: lower p->prio value means higher priority.
 | |
|  *
 | |
|  * The MAX_USER_RT_PRIO value allows the actual maximum
 | |
|  * RT priority to be separate from the value exported to
 | |
|  * user-space.  This allows kernel threads to set their
 | |
|  * priority to a value higher than any user task. Note:
 | |
|  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
 | |
|  */
 | |
| 
 | |
| #define MAX_USER_RT_PRIO	100
 | |
| #define MAX_RT_PRIO		MAX_USER_RT_PRIO
 | |
| 
 | |
| #define MAX_PRIO		(MAX_RT_PRIO + 40)
 | |
| #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
 | |
| 
 | |
| static inline int rt_prio(int prio)
 | |
| {
 | |
| 	if (unlikely(prio < MAX_RT_PRIO))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int rt_task(struct task_struct *p)
 | |
| {
 | |
| 	return rt_prio(p->prio);
 | |
| }
 | |
| 
 | |
| static inline struct pid *task_pid(struct task_struct *task)
 | |
| {
 | |
| 	return task->pids[PIDTYPE_PID].pid;
 | |
| }
 | |
| 
 | |
| static inline struct pid *task_tgid(struct task_struct *task)
 | |
| {
 | |
| 	return task->group_leader->pids[PIDTYPE_PID].pid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Without tasklist or rcu lock it is not safe to dereference
 | |
|  * the result of task_pgrp/task_session even if task == current,
 | |
|  * we can race with another thread doing sys_setsid/sys_setpgid.
 | |
|  */
 | |
| static inline struct pid *task_pgrp(struct task_struct *task)
 | |
| {
 | |
| 	return task->group_leader->pids[PIDTYPE_PGID].pid;
 | |
| }
 | |
| 
 | |
| static inline struct pid *task_session(struct task_struct *task)
 | |
| {
 | |
| 	return task->group_leader->pids[PIDTYPE_SID].pid;
 | |
| }
 | |
| 
 | |
| struct pid_namespace;
 | |
| 
 | |
| /*
 | |
|  * the helpers to get the task's different pids as they are seen
 | |
|  * from various namespaces
 | |
|  *
 | |
|  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
 | |
|  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 | |
|  *                     current.
 | |
|  * task_xid_nr_ns()  : id seen from the ns specified;
 | |
|  *
 | |
|  * set_task_vxid()   : assigns a virtual id to a task;
 | |
|  *
 | |
|  * see also pid_nr() etc in include/linux/pid.h
 | |
|  */
 | |
| pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
 | |
| 			struct pid_namespace *ns);
 | |
| 
 | |
| static inline pid_t task_pid_nr(struct task_struct *tsk)
 | |
| {
 | |
| 	return tsk->pid;
 | |
| }
 | |
| 
 | |
| static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
 | |
| 					struct pid_namespace *ns)
 | |
| {
 | |
| 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
 | |
| }
 | |
| 
 | |
| static inline pid_t task_pid_vnr(struct task_struct *tsk)
 | |
| {
 | |
| 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline pid_t task_tgid_nr(struct task_struct *tsk)
 | |
| {
 | |
| 	return tsk->tgid;
 | |
| }
 | |
| 
 | |
| pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
 | |
| 
 | |
| static inline pid_t task_tgid_vnr(struct task_struct *tsk)
 | |
| {
 | |
| 	return pid_vnr(task_tgid(tsk));
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
 | |
| 					struct pid_namespace *ns)
 | |
| {
 | |
| 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
 | |
| }
 | |
| 
 | |
| static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
 | |
| {
 | |
| 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline pid_t task_session_nr_ns(struct task_struct *tsk,
 | |
| 					struct pid_namespace *ns)
 | |
| {
 | |
| 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
 | |
| }
 | |
| 
 | |
| static inline pid_t task_session_vnr(struct task_struct *tsk)
 | |
| {
 | |
| 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
 | |
| }
 | |
| 
 | |
| /* obsolete, do not use */
 | |
| static inline pid_t task_pgrp_nr(struct task_struct *tsk)
 | |
| {
 | |
| 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pid_alive - check that a task structure is not stale
 | |
|  * @p: Task structure to be checked.
 | |
|  *
 | |
|  * Test if a process is not yet dead (at most zombie state)
 | |
|  * If pid_alive fails, then pointers within the task structure
 | |
|  * can be stale and must not be dereferenced.
 | |
|  */
 | |
| static inline int pid_alive(struct task_struct *p)
 | |
| {
 | |
| 	return p->pids[PIDTYPE_PID].pid != NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_global_init - check if a task structure is init
 | |
|  * @tsk: Task structure to be checked.
 | |
|  *
 | |
|  * Check if a task structure is the first user space task the kernel created.
 | |
|  */
 | |
| static inline int is_global_init(struct task_struct *tsk)
 | |
| {
 | |
| 	return tsk->pid == 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * is_container_init:
 | |
|  * check whether in the task is init in its own pid namespace.
