forked from mirrors/linux
		
	 95c47514b9
			
		
	
	
		95c47514b9
		
	
	
	
	
		
			
			Replace calls to the deprecated function scatterwalk_copychunks() with memcpy_from_scatterwalk(), memcpy_to_scatterwalk(), scatterwalk_skip(), or scatterwalk_start_at_pos() as appropriate. Cc: Alexandre Torgue <alexandre.torgue@foss.st.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Maxime Méré <maxime.mere@foss.st.com> Cc: Thomas Bourgoin <thomas.bourgoin@foss.st.com> Cc: linux-stm32@st-md-mailman.stormreply.com Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			2786 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2786 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) STMicroelectronics SA 2017
 | |
|  * Author: Fabien Dessenne <fabien.dessenne@st.com>
 | |
|  * Ux500 support taken from snippets in the old Ux500 cryp driver
 | |
|  */
 | |
| 
 | |
| #include <crypto/aes.h>
 | |
| #include <crypto/engine.h>
 | |
| #include <crypto/internal/aead.h>
 | |
| #include <crypto/internal/des.h>
 | |
| #include <crypto/internal/skcipher.h>
 | |
| #include <crypto/scatterwalk.h>
 | |
| #include <linux/bottom_half.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/iopoll.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/reset.h>
 | |
| #include <linux/string.h>
 | |
| 
 | |
| #define DRIVER_NAME             "stm32-cryp"
 | |
| 
 | |
| /* Bit [0] encrypt / decrypt */
 | |
| #define FLG_ENCRYPT             BIT(0)
 | |
| /* Bit [8..1] algo & operation mode */
 | |
| #define FLG_AES                 BIT(1)
 | |
| #define FLG_DES                 BIT(2)
 | |
| #define FLG_TDES                BIT(3)
 | |
| #define FLG_ECB                 BIT(4)
 | |
| #define FLG_CBC                 BIT(5)
 | |
| #define FLG_CTR                 BIT(6)
 | |
| #define FLG_GCM                 BIT(7)
 | |
| #define FLG_CCM                 BIT(8)
 | |
| /* Mode mask = bits [15..0] */
 | |
| #define FLG_MODE_MASK           GENMASK(15, 0)
 | |
| /* Bit [31..16] status  */
 | |
| #define FLG_IN_OUT_DMA          BIT(16)
 | |
| #define FLG_HEADER_DMA          BIT(17)
 | |
| 
 | |
| /* Registers */
 | |
| #define CRYP_CR                 0x00000000
 | |
| #define CRYP_SR                 0x00000004
 | |
| #define CRYP_DIN                0x00000008
 | |
| #define CRYP_DOUT               0x0000000C
 | |
| #define CRYP_DMACR              0x00000010
 | |
| #define CRYP_IMSCR              0x00000014
 | |
| #define CRYP_RISR               0x00000018
 | |
| #define CRYP_MISR               0x0000001C
 | |
| #define CRYP_K0LR               0x00000020
 | |
| #define CRYP_K0RR               0x00000024
 | |
| #define CRYP_K1LR               0x00000028
 | |
| #define CRYP_K1RR               0x0000002C
 | |
| #define CRYP_K2LR               0x00000030
 | |
| #define CRYP_K2RR               0x00000034
 | |
| #define CRYP_K3LR               0x00000038
 | |
| #define CRYP_K3RR               0x0000003C
 | |
| #define CRYP_IV0LR              0x00000040
 | |
| #define CRYP_IV0RR              0x00000044
 | |
| #define CRYP_IV1LR              0x00000048
 | |
| #define CRYP_IV1RR              0x0000004C
 | |
| #define CRYP_CSGCMCCM0R         0x00000050
 | |
| #define CRYP_CSGCM0R            0x00000070
 | |
| 
 | |
| #define UX500_CRYP_CR		0x00000000
 | |
| #define UX500_CRYP_SR		0x00000004
 | |
| #define UX500_CRYP_DIN		0x00000008
 | |
| #define UX500_CRYP_DINSIZE	0x0000000C
 | |
| #define UX500_CRYP_DOUT		0x00000010
 | |
| #define UX500_CRYP_DOUSIZE	0x00000014
 | |
| #define UX500_CRYP_DMACR	0x00000018
 | |
| #define UX500_CRYP_IMSC		0x0000001C
 | |
| #define UX500_CRYP_RIS		0x00000020
 | |
| #define UX500_CRYP_MIS		0x00000024
 | |
| #define UX500_CRYP_K1L		0x00000028
 | |
| #define UX500_CRYP_K1R		0x0000002C
 | |
| #define UX500_CRYP_K2L		0x00000030
 | |
| #define UX500_CRYP_K2R		0x00000034
 | |
| #define UX500_CRYP_K3L		0x00000038
 | |
| #define UX500_CRYP_K3R		0x0000003C
 | |
| #define UX500_CRYP_K4L		0x00000040
 | |
| #define UX500_CRYP_K4R		0x00000044
 | |
| #define UX500_CRYP_IV0L		0x00000048
 | |
| #define UX500_CRYP_IV0R		0x0000004C
 | |
| #define UX500_CRYP_IV1L		0x00000050
 | |
| #define UX500_CRYP_IV1R		0x00000054
 | |
| 
 | |
| /* Registers values */
 | |
| #define CR_DEC_NOT_ENC          0x00000004
 | |
| #define CR_TDES_ECB             0x00000000
 | |
| #define CR_TDES_CBC             0x00000008
 | |
| #define CR_DES_ECB              0x00000010
 | |
| #define CR_DES_CBC              0x00000018
 | |
| #define CR_AES_ECB              0x00000020
 | |
| #define CR_AES_CBC              0x00000028
 | |
| #define CR_AES_CTR              0x00000030
 | |
| #define CR_AES_KP               0x00000038 /* Not on Ux500 */
 | |
| #define CR_AES_XTS              0x00000038 /* Only on Ux500 */
 | |
| #define CR_AES_GCM              0x00080000
 | |
| #define CR_AES_CCM              0x00080008
 | |
| #define CR_AES_UNKNOWN          0xFFFFFFFF
 | |
| #define CR_ALGO_MASK            0x00080038
 | |
| #define CR_DATA32               0x00000000
 | |
| #define CR_DATA16               0x00000040
 | |
| #define CR_DATA8                0x00000080
 | |
| #define CR_DATA1                0x000000C0
 | |
| #define CR_KEY128               0x00000000
 | |
| #define CR_KEY192               0x00000100
 | |
| #define CR_KEY256               0x00000200
 | |
| #define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
 | |
| #define CR_KSE                  0x00000800 /* Only on Ux500 */
 | |
| #define CR_FFLUSH               0x00004000
 | |
| #define CR_CRYPEN               0x00008000
 | |
| #define CR_PH_INIT              0x00000000
 | |
| #define CR_PH_HEADER            0x00010000
 | |
| #define CR_PH_PAYLOAD           0x00020000
 | |
| #define CR_PH_FINAL             0x00030000
 | |
| #define CR_PH_MASK              0x00030000
 | |
| #define CR_NBPBL_SHIFT          20
 | |
| 
 | |
| #define SR_IFNF                 BIT(1)
 | |
| #define SR_OFNE                 BIT(2)
 | |
| #define SR_BUSY                 BIT(8)
 | |
| 
 | |
| #define DMACR_DIEN              BIT(0)
 | |
| #define DMACR_DOEN              BIT(1)
 | |
| 
 | |
| #define IMSCR_IN                BIT(0)
 | |
| #define IMSCR_OUT               BIT(1)
 | |
| 
 | |
| #define MISR_IN                 BIT(0)
 | |
| #define MISR_OUT                BIT(1)
 | |
| 
 | |
| /* Misc */
 | |
| #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 | |
| #define GCM_CTR_INIT            2
 | |
| #define CRYP_AUTOSUSPEND_DELAY  50
 | |
| 
 | |
| #define CRYP_DMA_BURST_REG      4
 | |
| 
 | |
| enum stm32_dma_mode {
 | |
| 	NO_DMA,
 | |
| 	DMA_PLAIN_SG,
 | |
| 	DMA_NEED_SG_TRUNC
 | |
| };
 | |
| 
 | |
| struct stm32_cryp_caps {
 | |
| 	bool			aeads_support;
 | |
| 	bool			linear_aes_key;
 | |
| 	bool			kp_mode;
 | |
| 	bool			iv_protection;
 | |
| 	bool			swap_final;
 | |
| 	bool			padding_wa;
 | |
| 	u32			cr;
 | |
| 	u32			sr;
 | |
| 	u32			din;
 | |
| 	u32			dout;
 | |
| 	u32			dmacr;
 | |
| 	u32			imsc;
 | |
| 	u32			mis;
 | |
| 	u32			k1l;
 | |
| 	u32			k1r;
 | |
| 	u32			k3r;
 | |
| 	u32			iv0l;
 | |
| 	u32			iv0r;
 | |
| 	u32			iv1l;
 | |
| 	u32			iv1r;
 | |
| };
 | |
| 
 | |
| struct stm32_cryp_ctx {
 | |
| 	struct stm32_cryp       *cryp;
 | |
| 	int                     keylen;
 | |
| 	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 | |
| 	unsigned long           flags;
 | |
| };
 | |
| 
 | |
| struct stm32_cryp_reqctx {
 | |
| 	unsigned long mode;
 | |
| };
 | |
| 
 | |
| struct stm32_cryp {
 | |
| 	struct list_head        list;
 | |
| 	struct device           *dev;
 | |
| 	void __iomem            *regs;
 | |
| 	phys_addr_t             phys_base;
 | |
| 	struct clk              *clk;
 | |
| 	unsigned long           flags;
 | |
| 	u32                     irq_status;
 | |
| 	const struct stm32_cryp_caps *caps;
 | |
| 	struct stm32_cryp_ctx   *ctx;
 | |
| 
 | |
| 	struct crypto_engine    *engine;
 | |
| 
 | |
| 	struct skcipher_request *req;
 | |
| 	struct aead_request     *areq;
 | |
| 
 | |
| 	size_t                  authsize;
 | |
| 	size_t                  hw_blocksize;
 | |
| 
 | |
| 	size_t                  payload_in;
 | |
| 	size_t                  header_in;
 | |
| 	size_t                  payload_out;
 | |
| 
 | |
| 	/* DMA process fields */
 | |
| 	struct scatterlist      *in_sg;
 | |
| 	struct scatterlist      *header_sg;
 | |
| 	struct scatterlist      *out_sg;
 | |
| 	size_t                  in_sg_len;
 | |
| 	size_t                  header_sg_len;
 | |
| 	size_t                  out_sg_len;
 | |
| 	struct completion	dma_completion;
 | |
| 
 | |
| 	struct dma_chan         *dma_lch_in;
 | |
| 	struct dma_chan         *dma_lch_out;
 | |
| 	enum stm32_dma_mode     dma_mode;
 | |
| 
 | |
| 	/* IT process fields */
 | |
| 	struct scatter_walk     in_walk;
 | |
| 	struct scatter_walk     out_walk;
 | |
| 
 | |
| 	__be32                  last_ctr[4];
 | |
| 	u32                     gcm_ctr;
 | |
| };
 | |
| 
 | |
| struct stm32_cryp_list {
 | |
| 	struct list_head        dev_list;
 | |
| 	spinlock_t              lock; /* protect dev_list */
 | |
| };
 | |
| 
 | |
| static struct stm32_cryp_list cryp_list = {
 | |
| 	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 | |
| 	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 | |
| };
 | |
| 
 | |
| static inline bool is_aes(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return cryp->flags & FLG_AES;
 | |
| }
 | |
| 
 | |
| static inline bool is_des(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return cryp->flags & FLG_DES;
 | |
| }
 | |
| 
 | |
| static inline bool is_tdes(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return cryp->flags & FLG_TDES;
 | |
| }
 | |
| 
 | |
| static inline bool is_ecb(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return cryp->flags & FLG_ECB;
 | |
| }
 | |
| 
 | |
| static inline bool is_cbc(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return cryp->flags & FLG_CBC;
 | |
| }
 | |
| 
 | |
| static inline bool is_ctr(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return cryp->flags & FLG_CTR;
 | |
| }
 | |
| 
 | |
| static inline bool is_gcm(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return cryp->flags & FLG_GCM;
 | |
| }
 | |
| 
 | |
| static inline bool is_ccm(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return cryp->flags & FLG_CCM;
 | |
| }
 | |
| 
 | |
| static inline bool is_encrypt(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return cryp->flags & FLG_ENCRYPT;
