forked from mirrors/linux
		
	 f1aff4bc19
			
		
	
	
		f1aff4bc19
		
	
	
	
	
		
			
			The blammed commit copied to argv the size of the reallocated argv,
instead of the size of the old_argv, thus reading and copying from
past the old_argv allocated memory.
Following BUG_ON was hit:
[    3.038929][    T1] kernel BUG at lib/string_helpers.c:1040!
[    3.039147][    T1] Internal error: Oops - BUG: 00000000f2000800 [#1]  SMP
...
[    3.056489][    T1] Call trace:
[    3.056591][    T1]  __fortify_panic+0x10/0x18 (P)
[    3.056773][    T1]  dm_split_args+0x20c/0x210
[    3.056942][    T1]  dm_table_add_target+0x13c/0x360
[    3.057132][    T1]  table_load+0x110/0x3ac
[    3.057292][    T1]  dm_ctl_ioctl+0x424/0x56c
[    3.057457][    T1]  __arm64_sys_ioctl+0xa8/0xec
[    3.057634][    T1]  invoke_syscall+0x58/0x10c
[    3.057804][    T1]  el0_svc_common+0xa8/0xdc
[    3.057970][    T1]  do_el0_svc+0x1c/0x28
[    3.058123][    T1]  el0_svc+0x50/0xac
[    3.058266][    T1]  el0t_64_sync_handler+0x60/0xc4
[    3.058452][    T1]  el0t_64_sync+0x1b0/0x1b4
[    3.058620][    T1] Code: f800865e a9bf7bfd 910003fd 941f48aa (d4210000)
[    3.058897][    T1] ---[ end trace 0000000000000000 ]---
[    3.059083][    T1] Kernel panic - not syncing: Oops - BUG: Fatal exception
Fix it by copying the size of src, and not the size of dst, as it was.
Fixes: 5a2a6c4281 ("dm: always update the array size in realloc_argv on success")
Cc: stable@vger.kernel.org
Signed-off-by: Tudor Ambarus <tudor.ambarus@linaro.org>
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
		
	
			
		
			
				
	
	
		
			2020 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2020 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) 2001 Sistina Software (UK) Limited.
 | |
|  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "dm-core.h"
 | |
| #include "dm-rq.h"
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/blk-integrity.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/blk-mq.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/dax.h>
 | |
| 
 | |
| #define DM_MSG_PREFIX "table"
 | |
| 
 | |
| #define NODE_SIZE L1_CACHE_BYTES
 | |
| #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
 | |
| #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
 | |
| 
 | |
| /*
 | |
|  * Similar to ceiling(log_size(n))
 | |
|  */
 | |
| static unsigned int int_log(unsigned int n, unsigned int base)
 | |
| {
 | |
| 	int result = 0;
 | |
| 
 | |
| 	while (n > 1) {
 | |
| 		n = dm_div_up(n, base);
 | |
| 		result++;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the index of the child node of the n'th node k'th key.
 | |
|  */
 | |
| static inline unsigned int get_child(unsigned int n, unsigned int k)
 | |
| {
 | |
| 	return (n * CHILDREN_PER_NODE) + k;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the n'th node of level l from table t.
 | |
|  */
 | |
| static inline sector_t *get_node(struct dm_table *t,
 | |
| 				 unsigned int l, unsigned int n)
 | |
| {
 | |
| 	return t->index[l] + (n * KEYS_PER_NODE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the highest key that you could lookup from the n'th
 | |
|  * node on level l of the btree.
 | |
|  */
 | |
| static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 | |
| {
 | |
| 	for (; l < t->depth - 1; l++)
 | |
| 		n = get_child(n, CHILDREN_PER_NODE - 1);
 | |
| 
 | |
| 	if (n >= t->counts[l])
 | |
| 		return (sector_t) -1;
 | |
| 
 | |
| 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fills in a level of the btree based on the highs of the level
 | |
|  * below it.
 | |
|  */
 | |
| static int setup_btree_index(unsigned int l, struct dm_table *t)
 | |
| {
 | |
| 	unsigned int n, k;
 | |
| 	sector_t *node;
 | |
| 
 | |
| 	for (n = 0U; n < t->counts[l]; n++) {
 | |
| 		node = get_node(t, l, n);
 | |
| 
 | |
| 		for (k = 0U; k < KEYS_PER_NODE; k++)
 | |
| 			node[k] = high(t, l + 1, get_child(n, k));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * highs, and targets are managed as dynamic arrays during a
 | |
|  * table load.
 | |
|  */
 | |
| static int alloc_targets(struct dm_table *t, unsigned int num)
 | |
| {
 | |
| 	sector_t *n_highs;
 | |
| 	struct dm_target *n_targets;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate both the target array and offset array at once.
 | |
| 	 */
 | |
| 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
 | |
| 			   GFP_KERNEL);
 | |
| 	if (!n_highs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	n_targets = (struct dm_target *) (n_highs + num);
 | |
| 
 | |
| 	memset(n_highs, -1, sizeof(*n_highs) * num);
 | |
| 	kvfree(t->highs);
 | |
| 
 | |
| 	t->num_allocated = num;
 | |
| 	t->highs = n_highs;
 | |
| 	t->targets = n_targets;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_table_create(struct dm_table **result, blk_mode_t mode,
 | |
| 		    unsigned int num_targets, struct mapped_device *md)
 | |
| {
 | |
| 	struct dm_table *t;
 | |
| 
 | |
| 	if (num_targets > DM_MAX_TARGETS)
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	t = kzalloc(sizeof(*t), GFP_KERNEL);
 | |
| 
 | |
| 	if (!t)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&t->devices);
 | |
| 	init_rwsem(&t->devices_lock);
 | |
| 
 | |
| 	if (!num_targets)
 | |
| 		num_targets = KEYS_PER_NODE;
 | |
| 
 | |
| 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 | |
| 
 | |
| 	if (!num_targets) {
 | |
| 		kfree(t);
 | |
| 		return -EOVERFLOW;
 | |
| 	}
 | |
| 
 | |
| 	if (alloc_targets(t, num_targets)) {
 | |
| 		kfree(t);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	t->type = DM_TYPE_NONE;
 | |
| 	t->mode = mode;
 | |
| 	t->md = md;
 | |
| 	t->flush_bypasses_map = true;
 | |
| 	*result = t;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_devices(struct list_head *devices, struct mapped_device *md)
 | |
| {
 | |
| 	struct list_head *tmp, *next;
 | |
| 
 | |
| 	list_for_each_safe(tmp, next, devices) {
 | |
| 		struct dm_dev_internal *dd =
 | |
| 		    list_entry(tmp, struct dm_dev_internal, list);
 | |
| 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 | |
| 		       dm_device_name(md), dd->dm_dev->name);
 | |
| 		dm_put_table_device(md, dd->dm_dev);
 | |
| 		kfree(dd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dm_table_destroy_crypto_profile(struct dm_table *t);
 | |
| 
 | |
| void dm_table_destroy(struct dm_table *t)
 | |
| {
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 
 | |
| 	/* free the indexes */
 | |
| 	if (t->depth >= 2)
 | |
| 		kvfree(t->index[t->depth - 2]);
 | |
| 
 | |
| 	/* free the targets */
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (ti->type->dtr)
 | |
| 			ti->type->dtr(ti);
 | |
| 
 | |
| 		dm_put_target_type(ti->type);
 | |
| 	}
 | |
| 
 | |
| 	kvfree(t->highs);
 | |
| 
 | |
| 	/* free the device list */
 | |
| 	free_devices(&t->devices, t->md);
 | |
| 
 | |
| 	dm_free_md_mempools(t->mempools);
 | |
| 
 | |
| 	dm_table_destroy_crypto_profile(t);
 | |
| 
 | |
| 	kfree(t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if we've already got a device in the list.