 | |
|  */
 | |
| extern int is_container_init(struct task_struct *tsk);
 | |
| 
 | |
| extern struct pid *cad_pid;
 | |
| 
 | |
| extern void free_task(struct task_struct *tsk);
 | |
| #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
 | |
| 
 | |
| extern void __put_task_struct(struct task_struct *t);
 | |
| 
 | |
| static inline void put_task_struct(struct task_struct *t)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&t->usage))
 | |
| 		__put_task_struct(t);
 | |
| }
 | |
| 
 | |
| extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
 | |
| extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
 | |
| 
 | |
| /*
 | |
|  * Per process flags
 | |
|  */
 | |
| #define PF_EXITING	0x00000004	/* getting shut down */
 | |
| #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
 | |
| #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
 | |
| #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
 | |
| #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
 | |
| #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
 | |
| #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
 | |
| #define PF_DUMPCORE	0x00000200	/* dumped core */
 | |
| #define PF_SIGNALED	0x00000400	/* killed by a signal */
 | |
| #define PF_MEMALLOC	0x00000800	/* Allocating memory */
 | |
| #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
 | |
| #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
 | |
| #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
 | |
| #define PF_FROZEN	0x00010000	/* frozen for system suspend */
 | |
| #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
 | |
| #define PF_KSWAPD	0x00040000	/* I am kswapd */
 | |
| #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
 | |
| #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
 | |
| #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
 | |
| #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
 | |
| #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
 | |
| #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
 | |
| #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
 | |
| #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
 | |
| #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
 | |
| #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
 | |
| #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
 | |
| 
 | |
| /*
 | |
|  * Only the _current_ task can read/write to tsk->flags, but other
 | |
|  * tasks can access tsk->flags in readonly mode for example
 | |
|  * with tsk_used_math (like during threaded core dumping).
 | |
|  * There is however an exception to this rule during ptrace
 | |
|  * or during fork: the ptracer task is allowed to write to the
 | |
|  * child->flags of its traced child (same goes for fork, the parent
 | |
|  * can write to the child->flags), because we're guaranteed the
 | |
|  * child is not running and in turn not changing child->flags
 | |
|  * at the same time the parent does it.
 | |
|  */
 | |
| #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
 | |
| #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
 | |
| #define clear_used_math() clear_stopped_child_used_math(current)
 | |
| #define set_used_math() set_stopped_child_used_math(current)
 | |
| #define conditional_stopped_child_used_math(condition, child) \
 | |
| 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
 | |
| #define conditional_used_math(condition) \
 | |
| 	conditional_stopped_child_used_math(condition, current)
 | |
| #define copy_to_stopped_child_used_math(child) \
 | |
| 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
 | |
| /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
 | |
| #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
 | |
| #define used_math() tsk_used_math(current)
 | |
| 
 | |
| /*
 | |
|  * task->jobctl flags
 | |
|  */
 | |
| #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
 | |
| 
 | |
| #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
 | |
| #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
 | |
| #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
 | |
| #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
 | |
| #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
 | |
| #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
 | |
| #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
 | |
| 
 | |
| #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
 | |
| #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
 | |
| #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
 | |
| #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
 | |
| #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
 | |
| #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
 | |
| #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
 | |
| 
 | |
| #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
 | |
| #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
 | |
| 
 | |
| extern bool task_set_jobctl_pending(struct task_struct *task,
 | |
| 				    unsigned int mask);
 | |
| extern void task_clear_jobctl_trapping(struct task_struct *task);
 | |
| extern void task_clear_jobctl_pending(struct task_struct *task,
 | |
| 				      unsigned int mask);
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_RCU
 | |
| 
 | |
| #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
 | |
| #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
 | |
| 
 | |
| static inline void rcu_copy_process(struct task_struct *p)
 | |
| {
 | |
| 	p->rcu_read_lock_nesting = 0;
 | |
| 	p->rcu_read_unlock_special = 0;
 | |
| #ifdef CONFIG_TREE_PREEMPT_RCU
 | |
| 	p->rcu_blocked_node = NULL;
 | |
| #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 	p->rcu_boost_mutex = NULL;
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| 	INIT_LIST_HEAD(&p->rcu_node_entry);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void rcu_copy_process(struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline void tsk_restore_flags(struct task_struct *task,
 | |
| 				unsigned long orig_flags, unsigned long flags)
 | |
| {
 | |
| 	task->flags &= ~flags;
 | |
| 	task->flags |= orig_flags & flags;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| extern void do_set_cpus_allowed(struct task_struct *p,
 | |
| 			       const struct cpumask *new_mask);
 | |
| 
 | |
| extern int set_cpus_allowed_ptr(struct task_struct *p,
 | |
| 				const struct cpumask *new_mask);
 | |
| #else
 | |
| static inline void do_set_cpus_allowed(struct task_struct *p,
 | |
| 				      const struct cpumask *new_mask)
 | |
| {
 | |
| }
 | |
| static inline int set_cpus_allowed_ptr(struct task_struct *p,
 | |
| 				       const struct cpumask *new_mask)
 | |
| {
 | |
| 	if (!cpumask_test_cpu(0, new_mask))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| void calc_load_enter_idle(void);
 | |
| void calc_load_exit_idle(void);
 | |
| #else
 | |
| static inline void calc_load_enter_idle(void) { }
 | |
| static inline void calc_load_exit_idle(void) { }
 | |
| #endif /* CONFIG_NO_HZ */
 | |
| 
 | |
| #ifndef CONFIG_CPUMASK_OFFSTACK
 | |
| static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
 | |
| {
 | |
| 	return set_cpus_allowed_ptr(p, &new_mask);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Do not use outside of architecture code which knows its limitations.