 | |
| }
 | |
| 
 | |
| static inline bool is_decrypt(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return !is_encrypt(cryp);
 | |
| }
 | |
| 
 | |
| static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 | |
| {
 | |
| 	return readl_relaxed(cryp->regs + ofst);
 | |
| }
 | |
| 
 | |
| static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 | |
| {
 | |
| 	writel_relaxed(val, cryp->regs + ofst);
 | |
| }
 | |
| 
 | |
| static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 status;
 | |
| 
 | |
| 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 | |
| 			!(status & SR_BUSY), 10, 100000);
 | |
| }
 | |
| 
 | |
| static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
 | |
| 		       cryp->regs + cryp->caps->cr);
 | |
| }
 | |
| 
 | |
| static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 status;
 | |
| 
 | |
| 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
 | |
| 			!(status & CR_CRYPEN), 10, 100000);
 | |
| }
 | |
| 
 | |
| static inline int stm32_cryp_wait_input(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 status;
 | |
| 
 | |
| 	return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status,
 | |
| 			status & SR_IFNF, 1, 10);
 | |
| }
 | |
| 
 | |
| static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 status;
 | |
| 
 | |
| 	return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status,
 | |
| 			status & SR_OFNE, 1, 10);
 | |
| }
 | |
| 
 | |
| static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
 | |
| 		       cryp->regs + cryp->caps->cr);
 | |
| }
 | |
| 
 | |
| static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
 | |
| 		       cryp->regs + cryp->caps->cr);
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp);
 | |
| static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp);
 | |
| static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp);
 | |
| static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 | |
| static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
 | |
| static int stm32_cryp_dma_start(struct stm32_cryp *cryp);
 | |
| static int stm32_cryp_it_start(struct stm32_cryp *cryp);
 | |
| 
 | |
| static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 | |
| {
 | |
| 	struct stm32_cryp *tmp, *cryp = NULL;
 | |
| 
 | |
| 	spin_lock_bh(&cryp_list.lock);
 | |
| 	if (!ctx->cryp) {
 | |
| 		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 | |
| 			cryp = tmp;
 | |
| 			break;
 | |
| 		}
 | |
| 		ctx->cryp = cryp;
 | |
| 	} else {
 | |
| 		cryp = ctx->cryp;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_bh(&cryp_list.lock);
 | |
| 
 | |
| 	return cryp;
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 | |
| {
 | |
| 	if (!iv)
 | |
| 		return;
 | |
| 
 | |
| 	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
 | |
| 	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
 | |
| 
 | |
| 	if (is_aes(cryp)) {
 | |
| 		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
 | |
| 		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	struct skcipher_request *req = cryp->req;
 | |
| 	__be32 *tmp = (void *)req->iv;
 | |
| 
 | |
| 	if (!tmp)
 | |
| 		return;
 | |
| 
 | |
| 	if (cryp->caps->iv_protection)
 | |
| 		stm32_cryp_key_read_enable(cryp);
 | |
| 
 | |
| 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
 | |
| 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
 | |
| 
 | |
| 	if (is_aes(cryp)) {
 | |
| 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
 | |
| 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
 | |
| 	}
 | |
| 
 | |
| 	if (cryp->caps->iv_protection)
 | |
| 		stm32_cryp_key_read_disable(cryp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ux500_swap_bits_in_byte() - mirror the bits in a byte
 | |
|  * @b: the byte to be mirrored
 | |
|  *
 | |
|  * The bits are swapped the following way:
 | |
|  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
 | |
|  *  nibble 2 (n2) bits 4-7.
 | |
|  *
 | |
|  *  Nibble 1 (n1):
 | |
|  *  (The "old" (moved) bit is replaced with a zero)
 | |
|  *  1. Move bit 6 and 7, 4 positions to the left.
 | |
|  *  2. Move bit 3 and 5, 2 positions to the left.
 | |
|  *  3. Move bit 1-4, 1 position to the left.
 | |
|  *
 | |
|  *  Nibble 2 (n2):
 | |
|  *  1. Move bit 0 and 1, 4 positions to the right.
 | |
|  *  2. Move bit 2 and 4, 2 positions to the right.
 | |
|  *  3. Move bit 3-6, 1 position to the right.
 | |
|  *
 | |
|  *  Combine the two nibbles to a complete and swapped byte.
 | |
|  */
 | |
| static inline u8 ux500_swap_bits_in_byte(u8 b)
 | |
| {
 | |
| #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
 | |
| #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
 | |
| 				  right shift 2 */
 | |
| #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
 | |
| 				  right shift 1 */
 | |
| #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
 | |
| #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
 | |
| 				  left shift 2 */
 | |
| #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
 | |
| 				  left shift 1 */
 | |
| 
 | |
| 	u8 n1;
 | |
| 	u8 n2;
 | |
| 
 | |
| 	/* Swap most significant nibble */
 | |
| 	/* Right shift 4, bits 6 and 7 */
 | |
| 	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
 | |
| 	/* Right shift 2, bits 3 and 5 */
 | |
| 	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
 | |
| 	/* Right shift 1, bits 1-4 */
 | |
| 	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
 | |
| 
 | |
| 	/* Swap least significant nibble */
 | |
| 	/* Left shift 4, bits 0 and 1 */
 | |
| 	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
 | |
| 	/* Left shift 2, bits 2 and 4 */
 | |
| 	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
 | |
| 	/* Left shift 1, bits 3-6 */
 | |
| 	n2 = (n2  & L_SHIFT_1_MASK) << 1;
 | |
| 
 | |
| 	return n1 | n2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ux500_swizzle_key() - Shuffle around words and bits in the AES key
 | |
|  * @in: key to swizzle
 | |
|  * @out: swizzled key
 | |
|  * @len: length of key, in bytes
 | |
|  *
 | |
|  * This "key swizzling procedure" is described in the examples in the
 | |
|  * DB8500 design specification. There is no real description of why
 | |
|  * the bits have been arranged like this in the hardware.
 | |
|  */
 | |
| static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	int bpw = sizeof(u32);
 | |
| 	int j;
 | |
| 	int index = 0;
 | |
| 
 | |
| 	j = len - bpw;
 | |
| 	while (j >= 0) {
 | |
| 		for (i = 0; i < bpw; i++) {
 | |
| 			index = len - j - bpw + i;
 | |
| 			out[j + i] =
 | |
| 				ux500_swap_bits_in_byte(in[index]);
 | |
| 		}
 | |
| 		j -= bpw;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int r_id;
 | |
| 
 | |
| 	if (is_des(c)) {
 | |
| 		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
 | |
| 		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * On the Ux500 the AES key is considered as a single bit sequence
 | |
| 	 * of 128, 192 or 256 bits length. It is written linearly into the
 | |
| 	 * registers from K1L and down, and need to be processed to become
 | |
| 	 * a proper big-endian bit sequence.
 | |
| 	 */
 | |
| 	if (is_aes(c) && c->caps->linear_aes_key) {
 | |
| 		u32 tmpkey[8];
 | |
| 
 | |
| 		ux500_swizzle_key((u8 *)c->ctx->key,
 | |
| 				  (u8 *)tmpkey, c->ctx->keylen);
 | |
| 
 | |
| 		r_id = c->caps->k1l;
 | |
| 		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
 | |
| 			stm32_cryp_write(c, r_id, tmpkey[i]);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	r_id = c->caps->k3r;
 | |
| 	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 | |
| 		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
 | |
| }
 | |
| 
 | |
| static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	if (is_aes(cryp) && is_ecb(cryp))
 | |
| 		return CR_AES_ECB;
 | |
| 
 | |
| 	if (is_aes(cryp) && is_cbc(cryp))
 | |
| 		return CR_AES_CBC;
 | |
| 
 | |
| 	if (is_aes(cryp) && is_ctr(cryp))
 | |
| 		return CR_AES_CTR;
 | |
| 
 | |
| 	if (is_aes(cryp) && is_gcm(cryp))
 | |
| 		return CR_AES_GCM;
 | |
| 
 | |
| 	if (is_aes(cryp) && is_ccm(cryp))
 | |
| 		return CR_AES_CCM;
 | |
| 
 | |
| 	if (is_des(cryp) && is_ecb(cryp))
 | |
| 		return CR_DES_ECB;
 | |
| 
 | |
| 	if (is_des(cryp) && is_cbc(cryp))
 | |
| 		return CR_DES_CBC;
 | |
| 
 | |
| 	if (is_tdes(cryp) && is_ecb(cryp))
 | |
| 		return CR_TDES_ECB;
 | |
| 
 | |
| 	if (is_tdes(cryp) && is_cbc(cryp))
 | |
| 		return CR_TDES_CBC;
 | |
| 
 | |
| 	dev_err(cryp->dev, "Unknown mode\n");
 | |
| 	return CR_AES_UNKNOWN;
 | |
| }
 | |
| 
 | |
| static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 | |
| 				  cryp->areq->cryptlen - cryp->authsize;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 | |
| {
 | |
| 	int ret;
 | |
| 	__be32 iv[4];
 | |
| 
 | |
| 	/* Phase 1 : init */
 | |
| 	memcpy(iv, cryp->areq->iv, 12);
 | |
| 	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 | |
| 	cryp->gcm_ctr = GCM_CTR_INIT;
 | |
| 	stm32_cryp_hw_write_iv(cryp, iv);
 | |
| 
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 | |
| 
 | |
| 	/* Wait for end of processing */
 | |
| 	ret = stm32_cryp_wait_enable(cryp);
 | |
| 	if (ret) {
 | |
| 		dev_err(cryp->dev, "Timeout (gcm init)\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare next phase */
 | |
| 	if (cryp->areq->assoclen) {
 | |
| 		cfg |= CR_PH_HEADER;
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 	} else if (stm32_cryp_get_input_text_len(cryp)) {
 | |
| 		cfg |= CR_PH_PAYLOAD;
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 cfg;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Check if whole header written */
 | |
| 	if (!cryp->header_in) {
 | |
| 		/* Wait for completion */
 | |
| 		err = stm32_cryp_wait_busy(cryp);
 | |
| 		if (err) {
 | |
| 			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
 | |
| 			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 | |
| 			stm32_cryp_finish_req(cryp, err);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (stm32_cryp_get_input_text_len(cryp)) {
 | |
| 			/* Phase 3 : payload */
 | |
| 			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 | |
| 			cfg &= ~CR_CRYPEN;
 | |
| 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 			cfg &= ~CR_PH_MASK;
 | |
| 			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
 | |
| 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Phase 4 : tag.