 | |
|  */
 | |
| static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 | |
| {
 | |
| 	struct dm_dev_internal *dd;
 | |
| 
 | |
| 	list_for_each_entry(dd, l, list)
 | |
| 		if (dd->dm_dev->bdev->bd_dev == dev)
 | |
| 			return dd;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If possible, this checks an area of a destination device is invalid.
 | |
|  */
 | |
| static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				  sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct queue_limits *limits = data;
 | |
| 	struct block_device *bdev = dev->bdev;
 | |
| 	sector_t dev_size = bdev_nr_sectors(bdev);
 | |
| 	unsigned short logical_block_size_sectors =
 | |
| 		limits->logical_block_size >> SECTOR_SHIFT;
 | |
| 
 | |
| 	if (!dev_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((start >= dev_size) || (start + len > dev_size)) {
 | |
| 		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
 | |
| 		      dm_device_name(ti->table->md), bdev,
 | |
| 		      (unsigned long long)start,
 | |
| 		      (unsigned long long)len,
 | |
| 		      (unsigned long long)dev_size);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the target is mapped to zoned block device(s), check
 | |
| 	 * that the zones are not partially mapped.
 | |
| 	 */
 | |
| 	if (bdev_is_zoned(bdev)) {
 | |
| 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
 | |
| 
 | |
| 		if (start & (zone_sectors - 1)) {
 | |
| 			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
 | |
| 			      dm_device_name(ti->table->md),
 | |
| 			      (unsigned long long)start,
 | |
| 			      zone_sectors, bdev);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Note: The last zone of a zoned block device may be smaller
 | |
| 		 * than other zones. So for a target mapping the end of a
 | |
| 		 * zoned block device with such a zone, len would not be zone
 | |
| 		 * aligned. We do not allow such last smaller zone to be part
 | |
| 		 * of the mapping here to ensure that mappings with multiple
 | |
| 		 * devices do not end up with a smaller zone in the middle of
 | |
| 		 * the sector range.
 | |
| 		 */
 | |
| 		if (len & (zone_sectors - 1)) {
 | |
| 			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
 | |
| 			      dm_device_name(ti->table->md),
 | |
| 			      (unsigned long long)len,
 | |
| 			      zone_sectors, bdev);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (logical_block_size_sectors <= 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (start & (logical_block_size_sectors - 1)) {
 | |
| 		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
 | |
| 		      dm_device_name(ti->table->md),
 | |
| 		      (unsigned long long)start,
 | |
| 		      limits->logical_block_size, bdev);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (len & (logical_block_size_sectors - 1)) {
 | |
| 		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
 | |
| 		      dm_device_name(ti->table->md),
 | |
| 		      (unsigned long long)len,
 | |
| 		      limits->logical_block_size, bdev);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This upgrades the mode on an already open dm_dev, being
 | |
|  * careful to leave things as they were if we fail to reopen the
 | |
|  * device and not to touch the existing bdev field in case
 | |
|  * it is accessed concurrently.
 | |
|  */
 | |
| static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
 | |
| 			struct mapped_device *md)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_dev *old_dev, *new_dev;
 | |
| 
 | |
| 	old_dev = dd->dm_dev;
 | |
| 
 | |
| 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 | |
| 				dd->dm_dev->mode | new_mode, &new_dev);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	dd->dm_dev = new_dev;
 | |
| 	dm_put_table_device(md, old_dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: the __ref annotation is because this function can call the __init
 | |
|  * marked early_lookup_bdev when called during early boot code from dm-init.c.
 | |
|  */
 | |
| int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
 | |
| {
 | |
| 	int r;
 | |
| 	dev_t dev;
 | |
| 	unsigned int major, minor;
 | |
| 	char dummy;
 | |
| 
 | |
| 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 | |
| 		/* Extract the major/minor numbers */
 | |
| 		dev = MKDEV(major, minor);
 | |
| 		if (MAJOR(dev) != major || MINOR(dev) != minor)
 | |
| 			return -EOVERFLOW;
 | |
| 	} else {
 | |
| 		r = lookup_bdev(path, &dev);
 | |
| #ifndef MODULE
 | |
| 		if (r && system_state < SYSTEM_RUNNING)
 | |
| 			r = early_lookup_bdev(path, &dev);
 | |
| #endif
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 	*dev_p = dev;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_devt_from_path);
 | |
| 
 | |
| /*
 | |
|  * Add a device to the list, or just increment the usage count if
 | |
|  * it's already present.
 | |
|  */
 | |
| int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
 | |
| 		  struct dm_dev **result)
 | |
| {
 | |
| 	int r;
 | |
| 	dev_t dev;
 | |
| 	struct dm_dev_internal *dd;
 | |
| 	struct dm_table *t = ti->table;
 | |
| 
 | |
| 	BUG_ON(!t);
 | |
| 
 | |
| 	r = dm_devt_from_path(path, &dev);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	if (dev == disk_devt(t->md->disk))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	down_write(&t->devices_lock);
 | |
| 
 | |
| 	dd = find_device(&t->devices, dev);
 | |
| 	if (!dd) {
 | |
| 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 | |
| 		if (!dd) {
 | |
| 			r = -ENOMEM;
 | |
| 			goto unlock_ret_r;
 | |
| 		}
 | |
| 
 | |
| 		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
 | |
| 		if (r) {
 | |
| 			kfree(dd);
 | |
| 			goto unlock_ret_r;
 | |
| 		}
 | |
| 
 | |
| 		refcount_set(&dd->count, 1);
 | |
| 		list_add(&dd->list, &t->devices);
 | |
| 		goto out;
 | |
| 
 | |
| 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 | |
| 		r = upgrade_mode(dd, mode, t->md);
 | |
| 		if (r)
 | |
| 			goto unlock_ret_r;
 | |
| 	}
 | |
| 	refcount_inc(&dd->count);
 | |
| out:
 | |
| 	up_write(&t->devices_lock);
 | |
| 	*result = dd->dm_dev;
 | |
| 	return 0;
 | |
| 
 | |
| unlock_ret_r:
 | |
| 	up_write(&t->devices_lock);
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_get_device);
 | |
| 
 | |
| static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct queue_limits *limits = data;
 | |
| 	struct block_device *bdev = dev->bdev;
 | |
| 	struct request_queue *q = bdev_get_queue(bdev);
 | |
| 
 | |
| 	if (unlikely(!q)) {
 | |
| 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
 | |
| 		       dm_device_name(ti->table->md), bdev);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (blk_stack_limits(limits, &q->limits,
 | |
| 			get_start_sect(bdev) + start) < 0)
 | |
| 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
 | |
| 		       "physical_block_size=%u, logical_block_size=%u, "
 | |
| 		       "alignment_offset=%u, start=%llu",
 | |
| 		       dm_device_name(ti->table->md), bdev,
 | |
| 		       q->limits.physical_block_size,
 | |
| 		       q->limits.logical_block_size,
 | |
| 		       q->limits.alignment_offset,
 | |
| 		       (unsigned long long) start << SECTOR_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only stack the integrity profile if the target doesn't have native
 | |
| 	 * integrity support.
 | |
| 	 */
 | |
| 	if (!dm_target_has_integrity(ti->type))
 | |
| 		queue_limits_stack_integrity_bdev(limits, bdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement a device's use count and remove it if necessary.