 | |
|  *
 | |
|  * sched_clock() has no promise of monotonicity or bounded drift between
 | |
|  * CPUs, use (which you should not) requires disabling IRQs.
 | |
|  *
 | |
|  * Please use one of the three interfaces below.
 | |
|  */
 | |
| extern unsigned long long notrace sched_clock(void);
 | |
| /*
 | |
|  * See the comment in kernel/sched/clock.c
 | |
|  */
 | |
| extern u64 cpu_clock(int cpu);
 | |
| extern u64 local_clock(void);
 | |
| extern u64 sched_clock_cpu(int cpu);
 | |
| 
 | |
| 
 | |
| extern void sched_clock_init(void);
 | |
| 
 | |
| #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 | |
| static inline void sched_clock_tick(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void sched_clock_idle_sleep_event(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
 | |
| {
 | |
| }
 | |
| #else
 | |
| /*
 | |
|  * Architectures can set this to 1 if they have specified
 | |
|  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
 | |
|  * but then during bootup it turns out that sched_clock()
 | |
|  * is reliable after all:
 | |
|  */
 | |
| extern int sched_clock_stable;
 | |
| 
 | |
| extern void sched_clock_tick(void);
 | |
| extern void sched_clock_idle_sleep_event(void);
 | |
| extern void sched_clock_idle_wakeup_event(u64 delta_ns);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 | |
| /*
 | |
|  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
 | |
|  * The reason for this explicit opt-in is not to have perf penalty with
 | |
|  * slow sched_clocks.
 | |
|  */
 | |
| extern void enable_sched_clock_irqtime(void);
 | |
| extern void disable_sched_clock_irqtime(void);
 | |
| #else
 | |
| static inline void enable_sched_clock_irqtime(void) {}
 | |
| static inline void disable_sched_clock_irqtime(void) {}
 | |
| #endif
 | |
| 
 | |
| extern unsigned long long
 | |
| task_sched_runtime(struct task_struct *task);
 | |
| 
 | |
| /* sched_exec is called by processes performing an exec */
 | |
| #ifdef CONFIG_SMP
 | |
| extern void sched_exec(void);
 | |
| #else
 | |
| #define sched_exec()   {}
 | |
| #endif
 | |
| 
 | |
| extern void sched_clock_idle_sleep_event(void);
 | |
| extern void sched_clock_idle_wakeup_event(u64 delta_ns);
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| extern void idle_task_exit(void);
 | |
| #else
 | |
| static inline void idle_task_exit(void) {}
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
 | |
| extern void wake_up_idle_cpu(int cpu);
 | |
| #else
 | |
| static inline void wake_up_idle_cpu(int cpu) { }
 | |
| #endif
 | |
| 
 | |
| extern unsigned int sysctl_sched_latency;
 | |
| extern unsigned int sysctl_sched_min_granularity;
 | |
| extern unsigned int sysctl_sched_wakeup_granularity;
 | |
| extern unsigned int sysctl_sched_child_runs_first;
 | |
| 
 | |
| enum sched_tunable_scaling {
 | |
| 	SCHED_TUNABLESCALING_NONE,
 | |
| 	SCHED_TUNABLESCALING_LOG,
 | |
| 	SCHED_TUNABLESCALING_LINEAR,
 | |
| 	SCHED_TUNABLESCALING_END,
 | |
| };
 | |
| extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| extern unsigned int sysctl_sched_migration_cost;
 | |
| extern unsigned int sysctl_sched_nr_migrate;
 | |
| extern unsigned int sysctl_sched_time_avg;
 | |
| extern unsigned int sysctl_timer_migration;
 | |
| extern unsigned int sysctl_sched_shares_window;
 | |
| 
 | |
| int sched_proc_update_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *length,
 | |
| 		loff_t *ppos);
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| static inline unsigned int get_sysctl_timer_migration(void)
 | |
| {
 | |
| 	return sysctl_timer_migration;
 | |
| }
 | |
| #else
 | |
| static inline unsigned int get_sysctl_timer_migration(void)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| extern unsigned int sysctl_sched_rt_period;
 | |
| extern int sysctl_sched_rt_runtime;
 | |
| 
 | |
| int sched_rt_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_AUTOGROUP
 | |
| extern unsigned int sysctl_sched_autogroup_enabled;
 | |
| 
 | |
| extern void sched_autogroup_create_attach(struct task_struct *p);
 | |
| extern void sched_autogroup_detach(struct task_struct *p);
 | |
| extern void sched_autogroup_fork(struct signal_struct *sig);
 | |
| extern void sched_autogroup_exit(struct signal_struct *sig);
 | |
| #ifdef CONFIG_PROC_FS
 | |
| extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
