forked from mirrors/linux
		
	 017ff379b6
			
		
	
	
		017ff379b6
		
	
	
	
	
		
			
			Merge MD changes from Yu: "- fix recovery can preempt resync (Li Nan) - fix md-bitmap IO limit (Su Yue) - fix raid10 discard with REQ_NOWAIT (Xiao Ni) - fix raid1 memory leak (Zheng Qixing) - fix mddev uaf (Yu Kuai) - fix raid1,raid10 IO flags (Yu Kuai) - some refactor and cleanup (Yu Kuai)" * tag 'md-6.15-20250312' of https://git.kernel.org/pub/scm/linux/kernel/git/mdraid/linux: md/raid10: wait barrier before returning discard request with REQ_NOWAIT md/md-bitmap: fix wrong bitmap_limit for clustermd when write sb md/raid1,raid10: don't ignore IO flags md/raid5: merge reshape_progress checking inside get_reshape_loc() md: fix mddev uaf while iterating all_mddevs list md: switch md-cluster to use md_submodle_head md: don't export md_cluster_ops md/md-cluster: cleanup md_cluster_ops reference md: switch personalities to use md_submodule_head md: introduce struct md_submodule_head and APIs md: only include md-cluster.h if necessary md: merge common code into find_pers() md/raid1: fix memory leak in raid1_run() if no active rdev md: ensure resync is prioritized over recovery
		
			
				
	
	