 | |
|  */
 | |
| void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 | |
| {
 | |
| 	int found = 0;
 | |
| 	struct dm_table *t = ti->table;
 | |
| 	struct list_head *devices = &t->devices;
 | |
| 	struct dm_dev_internal *dd;
 | |
| 
 | |
| 	down_write(&t->devices_lock);
 | |
| 
 | |
| 	list_for_each_entry(dd, devices, list) {
 | |
| 		if (dd->dm_dev == d) {
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!found) {
 | |
| 		DMERR("%s: device %s not in table devices list",
 | |
| 		      dm_device_name(t->md), d->name);
 | |
| 		goto unlock_ret;
 | |
| 	}
 | |
| 	if (refcount_dec_and_test(&dd->count)) {
 | |
| 		dm_put_table_device(t->md, d);
 | |
| 		list_del(&dd->list);
 | |
| 		kfree(dd);
 | |
| 	}
 | |
| 
 | |
| unlock_ret:
 | |
| 	up_write(&t->devices_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_put_device);
 | |
| 
 | |
| /*
 | |
|  * Checks to see if the target joins onto the end of the table.
 | |
|  */
 | |
| static int adjoin(struct dm_table *t, struct dm_target *ti)
 | |
| {
 | |
| 	struct dm_target *prev;
 | |
| 
 | |
| 	if (!t->num_targets)
 | |
| 		return !ti->begin;
 | |
| 
 | |
| 	prev = &t->targets[t->num_targets - 1];
 | |
| 	return (ti->begin == (prev->begin + prev->len));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to dynamically allocate the arg array.
 | |
|  *
 | |
|  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 | |
|  * process messages even if some device is suspended. These messages have a
 | |
|  * small fixed number of arguments.
 | |
|  *
 | |
|  * On the other hand, dm-switch needs to process bulk data using messages and
 | |
|  * excessive use of GFP_NOIO could cause trouble.
 | |
|  */
 | |
| static char **realloc_argv(unsigned int *size, char **old_argv)
 | |
| {
 | |
| 	char **argv;
 | |
| 	unsigned int new_size;
 | |
| 	gfp_t gfp;
 | |
| 
 | |
| 	if (*size) {
 | |
| 		new_size = *size * 2;
 | |
| 		gfp = GFP_KERNEL;
 | |
| 	} else {
 | |
| 		new_size = 8;
 | |
| 		gfp = GFP_NOIO;
 | |
| 	}
 | |
| 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 | |
| 	if (argv) {
 | |
| 		if (old_argv)
 | |
| 			memcpy(argv, old_argv, *size * sizeof(*argv));
 | |
| 		*size = new_size;
 | |
| 	}
 | |
| 
 | |
| 	kfree(old_argv);
 | |
| 	return argv;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Destructively splits up the argument list to pass to ctr.
 | |
|  */
 | |
| int dm_split_args(int *argc, char ***argvp, char *input)
 | |
| {
 | |
| 	char *start, *end = input, *out, **argv = NULL;
 | |
| 	unsigned int array_size = 0;
 | |
| 
 | |
| 	*argc = 0;
 | |
| 
 | |
| 	if (!input) {
 | |
| 		*argvp = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	argv = realloc_argv(&array_size, argv);
 | |
| 	if (!argv)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	while (1) {
 | |
| 		/* Skip whitespace */
 | |
| 		start = skip_spaces(end);
 | |
| 
 | |
| 		if (!*start)
 | |
| 			break;	/* success, we hit the end */
 | |
| 
 | |
| 		/* 'out' is used to remove any back-quotes */
 | |
| 		end = out = start;
 | |
| 		while (*end) {
 | |
| 			/* Everything apart from '\0' can be quoted */
 | |
| 			if (*end == '\\' && *(end + 1)) {
 | |
| 				*out++ = *(end + 1);
 | |
| 				end += 2;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (isspace(*end))
 | |
| 				break;	/* end of token */
 | |
| 
 | |
| 			*out++ = *end++;
 | |
| 		}
 | |
| 
 | |
| 		/* have we already filled the array ? */
 | |
| 		if ((*argc + 1) > array_size) {
 | |
| 			argv = realloc_argv(&array_size, argv);
 | |
| 			if (!argv)
 | |
| 				return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		/* we know this is whitespace */
 | |
| 		if (*end)
 | |
| 			end++;
 | |
| 
 | |
| 		/* terminate the string and put it in the array */
 | |
| 		*out = '\0';
 | |
| 		argv[*argc] = start;
 | |
| 		(*argc)++;
 | |
| 	}
 | |
| 
 | |
| 	*argvp = argv;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dm_set_stacking_limits(struct queue_limits *limits)
 | |
| {
 | |
| 	blk_set_stacking_limits(limits);
 | |
| 	limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Impose necessary and sufficient conditions on a devices's table such
 | |
|  * that any incoming bio which respects its logical_block_size can be
 | |
|  * processed successfully.  If it falls across the boundary between
 | |
|  * two or more targets, the size of each piece it gets split into must
 | |
|  * be compatible with the logical_block_size of the target processing it.
 | |
|  */
 | |
| static int validate_hardware_logical_block_alignment(struct dm_table *t,
 | |
| 						     struct queue_limits *limits)
 | |
| {
 | |
| 	/*
 | |
| 	 * This function uses arithmetic modulo the logical_block_size
 | |
| 	 * (in units of 512-byte sectors).
 | |
| 	 */
 | |
| 	unsigned short device_logical_block_size_sects =
 | |
| 		limits->logical_block_size >> SECTOR_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Offset of the start of the next table entry, mod logical_block_size.
 | |
| 	 */
 | |
| 	unsigned short next_target_start = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Given an aligned bio that extends beyond the end of a
 | |
| 	 * target, how many sectors must the next target handle?
 | |
| 	 */
 | |
| 	unsigned short remaining = 0;
 | |
| 
 | |
| 	struct dm_target *ti;
 | |
| 	struct queue_limits ti_limits;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check each entry in the table in turn.
 | |
| 	 */
 | |
| 	for (i = 0; i < t->num_targets; i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		dm_set_stacking_limits(&ti_limits);
 | |
| 
 | |
| 		/* combine all target devices' limits */
 | |
| 		if (ti->type->iterate_devices)
 | |
| 			ti->type->iterate_devices(ti, dm_set_device_limits,
 | |
| 						  &ti_limits);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the remaining sectors fall entirely within this
 | |
| 		 * table entry are they compatible with its logical_block_size?
 | |
| 		 */
 | |
| 		if (remaining < ti->len &&
 | |
| 		    remaining & ((ti_limits.logical_block_size >>
 | |
| 				  SECTOR_SHIFT) - 1))
 | |
| 			break;	/* Error */
 | |
| 
 | |
| 		next_target_start =
 | |
| 		    (unsigned short) ((next_target_start + ti->len) &
 | |
| 				      (device_logical_block_size_sects - 1));
 | |
| 		remaining = next_target_start ?