 | |
| extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
 | |
| #endif
 | |
| #else
 | |
| static inline void sched_autogroup_create_attach(struct task_struct *p) { }
 | |
| static inline void sched_autogroup_detach(struct task_struct *p) { }
 | |
| static inline void sched_autogroup_fork(struct signal_struct *sig) { }
 | |
| static inline void sched_autogroup_exit(struct signal_struct *sig) { }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CFS_BANDWIDTH
 | |
| extern unsigned int sysctl_sched_cfs_bandwidth_slice;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| extern int rt_mutex_getprio(struct task_struct *p);
 | |
| extern void rt_mutex_setprio(struct task_struct *p, int prio);
 | |
| extern void rt_mutex_adjust_pi(struct task_struct *p);
 | |
| static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
 | |
| {
 | |
| 	return tsk->pi_blocked_on != NULL;
 | |
| }
 | |
| #else
 | |
| static inline int rt_mutex_getprio(struct task_struct *p)
 | |
| {
 | |
| 	return p->normal_prio;
 | |
| }
 | |
| # define rt_mutex_adjust_pi(p)		do { } while (0)
 | |
| static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern bool yield_to(struct task_struct *p, bool preempt);
 | |
| extern void set_user_nice(struct task_struct *p, long nice);
 | |
| extern int task_prio(const struct task_struct *p);
 | |
| extern int task_nice(const struct task_struct *p);
 | |
| extern int can_nice(const struct task_struct *p, const int nice);
 | |
| extern int task_curr(const struct task_struct *p);
 | |
| extern int idle_cpu(int cpu);
 | |
| extern int sched_setscheduler(struct task_struct *, int,
 | |
| 			      const struct sched_param *);
 | |
| extern int sched_setscheduler_nocheck(struct task_struct *, int,
 | |
| 				      const struct sched_param *);
 | |
| extern struct task_struct *idle_task(int cpu);
 | |
| /**
 | |
|  * is_idle_task - is the specified task an idle task?
 | |
|  * @p: the task in question.
 | |
|  */
 | |
| static inline bool is_idle_task(const struct task_struct *p)
 | |
| {
 | |
| 	return p->pid == 0;
 | |
| }
 | |
| extern struct task_struct *curr_task(int cpu);
 | |
| extern void set_curr_task(int cpu, struct task_struct *p);
 | |
| 
 | |
| void yield(void);
 | |
| 
 | |
| /*
 | |
|  * The default (Linux) execution domain.
 | |
|  */
 | |
| extern struct exec_domain	default_exec_domain;
 | |
| 
 | |
| union thread_union {
 | |
| 	struct thread_info thread_info;
 | |
| 	unsigned long stack[THREAD_SIZE/sizeof(long)];
 | |
| };
 | |
| 
 | |
| #ifndef __HAVE_ARCH_KSTACK_END
 | |
| static inline int kstack_end(void *addr)
 | |
| {
 | |
| 	/* Reliable end of stack detection:
 | |
| 	 * Some APM bios versions misalign the stack
 | |
| 	 */
 | |
| 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern union thread_union init_thread_union;
 | |
| extern struct task_struct init_task;
 | |
| 
 | |
| extern struct   mm_struct init_mm;
 | |
| 
 | |
| extern struct pid_namespace init_pid_ns;
 | |
| 
 | |
| /*
 | |
|  * find a task by one of its numerical ids
 | |
|  *
 | |
|  * find_task_by_pid_ns():
 | |
|  *      finds a task by its pid in the specified namespace
 | |
|  * find_task_by_vpid():
 | |
|  *      finds a task by its virtual pid
 | |
|  *
 | |
|  * see also find_vpid() etc in include/linux/pid.h
 | |
|  */
 | |
| 
 | |
| extern struct task_struct *find_task_by_vpid(pid_t nr);
 | |
| extern struct task_struct *find_task_by_pid_ns(pid_t nr,
 | |
| 		struct pid_namespace *ns);
 | |
| 
 | |
| extern void __set_special_pids(struct pid *pid);
 | |
| 
 | |
| /* per-UID process charging. */
 | |
| extern struct user_struct * alloc_uid(kuid_t);
 | |
| static inline struct user_struct *get_uid(struct user_struct *u)
 | |
| {
 | |
| 	atomic_inc(&u->__count);
 | |
| 	return u;
 | |
| }
 | |
| extern void free_uid(struct user_struct *);
 | |
| 
 | |
| #include <asm/current.h>
 | |
| 
 | |
| extern void xtime_update(unsigned long ticks);
 | |
| 
 | |
| extern int wake_up_state(struct task_struct *tsk, unsigned int state);
 | |
| extern int wake_up_process(struct task_struct *tsk);
 | |
| extern void wake_up_new_task(struct task_struct *tsk);
 | |
| #ifdef CONFIG_SMP
 | |
|  extern void kick_process(struct task_struct *tsk);
 | |
| #else
 | |
|  static inline void kick_process(struct task_struct *tsk) { }
 | |
| #endif