		
			295 lines
		
	
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			295 lines
		
	
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* Maximum size of each resync request */
 | |
| #define RESYNC_BLOCK_SIZE (64*1024)
 | |
| #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 | |
| 
 | |
| /*
 | |
|  * Number of guaranteed raid bios in case of extreme VM load:
 | |
|  */
 | |
| #define	NR_RAID_BIOS 256
 | |
| 
 | |
| /* when we get a read error on a read-only array, we redirect to another
 | |
|  * device without failing the first device, or trying to over-write to
 | |
|  * correct the read error.  To keep track of bad blocks on a per-bio
 | |
|  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
 | |
|  */
 | |
| #define IO_BLOCKED ((struct bio *)1)
 | |
| /* When we successfully write to a known bad-block, we need to remove the
 | |
|  * bad-block marking which must be done from process context.  So we record
 | |
|  * the success by setting devs[n].bio to IO_MADE_GOOD
 | |
|  */
 | |
| #define IO_MADE_GOOD ((struct bio *)2)
 | |
| 
 | |
| #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
 | |
| #define MAX_PLUG_BIO 32
 | |
| 
 | |
| /* for managing resync I/O pages */
 | |
| struct resync_pages {
 | |
| 	void		*raid_bio;
 | |
| 	struct page	*pages[RESYNC_PAGES];
 | |
| };
 | |
| 
 | |
| struct raid1_plug_cb {
 | |
| 	struct blk_plug_cb	cb;
 | |
| 	struct bio_list		pending;
 | |
| 	unsigned int		count;
 | |
| };
 | |
| 
 | |
| static void rbio_pool_free(void *rbio, void *data)
 | |
| {
 | |
| 	kfree(rbio);
 | |
| }
 | |
| 
 | |
| static inline int resync_alloc_pages(struct resync_pages *rp,
 | |
| 				     gfp_t gfp_flags)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < RESYNC_PAGES; i++) {
 | |
| 		rp->pages[i] = alloc_page(gfp_flags);
 | |
| 		if (!rp->pages[i])
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	while (--i >= 0)
 | |
| 		put_page(rp->pages[i]);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static inline void resync_free_pages(struct resync_pages *rp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < RESYNC_PAGES; i++)
 | |
| 		put_page(rp->pages[i]);
 | |
| }
 | |
| 
 | |
| static inline void resync_get_all_pages(struct resync_pages *rp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < RESYNC_PAGES; i++)
 | |
| 		get_page(rp->pages[i]);
 | |
| }
 | |
| 
 | |
| static inline struct page *resync_fetch_page(struct resync_pages *rp,
 | |
| 					     unsigned idx)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(idx >= RESYNC_PAGES))
 | |
| 		return NULL;
 | |
| 	return rp->pages[idx];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'strct resync_pages' stores actual pages used for doing the resync
 | |
|  *  IO, and it is per-bio, so make .bi_private points to it.
 | |
|  */
 | |
| static inline struct resync_pages *get_resync_pages(struct bio *bio)
 | |
| {
 | |
| 	return bio->bi_private;
 | |
| }
 | |
| 
 | |
| /* generally called after bio_reset() for reseting bvec */
 | |
| static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp,
 | |
| 			       int size)
 | |
| {
 | |
| 	int idx = 0;
 | |
| 
 | |
| 	/* initialize bvec table again */
 | |
| 	do {
 | |
| 		struct page *page = resync_fetch_page(rp, idx);
 | |
| 		int len = min_t(int, size, PAGE_SIZE);
 | |
| 
 | |
| 		if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
 | |
| 			bio->bi_status = BLK_STS_RESOURCE;
 | |
| 			bio_endio(bio);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		size -= len;
 | |
| 	} while (idx++ < RESYNC_PAGES && size > 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void raid1_submit_write(struct bio *bio)
 | |
| {
 | |
| 	struct md_rdev *rdev = (void *)bio->bi_bdev;
 | |
| 
 | |
| 	bio->bi_next = NULL;
 | |
| 	bio_set_dev(bio, rdev->bdev);
 | |
| 	if (test_bit(Faulty, &rdev->flags))
 | |
| 		bio_io_error(bio);
 | |
| 	else if (unlikely(bio_op(bio) ==  REQ_OP_DISCARD &&
 | |
| 			  !bdev_max_discard_sectors(bio->bi_bdev)))
 | |
| 		/* Just ignore it */
 | |
| 		bio_endio(bio);
 | |
| 	else
 | |
| 		submit_bio_noacct(bio);
 | |
| }
 | |
| 
 | |
| static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio,
 | |
| 				      blk_plug_cb_fn unplug, int copies)
 | |
| {
 | |
| 	struct raid1_plug_cb *plug = NULL;
 | |
| 	struct blk_plug_cb *cb;
 | |
| 
 | |
| 	/*
 | |
| 	 * If bitmap is not enabled, it's safe to submit the io directly, and
 | |
| 	 * this can get optimal performance.
 | |
| 	 */
 | |
| 	if (!mddev->bitmap_ops->enabled(mddev)) {
 | |
| 		raid1_submit_write(bio);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	cb = blk_check_plugged(unplug, mddev, sizeof(*plug));
 | |
| 	if (!cb)
 | |
| 		return false;
 | |
| 
 | |