 | |
| 		    device_logical_block_size_sects - next_target_start : 0;
 | |
| 	}
 | |
| 
 | |
| 	if (remaining) {
 | |
| 		DMERR("%s: table line %u (start sect %llu len %llu) "
 | |
| 		      "not aligned to h/w logical block size %u",
 | |
| 		      dm_device_name(t->md), i,
 | |
| 		      (unsigned long long) ti->begin,
 | |
| 		      (unsigned long long) ti->len,
 | |
| 		      limits->logical_block_size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_table_add_target(struct dm_table *t, const char *type,
 | |
| 			sector_t start, sector_t len, char *params)
 | |
| {
 | |
| 	int r = -EINVAL, argc;
 | |
| 	char **argv;
 | |
| 	struct dm_target *ti;
 | |
| 
 | |
| 	if (t->singleton) {
 | |
| 		DMERR("%s: target type %s must appear alone in table",
 | |
| 		      dm_device_name(t->md), t->targets->type->name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(t->num_targets >= t->num_allocated);
 | |
| 
 | |
| 	ti = t->targets + t->num_targets;
 | |
| 	memset(ti, 0, sizeof(*ti));
 | |
| 
 | |
| 	if (!len) {
 | |
| 		DMERR("%s: zero-length target", dm_device_name(t->md));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) {
 | |
| 		DMERR("%s: too large device", dm_device_name(t->md));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ti->type = dm_get_target_type(type);
 | |
| 	if (!ti->type) {
 | |
| 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (dm_target_needs_singleton(ti->type)) {
 | |
| 		if (t->num_targets) {
 | |
| 			ti->error = "singleton target type must appear alone in table";
 | |
| 			goto bad;
 | |
| 		}
 | |
| 		t->singleton = true;
 | |
| 	}
 | |
| 
 | |
| 	if (dm_target_always_writeable(ti->type) &&
 | |
| 	    !(t->mode & BLK_OPEN_WRITE)) {
 | |
| 		ti->error = "target type may not be included in a read-only table";
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	if (t->immutable_target_type) {
 | |
| 		if (t->immutable_target_type != ti->type) {
 | |
| 			ti->error = "immutable target type cannot be mixed with other target types";
 | |
| 			goto bad;
 | |
| 		}
 | |
| 	} else if (dm_target_is_immutable(ti->type)) {
 | |
| 		if (t->num_targets) {
 | |
| 			ti->error = "immutable target type cannot be mixed with other target types";
 | |
| 			goto bad;
 | |
| 		}
 | |
| 		t->immutable_target_type = ti->type;
 | |
| 	}
 | |
| 
 | |
| 	ti->table = t;
 | |
| 	ti->begin = start;
 | |
| 	ti->len = len;
 | |
| 	ti->error = "Unknown error";
 | |
| 
 | |
| 	/*
 | |
| 	 * Does this target adjoin the previous one ?
 | |
| 	 */
 | |
| 	if (!adjoin(t, ti)) {
 | |
| 		ti->error = "Gap in table";
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_split_args(&argc, &argv, params);
 | |
| 	if (r) {
 | |
| 		ti->error = "couldn't split parameters";
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	r = ti->type->ctr(ti, argc, argv);
 | |
| 	kfree(argv);
 | |
| 	if (r)
 | |
| 		goto bad;
 | |
| 
 | |
| 	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
 | |
| 
 | |
| 	if (!ti->num_discard_bios && ti->discards_supported)
 | |
| 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 | |
| 		       dm_device_name(t->md), type);
 | |
| 
 | |
| 	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
 | |
| 		static_branch_enable(&swap_bios_enabled);
 | |
| 
 | |
| 	if (!ti->flush_bypasses_map)
 | |
| 		t->flush_bypasses_map = false;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  bad:
 | |
| 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
 | |
| 	dm_put_target_type(ti->type);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Target argument parsing helpers.
 | |
|  */
 | |
| static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 | |
| 			     unsigned int *value, char **error, unsigned int grouped)
 | |
| {
 | |
| 	const char *arg_str = dm_shift_arg(arg_set);
 | |
| 	char dummy;
 | |
| 
 | |
| 	if (!arg_str ||
 | |
| 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 | |
| 	    (*value < arg->min) ||
 | |
| 	    (*value > arg->max) ||
 | |
| 	    (grouped && arg_set->argc < *value)) {
 | |
| 		*error = arg->error;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 | |
| 		unsigned int *value, char **error)
 | |
| {
 | |
| 	return validate_next_arg(arg, arg_set, value, error, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_read_arg);
 | |
| 
 | |
| int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 | |
| 		      unsigned int *value, char **error)
 | |
| {
 | |
| 	return validate_next_arg(arg, arg_set, value, error, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_read_arg_group);
 | |
| 
 | |
| const char *dm_shift_arg(struct dm_arg_set *as)
 | |
| {
 | |
| 	char *r;
 | |
| 
 | |
| 	if (as->argc) {
 | |
| 		as->argc--;
 | |
| 		r = *as->argv;
 | |
| 		as->argv++;
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_shift_arg);
 | |
| 
 | |
| void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
 | |
| {
 | |
| 	BUG_ON(as->argc < num_args);
 | |
| 	as->argc -= num_args;
 | |
| 	as->argv += num_args;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_consume_args);
 | |
| 
 | |
| static bool __table_type_bio_based(enum dm_queue_mode table_type)
 | |
| {
 | |
| 	return (table_type == DM_TYPE_BIO_BASED ||
 | |
| 		table_type == DM_TYPE_DAX_BIO_BASED);
 | |
| }
 | |
| 
 | |
| static bool __table_type_request_based(enum dm_queue_mode table_type)
 | |
| {
 | |
| 	return table_type == DM_TYPE_REQUEST_BASED;
 | |
| }
 | |
| 
 | |
| void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 | |
| {
 | |
| 	t->type = type;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_table_set_type);
 | |
| 
 | |
| /* validate the dax capability of the target device span */
 | |
| static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	if (dev->dax_dev)
 | |
| 		return false;
 | |
| 
 | |
| 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Check devices support synchronous DAX */
 | |
| static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
 | |
| 					      sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_dax(struct dm_table *t,
 | |
| 				  iterate_devices_callout_fn iterate_fn)
 | |
| {
 | |
| 	/* Ensure that all targets support DAX. */
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->type->direct_access)
 | |
| 			return false;
 | |
| 
 | |
| 		if (dm_target_is_wildcard(ti->type) ||
 | |
| 		    !ti->type->iterate_devices ||
 | |
| 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				  sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct block_device *bdev = dev->bdev;
 | |
| 	struct request_queue *q = bdev_get_queue(bdev);
 | |
| 
 | |
| 	/* request-based cannot stack on partitions! */
 | |
| 	if (bdev_is_partition(bdev))
 | |
| 		return false;
 | |
| 
 | |
| 	return queue_is_mq(q);
 | |
| }
 | |
| 
 | |
| static int dm_table_determine_type(struct dm_table *t)
 | |
| {
 | |
| 	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
 | |
| 	struct dm_target *ti;
 | |
| 	struct list_head *devices = dm_table_get_devices(t);
 | |
| 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 | |
| 
 | |
| 	if (t->type != DM_TYPE_NONE) {
 | |
| 		/* target already set the table's type */
 | |
| 		if (t->type == DM_TYPE_BIO_BASED) {
 | |
| 			/* possibly upgrade to a variant of bio-based */
 | |
| 			goto verify_bio_based;
 | |
| 		}
 | |
| 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 | |
| 		goto verify_rq_based;
 | |
| 	}
 | |
| 
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 		if (dm_target_hybrid(ti))
 | |
| 			hybrid = 1;
 | |
| 		else if (dm_target_request_based(ti))
 | |
| 			request_based = 1;
 | |
| 		else
 | |
| 			bio_based = 1;
 | |
| 
 | |
| 		if (bio_based && request_based) {
 | |
| 			DMERR("Inconsistent table: different target types can't be mixed up");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (hybrid && !bio_based && !request_based) {
 | |
| 		/*
 | |
| 		 * The targets can work either way.
 | |
| 		 * Determine the type from the live device.
 | |
| 		 * Default to bio-based if device is new.