 | |
| 			 * Nothing to read, nothing to write, caller have to
 | |
| 			 * end request
 | |
| 			 */
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	size_t written;
 | |
| 	size_t len;
 | |
| 	u32 alen = cryp->areq->assoclen;
 | |
| 	u32 block[AES_BLOCK_32] = {0};
 | |
| 	u8 *b8 = (u8 *)block;
 | |
| 
 | |
| 	if (alen <= 65280) {
 | |
| 		/* Write first u32 of B1 */
 | |
| 		b8[0] = (alen >> 8) & 0xFF;
 | |
| 		b8[1] = alen & 0xFF;
 | |
| 		len = 2;
 | |
| 	} else {
 | |
| 		/* Build the two first u32 of B1 */
 | |
| 		b8[0] = 0xFF;
 | |
| 		b8[1] = 0xFE;
 | |
| 		b8[2] = (alen & 0xFF000000) >> 24;
 | |
| 		b8[3] = (alen & 0x00FF0000) >> 16;
 | |
| 		b8[4] = (alen & 0x0000FF00) >> 8;
 | |
| 		b8[5] = alen & 0x000000FF;
 | |
| 		len = 6;
 | |
| 	}
 | |
| 
 | |
| 	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
 | |
| 
 | |
| 	memcpy_from_scatterwalk((char *)block + len, &cryp->in_walk, written);
 | |
| 
 | |
| 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
 | |
| 
 | |
| 	cryp->header_in -= written;
 | |
| 
 | |
| 	stm32_crypt_gcmccm_end_header(cryp);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
 | |
| 	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
 | |
| 	__be32 *bd;
 | |
| 	u32 *d;
 | |
| 	unsigned int i, textlen;
 | |
| 
 | |
| 	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 | |
| 	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 | |
| 	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 | |
| 	iv[AES_BLOCK_SIZE - 1] = 1;
 | |
| 	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 | |
| 
 | |
| 	/* Build B0 */
 | |
| 	memcpy(b0, iv, AES_BLOCK_SIZE);
 | |
| 
 | |
| 	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 | |
| 
 | |
| 	if (cryp->areq->assoclen)
 | |
| 		b0[0] |= 0x40;
 | |
| 
 | |
| 	textlen = stm32_cryp_get_input_text_len(cryp);
 | |
| 
 | |
| 	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 | |
| 	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 | |
| 
 | |
| 	/* Enable HW */
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 | |
| 
 | |
| 	/* Write B0 */
 | |
| 	d = (u32 *)b0;
 | |
| 	bd = (__be32 *)b0;
 | |
| 
 | |
| 	for (i = 0; i < AES_BLOCK_32; i++) {
 | |
| 		u32 xd = d[i];
 | |
| 
 | |
| 		if (!cryp->caps->padding_wa)
 | |
| 			xd = be32_to_cpu(bd[i]);
 | |
| 		stm32_cryp_write(cryp, cryp->caps->din, xd);
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for end of processing */
 | |
| 	ret = stm32_cryp_wait_enable(cryp);
 | |
| 	if (ret) {
 | |
| 		dev_err(cryp->dev, "Timeout (ccm init)\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare next phase */
 | |
| 	if (cryp->areq->assoclen) {
 | |
| 		cfg |= CR_PH_HEADER | CR_CRYPEN;
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 		/* Write first (special) block (may move to next phase [payload]) */
 | |
| 		stm32_cryp_write_ccm_first_header(cryp);
 | |
| 	} else if (stm32_cryp_get_input_text_len(cryp)) {
 | |
| 		cfg |= CR_PH_PAYLOAD;
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 cfg, hw_mode;
 | |
| 
 | |
| 	pm_runtime_get_sync(cryp->dev);
 | |
| 
 | |
| 	/* Disable interrupt */
 | |
| 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 | |
| 
 | |
| 	/* Set configuration */
 | |
| 	cfg = CR_DATA8 | CR_FFLUSH;
 | |
| 
 | |
| 	switch (cryp->ctx->keylen) {
 | |
| 	case AES_KEYSIZE_128:
 | |
| 		cfg |= CR_KEY128;
 | |
| 		break;
 | |
| 
 | |
| 	case AES_KEYSIZE_192:
 | |
| 		cfg |= CR_KEY192;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 	case AES_KEYSIZE_256:
 | |
| 		cfg |= CR_KEY256;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	hw_mode = stm32_cryp_get_hw_mode(cryp);
 | |
| 	if (hw_mode == CR_AES_UNKNOWN)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* AES ECB/CBC decrypt: run key preparation first */
 | |
| 	if (is_decrypt(cryp) &&
 | |
| 	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 | |
| 		/* Configure in key preparation mode */
 | |
| 		if (cryp->caps->kp_mode)
 | |
| 			stm32_cryp_write(cryp, cryp->caps->cr,
 | |
| 				cfg | CR_AES_KP);
 | |
| 		else
 | |
| 			stm32_cryp_write(cryp,
 | |
| 				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
 | |
| 
 | |
| 		/* Set key only after full configuration done */
 | |
| 		stm32_cryp_hw_write_key(cryp);
 | |
| 
 | |
| 		/* Start prepare key */
 | |
| 		stm32_cryp_enable(cryp);
 | |
| 		/* Wait for end of processing */
 | |
| 		ret = stm32_cryp_wait_busy(cryp);
 | |
| 		if (ret) {
 | |
| 			dev_err(cryp->dev, "Timeout (key preparation)\n");
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		cfg |= hw_mode | CR_DEC_NOT_ENC;
 | |
| 
 | |
| 		/* Apply updated config (Decrypt + algo) and flush */
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 	} else {
 | |
| 		cfg |= hw_mode;
 | |
| 		if (is_decrypt(cryp))
 | |
| 			cfg |= CR_DEC_NOT_ENC;
 | |
| 
 | |
| 		/* Apply config and flush */
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 		/* Set key only after configuration done */
 | |
| 		stm32_cryp_hw_write_key(cryp);
 | |
| 	}
 | |
| 
 | |
| 	switch (hw_mode) {
 | |
| 	case CR_AES_GCM:
 | |
| 	case CR_AES_CCM:
 | |
| 		/* Phase 1 : init */
 | |
| 		if (hw_mode == CR_AES_CCM)
 | |
| 			ret = stm32_cryp_ccm_init(cryp, cfg);
 | |
| 		else
 | |
| 			ret = stm32_cryp_gcm_init(cryp, cfg);
 | |
| 
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case CR_DES_CBC:
 | |
| 	case CR_TDES_CBC:
 | |
| 	case CR_AES_CBC:
 | |
| 	case CR_AES_CTR:
 | |
| 		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable now */
 | |
| 	stm32_cryp_enable(cryp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 | |
| {
 | |
| 	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 | |
| 		/* Phase 4 : output tag */
 | |
| 		err = stm32_cryp_read_auth_tag(cryp);
 | |
| 
 | |
| 	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
 | |
| 		stm32_cryp_get_iv(cryp);
 | |
| 
 | |
| 	pm_runtime_mark_last_busy(cryp->dev);
 | |
| 	pm_runtime_put_autosuspend(cryp->dev);
 | |
| 
 | |
| 	if (is_gcm(cryp) || is_ccm(cryp))
 | |
| 		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 | |
| 	else
 | |
| 		crypto_finalize_skcipher_request(cryp->engine, cryp->req, err);
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_header_dma_callback(void *param)
 | |
| {
 | |
| 	struct stm32_cryp *cryp = (struct stm32_cryp *)param;
 | |
| 	int ret;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	dma_unmap_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 	reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
 | |
| 	stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN));
 | |
| 
 | |
| 	kfree(cryp->header_sg);
 | |
| 
 | |
| 	reg = stm32_cryp_read(cryp, cryp->caps->cr);
 | |
| 
 | |
| 	if (cryp->header_in) {
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN);
 | |
| 
 | |
| 		ret = stm32_cryp_wait_input(cryp);
 | |
| 		if (ret) {
 | |
| 			dev_err(cryp->dev, "input header ready timeout after dma\n");
 | |
| 			stm32_cryp_finish_req(cryp, ret);
 | |
| 			return;
 | |
| 		}
 | |
| 		stm32_cryp_irq_write_gcmccm_header(cryp);
 | |
| 		WARN_ON(cryp->header_in);
 | |
| 	}
 | |
| 
 | |
| 	if (stm32_cryp_get_input_text_len(cryp)) {
 | |
| 		/* Phase 3 : payload */
 | |
| 		reg = stm32_cryp_read(cryp, cryp->caps->cr);
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, reg & ~CR_CRYPEN);
 | |
| 
 | |
| 		reg &= ~CR_PH_MASK;
 | |
| 		reg |= CR_PH_PAYLOAD | CR_CRYPEN;
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, reg);
 | |
| 
 | |
| 		if (cryp->flags & FLG_IN_OUT_DMA) {
 | |
| 			ret = stm32_cryp_dma_start(cryp);
 | |
| 			if (ret)
 | |
| 				stm32_cryp_finish_req(cryp, ret);
 | |
| 		} else {
 | |
| 			stm32_cryp_it_start(cryp);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Phase 4 : tag.