 | |
| extern void sched_fork(struct task_struct *p);
 | |
| extern void sched_dead(struct task_struct *p);
 | |
| 
 | |
| extern void proc_caches_init(void);
 | |
| extern void flush_signals(struct task_struct *);
 | |
| extern void __flush_signals(struct task_struct *);
 | |
| extern void ignore_signals(struct task_struct *);
 | |
| extern void flush_signal_handlers(struct task_struct *, int force_default);
 | |
| extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
 | |
| 
 | |
| static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 | |
| 	ret = dequeue_signal(tsk, mask, info);
 | |
| 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| extern void block_all_signals(int (*notifier)(void *priv), void *priv,
 | |
| 			      sigset_t *mask);
 | |
| extern void unblock_all_signals(void);
 | |
| extern void release_task(struct task_struct * p);
 | |
| extern int send_sig_info(int, struct siginfo *, struct task_struct *);
 | |
| extern int force_sigsegv(int, struct task_struct *);
 | |
| extern int force_sig_info(int, struct siginfo *, struct task_struct *);
 | |
| extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
 | |
| extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
 | |
| extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
 | |
| 				const struct cred *, u32);
 | |
| extern int kill_pgrp(struct pid *pid, int sig, int priv);
 | |
| extern int kill_pid(struct pid *pid, int sig, int priv);
 | |
| extern int kill_proc_info(int, struct siginfo *, pid_t);
 | |
| extern __must_check bool do_notify_parent(struct task_struct *, int);
 | |
| extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
 | |
| extern void force_sig(int, struct task_struct *);
 | |
| extern int send_sig(int, struct task_struct *, int);
 | |
| extern int zap_other_threads(struct task_struct *p);
 | |
| extern struct sigqueue *sigqueue_alloc(void);
 | |
| extern void sigqueue_free(struct sigqueue *);
 | |
| extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
 | |
| extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
 | |
| extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
 | |
| 
 | |
| static inline void restore_saved_sigmask(void)
 | |
| {
 | |
| 	if (test_and_clear_restore_sigmask())
 | |
| 		__set_current_blocked(¤t->saved_sigmask);
 | |
| }
 | |
| 
 | |
| static inline sigset_t *sigmask_to_save(void)
 | |
| {
 | |
| 	sigset_t *res = ¤t->blocked;
 | |
| 	if (unlikely(test_restore_sigmask()))
 | |
| 		res = ¤t->saved_sigmask;
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static inline int kill_cad_pid(int sig, int priv)
 | |
| {
 | |
| 	return kill_pid(cad_pid, sig, priv);
 | |
| }
 | |
| 
 | |
| /* These can be the second arg to send_sig_info/send_group_sig_info.  */
 | |
| #define SEND_SIG_NOINFO ((struct siginfo *) 0)
 | |
| #define SEND_SIG_PRIV	((struct siginfo *) 1)
 | |
| #define SEND_SIG_FORCED	((struct siginfo *) 2)
 | |
| 
 | |
| /*
 | |
|  * True if we are on the alternate signal stack.
 | |
|  */
 | |
| static inline int on_sig_stack(unsigned long sp)
 | |
| {
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	return sp >= current->sas_ss_sp &&
 | |
| 		sp - current->sas_ss_sp < current->sas_ss_size;
 | |
| #else
 | |
| 	return sp > current->sas_ss_sp &&
 | |
| 		sp - current->sas_ss_sp <= current->sas_ss_size;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int sas_ss_flags(unsigned long sp)
 | |
| {
 | |
| 	return (current->sas_ss_size == 0 ? SS_DISABLE
 | |
| 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routines for handling mm_structs
 | |
|  */
 | |
| extern struct mm_struct * mm_alloc(void);
 | |
| 
 | |
| /* mmdrop drops the mm and the page tables */
 | |
| extern void __mmdrop(struct mm_struct *);
 | |
| static inline void mmdrop(struct mm_struct * mm)
 | |
| {
 | |
| 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
 | |
| 		__mmdrop(mm);
 | |
| }
 | |
| 
 | |
| /* mmput gets rid of the mappings and all user-space */
 | |
| extern void mmput(struct mm_struct *);
 | |
| /* Grab a reference to a task's mm, if it is not already going away */
 | |
| extern struct mm_struct *get_task_mm(struct task_struct *task);
 | |
| /*
 | |
|  * Grab a reference to a task's mm, if it is not already going away
 | |
|  * and ptrace_may_access with the mode parameter passed to it
 | |
|  * succeeds.