 | |
| 		 */
 | |
| 		if (__table_type_request_based(live_md_type))
 | |
| 			request_based = 1;
 | |
| 		else
 | |
| 			bio_based = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (bio_based) {
 | |
| verify_bio_based:
 | |
| 		/* We must use this table as bio-based */
 | |
| 		t->type = DM_TYPE_BIO_BASED;
 | |
| 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
 | |
| 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 | |
| 			t->type = DM_TYPE_DAX_BIO_BASED;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!request_based); /* No targets in this table */
 | |
| 
 | |
| 	t->type = DM_TYPE_REQUEST_BASED;
 | |
| 
 | |
| verify_rq_based:
 | |
| 	/*
 | |
| 	 * Request-based dm supports only tables that have a single target now.
 | |
| 	 * To support multiple targets, request splitting support is needed,
 | |
| 	 * and that needs lots of changes in the block-layer.
 | |
| 	 * (e.g. request completion process for partial completion.)
 | |
| 	 */
 | |
| 	if (t->num_targets > 1) {
 | |
| 		DMERR("request-based DM doesn't support multiple targets");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(devices)) {
 | |
| 		int srcu_idx;
 | |
| 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
 | |
| 
 | |
| 		/* inherit live table's type */
 | |
| 		if (live_table)
 | |
| 			t->type = live_table->type;
 | |
| 		dm_put_live_table(t->md, srcu_idx);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ti = dm_table_get_immutable_target(t);
 | |
| 	if (!ti) {
 | |
| 		DMERR("table load rejected: immutable target is required");
 | |
| 		return -EINVAL;
 | |
| 	} else if (ti->max_io_len) {
 | |
| 		DMERR("table load rejected: immutable target that splits IO is not supported");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Non-request-stackable devices can't be used for request-based dm */
 | |
| 	if (!ti->type->iterate_devices ||
 | |
| 	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
 | |
| 		DMERR("table load rejected: including non-request-stackable devices");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| enum dm_queue_mode dm_table_get_type(struct dm_table *t)
 | |
| {
 | |
| 	return t->type;
 | |
| }
 | |
| 
 | |
| struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 | |
| {
 | |
| 	return t->immutable_target_type;
 | |
| }
 | |
| 
 | |
| struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 | |
| {
 | |
| 	/* Immutable target is implicitly a singleton */
 | |
| 	if (t->num_targets > 1 ||
 | |
| 	    !dm_target_is_immutable(t->targets[0].type))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return t->targets;
 | |
| }
 | |
| 
 | |
| struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (dm_target_is_wildcard(ti->type))
 | |
| 			return ti;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| bool dm_table_request_based(struct dm_table *t)
 | |
| {
 | |
| 	return __table_type_request_based(dm_table_get_type(t));
 | |
| }
 | |
| 
 | |
| static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
 | |
| {
 | |
| 	enum dm_queue_mode type = dm_table_get_type(t);
 | |
| 	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
 | |
| 	unsigned int min_pool_size = 0, pool_size;
 | |
| 	struct dm_md_mempools *pools;
 | |
| 	unsigned int bioset_flags = 0;
 | |
| 
 | |
| 	if (unlikely(type == DM_TYPE_NONE)) {
 | |
| 		DMERR("no table type is set, can't allocate mempools");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
 | |
| 	if (!pools)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (type == DM_TYPE_REQUEST_BASED) {
 | |
| 		pool_size = dm_get_reserved_rq_based_ios();
 | |
| 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
 | |
| 		goto init_bs;
 | |
| 	}
 | |
| 
 | |
| 	if (md->queue->limits.features & BLK_FEAT_POLL)
 | |
| 		bioset_flags |= BIOSET_PERCPU_CACHE;
 | |
| 
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
 | |
| 		min_pool_size = max(min_pool_size, ti->num_flush_bios);
 | |
| 	}
 | |
| 	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
 | |
| 	front_pad = roundup(per_io_data_size,
 | |
| 		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
 | |
| 
 | |
| 	io_front_pad = roundup(per_io_data_size,
 | |
| 		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
 | |
| 	if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
 | |
| 		goto out_free_pools;
 | |
| init_bs:
 | |
| 	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
 | |
| 		goto out_free_pools;
 | |
| 
 | |
| 	t->mempools = pools;
 | |
| 	return 0;
 | |
| 
 | |
| out_free_pools:
 | |
| 	dm_free_md_mempools(pools);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int setup_indexes(struct dm_table *t)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int total = 0;
 | |
| 	sector_t *indexes;
 | |
| 
 | |
| 	/* allocate the space for *all* the indexes */
 | |
| 	for (i = t->depth - 2; i >= 0; i--) {
 | |
| 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
 | |
| 		total += t->counts[i];
 | |
| 	}
 | |
| 
 | |
| 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
 | |
| 	if (!indexes)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* set up internal nodes, bottom-up */
 | |
| 	for (i = t->depth - 2; i >= 0; i--) {
 | |
| 		t->index[i] = indexes;
 | |
| 		indexes += (KEYS_PER_NODE * t->counts[i]);
 | |
| 		setup_btree_index(i, t);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Builds the btree to index the map.
 | |
|  */
 | |
| static int dm_table_build_index(struct dm_table *t)
 | |
| {
 | |
| 	int r = 0;
 | |
| 	unsigned int leaf_nodes;
 | |
| 
 | |
| 	/* how many indexes will the btree have ? */
 | |
| 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
 | |
| 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
 | |
| 
 | |
| 	/* leaf layer has already been set up */
 | |
| 	t->counts[t->depth - 1] = leaf_nodes;
 | |
| 	t->index[t->depth - 1] = t->highs;
 | |
| 
 | |
| 	if (t->depth >= 2)
 | |
| 		r = setup_indexes(t);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_INLINE_ENCRYPTION
 | |
| 
 | |
| struct dm_crypto_profile {
 | |
| 	struct blk_crypto_profile profile;
 | |
| 	struct mapped_device *md;
 | |
| };
 | |
| 
 | |
| static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				     sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	const struct blk_crypto_key *key = data;
 | |
| 
 | |
| 	blk_crypto_evict_key(dev->bdev, key);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When an inline encryption key is evicted from a device-mapper device, evict
 | |
|  * it from all the underlying devices.