 | |
| 		 * Nothing to read, nothing to write => end request
 | |
| 		 */
 | |
| 		stm32_cryp_finish_req(cryp, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_dma_callback(void *param)
 | |
| {
 | |
| 	struct stm32_cryp *cryp = (struct stm32_cryp *)param;
 | |
| 	int ret;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	complete(&cryp->dma_completion); /* completion to indicate no timeout */
 | |
| 
 | |
| 	dma_sync_sg_for_device(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE);
 | |
| 
 | |
| 	if (cryp->in_sg != cryp->out_sg)
 | |
| 		dma_unmap_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 	dma_unmap_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE);
 | |
| 
 | |
| 	reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
 | |
| 	stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN));
 | |
| 
 | |
| 	reg = stm32_cryp_read(cryp, cryp->caps->cr);
 | |
| 
 | |
| 	if (is_gcm(cryp) || is_ccm(cryp)) {
 | |
| 		kfree(cryp->in_sg);
 | |
| 		kfree(cryp->out_sg);
 | |
| 	} else {
 | |
| 		if (cryp->in_sg != cryp->req->src)
 | |
| 			kfree(cryp->in_sg);
 | |
| 		if (cryp->out_sg != cryp->req->dst)
 | |
| 			kfree(cryp->out_sg);
 | |
| 	}
 | |
| 
 | |
| 	if (cryp->payload_in) {
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN);
 | |
| 
 | |
| 		ret = stm32_cryp_wait_input(cryp);
 | |
| 		if (ret) {
 | |
| 			dev_err(cryp->dev, "input ready timeout after dma\n");
 | |
| 			stm32_cryp_finish_req(cryp, ret);
 | |
| 			return;
 | |
| 		}
 | |
| 		stm32_cryp_irq_write_data(cryp);
 | |
| 
 | |
| 		ret = stm32_cryp_wait_output(cryp);
 | |
| 		if (ret) {
 | |
| 			dev_err(cryp->dev, "output ready timeout after dma\n");
 | |
| 			stm32_cryp_finish_req(cryp, ret);
 | |
| 			return;
 | |
| 		}
 | |
| 		stm32_cryp_irq_read_data(cryp);
 | |
| 	}
 | |
| 
 | |
| 	stm32_cryp_finish_req(cryp, 0);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_header_dma_start(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct dma_async_tx_descriptor *tx_in;
 | |
| 	u32 reg;
 | |
| 	size_t align_size;
 | |
| 
 | |
| 	ret = dma_map_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE);
 | |
| 	if (!ret) {
 | |
| 		dev_err(cryp->dev, "dma_map_sg() error\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	dma_sync_sg_for_device(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 	tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->header_sg, cryp->header_sg_len,
 | |
| 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!tx_in) {
 | |
| 		dev_err(cryp->dev, "IN prep_slave_sg() failed\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	tx_in->callback_param = cryp;
 | |
| 	tx_in->callback = stm32_cryp_header_dma_callback;
 | |
| 
 | |
| 	/* Advance scatterwalk to not DMA'ed data */
 | |
| 	align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize);
 | |
| 	scatterwalk_skip(&cryp->in_walk, align_size);
 | |
| 	cryp->header_in -= align_size;
 | |
| 
 | |
| 	ret = dma_submit_error(dmaengine_submit(tx_in));
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(cryp->dev, "DMA in submit failed\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 	dma_async_issue_pending(cryp->dma_lch_in);
 | |
| 
 | |
| 	reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
 | |
| 	stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DIEN);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_dma_start(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	int ret;
 | |
| 	size_t align_size;
 | |
| 	struct dma_async_tx_descriptor *tx_in, *tx_out;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (cryp->in_sg != cryp->out_sg) {
 | |
| 		ret = dma_map_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE);
 | |
| 		if (!ret) {
 | |
| 			dev_err(cryp->dev, "dma_map_sg() error\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = dma_map_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE);
 | |
| 	if (!ret) {
 | |
| 		dev_err(cryp->dev, "dma_map_sg() error\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	dma_sync_sg_for_device(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 	tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->in_sg, cryp->in_sg_len,
 | |
| 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!tx_in) {
 | |
| 		dev_err(cryp->dev, "IN prep_slave_sg() failed\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* No callback necessary */
 | |
| 	tx_in->callback_param = cryp;
 | |
| 	tx_in->callback = NULL;
 | |
| 
 | |
| 	tx_out = dmaengine_prep_slave_sg(cryp->dma_lch_out, cryp->out_sg, cryp->out_sg_len,
 | |
| 					 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!tx_out) {
 | |
| 		dev_err(cryp->dev, "OUT prep_slave_sg() failed\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	reinit_completion(&cryp->dma_completion);
 | |
| 	tx_out->callback = stm32_cryp_dma_callback;
 | |
| 	tx_out->callback_param = cryp;
 | |
| 
 | |
| 	/* Advance scatterwalk to not DMA'ed data */
 | |
| 	align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize);
 | |
| 	scatterwalk_skip(&cryp->in_walk, align_size);
 | |
| 	cryp->payload_in -= align_size;
 | |
| 
 | |
| 	ret = dma_submit_error(dmaengine_submit(tx_in));
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(cryp->dev, "DMA in submit failed\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 	dma_async_issue_pending(cryp->dma_lch_in);
 | |
| 
 | |
| 	/* Advance scatterwalk to not DMA'ed data */
 | |
| 	scatterwalk_skip(&cryp->out_walk, align_size);
 | |
| 	cryp->payload_out -= align_size;
 | |
| 	ret = dma_submit_error(dmaengine_submit(tx_out));
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(cryp->dev, "DMA out submit failed\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 	dma_async_issue_pending(cryp->dma_lch_out);
 | |
| 
 | |
| 	reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
 | |
| 	stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DOEN | DMACR_DIEN);
 | |
| 
 | |
| 	if (!wait_for_completion_timeout(&cryp->dma_completion, msecs_to_jiffies(1000))) {
 | |
| 		dev_err(cryp->dev, "DMA out timed out\n");
 | |
| 		dmaengine_terminate_sync(cryp->dma_lch_out);
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_it_start(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	/* Enable interrupt and let the IRQ handler do everything */
 | |
| 	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 | |
| 
 | |
| static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 | |
| 
 | |
| static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 | |
| {
 | |
| 	crypto_aead_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 | |
| {
 | |
| 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 | |
| 			crypto_skcipher_reqtfm(req));
 | |
| 	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 | |
| 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 | |
| 
 | |
| 	if (!cryp)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	rctx->mode = mode;
 | |
| 
 | |
| 	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 | |
| {
 | |
| 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 | |
| 	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 | |
| 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 | |
| 
 | |
| 	if (!cryp)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	rctx->mode = mode;
 | |
| 
 | |
| 	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | |
| 			     unsigned int keylen)
 | |
| {
 | |
| 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 
 | |
| 	memcpy(ctx->key, key, keylen);
 | |
| 	ctx->keylen = keylen;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | |
| 				 unsigned int keylen)
 | |
| {
 | |
| 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 | |
| 	    keylen != AES_KEYSIZE_256)
 | |
| 		return -EINVAL;
 | |
| 	else
 | |
| 		return stm32_cryp_setkey(tfm, key, keylen);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | |
| 				 unsigned int keylen)
 | |
| {
 | |
| 	return verify_skcipher_des_key(tfm, key) ?:
 | |
| 	       stm32_cryp_setkey(tfm, key, keylen);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | |
| 				  unsigned int keylen)
 | |
| {
 | |
| 	return verify_skcipher_des3_key(tfm, key) ?:
 | |
| 	       stm32_cryp_setkey(tfm, key, keylen);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 | |
| 				      unsigned int keylen)
 | |
| {
 | |
| 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 | |
| 
 | |
| 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 | |
| 	    keylen != AES_KEYSIZE_256)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(ctx->key, key, keylen);
 | |
| 	ctx->keylen = keylen;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 | |
| 					  unsigned int authsize)
 | |
| {
 | |
| 	switch (authsize) {
 | |
| 	case 4:
 | |
| 	case 8:
 | |
| 	case 12:
 | |
| 	case 13:
 | |
| 	case 14:
 | |
| 	case 15:
 | |
| 	case 16:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 | |
| 					  unsigned int authsize)
 | |
| {
 | |
| 	switch (authsize) {
 | |
| 	case 4:
 | |
| 	case 6:
 | |
| 	case 8:
 | |
| 	case 10:
 | |
| 	case 12:
 | |
| 	case 14:
 | |
| 	case 16:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % AES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % AES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % AES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % AES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 | |
| {
 | |
| 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 | |
| {
 | |
| 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 | |
| }
 | |
| 
 | |
| static inline int crypto_ccm_check_iv(const u8 *iv)
 | |
| {
 | |
| 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
 | |
| 	if (iv[0] < 1 || iv[0] > 7)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = crypto_ccm_check_iv(req->iv);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = crypto_ccm_check_iv(req->iv);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % DES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % DES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % DES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % DES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % DES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % DES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % DES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	if (req->cryptlen % DES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (req->cryptlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 | |
| }
 | |
| 
 | |
| static enum stm32_dma_mode stm32_cryp_dma_check_sg(struct scatterlist *test_sg, size_t len,
 | |
| 						   size_t block_size)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	if (len <= 16)
 | |
| 		return NO_DMA; /* Faster */
 | |
| 
 | |
| 	for_each_sg(test_sg, sg, sg_nents(test_sg), i) {
 | |
| 		if (!IS_ALIGNED(sg->length, block_size) && !sg_is_last(sg))
 | |
| 			return NO_DMA;
 | |
| 
 | |
| 		if (sg->offset % sizeof(u32))
 | |
| 			return NO_DMA;
 | |
| 
 | |
| 		if (sg_is_last(sg) && !IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
 | |
| 			return DMA_NEED_SG_TRUNC;
 | |
| 	}
 | |
| 
 | |
| 	return DMA_PLAIN_SG;
 | |
| }
 | |
| 
 | |
| static enum stm32_dma_mode stm32_cryp_dma_check(struct stm32_cryp *cryp, struct scatterlist *in_sg,
 | |
| 						struct scatterlist *out_sg)
 | |
| {
 | |
| 	enum stm32_dma_mode ret = DMA_PLAIN_SG;
 | |
| 
 | |
| 	if (!is_aes(cryp))
 | |
| 		return NO_DMA;
 | |
| 
 | |
| 	if (!cryp->dma_lch_in || !cryp->dma_lch_out)
 | |
| 		return NO_DMA;
 | |
| 
 | |
| 	ret = stm32_cryp_dma_check_sg(in_sg, cryp->payload_in, AES_BLOCK_SIZE);
 | |
| 	if (ret == NO_DMA)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = stm32_cryp_dma_check_sg(out_sg, cryp->payload_out, AES_BLOCK_SIZE);
 | |
| 	if (ret == NO_DMA)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Check CTR counter overflow */
 | |
| 	if (is_aes(cryp) && is_ctr(cryp)) {
 | |
| 		u32 c;
 | |
| 		__be32 iv3;
 | |
| 
 | |
| 		memcpy(&iv3, &cryp->req->iv[3 * sizeof(u32)], sizeof(iv3));
 | |
| 		c = be32_to_cpu(iv3);
 | |
| 		if ((c + cryp->payload_in) < cryp->payload_in)
 | |
| 			return NO_DMA;
 | |
| 	}
 | |
| 
 | |
| 	/* Workaround */
 | |
| 	if (is_aes(cryp) && is_ctr(cryp) && ret == DMA_NEED_SG_TRUNC)
 | |
| 		return NO_DMA;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_truncate_sg(struct scatterlist **new_sg, size_t *new_sg_len,
 | |
| 				  struct scatterlist *sg, off_t skip, size_t size)