 | |
|  */
 | |
| extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
 | |
| /* Remove the current tasks stale references to the old mm_struct */
 | |
| extern void mm_release(struct task_struct *, struct mm_struct *);
 | |
| /* Allocate a new mm structure and copy contents from tsk->mm */
 | |
| extern struct mm_struct *dup_mm(struct task_struct *tsk);
 | |
| 
 | |
| extern int copy_thread(unsigned long, unsigned long, unsigned long,
 | |
| 			struct task_struct *, struct pt_regs *);
 | |
| extern void flush_thread(void);
 | |
| extern void exit_thread(void);
 | |
| 
 | |
| extern void exit_files(struct task_struct *);
 | |
| extern void __cleanup_sighand(struct sighand_struct *);
 | |
| 
 | |
| extern void exit_itimers(struct signal_struct *);
 | |
| extern void flush_itimer_signals(void);
 | |
| 
 | |
| extern void do_group_exit(int);
 | |
| 
 | |
| extern void daemonize(const char *, ...);
 | |
| extern int allow_signal(int);
 | |
| extern int disallow_signal(int);
 | |
| 
 | |
| extern int do_execve(const char *,
 | |
| 		     const char __user * const __user *,
 | |
| 		     const char __user * const __user *, struct pt_regs *);
 | |
| extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
 | |
| struct task_struct *fork_idle(int);
 | |
| 
 | |
| extern void set_task_comm(struct task_struct *tsk, char *from);
 | |
| extern char *get_task_comm(char *to, struct task_struct *tsk);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| void scheduler_ipi(void);
 | |
| extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
 | |
| #else
 | |
| static inline void scheduler_ipi(void) { }
 | |
| static inline unsigned long wait_task_inactive(struct task_struct *p,
 | |
| 					       long match_state)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define next_task(p) \
 | |
| 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 | |
| 
 | |
| #define for_each_process(p) \
 | |
| 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 | |
| 
 | |
| extern bool current_is_single_threaded(void);
 | |
| 
 | |
| /*
 | |
|  * Careful: do_each_thread/while_each_thread is a double loop so
 | |
|  *          'break' will not work as expected - use goto instead.
 | |
|  */
 | |
| #define do_each_thread(g, t) \
 | |
| 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 | |
| 
 | |
| #define while_each_thread(g, t) \
 | |
| 	while ((t = next_thread(t)) != g)
 | |
| 
 | |
| static inline int get_nr_threads(struct task_struct *tsk)
 | |
| {
 | |
| 	return tsk->signal->nr_threads;
 | |
| }
 | |
| 
 | |
| static inline bool thread_group_leader(struct task_struct *p)
 | |
| {
 | |
| 	return p->exit_signal >= 0;
 | |
| }
 | |
| 
 | |
| /* Do to the insanities of de_thread it is possible for a process
 | |
|  * to have the pid of the thread group leader without actually being
 | |
|  * the thread group leader.  For iteration through the pids in proc
 | |
|  * all we care about is that we have a task with the appropriate
 | |
|  * pid, we don't actually care if we have the right task.
 | |
|  */
 | |
| static inline int has_group_leader_pid(struct task_struct *p)
 | |
| {
 | |
| 	return p->pid == p->tgid;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| int same_thread_group(struct task_struct *p1, struct task_struct *p2)
 | |
| {
 | |
| 	return p1->tgid == p2->tgid;
 | |
| }
 | |
| 
 | |
| static inline struct task_struct *next_thread(const struct task_struct *p)
 | |
| {
 | |
| 	return list_entry_rcu(p->thread_group.next,
 | |
| 			      struct task_struct, thread_group);
 | |
| }
 | |
| 
 | |
| static inline int thread_group_empty(struct task_struct *p)
 | |
| {
 | |
| 	return list_empty(&p->thread_group);
 | |
| }
 | |
| 
 | |
| #define delay_group_leader(p) \
 | |
| 		(thread_group_leader(p) && !thread_group_empty(p))
 | |
| 
 | |
| /*
 | |
|  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
 | |
|  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
 | |
|  * pins the final release of task.io_context.  Also protects ->cpuset and
 | |
|  * ->cgroup.subsys[]. And ->vfork_done.
 | |
|  *
 | |
|  * Nests both inside and outside of read_lock(&tasklist_lock).
 | |
|  * It must not be nested with write_lock_irq(&tasklist_lock),
 | |
|  * neither inside nor outside.
 | |
|  */
 | |
| static inline void task_lock(struct task_struct *p)
 | |
| {
 | |
| 	spin_lock(&p->alloc_lock);
 | |
| }
 | |
| 
 | |
| static inline void task_unlock(struct task_struct *p)
 | |
| {
 | |
| 	spin_unlock(&p->alloc_lock);
 | |
| }
 | |
| 
 | |
| extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
 | |
| 							unsigned long *flags);
 | |
| 
 | |
| static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
 | |
| 						       unsigned long *flags)
 | |
| {
 | |
| 	struct sighand_struct *ret;
 | |
| 
 | |
| 	ret = __lock_task_sighand(tsk, flags);
 | |
| 	(void)__cond_lock(&tsk->sighand->siglock, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void unlock_task_sighand(struct task_struct *tsk,
 | |
| 						unsigned long *flags)
 | |
| {
 | |
| 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUPS
 | |
| static inline void threadgroup_change_begin(struct task_struct *tsk)
 | |
| {
 | |
| 	down_read(&tsk->signal->group_rwsem);
 | |
| }
 | |
| static inline void threadgroup_change_end(struct task_struct *tsk)
 | |
| {
 | |
| 	up_read(&tsk->signal->group_rwsem);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * threadgroup_lock - lock threadgroup
 | |
|  * @tsk: member task of the threadgroup to lock
 | |
|  *
 | |
|  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
 | |
|  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
 | |
|  * perform exec.  This is useful for cases where the threadgroup needs to
 | |
|  * stay stable across blockable operations.
 | |
|  *
 | |
|  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
 | |
|  * synchronization.  While held, no new task will be added to threadgroup
 | |
|  * and no existing live task will have its PF_EXITING set.