 | |
|  */
 | |
| static int dm_keyslot_evict(struct blk_crypto_profile *profile,
 | |
| 			    const struct blk_crypto_key *key, unsigned int slot)
 | |
| {
 | |
| 	struct mapped_device *md =
 | |
| 		container_of(profile, struct dm_crypto_profile, profile)->md;
 | |
| 	struct dm_table *t;
 | |
| 	int srcu_idx;
 | |
| 
 | |
| 	t = dm_get_live_table(md, &srcu_idx);
 | |
| 	if (!t)
 | |
| 		goto put_live_table;
 | |
| 
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->type->iterate_devices)
 | |
| 			continue;
 | |
| 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
 | |
| 					  (void *)key);
 | |
| 	}
 | |
| 
 | |
| put_live_table:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				     sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct blk_crypto_profile *parent = data;
 | |
| 	struct blk_crypto_profile *child =
 | |
| 		bdev_get_queue(dev->bdev)->crypto_profile;
 | |
| 
 | |
| 	blk_crypto_intersect_capabilities(parent, child);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
 | |
| {
 | |
| 	struct dm_crypto_profile *dmcp = container_of(profile,
 | |
| 						      struct dm_crypto_profile,
 | |
| 						      profile);
 | |
| 
 | |
| 	if (!profile)
 | |
| 		return;
 | |
| 
 | |
| 	blk_crypto_profile_destroy(profile);
 | |
| 	kfree(dmcp);
 | |
| }
 | |
| 
 | |
| static void dm_table_destroy_crypto_profile(struct dm_table *t)
 | |
| {
 | |
| 	dm_destroy_crypto_profile(t->crypto_profile);
 | |
| 	t->crypto_profile = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constructs and initializes t->crypto_profile with a crypto profile that
 | |
|  * represents the common set of crypto capabilities of the devices described by
 | |
|  * the dm_table.  However, if the constructed crypto profile doesn't support all
 | |
|  * crypto capabilities that are supported by the current mapped_device, it
 | |
|  * returns an error instead, since we don't support removing crypto capabilities
 | |
|  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
 | |
|  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
 | |
|  */
 | |
| static int dm_table_construct_crypto_profile(struct dm_table *t)
 | |
| {
 | |
| 	struct dm_crypto_profile *dmcp;
 | |
| 	struct blk_crypto_profile *profile;
 | |
| 	unsigned int i;
 | |
| 	bool empty_profile = true;
 | |
| 
 | |
| 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
 | |
| 	if (!dmcp)
 | |
| 		return -ENOMEM;
 | |
| 	dmcp->md = t->md;
 | |
| 
 | |
| 	profile = &dmcp->profile;
 | |
| 	blk_crypto_profile_init(profile, 0);
 | |
| 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
 | |
| 	profile->max_dun_bytes_supported = UINT_MAX;
 | |
| 	memset(profile->modes_supported, 0xFF,
 | |
| 	       sizeof(profile->modes_supported));
 | |
| 	profile->key_types_supported = ~0;
 | |
| 
 | |
| 	for (i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!dm_target_passes_crypto(ti->type)) {
 | |
| 			blk_crypto_intersect_capabilities(profile, NULL);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!ti->type->iterate_devices)
 | |
| 			continue;
 | |
| 		ti->type->iterate_devices(ti,
 | |
| 					  device_intersect_crypto_capabilities,
 | |
| 					  profile);
 | |
| 	}
 | |
| 
 | |
| 	if (t->md->queue &&
 | |
| 	    !blk_crypto_has_capabilities(profile,
 | |
| 					 t->md->queue->crypto_profile)) {
 | |
| 		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
 | |
| 		dm_destroy_crypto_profile(profile);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new profile doesn't actually support any crypto capabilities,
 | |
| 	 * we may as well represent it with a NULL profile.
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
 | |
| 		if (profile->modes_supported[i]) {
 | |
| 			empty_profile = false;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (empty_profile) {
 | |
| 		dm_destroy_crypto_profile(profile);
 | |
| 		profile = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * t->crypto_profile is only set temporarily while the table is being
 | |
| 	 * set up, and it gets set to NULL after the profile has been
 | |
| 	 * transferred to the request_queue.
 | |
| 	 */
 | |
| 	t->crypto_profile = profile;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dm_update_crypto_profile(struct request_queue *q,
 | |
| 				     struct dm_table *t)
 | |
| {
 | |
| 	if (!t->crypto_profile)
 | |
| 		return;
 | |
| 
 | |
| 	/* Make the crypto profile less restrictive. */
 | |
| 	if (!q->crypto_profile) {
 | |
| 		blk_crypto_register(t->crypto_profile, q);
 | |
| 	} else {
 | |
| 		blk_crypto_update_capabilities(q->crypto_profile,
 | |
| 					       t->crypto_profile);
 | |
| 		dm_destroy_crypto_profile(t->crypto_profile);
 | |
| 	}
 | |
| 	t->crypto_profile = NULL;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_BLK_INLINE_ENCRYPTION */
 | |
| 
 | |
| static int dm_table_construct_crypto_profile(struct dm_table *t)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void dm_table_destroy_crypto_profile(struct dm_table *t)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void dm_update_crypto_profile(struct request_queue *q,
 | |
| 				     struct dm_table *t)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
 | |
| 
 | |
| /*
 | |
|  * Prepares the table for use by building the indices,
 | |
|  * setting the type, and allocating mempools.
 | |
|  */
 | |
| int dm_table_complete(struct dm_table *t)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = dm_table_determine_type(t);
 | |
| 	if (r) {
 | |
| 		DMERR("unable to determine table type");
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_table_build_index(t);
 | |
| 	if (r) {
 | |
| 		DMERR("unable to build btrees");
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_table_construct_crypto_profile(t);
 | |
| 	if (r) {
 | |
| 		DMERR("could not construct crypto profile.");
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_table_alloc_md_mempools(t, t->md);
 | |
| 	if (r)
 | |
| 		DMERR("unable to allocate mempools");
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(_event_lock);
 | |
| void dm_table_event_callback(struct dm_table *t,
 | |
| 			     void (*fn)(void *), void *context)
 | |
| {
 | |
| 	mutex_lock(&_event_lock);
 | |
| 	t->event_fn = fn;
 | |
| 	t->event_context = context;
 | |
| 	mutex_unlock(&_event_lock);
 | |
| }
 | |
| 
 | |
| void dm_table_event(struct dm_table *t)
 | |
| {
 | |
| 	mutex_lock(&_event_lock);
 | |
| 	if (t->event_fn)
 | |
| 		t->event_fn(t->event_context);
 | |
| 	mutex_unlock(&_event_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_event);
 | |
| 
 | |
| inline sector_t dm_table_get_size(struct dm_table *t)
 | |
| {
 | |
| 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_get_size);
 | |
| 
 | |
| /*
 | |
|  * Search the btree for the correct target.
 | |
|  *
 | |
|  * Caller should check returned pointer for NULL
 | |
|  * to trap I/O beyond end of device.
 | |
|  */
 | |
| struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
 | |
| {
 | |
| 	unsigned int l, n = 0, k = 0;
 | |
| 	sector_t *node;
 | |
| 
 | |
| 	if (unlikely(sector >= dm_table_get_size(t)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (l = 0; l < t->depth; l++) {
 | |
| 		n = get_child(n, k);
 | |
| 		node = get_node(t, l, n);
 | |
| 
 | |
| 		for (k = 0; k < KEYS_PER_NODE; k++)
 | |
| 			if (node[k] >= sector)
 | |
| 				break;
 | |
| 	}
 | |
| 
 | |
| 	return &t->targets[(KEYS_PER_NODE * n) + k];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * type->iterate_devices() should be called when the sanity check needs to
 | |
|  * iterate and check all underlying data devices. iterate_devices() will
 | |
|  * iterate all underlying data devices until it encounters a non-zero return
 | |
|  * code, returned by whether the input iterate_devices_callout_fn, or
 | |
|  * iterate_devices() itself internally.
 | |
|  *
 | |
|  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
 | |
|  * iterate multiple underlying devices internally, in which case a non-zero
 | |
|  * return code returned by iterate_devices_callout_fn will stop the iteration
 | |
|  * in advance.
 | |
|  *
 | |
|  * Cases requiring _any_ underlying device supporting some kind of attribute,
 | |
|  * should use the iteration structure like dm_table_any_dev_attr(), or call
 | |
|  * it directly. @func should handle semantics of positive examples, e.g.
 | |
|  * capable of something.
 | |
|  *
 | |
|  * Cases requiring _all_ underlying devices supporting some kind of attribute,
 | |
|  * should use the iteration structure like dm_table_supports_nowait() or
 | |
|  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
 | |
|  * uses an @anti_func that handle semantics of counter examples, e.g. not
 | |
|  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
 | |
|  */
 | |
| static bool dm_table_any_dev_attr(struct dm_table *t,
 | |
| 				  iterate_devices_callout_fn func, void *data)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (ti->type->iterate_devices &&
 | |
| 		    ti->type->iterate_devices(ti, func, data))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int count_device(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	unsigned int *num_devices = data;
 | |
| 
 | |
| 	(*num_devices)++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether a table has no data devices attached using each
 | |
|  * target's iterate_devices method.