 | |
| {
 | |
| 	struct scatterlist *cur;
 | |
| 	int alloc_sg_len;
 | |
| 
 | |
| 	*new_sg_len = 0;
 | |
| 
 | |
| 	if (!sg || !size) {
 | |
| 		*new_sg = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	alloc_sg_len = sg_nents_for_len(sg, skip + size);
 | |
| 	if (alloc_sg_len < 0)
 | |
| 		return alloc_sg_len;
 | |
| 
 | |
| 	/* We allocate to much sg entry, but it is easier */
 | |
| 	*new_sg = kmalloc_array((size_t)alloc_sg_len, sizeof(struct scatterlist), GFP_KERNEL);
 | |
| 	if (!*new_sg)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sg_init_table(*new_sg, (unsigned int)alloc_sg_len);
 | |
| 
 | |
| 	cur = *new_sg;
 | |
| 	while (sg && size) {
 | |
| 		unsigned int len = sg->length;
 | |
| 		unsigned int offset = sg->offset;
 | |
| 
 | |
| 		if (skip > len) {
 | |
| 			skip -= len;
 | |
| 			sg = sg_next(sg);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (skip) {
 | |
| 			len -= skip;
 | |
| 			offset += skip;
 | |
| 			skip = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (size < len)
 | |
| 			len = size;
 | |
| 
 | |
| 		if (len > 0) {
 | |
| 			(*new_sg_len)++;
 | |
| 			size -= len;
 | |
| 			sg_set_page(cur, sg_page(sg), len, offset);
 | |
| 			if (size == 0)
 | |
| 				sg_mark_end(cur);
 | |
| 			cur = sg_next(cur);
 | |
| 		}
 | |
| 
 | |
| 		sg = sg_next(sg);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_cipher_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg,
 | |
| 				     struct scatterlist *out_sg)
 | |
| {
 | |
| 	size_t align_size;
 | |
| 	int ret;
 | |
| 
 | |
| 	cryp->dma_mode = stm32_cryp_dma_check(cryp, in_sg, out_sg);
 | |
| 
 | |
| 	scatterwalk_start(&cryp->in_walk, in_sg);
 | |
| 	scatterwalk_start(&cryp->out_walk, out_sg);
 | |
| 
 | |
| 	if (cryp->dma_mode == NO_DMA) {
 | |
| 		cryp->flags &= ~FLG_IN_OUT_DMA;
 | |
| 
 | |
| 		if (is_ctr(cryp))
 | |
| 			memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
 | |
| 
 | |
| 	} else if (cryp->dma_mode == DMA_NEED_SG_TRUNC) {
 | |
| 
 | |
| 		cryp->flags |= FLG_IN_OUT_DMA;
 | |
| 
 | |
| 		align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize);
 | |
| 		ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, 0, align_size);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, 0,
 | |
| 					     align_size);
 | |
| 		if (ret) {
 | |
| 			kfree(cryp->in_sg);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	} else {
 | |
| 		cryp->flags |= FLG_IN_OUT_DMA;
 | |
| 
 | |
| 		cryp->in_sg = in_sg;
 | |
| 		cryp->out_sg = out_sg;
 | |
| 
 | |
| 		ret = sg_nents_for_len(cryp->in_sg, cryp->payload_in);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		cryp->in_sg_len = (size_t)ret;
 | |
| 
 | |
| 		ret = sg_nents_for_len(out_sg, cryp->payload_out);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		cryp->out_sg_len = (size_t)ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aead_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg,
 | |
| 				   struct scatterlist *out_sg)
 | |
| {
 | |
| 	size_t align_size;
 | |
| 	off_t skip;
 | |
| 	int ret, ret2;
 | |
| 
 | |
| 	cryp->header_sg = NULL;
 | |
| 	cryp->in_sg = NULL;
 | |
| 	cryp->out_sg = NULL;
 | |
| 
 | |
| 	if (!cryp->dma_lch_in || !cryp->dma_lch_out) {
 | |
| 		cryp->dma_mode = NO_DMA;
 | |
| 		cryp->flags &= ~(FLG_IN_OUT_DMA | FLG_HEADER_DMA);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* CCM hw_init may have advanced in header */
 | |
| 	skip = cryp->areq->assoclen - cryp->header_in;
 | |
| 
 | |
| 	align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize);
 | |
| 	ret = stm32_cryp_truncate_sg(&cryp->header_sg, &cryp->header_sg_len, in_sg, skip,
 | |
| 				     align_size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = stm32_cryp_dma_check_sg(cryp->header_sg, align_size, AES_BLOCK_SIZE);
 | |
| 	if (ret == NO_DMA) {
 | |
| 		/* We cannot DMA the header */
 | |
| 		kfree(cryp->header_sg);
 | |
| 		cryp->header_sg = NULL;
 | |
| 
 | |
| 		cryp->flags &= ~FLG_HEADER_DMA;
 | |
| 	} else {
 | |
| 		cryp->flags |= FLG_HEADER_DMA;
 | |
| 	}
 | |
| 
 | |
| 	/* Now skip all header to be at payload start */
 | |
| 	skip = cryp->areq->assoclen;
 | |
| 	align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize);
 | |
| 	ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, skip, align_size);
 | |
| 	if (ret) {
 | |
| 		kfree(cryp->header_sg);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* For out buffer align_size is same as in buffer */
 | |
| 	ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, skip, align_size);
 | |
| 	if (ret) {
 | |
| 		kfree(cryp->header_sg);
 | |
| 		kfree(cryp->in_sg);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = stm32_cryp_dma_check_sg(cryp->in_sg, align_size, AES_BLOCK_SIZE);
 | |
| 	ret2 = stm32_cryp_dma_check_sg(cryp->out_sg, align_size, AES_BLOCK_SIZE);
 | |
| 	if (ret == NO_DMA || ret2 == NO_DMA) {
 | |
| 		kfree(cryp->in_sg);
 | |
| 		cryp->in_sg = NULL;
 | |
| 
 | |
| 		kfree(cryp->out_sg);
 | |
| 		cryp->out_sg = NULL;
 | |
| 
 | |
| 		cryp->flags &= ~FLG_IN_OUT_DMA;
 | |
| 	} else {
 | |
| 		cryp->flags |= FLG_IN_OUT_DMA;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_prepare_req(struct skcipher_request *req,
 | |
| 				  struct aead_request *areq)
 | |
| {
 | |
| 	struct stm32_cryp_ctx *ctx;
 | |
| 	struct stm32_cryp *cryp;
 | |
| 	struct stm32_cryp_reqctx *rctx;
 | |
| 	struct scatterlist *in_sg, *out_sg;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!req && !areq)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
 | |
| 		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
 | |
| 
 | |
| 	cryp = ctx->cryp;
 | |
| 
 | |
| 	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
 | |
| 	rctx->mode &= FLG_MODE_MASK;
 | |
| 
 | |
| 	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
 | |
| 	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
 | |
| 	cryp->ctx = ctx;
 | |
| 
 | |
| 	if (req) {
 | |
| 		cryp->req = req;
 | |
| 		cryp->areq = NULL;
 | |
| 		cryp->header_in = 0;
 | |
| 		cryp->payload_in = req->cryptlen;
 | |
| 		cryp->payload_out = req->cryptlen;
 | |
| 		cryp->authsize = 0;
 | |
| 
 | |
| 		in_sg = req->src;
 | |
| 		out_sg = req->dst;
 | |
| 
 | |
| 		ret = stm32_cryp_cipher_prepare(cryp, in_sg, out_sg);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = stm32_cryp_hw_init(cryp);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Length of input and output data:
 | |
| 		 * Encryption case:
 | |
| 		 *  INPUT  = AssocData   ||     PlainText
 | |
| 		 *          <- assoclen ->  <- cryptlen ->
 | |
| 		 *
 | |
| 		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
 | |
| 		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
 | |
| 		 *
 | |
| 		 * Decryption case:
 | |
| 		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
 | |
| 		 *          <- assoclen --->  <---------- cryptlen ---------->
 | |
| 		 *
 | |
| 		 *  OUTPUT = AssocData    ||               PlainText
 | |
| 		 *          <- assoclen ->  <- cryptlen - authsize ->
 | |
| 		 */
 | |
| 		cryp->areq = areq;
 | |
| 		cryp->req = NULL;
 | |
| 		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
 | |
| 		if (is_encrypt(cryp)) {
 | |
| 			cryp->payload_in = areq->cryptlen;
 | |
| 			cryp->header_in = areq->assoclen;
 | |
| 			cryp->payload_out = areq->cryptlen;
 | |
| 		} else {
 | |
| 			cryp->payload_in = areq->cryptlen - cryp->authsize;
 | |
| 			cryp->header_in = areq->assoclen;
 | |
| 			cryp->payload_out = cryp->payload_in;
 | |
| 		}
 | |
| 
 | |
| 		in_sg = areq->src;
 | |
| 		out_sg = areq->dst;
 | |
| 
 | |
| 		scatterwalk_start(&cryp->in_walk, in_sg);
 | |
| 		/* In output, jump after assoc data */
 | |
| 		scatterwalk_start_at_pos(&cryp->out_walk, out_sg,
 | |
| 					 areq->assoclen);
 | |
| 
 | |
| 		ret = stm32_cryp_hw_init(cryp);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = stm32_cryp_aead_prepare(cryp, in_sg, out_sg);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
 | |
| {
 | |
| 	struct skcipher_request *req = container_of(areq,
 | |
| 						      struct skcipher_request,
 | |
| 						      base);
 | |
| 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 | |
| 			crypto_skcipher_reqtfm(req));
 | |
| 	struct stm32_cryp *cryp = ctx->cryp;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!cryp)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	ret = stm32_cryp_prepare_req(req, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (cryp->flags & FLG_IN_OUT_DMA)
 | |
| 		ret = stm32_cryp_dma_start(cryp);
 | |
| 	else
 | |
| 		ret = stm32_cryp_it_start(cryp);
 | |
| 
 | |
| 	if (ret == -ETIMEDOUT)
 | |
| 		stm32_cryp_finish_req(cryp, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
 | |
| {
 | |
| 	struct aead_request *req = container_of(areq, struct aead_request,
 | |
| 						base);
 | |
| 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 | |
| 	struct stm32_cryp *cryp = ctx->cryp;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!cryp)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	err = stm32_cryp_prepare_req(NULL, req);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!stm32_cryp_get_input_text_len(cryp) && !cryp->header_in &&
 | |
| 	    !(cryp->flags & FLG_HEADER_DMA)) {
 | |
| 		/* No input data to process: get tag and finish */
 | |
| 		stm32_cryp_finish_req(cryp, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (cryp->flags & FLG_HEADER_DMA)
 | |
| 		return stm32_cryp_header_dma_start(cryp);
 | |
| 
 | |
| 	if (!cryp->header_in && cryp->flags & FLG_IN_OUT_DMA)
 | |
| 		return stm32_cryp_dma_start(cryp);
 | |
| 
 | |
| 	return stm32_cryp_it_start(cryp);
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 cfg, size_bit;
 | |
| 	unsigned int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Update Config */
 | |
| 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 | |
| 
 | |
| 	cfg &= ~CR_PH_MASK;
 | |
| 	cfg |= CR_PH_FINAL;
 | |
| 	cfg &= ~CR_DEC_NOT_ENC;
 | |
| 	cfg |= CR_CRYPEN;
 | |
| 
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	if (is_gcm(cryp)) {
 | |
| 		/* GCM: write aad and payload size (in bits) */
 | |
| 		size_bit = cryp->areq->assoclen * 8;
 | |
| 		if (cryp->caps->swap_final)
 | |
| 			size_bit = (__force u32)cpu_to_be32(size_bit);
 | |
| 
 | |
| 		stm32_cryp_write(cryp, cryp->caps->din, 0);
 | |
| 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
 | |
| 
 | |
| 		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
 | |
| 				cryp->areq->cryptlen - cryp->authsize;
 | |
| 		size_bit *= 8;
 | |
| 		if (cryp->caps->swap_final)
 | |
| 			size_bit = (__force u32)cpu_to_be32(size_bit);
 | |
| 
 | |
| 		stm32_cryp_write(cryp, cryp->caps->din, 0);
 | |
| 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
 | |
| 	} else {
 | |
| 		/* CCM: write CTR0 */
 | |
| 		u32 iv32[AES_BLOCK_32];
 | |
| 		u8 *iv = (u8 *)iv32;
 | |
| 		__be32 *biv = (__be32 *)iv32;
 | |
| 
 | |
| 		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 | |
| 		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 | |
| 
 | |
| 		for (i = 0; i < AES_BLOCK_32; i++) {
 | |
| 			u32 xiv = iv32[i];
 | |
| 
 | |
| 			if (!cryp->caps->padding_wa)
 | |
| 				xiv = be32_to_cpu(biv[i]);
 | |
| 			stm32_cryp_write(cryp, cryp->caps->din, xiv);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for output data */
 | |
| 	ret = stm32_cryp_wait_output(cryp);
 | |
| 	if (ret) {
 | |
| 		dev_err(cryp->dev, "Timeout (read tag)\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (is_encrypt(cryp)) {
 | |
| 		u32 out_tag[AES_BLOCK_32];
 | |
| 
 | |
| 		/* Get and write tag */
 | |
| 		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
 | |
| 		memcpy_to_scatterwalk(&cryp->out_walk, out_tag, cryp->authsize);
 | |
| 	} else {
 | |
| 		/* Get and check tag */
 | |
| 		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
 | |
| 
 | |
| 		memcpy_from_scatterwalk(in_tag, &cryp->in_walk, cryp->authsize);
 | |
| 		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
 | |
| 
 | |
| 		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
 | |
| 			ret = -EBADMSG;
 | |
| 	}
 | |
| 
 | |
| 	/* Disable cryp */
 | |
| 	cfg &= ~CR_CRYPEN;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 cr;
 | |
| 
 | |
| 	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
 | |
| 		/*
 | |
| 		 * In this case, we need to increment manually the ctr counter,
 | |
| 		 * as HW doesn't handle the U32 carry.