 | |
|  *
 | |
|  * During exec, a task goes and puts its thread group through unusual
 | |
|  * changes.  After de-threading, exclusive access is assumed to resources
 | |
|  * which are usually shared by tasks in the same group - e.g. sighand may
 | |
|  * be replaced with a new one.  Also, the exec'ing task takes over group
 | |
|  * leader role including its pid.  Exclude these changes while locked by
 | |
|  * grabbing cred_guard_mutex which is used to synchronize exec path.
 | |
|  */
 | |
| static inline void threadgroup_lock(struct task_struct *tsk)
 | |
| {
 | |
| 	/*
 | |
| 	 * exec uses exit for de-threading nesting group_rwsem inside
 | |
| 	 * cred_guard_mutex. Grab cred_guard_mutex first.
 | |
| 	 */
 | |
| 	mutex_lock(&tsk->signal->cred_guard_mutex);
 | |
| 	down_write(&tsk->signal->group_rwsem);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * threadgroup_unlock - unlock threadgroup
 | |
|  * @tsk: member task of the threadgroup to unlock
 | |
|  *
 | |
|  * Reverse threadgroup_lock().
 | |
|  */
 | |
| static inline void threadgroup_unlock(struct task_struct *tsk)
 | |
| {
 | |
| 	up_write(&tsk->signal->group_rwsem);
 | |
| 	mutex_unlock(&tsk->signal->cred_guard_mutex);
 | |
| }
 | |
| #else
 | |
| static inline void threadgroup_change_begin(struct task_struct *tsk) {}
 | |
| static inline void threadgroup_change_end(struct task_struct *tsk) {}
 | |
| static inline void threadgroup_lock(struct task_struct *tsk) {}
 | |
| static inline void threadgroup_unlock(struct task_struct *tsk) {}
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_THREAD_FUNCTIONS
 | |
| 
 | |
| #define task_thread_info(task)	((struct thread_info *)(task)->stack)
 | |
| #define task_stack_page(task)	((task)->stack)
 | |
| 
 | |
| static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
 | |
| {
 | |
| 	*task_thread_info(p) = *task_thread_info(org);
 | |
| 	task_thread_info(p)->task = p;
 | |
| }
 | |
| 
 | |
| static inline unsigned long *end_of_stack(struct task_struct *p)
 | |
| {
 | |
| 	return (unsigned long *)(task_thread_info(p) + 1);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline int object_is_on_stack(void *obj)
 | |
| {
 | |
| 	void *stack = task_stack_page(current);
 | |
| 
 | |
| 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
 | |
| }
 | |
| 
 | |
| extern void thread_info_cache_init(void);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_STACK_USAGE
 | |
| static inline unsigned long stack_not_used(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long *n = end_of_stack(p);
 | |
| 
 | |
| 	do { 	/* Skip over canary */
 | |
| 		n++;
 | |
| 	} while (!*n);
 | |
| 
 | |
| 	return (unsigned long)n - (unsigned long)end_of_stack(p);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* set thread flags in other task's structures
 | |
|  * - see asm/thread_info.h for TIF_xxxx flags available
 | |
|  */
 | |
| static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	set_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	clear_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	return test_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline void set_tsk_need_resched(struct task_struct *tsk)
 | |
| {
 | |
| 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
 | |
| }
 | |
| 
 | |
| static inline void clear_tsk_need_resched(struct task_struct *tsk)
 | |
| {
 | |
| 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
 | |
| }
 | |
| 
 | |
| static inline int test_tsk_need_resched(struct task_struct *tsk)
 | |
| {
 | |
| 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
 | |
| }
 | |
| 
 | |
| static inline int restart_syscall(void)
 | |
| {
 | |
| 	set_tsk_thread_flag(current, TIF_SIGPENDING);
 | |
| 	return -ERESTARTNOINTR;
 | |
| }
 | |
| 
 | |
| static inline int signal_pending(struct task_struct *p)
 | |
| {
 | |
| 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
 | |
| }
 | |
| 
 | |
| static inline int __fatal_signal_pending(struct task_struct *p)
 | |
| {
 | |
| 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
 | |
| }
 | |
| 
 | |
| static inline int fatal_signal_pending(struct task_struct *p)
 | |
| {
 | |
| 	return signal_pending(p) && __fatal_signal_pending(p);
 | |
| }
 | |
| 
 | |
| static inline int signal_pending_state(long state, struct task_struct *p)
 | |
| {
 | |
| 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
 | |
| 		return 0;
 | |
| 	if (!signal_pending(p))
 | |
| 		return 0;
 | |
| 
 | |
| 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
 | |
| }
 | |
| 
 | |
| static inline int need_resched(void)
 | |
| {
 | |
| 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cond_resched() and cond_resched_lock(): latency reduction via
 | |
|  * explicit rescheduling in places that are safe. The return
 | |
|  * value indicates whether a reschedule was done in fact.
 | |
|  * cond_resched_lock() will drop the spinlock before scheduling,
 | |
|  * cond_resched_softirq() will enable bhs before scheduling.