 | |
|  * Returns false if the result is unknown because a target doesn't
 | |
|  * support iterate_devices.
 | |
|  */
 | |
| bool dm_table_has_no_data_devices(struct dm_table *t)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 		unsigned int num_devices = 0;
 | |
| 
 | |
| 		if (!ti->type->iterate_devices)
 | |
| 			return false;
 | |
| 
 | |
| 		ti->type->iterate_devices(ti, count_device, &num_devices);
 | |
| 		if (num_devices)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			    sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	bool *zoned = data;
 | |
| 
 | |
| 	return bdev_is_zoned(dev->bdev) != *zoned;
 | |
| }
 | |
| 
 | |
| static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				 sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	return bdev_is_zoned(dev->bdev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the device zoned model based on the target feature flag. If the target
 | |
|  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
 | |
|  * also accepted but all devices must have the same zoned model. If the target
 | |
|  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
 | |
|  * zoned model with all zoned devices having the same zone size.
 | |
|  */
 | |
| static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		/*
 | |
| 		 * For the wildcard target (dm-error), if we do not have a
 | |
| 		 * backing device, we must always return false. If we have a
 | |
| 		 * backing device, the result must depend on checking zoned
 | |
| 		 * model, like for any other target. So for this, check directly
 | |
| 		 * if the target backing device is zoned as we get "false" when
 | |
| 		 * dm-error was set without a backing device.
 | |
| 		 */
 | |
| 		if (dm_target_is_wildcard(ti->type) &&
 | |
| 		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
 | |
| 			return false;
 | |
| 
 | |
| 		if (dm_target_supports_zoned_hm(ti->type)) {
 | |
| 			if (!ti->type->iterate_devices ||
 | |
| 			    ti->type->iterate_devices(ti, device_not_zoned,
 | |
| 						      &zoned))
 | |
| 				return false;
 | |
| 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
 | |
| 			if (zoned)
 | |
| 				return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
 | |
| 					   sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	unsigned int *zone_sectors = data;
 | |
| 
 | |
| 	if (!bdev_is_zoned(dev->bdev))
 | |
| 		return 0;
 | |
| 	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check consistency of zoned model and zone sectors across all targets. For
 | |
|  * zone sectors, if the destination device is a zoned block device, it shall
 | |
|  * have the specified zone_sectors.
 | |
|  */
 | |
| static int validate_hardware_zoned(struct dm_table *t, bool zoned,
 | |
| 				   unsigned int zone_sectors)
 | |
| {
 | |
| 	if (!zoned)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!dm_table_supports_zoned(t, zoned)) {
 | |
| 		DMERR("%s: zoned model is not consistent across all devices",
 | |
| 		      dm_device_name(t->md));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Check zone size validity and compatibility */
 | |
| 	if (!zone_sectors || !is_power_of_2(zone_sectors))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
 | |
| 		DMERR("%s: zone sectors is not consistent across all zoned devices",
 | |
| 		      dm_device_name(t->md));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Establish the new table's queue_limits and validate them.
 | |
|  */
 | |
| int dm_calculate_queue_limits(struct dm_table *t,
 | |
| 			      struct queue_limits *limits)
 | |
| {
 | |
| 	struct queue_limits ti_limits;
 | |
| 	unsigned int zone_sectors = 0;
 | |
| 	bool zoned = false;
 | |
| 
 | |
| 	dm_set_stacking_limits(limits);
 | |
| 
 | |
| 	t->integrity_supported = true;
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!dm_target_passes_integrity(ti->type))
 | |
| 			t->integrity_supported = false;
 | |
| 	}
 | |
| 
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		dm_set_stacking_limits(&ti_limits);
 | |
| 
 | |
| 		if (!ti->type->iterate_devices) {
 | |
| 			/* Set I/O hints portion of queue limits */
 | |
| 			if (ti->type->io_hints)
 | |
| 				ti->type->io_hints(ti, &ti_limits);
 | |
| 			goto combine_limits;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Combine queue limits of all the devices this target uses.
 | |
| 		 */
 | |
| 		ti->type->iterate_devices(ti, dm_set_device_limits,
 | |
| 					  &ti_limits);
 | |
| 
 | |
| 		if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
 | |
| 			/*
 | |
| 			 * After stacking all limits, validate all devices
 | |
| 			 * in table support this zoned model and zone sectors.
 | |
| 			 */
 | |
| 			zoned = (ti_limits.features & BLK_FEAT_ZONED);
 | |
| 			zone_sectors = ti_limits.chunk_sectors;
 | |
| 		}
 | |
| 
 | |
| 		/* Set I/O hints portion of queue limits */
 | |
| 		if (ti->type->io_hints)
 | |
| 			ti->type->io_hints(ti, &ti_limits);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check each device area is consistent with the target's
 | |
| 		 * overall queue limits.
 | |
| 		 */
 | |
| 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
 | |
| 					      &ti_limits))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| combine_limits:
 | |
| 		/*
 | |
| 		 * Merge this target's queue limits into the overall limits
 | |
| 		 * for the table.
 | |
| 		 */
 | |
| 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
 | |
| 			DMWARN("%s: adding target device (start sect %llu len %llu) "
 | |
| 			       "caused an alignment inconsistency",
 | |
| 			       dm_device_name(t->md),
 | |
| 			       (unsigned long long) ti->begin,
 | |
| 			       (unsigned long long) ti->len);
 | |
| 
 | |
| 		if (t->integrity_supported ||
 | |
| 		    dm_target_has_integrity(ti->type)) {
 | |
| 			if (!queue_limits_stack_integrity(limits, &ti_limits)) {
 | |
| 				DMWARN("%s: adding target device (start sect %llu len %llu) "
 | |
| 				       "disabled integrity support due to incompatibility",
 | |
| 				       dm_device_name(t->md),
 | |
| 				       (unsigned long long) ti->begin,
 | |
| 				       (unsigned long long) ti->len);
 | |
| 				t->integrity_supported = false;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that the zoned model and zone sectors, as determined before
 | |
| 	 * any .io_hints override, are the same across all devices in the table.
 | |
| 	 * - this is especially relevant if .io_hints is emulating a disk-managed
 | |
| 	 *   zoned model on host-managed zoned block devices.
 | |
| 	 * BUT...
 | |
| 	 */
 | |
| 	if (limits->features & BLK_FEAT_ZONED) {
 | |
| 		/*
 | |
| 		 * ...IF the above limits stacking determined a zoned model
 | |
| 		 * validate that all of the table's devices conform to it.
 | |
| 		 */
 | |
| 		zoned = limits->features & BLK_FEAT_ZONED;
 | |
| 		zone_sectors = limits->chunk_sectors;
 | |
| 	}
 | |
| 	if (validate_hardware_zoned(t, zoned, zone_sectors))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return validate_hardware_logical_block_alignment(t, limits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a target requires flush support even if none of the underlying
 | |
|  * devices need it (e.g. to persist target-specific metadata).