 | |
| 		 */
 | |
| 		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
 | |
| 
 | |
| 		cr = stm32_cryp_read(cryp, cryp->caps->cr);
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
 | |
| 
 | |
| 		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
 | |
| 
 | |
| 		stm32_cryp_write(cryp, cryp->caps->cr, cr);
 | |
| 	}
 | |
| 
 | |
| 	/* The IV registers are BE  */
 | |
| 	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
 | |
| 	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
 | |
| 	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
 | |
| 	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 block[AES_BLOCK_32];
 | |
| 
 | |
| 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
 | |
| 	memcpy_to_scatterwalk(&cryp->out_walk, block, min_t(size_t, cryp->hw_blocksize,
 | |
| 							    cryp->payload_out));
 | |
| 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
 | |
| 				   cryp->payload_out);
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 block[AES_BLOCK_32] = {0};
 | |
| 
 | |
| 	memcpy_from_scatterwalk(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
 | |
| 							     cryp->payload_in));
 | |
| 	writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
 | |
| 	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	int err;
 | |
| 	u32 cfg, block[AES_BLOCK_32] = {0};
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* 'Special workaround' procedure described in the datasheet */
 | |
| 
 | |
| 	/* a) disable ip */
 | |
| 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 | |
| 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 | |
| 	cfg &= ~CR_CRYPEN;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* b) Update IV1R */
 | |
| 	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
 | |
| 
 | |
| 	/* c) change mode to CTR */
 | |
| 	cfg &= ~CR_ALGO_MASK;
 | |
| 	cfg |= CR_AES_CTR;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* a) enable IP */
 | |
| 	cfg |= CR_CRYPEN;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* b) pad and write the last block */
 | |
| 	stm32_cryp_irq_write_block(cryp);
 | |
| 	/* wait end of process */
 | |
| 	err = stm32_cryp_wait_output(cryp);
 | |
| 	if (err) {
 | |
| 		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
 | |
| 		return stm32_cryp_finish_req(cryp, err);
 | |
| 	}
 | |
| 
 | |
| 	/* c) get and store encrypted data */
 | |
| 	/*
 | |
| 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
 | |
| 	 * block value
 | |
| 	 */
 | |
| 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
 | |
| 
 | |
| 	memcpy_to_scatterwalk(&cryp->out_walk, block, min_t(size_t, cryp->hw_blocksize,
 | |
| 							    cryp->payload_out));
 | |
| 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
 | |
| 				   cryp->payload_out);
 | |
| 
 | |
| 	/* d) change mode back to AES GCM */
 | |
| 	cfg &= ~CR_ALGO_MASK;
 | |
| 	cfg |= CR_AES_GCM;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* e) change phase to Final */
 | |
| 	cfg &= ~CR_PH_MASK;
 | |
| 	cfg |= CR_PH_FINAL;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* f) write padded data */
 | |
| 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
 | |
| 
 | |
| 	/* g) Empty fifo out */
 | |
| 	err = stm32_cryp_wait_output(cryp);
 | |
| 	if (err) {
 | |
| 		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
 | |
| 		return stm32_cryp_finish_req(cryp, err);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < AES_BLOCK_32; i++)
 | |
| 		stm32_cryp_read(cryp, cryp->caps->dout);
 | |
| 
 | |
| 	/* h) run the he normal Final phase */
 | |
| 	stm32_cryp_finish_req(cryp, 0);
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 cfg;
 | |
| 
 | |
| 	/* disable ip, set NPBLB and reneable ip */
 | |
| 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 | |
| 	cfg &= ~CR_CRYPEN;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
 | |
| 	cfg |= CR_CRYPEN;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	u32 cfg, iv1tmp;
 | |
| 	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
 | |
| 	u32 block[AES_BLOCK_32] = {0};
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* 'Special workaround' procedure described in the datasheet */
 | |
| 
 | |
| 	/* a) disable ip */
 | |
| 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 | |
| 
 | |
| 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 | |
| 	cfg &= ~CR_CRYPEN;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* b) get IV1 from CRYP_CSGCMCCM7 */
 | |
| 	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
 | |
| 
 | |
| 	/* c) Load CRYP_CSGCMCCMxR */
 | |
| 	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
 | |
| 		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
 | |
| 
 | |
| 	/* d) Write IV1R */
 | |
| 	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
 | |
| 
 | |
| 	/* e) change mode to CTR */
 | |
| 	cfg &= ~CR_ALGO_MASK;
 | |
| 	cfg |= CR_AES_CTR;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* a) enable IP */
 | |
| 	cfg |= CR_CRYPEN;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* b) pad and write the last block */
 | |
| 	stm32_cryp_irq_write_block(cryp);
 | |
| 	/* wait end of process */
 | |
| 	err = stm32_cryp_wait_output(cryp);
 | |
| 	if (err) {
 | |
| 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
 | |
| 		return stm32_cryp_finish_req(cryp, err);
 | |
| 	}
 | |
| 
 | |
| 	/* c) get and store decrypted data */
 | |
| 	/*
 | |
| 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
 | |
| 	 * block value
 | |
| 	 */
 | |
| 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
 | |
| 
 | |
| 	memcpy_to_scatterwalk(&cryp->out_walk, block, min_t(size_t, cryp->hw_blocksize,
 | |
| 							    cryp->payload_out));
 | |
| 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
 | |
| 
 | |
| 	/* d) Load again CRYP_CSGCMCCMxR */
 | |
| 	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
 | |
| 		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
 | |
| 
 | |
| 	/* e) change mode back to AES CCM */
 | |
| 	cfg &= ~CR_ALGO_MASK;
 | |
| 	cfg |= CR_AES_CCM;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* f) change phase to header */
 | |
| 	cfg &= ~CR_PH_MASK;
 | |
| 	cfg |= CR_PH_HEADER;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 | |
| 
 | |
| 	/* g) XOR and write padded data */
 | |
| 	for (i = 0; i < ARRAY_SIZE(block); i++) {
 | |
| 		block[i] ^= cstmp1[i];
 | |
| 		block[i] ^= cstmp2[i];
 | |
| 		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* h) wait for completion */
 | |
| 	err = stm32_cryp_wait_busy(cryp);
 | |
| 	if (err)
 | |
| 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
 | |
| 
 | |
| 	/* i) run the he normal Final phase */
 | |
| 	stm32_cryp_finish_req(cryp, err);
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	if (unlikely(!cryp->payload_in)) {
 | |
| 		dev_warn(cryp->dev, "No more data to process\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
 | |
| 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
 | |
| 		     is_encrypt(cryp))) {
 | |
| 		/* Padding for AES GCM encryption */
 | |
| 		if (cryp->caps->padding_wa) {
 | |
| 			/* Special case 1 */
 | |
| 			stm32_cryp_irq_write_gcm_padded_data(cryp);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Setting padding bytes (NBBLB) */
 | |
| 		stm32_cryp_irq_set_npblb(cryp);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
 | |
| 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
 | |
| 		     is_decrypt(cryp))) {
 | |
| 		/* Padding for AES CCM decryption */
 | |
| 		if (cryp->caps->padding_wa) {
 | |
| 			/* Special case 2 */
 | |
| 			stm32_cryp_irq_write_ccm_padded_data(cryp);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Setting padding bytes (NBBLB) */
 | |
| 		stm32_cryp_irq_set_npblb(cryp);
 | |
| 	}
 | |
| 
 | |
| 	if (is_aes(cryp) && is_ctr(cryp))
 | |
| 		stm32_cryp_check_ctr_counter(cryp);
 | |
| 
 | |
| 	stm32_cryp_irq_write_block(cryp);
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	u32 block[AES_BLOCK_32] = {0};
 | |
| 	size_t written;
 | |
| 
 | |
| 	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
 | |
| 
 | |
| 	memcpy_from_scatterwalk(block, &cryp->in_walk, written);
 | |
| 
 | |
| 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
 | |
| 
 | |
| 	cryp->header_in -= written;
 | |
| 
 | |
| 	stm32_crypt_gcmccm_end_header(cryp);
 | |
| }
 | |
| 
 | |
| static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
 | |
| {
 | |
| 	struct stm32_cryp *cryp = arg;
 | |
| 	u32 ph;
 | |
| 	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
 | |
| 
 | |
| 	if (cryp->irq_status & MISR_OUT)
 | |
| 		/* Output FIFO IRQ: read data */
 | |
| 		stm32_cryp_irq_read_data(cryp);
 | |
| 
 | |
| 	if (cryp->irq_status & MISR_IN) {
 | |
| 		if (is_gcm(cryp) || is_ccm(cryp)) {
 | |
| 			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
 | |
| 			if (unlikely(ph == CR_PH_HEADER))
 | |
| 				/* Write Header */
 | |
| 				stm32_cryp_irq_write_gcmccm_header(cryp);
 | |
| 			else
 | |
| 				/* Input FIFO IRQ: write data */
 | |
| 				stm32_cryp_irq_write_data(cryp);
 | |
| 			if (is_gcm(cryp))
 | |
| 				cryp->gcm_ctr++;
 | |