 | |
|  */
 | |
| extern int _cond_resched(void);
 | |
| 
 | |
| #define cond_resched() ({			\
 | |
| 	__might_sleep(__FILE__, __LINE__, 0);	\
 | |
| 	_cond_resched();			\
 | |
| })
 | |
| 
 | |
| extern int __cond_resched_lock(spinlock_t *lock);
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_COUNT
 | |
| #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
 | |
| #else
 | |
| #define PREEMPT_LOCK_OFFSET	0
 | |
| #endif
 | |
| 
 | |
| #define cond_resched_lock(lock) ({				\
 | |
| 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
 | |
| 	__cond_resched_lock(lock);				\
 | |
| })
 | |
| 
 | |
| extern int __cond_resched_softirq(void);
 | |
| 
 | |
| #define cond_resched_softirq() ({					\
 | |
| 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
 | |
| 	__cond_resched_softirq();					\
 | |
| })
 | |
| 
 | |
| /*
 | |
|  * Does a critical section need to be broken due to another
 | |
|  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
 | |
|  * but a general need for low latency)
 | |
|  */
 | |
| static inline int spin_needbreak(spinlock_t *lock)
 | |
| {
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 	return spin_is_contended(lock);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Thread group CPU time accounting.
 | |
|  */
 | |
| void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
 | |
| void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
 | |
| 
 | |
| static inline void thread_group_cputime_init(struct signal_struct *sig)
 | |
| {
 | |
| 	raw_spin_lock_init(&sig->cputimer.lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reevaluate whether the task has signals pending delivery.
 | |
|  * Wake the task if so.
 | |
|  * This is required every time the blocked sigset_t changes.
 | |
|  * callers must hold sighand->siglock.
 | |
|  */
 | |
| extern void recalc_sigpending_and_wake(struct task_struct *t);
 | |
| extern void recalc_sigpending(void);
 | |
| 
 | |
| extern void signal_wake_up(struct task_struct *t, int resume_stopped);
 | |
| 
 | |
| /*
 | |
|  * Wrappers for p->thread_info->cpu access. No-op on UP.
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static inline unsigned int task_cpu(const struct task_struct *p)
 | |
| {
 | |
| 	return task_thread_info(p)->cpu;
 | |
| }
 | |
| 
 | |
| extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline unsigned int task_cpu(const struct task_struct *p)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
 | |
| extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
 | |
| 
 | |
| extern void normalize_rt_tasks(void);
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 
 | |
| extern struct task_group root_task_group;
 | |
| 
 | |
| extern struct task_group *sched_create_group(struct task_group *parent);
 | |
| extern void sched_destroy_group(struct task_group *tg);
 | |
| extern void sched_move_task(struct task_struct *tsk);
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 | |
| extern unsigned long sched_group_shares(struct task_group *tg);
 | |
| #endif
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| extern int sched_group_set_rt_runtime(struct task_group *tg,
 | |
| 				      long rt_runtime_us);
 | |
| extern long sched_group_rt_runtime(struct task_group *tg);
 | |
| extern int sched_group_set_rt_period(struct task_group *tg,
 | |
| 				      long rt_period_us);
 | |
| extern long sched_group_rt_period(struct task_group *tg);
 | |
| extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 | |
| #endif
 | |
| #endif /* CONFIG_CGROUP_SCHED */
 | |
| 
 | |
| extern int task_can_switch_user(struct user_struct *up,
 | |
| 					struct task_struct *tsk);
 | |
| 
 | |
| #ifdef CONFIG_TASK_XACCT
 | |
| static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
 | |
| {
 | |
| 	tsk->ioac.rchar += amt;
 | |
| }
 | |
| 
 | |
| static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
 | |
| {
 | |
| 	tsk->ioac.wchar += amt;
 | |
| }
 | |
| 
 | |
| static inline void inc_syscr(struct task_struct *tsk)
 | |
| {
 | |
| 	tsk->ioac.syscr++;
 | |
| }
 | |
| 
 | |
| static inline void inc_syscw(struct task_struct *tsk)
 | |
| {
 | |
| 	tsk->ioac.syscw++;
 | |
| }
 | |
| #else
 | |
| static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void inc_syscr(struct task_struct *tsk)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void inc_syscw(struct task_struct *tsk)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef TASK_SIZE_OF
 | |
| #define TASK_SIZE_OF(tsk)	TASK_SIZE
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MM_OWNER
 | |
| extern void mm_update_next_owner(struct mm_struct *mm);
 | |
| extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
 | |
| #else
 | |
| static inline void mm_update_next_owner(struct mm_struct *mm)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MM_OWNER */
 | |
| 
 | |
| static inline unsigned long task_rlimit(const struct task_struct *tsk,
 | |
| 		unsigned int limit)
 | |
| {
 | |
| 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
 | |
| }
 | |
| 
 | |
| static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
 | |
| 		unsigned int limit)
 | |
| {
 | |
| 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
 | |
| }
 | |
| 
 | |
| static inline unsigned long rlimit(unsigned int limit)
 | |
| {
 | |
| 	return task_rlimit(current, limit);
 | |
| }
 | |
| 
 | |
| static inline unsigned long rlimit_max(unsigned int limit)
 | |
| {
 | |
| 	return task_rlimit_max(current, limit);
 | |
| }
 | |
| 
 | |
| #endif /* __KERNEL__ */
 | |
| 
 | |
| #endif
 |