 | |
|  */
 | |
| static bool dm_table_supports_flush(struct dm_table *t)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (ti->num_flush_bios && ti->flush_supported)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int device_dax_write_cache_enabled(struct dm_target *ti,
 | |
| 					  struct dm_dev *dev, sector_t start,
 | |
| 					  sector_t len, void *data)
 | |
| {
 | |
| 	struct dax_device *dax_dev = dev->dax_dev;
 | |
| 
 | |
| 	if (!dax_dev)
 | |
| 		return false;
 | |
| 
 | |
| 	if (dax_write_cache_enabled(dax_dev))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
 | |
| 					   sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 
 | |
| 	return !q->limits.max_write_zeroes_sectors;
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_write_zeroes(struct dm_table *t)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->num_write_zeroes_bios)
 | |
| 			return false;
 | |
| 
 | |
| 		if (!ti->type->iterate_devices ||
 | |
| 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_nowait(struct dm_table *t)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!dm_target_supports_nowait(ti->type))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				      sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	return !bdev_max_discard_sectors(dev->bdev);
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_discards(struct dm_table *t)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->num_discard_bios)
 | |
| 			return false;
 | |
| 
 | |
| 		/*
 | |
| 		 * Either the target provides discard support (as implied by setting
 | |
| 		 * 'discards_supported') or it relies on _all_ data devices having
 | |
| 		 * discard support.
 | |
| 		 */
 | |
| 		if (!ti->discards_supported &&
 | |
| 		    (!ti->type->iterate_devices ||
 | |
| 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_not_secure_erase_capable(struct dm_target *ti,
 | |
| 					   struct dm_dev *dev, sector_t start,
 | |
| 					   sector_t len, void *data)
 | |
| {
 | |
| 	return !bdev_max_secure_erase_sectors(dev->bdev);
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_secure_erase(struct dm_table *t)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->num_secure_erase_bios)
 | |
| 			return false;
 | |
| 
 | |
| 		if (!ti->type->iterate_devices ||
 | |
| 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_not_atomic_write_capable(struct dm_target *ti,
 | |
| 			struct dm_dev *dev, sector_t start,
 | |
| 			sector_t len, void *data)
 | |
| {
 | |
| 	return !bdev_can_atomic_write(dev->bdev);
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_atomic_writes(struct dm_table *t)
 | |
| {
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!dm_target_supports_atomic_writes(ti->type))
 | |
| 			return false;
 | |
| 
 | |
| 		if (!ti->type->iterate_devices)
 | |
| 			return false;
 | |
| 
 | |
| 		if (ti->type->iterate_devices(ti,
 | |
| 			device_not_atomic_write_capable, NULL)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
 | |
| 			      struct queue_limits *limits)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	if (!dm_table_supports_nowait(t))
 | |
| 		limits->features &= ~BLK_FEAT_NOWAIT;
 | |
| 
 | |
| 	/*
 | |
| 	 * The current polling impementation does not support request based
 | |
| 	 * stacking.
 | |
| 	 */
 | |
| 	if (!__table_type_bio_based(t->type))
 | |
| 		limits->features &= ~BLK_FEAT_POLL;
 | |
| 
 | |
| 	if (!dm_table_supports_discards(t)) {
 | |
| 		limits->max_hw_discard_sectors = 0;
 | |
| 		limits->discard_granularity = 0;
 | |
| 		limits->discard_alignment = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!dm_table_supports_write_zeroes(t))
 | |
| 		limits->max_write_zeroes_sectors = 0;
 | |
| 
 | |
| 	if (!dm_table_supports_secure_erase(t))
 | |
| 		limits->max_secure_erase_sectors = 0;
 | |
| 
 | |
| 	if (dm_table_supports_flush(t))
 | |
| 		limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
 | |
| 
 | |
| 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
 | |
| 		limits->features |= BLK_FEAT_DAX;
 | |
| 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
 | |
| 			set_dax_synchronous(t->md->dax_dev);
 | |
| 	} else
 | |
| 		limits->features &= ~BLK_FEAT_DAX;
 | |
| 
 | |
| 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
 | |
| 		dax_write_cache(t->md->dax_dev, true);
 | |
| 
 | |
| 	/* For a zoned table, setup the zone related queue attributes. */
 | |
| 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
 | |
| 	    (limits->features & BLK_FEAT_ZONED)) {
 | |
| 		r = dm_set_zones_restrictions(t, q, limits);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	if (dm_table_supports_atomic_writes(t))
 | |
| 		limits->features |= BLK_FEAT_ATOMIC_WRITES;
 | |
| 
 | |
| 	r = queue_limits_set(q, limits);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that the limits are set, check the zones mapped by the table
 | |
| 	 * and setup the resources for zone append emulation if necessary.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
 | |
| 	    (limits->features & BLK_FEAT_ZONED)) {
 | |
| 		r = dm_revalidate_zones(t, q);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	dm_update_crypto_profile(q, t);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct list_head *dm_table_get_devices(struct dm_table *t)
 | |
| {
 | |
| 	return &t->devices;
 | |
| }
 | |
| 
 | |
| blk_mode_t dm_table_get_mode(struct dm_table *t)
 | |
| {
 | |
| 	return t->mode;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_get_mode);
 | |
| 
 | |
| enum suspend_mode {
 | |
| 	PRESUSPEND,
 | |
| 	PRESUSPEND_UNDO,
 | |
| 	POSTSUSPEND,
 | |
| };
 | |
| 
 | |
| static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
 | |
| {
 | |
| 	lockdep_assert_held(&t->md->suspend_lock);
 | |
| 
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		switch (mode) {
 | |
| 		case PRESUSPEND:
 | |
| 			if (ti->type->presuspend)
 | |
| 				ti->type->presuspend(ti);
 | |
| 			break;
 | |
| 		case PRESUSPEND_UNDO:
 | |
| 			if (ti->type->presuspend_undo)
 | |
| 				ti->type->presuspend_undo(ti);
 | |
| 			break;
 | |
| 		case POSTSUSPEND:
 | |
| 			if (ti->type->postsuspend)
 | |
| 				ti->type->postsuspend(ti);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void dm_table_presuspend_targets(struct dm_table *t)
 | |
| {
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 
 | |
| 	suspend_targets(t, PRESUSPEND);
 | |
| }
 | |
| 
 | |
| void dm_table_presuspend_undo_targets(struct dm_table *t)
 | |
| {
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 
 | |
| 	suspend_targets(t, PRESUSPEND_UNDO);
 | |
| }
 | |
| 
 | |
| void dm_table_postsuspend_targets(struct dm_table *t)
 | |
| {
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 
 | |
| 	suspend_targets(t, POSTSUSPEND);
 | |
| }
 | |
| 
 | |
| int dm_table_resume_targets(struct dm_table *t)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int r = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&t->md->suspend_lock);
 | |
| 
 | |
| 	for (i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->type->preresume)
 | |
| 			continue;
 | |
| 
 | |
| 		r = ti->type->preresume(ti);
 | |
| 		if (r) {
 | |
| 			DMERR("%s: %s: preresume failed, error = %d",
 | |
| 			      dm_device_name(t->md), ti->type->name, r);
 | |
| 			return r;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (ti->type->resume)
 | |
| 			ti->type->resume(ti);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct mapped_device *dm_table_get_md(struct dm_table *t)
 | |
| {
 | |
| 	return t->md;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_get_md);
 | |
| 
 | |
| const char *dm_table_device_name(struct dm_table *t)
 | |
| {
 | |
| 	return dm_device_name(t->md);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_table_device_name);
 | |
| 
 | |
| void dm_table_run_md_queue_async(struct dm_table *t)
 | |
| {
 | |
| 	if (!dm_table_request_based(t))
 | |
| 		return;
 | |
| 
 | |
| 	if (t->md->queue)
 | |
| 		blk_mq_run_hw_queues(t->md->queue, true);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_run_md_queue_async);
 | |
| 
 |