| 		} else {
 | |
| 			/* Input FIFO IRQ: write data */
 | |
| 			stm32_cryp_irq_write_data(cryp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Mask useless interrupts */
 | |
| 	if (!cryp->payload_in && !cryp->header_in)
 | |
| 		it_mask &= ~IMSCR_IN;
 | |
| 	if (!cryp->payload_out)
 | |
| 		it_mask &= ~IMSCR_OUT;
 | |
| 	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
 | |
| 
 | |
| 	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out) {
 | |
| 		local_bh_disable();
 | |
| 		stm32_cryp_finish_req(cryp, 0);
 | |
| 		local_bh_enable();
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t stm32_cryp_irq(int irq, void *arg)
 | |
| {
 | |
| 	struct stm32_cryp *cryp = arg;
 | |
| 
 | |
| 	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
 | |
| 
 | |
| 	return IRQ_WAKE_THREAD;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_dma_init(struct stm32_cryp *cryp)
 | |
| {
 | |
| 	struct dma_slave_config dma_conf;
 | |
| 	struct dma_chan *chan;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(&dma_conf, 0, sizeof(dma_conf));
 | |
| 
 | |
| 	dma_conf.direction = DMA_MEM_TO_DEV;
 | |
| 	dma_conf.dst_addr = cryp->phys_base + cryp->caps->din;
 | |
| 	dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 	dma_conf.dst_maxburst = CRYP_DMA_BURST_REG;
 | |
| 	dma_conf.device_fc = false;
 | |
| 
 | |
| 	chan = dma_request_chan(cryp->dev, "in");
 | |
| 	if (IS_ERR(chan))
 | |
| 		return PTR_ERR(chan);
 | |
| 
 | |
| 	cryp->dma_lch_in = chan;
 | |
| 	ret = dmaengine_slave_config(cryp->dma_lch_in, &dma_conf);
 | |
| 	if (ret) {
 | |
| 		dma_release_channel(cryp->dma_lch_in);
 | |
| 		cryp->dma_lch_in = NULL;
 | |
| 		dev_err(cryp->dev, "Couldn't configure DMA in slave.\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	memset(&dma_conf, 0, sizeof(dma_conf));
 | |
| 
 | |
| 	dma_conf.direction = DMA_DEV_TO_MEM;
 | |
| 	dma_conf.src_addr = cryp->phys_base + cryp->caps->dout;
 | |
| 	dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 	dma_conf.src_maxburst = CRYP_DMA_BURST_REG;
 | |
| 	dma_conf.device_fc = false;
 | |
| 
 | |
| 	chan = dma_request_chan(cryp->dev, "out");
 | |
| 	if (IS_ERR(chan)) {
 | |
| 		dma_release_channel(cryp->dma_lch_in);
 | |
| 		cryp->dma_lch_in = NULL;
 | |
| 		return PTR_ERR(chan);
 | |
| 	}
 | |
| 
 | |
| 	cryp->dma_lch_out = chan;
 | |
| 
 | |
| 	ret = dmaengine_slave_config(cryp->dma_lch_out, &dma_conf);
 | |
| 	if (ret) {
 | |
| 		dma_release_channel(cryp->dma_lch_out);
 | |
| 		cryp->dma_lch_out = NULL;
 | |
| 		dev_err(cryp->dev, "Couldn't configure DMA out slave.\n");
 | |
| 		dma_release_channel(cryp->dma_lch_in);
 | |
| 		cryp->dma_lch_in = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	init_completion(&cryp->dma_completion);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct skcipher_engine_alg crypto_algs[] = {
 | |
| {
 | |
| 	.base = {
 | |
| 		.base.cra_name		= "ecb(aes)",
 | |
| 		.base.cra_driver_name	= "stm32-ecb-aes",
 | |
| 		.base.cra_priority	= 300,
 | |
| 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
 | |
| 		.base.cra_blocksize	= AES_BLOCK_SIZE,
 | |
| 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
 | |
| 		.base.cra_alignmask	= 0,
 | |
| 		.base.cra_module	= THIS_MODULE,
 | |
| 
 | |
| 		.init			= stm32_cryp_init_tfm,
 | |
| 		.min_keysize		= AES_MIN_KEY_SIZE,
 | |
| 		.max_keysize		= AES_MAX_KEY_SIZE,
 | |
| 		.setkey			= stm32_cryp_aes_setkey,
 | |
| 		.encrypt		= stm32_cryp_aes_ecb_encrypt,
 | |
| 		.decrypt		= stm32_cryp_aes_ecb_decrypt,
 | |
| 	},
 | |
| 	.op = {
 | |
| 		.do_one_request = stm32_cryp_cipher_one_req,
 | |
| 	},
 | |
| },
 | |
| {
 | |
| 	.base = {
 | |
| 		.base.cra_name		= "cbc(aes)",
 | |
| 		.base.cra_driver_name	= "stm32-cbc-aes",
 | |
| 		.base.cra_priority	= 300,
 | |
| 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
 | |
| 		.base.cra_blocksize	= AES_BLOCK_SIZE,
 | |
| 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
 | |
| 		.base.cra_alignmask	= 0,
 | |
| 		.base.cra_module	= THIS_MODULE,
 | |
| 
 | |
| 		.init			= stm32_cryp_init_tfm,
 | |
| 		.min_keysize		= AES_MIN_KEY_SIZE,
 | |
| 		.max_keysize		= AES_MAX_KEY_SIZE,
 | |
| 		.ivsize			= AES_BLOCK_SIZE,
 | |
| 		.setkey			= stm32_cryp_aes_setkey,
 | |
| 		.encrypt		= stm32_cryp_aes_cbc_encrypt,
 | |
| 		.decrypt		= stm32_cryp_aes_cbc_decrypt,
 | |
| 	},
 | |
| 	.op = {
 | |
| 		.do_one_request = stm32_cryp_cipher_one_req,
 | |
| 	},
 | |
| },
 | |
| {
 | |
| 	.base = {
 | |
| 		.base.cra_name		= "ctr(aes)",
 | |
| 		.base.cra_driver_name	= "stm32-ctr-aes",
 | |
| 		.base.cra_priority	= 300,
 | |
| 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
 | |
| 		.base.cra_blocksize	= 1,
 | |
| 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
 | |
| 		.base.cra_alignmask	= 0,
 | |
| 		.base.cra_module	= THIS_MODULE,
 | |
| 
 | |
| 		.init			= stm32_cryp_init_tfm,
 | |
| 		.min_keysize		= AES_MIN_KEY_SIZE,
 | |
| 		.max_keysize		= AES_MAX_KEY_SIZE,
 | |
| 		.ivsize			= AES_BLOCK_SIZE,
 | |
| 		.setkey			= stm32_cryp_aes_setkey,
 | |
| 		.encrypt		= stm32_cryp_aes_ctr_encrypt,
 | |
| 		.decrypt		= stm32_cryp_aes_ctr_decrypt,
 | |
| 	},
 | |
| 	.op = {
 | |
| 		.do_one_request = stm32_cryp_cipher_one_req,
 | |
| 	},
 | |
| },
 | |
| {
 | |
| 	.base = {
 | |
| 		.base.cra_name		= "ecb(des)",
 | |
| 		.base.cra_driver_name	= "stm32-ecb-des",
 | |
| 		.base.cra_priority	= 300,
 | |
| 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
 | |
| 		.base.cra_blocksize	= DES_BLOCK_SIZE,
 | |
| 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
 | |
| 		.base.cra_alignmask	= 0,
 | |
| 		.base.cra_module	= THIS_MODULE,
 | |
| 
 | |
| 		.init			= stm32_cryp_init_tfm,
 | |
| 		.min_keysize		= DES_BLOCK_SIZE,
 | |
| 		.max_keysize		= DES_BLOCK_SIZE,
 | |
| 		.setkey			= stm32_cryp_des_setkey,
 | |
| 		.encrypt		= stm32_cryp_des_ecb_encrypt,
 | |
| 		.decrypt		= stm32_cryp_des_ecb_decrypt,
 | |
| 	},
 | |
| 	.op = {
 | |
| 		.do_one_request = stm32_cryp_cipher_one_req,
 | |
| 	},
 | |
| },
 | |
| {
 | |
| 	.base = {
 | |
| 		.base.cra_name		= "cbc(des)",
 | |
| 		.base.cra_driver_name	= "stm32-cbc-des",
 | |
| 		.base.cra_priority	= 300,
 | |
| 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
 | |
| 		.base.cra_blocksize	= DES_BLOCK_SIZE,
 | |
| 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
 | |
| 		.base.cra_alignmask	= 0,
 | |
| 		.base.cra_module	= THIS_MODULE,
 | |
| 
 | |
| 		.init			= stm32_cryp_init_tfm,
 | |
| 		.min_keysize		= DES_BLOCK_SIZE,
 | |
| 		.max_keysize		= DES_BLOCK_SIZE,
 | |
| 		.ivsize			= DES_BLOCK_SIZE,
 | |
| 		.setkey			= stm32_cryp_des_setkey,
 | |
| 		.encrypt		= stm32_cryp_des_cbc_encrypt,
 | |
| 		.decrypt		= stm32_cryp_des_cbc_decrypt,
 | |
| 	},
 | |
| 	.op = {
 | |
| 		.do_one_request = stm32_cryp_cipher_one_req,
 | |
| 	},
 | |
| },
 | |
| {
 | |
| 	.base = {
 | |
| 		.base.cra_name		= "ecb(des3_ede)",
 | |
| 		.base.cra_driver_name	= "stm32-ecb-des3",
 | |
| 		.base.cra_priority	= 300,
 | |
| 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
 | |
| 		.base.cra_blocksize	= DES_BLOCK_SIZE,
 | |
| 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
 | |
| 		.base.cra_alignmask	= 0,
 | |
| 		.base.cra_module	= THIS_MODULE,
 | |
| 
 | |
| 		.init			= stm32_cryp_init_tfm,
 | |
| 		.min_keysize		= 3 * DES_BLOCK_SIZE,
 | |
| 		.max_keysize		= 3 * DES_BLOCK_SIZE,
 | |
| 		.setkey			= stm32_cryp_tdes_setkey,
 | |
| 		.encrypt		= stm32_cryp_tdes_ecb_encrypt,
 | |
| 		.decrypt		= stm32_cryp_tdes_ecb_decrypt,
 | |
| 	},
 | |
| 	.op = {
 | |
| 		.do_one_request = stm32_cryp_cipher_one_req,
 | |
| 	},
 | |
| },
 | |
| {
 | |
| 	.base = {
 | |
| 		.base.cra_name		= "cbc(des3_ede)",
 | |
| 		.base.cra_driver_name	= "stm32-cbc-des3",
 | |
| 		.base.cra_priority	= 300,
 | |
| 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
 | |
| 		.base.cra_blocksize	= DES_BLOCK_SIZE,
 | |
| 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
 | |
| 		.base.cra_alignmask	= 0,
 | |
| 		.base.cra_module	= THIS_MODULE,
 | |
| 
 | |
| 		.init			= stm32_cryp_init_tfm,
 | |
| 		.min_keysize		= 3 * DES_BLOCK_SIZE,
 | |
| 		.max_keysize		= 3 * DES_BLOCK_SIZE,
 | |
| 		.ivsize			= DES_BLOCK_SIZE,
 | |
| 		.setkey			= stm32_cryp_tdes_setkey,
 | |
| 		.encrypt		= stm32_cryp_tdes_cbc_encrypt,
 | |
| 		.decrypt		= stm32_cryp_tdes_cbc_decrypt,
 | |
| 	},
 | |
| 	.op = {
 | |
| 		.do_one_request = stm32_cryp_cipher_one_req,
 | |
| 	},
 | |
| },
 | |
| };
 | |
| 
 | |
| static struct aead_engine_alg aead_algs[] = {
 | |
| {
 | |
| 	.base.setkey		= stm32_cryp_aes_aead_setkey,
 | |
| 	.base.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
 | |
| 	.base.encrypt		= stm32_cryp_aes_gcm_encrypt,
 | |
| 	.base.decrypt		= stm32_cryp_aes_gcm_decrypt,
 | |
| 	.base.init		= stm32_cryp_aes_aead_init,
 | |
| 	.base.ivsize		= 12,
 | |
| 	.base.maxauthsize	= AES_BLOCK_SIZE,
 | |
| 
 | |
| 	.base.base = {
 | |
| 		.cra_name		= "gcm(aes)",
 | |
| 		.cra_driver_name	= "stm32-gcm-aes",
 | |
| 		.cra_priority		= 300,
 | |
| 		.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
 | |
| 		.cra_blocksize		= 1,
 | |
| 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
 | |
| 		.cra_alignmask		= 0,
 | |
| 		.cra_module		= THIS_MODULE,
 | |
| 	},
 | |
| 	.op = {
 | |
| 		.do_one_request = stm32_cryp_aead_one_req,
 | |
| 	},
 | |
| },
 | |
| {
 | |
| 	.base.setkey		= stm32_cryp_aes_aead_setkey,
 | |
| 	.base.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
 | |
| 	.base.encrypt		= stm32_cryp_aes_ccm_encrypt,
 | |
| 	.base.decrypt		= stm32_cryp_aes_ccm_decrypt,
 | |
| 	.base.init		= stm32_cryp_aes_aead_init,
 | |
| 	.base.ivsize		= AES_BLOCK_SIZE,
 | |
| 	.base.maxauthsize	= AES_BLOCK_SIZE,
 | |
| 
 | |
| 	.base.base = {
 | |
| 		.cra_name		= "ccm(aes)",
 | |
| 		.cra_driver_name	= "stm32-ccm-aes",
 | |
| 		.cra_priority		= 300,
 | |
| 		.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
 | |
| 		.cra_blocksize		= 1,
 | |
| 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
 | |
| 		.cra_alignmask		= 0,
 | |
| 		.cra_module		= THIS_MODULE,
 | |
| 	},
 | |
| 	.op = {
 | |
| 		.do_one_request = stm32_cryp_aead_one_req,
 | |
| 	},
 | |
| },
 | |
| };
 | |
| 
 | |
| static const struct stm32_cryp_caps ux500_data = {
 | |
| 	.aeads_support = false,
 | |
| 	.linear_aes_key = true,
 | |
| 	.kp_mode = false,
 | |
| 	.iv_protection = true,
 | |
| 	.swap_final = true,
 | |
| 	.padding_wa = true,
 | |
| 	.cr = UX500_CRYP_CR,
 | |
| 	.sr = UX500_CRYP_SR,
 | |
| 	.din = UX500_CRYP_DIN,
 | |
| 	.dout = UX500_CRYP_DOUT,
 | |
| 	.dmacr = UX500_CRYP_DMACR,
 | |
| 	.imsc = UX500_CRYP_IMSC,
 | |
| 	.mis = UX500_CRYP_MIS,
 | |
| 	.k1l = UX500_CRYP_K1L,
 | |
| 	.k1r = UX500_CRYP_K1R,
 | |
| 	.k3r = UX500_CRYP_K3R,
 | |
| 	.iv0l = UX500_CRYP_IV0L,
 | |
| 	.iv0r = UX500_CRYP_IV0R,
 | |
| 	.iv1l = UX500_CRYP_IV1L,
 | |
| 	.iv1r = UX500_CRYP_IV1R,
 | |
| };
 | |
| 
 | |
| static const struct stm32_cryp_caps f7_data = {
 | |
| 	.aeads_support = true,
 | |
| 	.linear_aes_key = false,
 | |
| 	.kp_mode = true,
 | |
| 	.iv_protection = false,
 | |
| 	.swap_final = true,
 | |
| 	.padding_wa = true,
 | |
| 	.cr = CRYP_CR,
 | |
| 	.sr = CRYP_SR,
 | |
| 	.din = CRYP_DIN,
 | |
| 	.dout = CRYP_DOUT,
 | |
| 	.dmacr = CRYP_DMACR,
 | |
| 	.imsc = CRYP_IMSCR,
 | |
| 	.mis = CRYP_MISR,
 | |
| 	.k1l = CRYP_K1LR,
 | |
| 	.k1r = CRYP_K1RR,
 | |
| 	.k3r = CRYP_K3RR,
 | |
| 	.iv0l = CRYP_IV0LR,
 | |
| 	.iv0r = CRYP_IV0RR,
 | |
| 	.iv1l = CRYP_IV1LR,
 | |
| 	.iv1r = CRYP_IV1RR,
 | |
| };
 | |
| 
 | |
| static const struct stm32_cryp_caps mp1_data = {
 | |
| 	.aeads_support = true,
 | |
| 	.linear_aes_key = false,
 | |
| 	.kp_mode = true,
 | |
| 	.iv_protection = false,
 | |
| 	.swap_final = false,
 | |
| 	.padding_wa = false,
 | |
| 	.cr = CRYP_CR,
 | |
| 	.sr = CRYP_SR,
 | |
| 	.din = CRYP_DIN,
 | |
| 	.dout = CRYP_DOUT,
 | |
| 	.dmacr = CRYP_DMACR,
 | |
| 	.imsc = CRYP_IMSCR,
 | |
| 	.mis = CRYP_MISR,
 | |
| 	.k1l = CRYP_K1LR,
 | |
| 	.k1r = CRYP_K1RR,
 | |
| 	.k3r = CRYP_K3RR,
 | |
| 	.iv0l = CRYP_IV0LR,
 | |
| 	.iv0r = CRYP_IV0RR,
 | |
| 	.iv1l = CRYP_IV1LR,
 | |
| 	.iv1r = CRYP_IV1RR,
 | |
| };
 | |
| 
 | |
| static const struct of_device_id stm32_dt_ids[] = {
 | |
| 	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
 | |
| 	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
 | |
| 	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
 | |
| 	{},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, stm32_dt_ids);
 | |
| 
 | |
| static int stm32_cryp_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct stm32_cryp *cryp;
 | |
| 	struct reset_control *rst;
 | |
| 	int irq, ret;
 | |
| 
 | |
| 	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
 | |
| 	if (!cryp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cryp->caps = of_device_get_match_data(dev);
 | |
| 	if (!cryp->caps)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	cryp->dev = dev;
 | |
| 
 | |
| 	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
 | |
| 	if (IS_ERR(cryp->regs))
 | |
| 		return PTR_ERR(cryp->regs);
 | |
| 
 | |
| 	cryp->phys_base = platform_get_resource(pdev, IORESOURCE_MEM, 0)->start;
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return irq;
 | |
| 
 | |
| 	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
 | |
| 					stm32_cryp_irq_thread, IRQF_ONESHOT,
 | |
| 					dev_name(dev), cryp);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Cannot grab IRQ\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cryp->clk = devm_clk_get(dev, NULL);
 | |
| 	if (IS_ERR(cryp->clk)) {
 | |
| 		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
 | |
| 
 | |
| 		return PTR_ERR(cryp->clk);
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_prepare_enable(cryp->clk);
 | |
| 	if (ret) {
 | |
| 		dev_err(cryp->dev, "Failed to enable clock\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
 | |
| 	pm_runtime_use_autosuspend(dev);
 | |
| 
 | |
| 	pm_runtime_get_noresume(dev);
 | |
| 	pm_runtime_set_active(dev);
 | |
| 	pm_runtime_enable(dev);
 | |
| 
 | |
| 	rst = devm_reset_control_get(dev, NULL);
 | |
| 	if (IS_ERR(rst)) {
 | |
| 		ret = PTR_ERR(rst);
 | |
| 		if (ret == -EPROBE_DEFER)
 | |
| 			goto err_rst;
 | |
| 	} else {
 | |
| 		reset_control_assert(rst);
 | |
| 		udelay(2);
 | |
| 		reset_control_deassert(rst);
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, cryp);
 | |
| 
 | |
| 	ret = stm32_cryp_dma_init(cryp);
 | |
| 	switch (ret) {
 | |
| 	case 0:
 | |
| 		break;
 | |
| 	case -ENODEV:
 | |
| 		dev_dbg(dev, "DMA mode not available\n");
 | |
| 		break;
 | |
| 	default:
 | |
| 		goto err_dma;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&cryp_list.lock);
 | |
| 	list_add(&cryp->list, &cryp_list.dev_list);
 | |
| 	spin_unlock(&cryp_list.lock);
 | |
| 
 | |
| 	/* Initialize crypto engine */
 | |
| 	cryp->engine = crypto_engine_alloc_init(dev, 1);
 | |
| 	if (!cryp->engine) {
 | |
| 		dev_err(dev, "Could not init crypto engine\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_engine1;
 | |
| 	}
 | |
| 
 | |
| 	ret = crypto_engine_start(cryp->engine);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Could not start crypto engine\n");
 | |
| 		goto err_engine2;
 | |
| 	}
 | |
| 
 | |
| 	ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Could not register algs\n");
 | |
| 		goto err_algs;
 | |
| 	}
 | |
| 
 | |
| 	if (cryp->caps->aeads_support) {
 | |
| 		ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
 | |
| 		if (ret)
 | |
| 			goto err_aead_algs;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(dev, "Initialized\n");
 | |
| 
 | |
| 	pm_runtime_put_sync(dev);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_aead_algs:
 | |
| 	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
 | |
| err_algs:
 | |
| err_engine2:
 | |
| 	crypto_engine_exit(cryp->engine);
 | |
| err_engine1:
 | |
| 	spin_lock(&cryp_list.lock);
 | |
| 	list_del(&cryp->list);
 | |
| 	spin_unlock(&cryp_list.lock);
 | |
| 
 | |
| 	if (cryp->dma_lch_in)
 | |
| 		dma_release_channel(cryp->dma_lch_in);
 | |
| 	if (cryp->dma_lch_out)
 | |
| 		dma_release_channel(cryp->dma_lch_out);
 | |
| err_dma:
 | |
| err_rst:
 | |
| 	pm_runtime_disable(dev);
 | |
| 	pm_runtime_put_noidle(dev);
 | |
| 
 | |
| 	clk_disable_unprepare(cryp->clk);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void stm32_cryp_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = pm_runtime_get_sync(cryp->dev);
 | |
| 
 | |
| 	if (cryp->caps->aeads_support)
 | |
| 		crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
 | |
| 	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
 | |
| 
 | |
| 	crypto_engine_exit(cryp->engine);
 | |
| 
 | |
| 	spin_lock(&cryp_list.lock);
 | |
| 	list_del(&cryp->list);
 | |
| 	spin_unlock(&cryp_list.lock);
 | |
| 
 | |
| 	if (cryp->dma_lch_in)
 | |
| 		dma_release_channel(cryp->dma_lch_in);
 | |
| 
 | |
| 	if (cryp->dma_lch_out)
 | |
| 		dma_release_channel(cryp->dma_lch_out);
 | |
| 
 | |
| 	pm_runtime_disable(cryp->dev);
 | |
| 	pm_runtime_put_noidle(cryp->dev);
 | |
| 
 | |
| 	if (ret >= 0)
 | |
| 		clk_disable_unprepare(cryp->clk);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int stm32_cryp_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
 | |
| 
 | |
| 	clk_disable_unprepare(cryp->clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_cryp_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = clk_prepare_enable(cryp->clk);
 | |
| 	if (ret) {
 | |
| 		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct dev_pm_ops stm32_cryp_pm_ops = {
 | |
| 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 | |
| 				pm_runtime_force_resume)
 | |
| 	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
 | |
| 			   stm32_cryp_runtime_resume, NULL)
 | |
| };
 | |
| 
 | |
| static struct platform_driver stm32_cryp_driver = {
 | |
| 	.probe  = stm32_cryp_probe,
 | |
| 	.remove = stm32_cryp_remove,
 | |
| 	.driver = {
 | |
| 		.name           = DRIVER_NAME,
 | |
| 		.pm		= &stm32_cryp_pm_ops,
 | |
| 		.of_match_table = stm32_dt_ids,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| module_platform_driver(stm32_cryp_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
 | |
| MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
 | |
| MODULE_LICENSE("GPL");
 |