| 	plug = container_of(cb, struct raid1_plug_cb, cb);
 | |
| 	bio_list_add(&plug->pending, bio);
 | |
| 	if (++plug->count / MAX_PLUG_BIO >= copies) {
 | |
| 		list_del(&cb->list);
 | |
| 		cb->callback(cb, false);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * current->bio_list will be set under submit_bio() context, in this case bitmap
 | |
|  * io will be added to the list and wait for current io submission to finish,
 | |
|  * while current io submission must wait for bitmap io to be done. In order to
 | |
|  * avoid such deadlock, submit bitmap io asynchronously.
 | |
|  */
 | |
| static inline void raid1_prepare_flush_writes(struct mddev *mddev)
 | |
| {
 | |
| 	mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used by fix_read_error() to decay the per rdev read_errors.
 | |
|  * We halve the read error count for every hour that has elapsed
 | |
|  * since the last recorded read error.
 | |
|  */
 | |
| static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	long cur_time_mon;
 | |
| 	unsigned long hours_since_last;
 | |
| 	unsigned int read_errors = atomic_read(&rdev->read_errors);
 | |
| 
 | |
| 	cur_time_mon = ktime_get_seconds();
 | |
| 
 | |
| 	if (rdev->last_read_error == 0) {
 | |
| 		/* first time we've seen a read error */
 | |
| 		rdev->last_read_error = cur_time_mon;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	hours_since_last = (long)(cur_time_mon -
 | |
| 			    rdev->last_read_error) / 3600;
 | |
| 
 | |
| 	rdev->last_read_error = cur_time_mon;
 | |
| 
 | |
| 	/*
 | |
| 	 * if hours_since_last is > the number of bits in read_errors
 | |
| 	 * just set read errors to 0. We do this to avoid
 | |
| 	 * overflowing the shift of read_errors by hours_since_last.
 | |
| 	 */
 | |
| 	if (hours_since_last >= 8 * sizeof(read_errors))
 | |
| 		atomic_set(&rdev->read_errors, 0);
 | |
| 	else
 | |
| 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
 | |
| }
 | |
| 
 | |
| static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
 | |
| 	int read_errors;
 | |
| 
 | |
| 	check_decay_read_errors(mddev, rdev);
 | |
| 	read_errors =  atomic_inc_return(&rdev->read_errors);
 | |
| 	if (read_errors > max_read_errors) {
 | |
| 		pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
 | |
| 			  mdname(mddev), rdev->bdev, read_errors, max_read_errors);
 | |
| 		pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n",
 | |
| 			  mdname(mddev), rdev->bdev);
 | |
| 		md_error(mddev, rdev);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * raid1_check_read_range() - check a given read range for bad blocks,
 | |
|  * available read length is returned;
 | |
|  * @rdev: the rdev to read;
 | |
|  * @this_sector: read position;
 | |
|  * @len: read length;
 | |
|  *
 | |
|  * helper function for read_balance()
 | |
|  *
 | |
|  * 1) If there are no bad blocks in the range, @len is returned;
 | |
|  * 2) If the range are all bad blocks, 0 is returned;
 | |
|  * 3) If there are partial bad blocks:
 | |
|  *  - If the bad block range starts after @this_sector, the length of first
 | |
|  *  good region is returned;
 | |
|  *  - If the bad block range starts before @this_sector, 0 is returned and
 | |
|  *  the @len is updated to the offset into the region before we get to the
 | |
|  *  good blocks;
 | |
|  */
 | |
| static inline int raid1_check_read_range(struct md_rdev *rdev,
 | |
| 					 sector_t this_sector, int *len)
 | |
| {
 | |
| 	sector_t first_bad;
 | |
| 	sector_t bad_sectors;
 | |
| 
 | |
| 	/* no bad block overlap */
 | |
| 	if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors))
 | |
| 		return *len;
 | |
| 
 | |
| 	/*
 | |
| 	 * bad block range starts offset into our range so we can return the
 | |
| 	 * number of sectors before the bad blocks start.
 | |
| 	 */
 | |
| 	if (first_bad > this_sector)
 | |
| 		return first_bad - this_sector;
 | |
| 
 | |
| 	/* read range is fully consumed by bad blocks. */
 | |
| 	if (this_sector + *len <= first_bad + bad_sectors)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * final case, bad block range starts before or at the start of our
 | |
| 	 * range but does not cover our entire range so we still return 0 but
 | |
| 	 * update the length with the number of sectors before we get to the
 | |
| 	 * good ones.
 | |
| 	 */
 | |
| 	*len = first_bad + bad_sectors - this_sector;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if read should choose the first rdev.
 | |
|  *
 | |
|  * Balance on the whole device if no resync is going on (recovery is ok) or
 | |
|  * below the resync window. Otherwise, take the first readable disk.
 | |
|  */
 | |
| static inline bool raid1_should_read_first(struct mddev *mddev,
 | |
| 					   sector_t this_sector, int len)
 | |
| {
 | |
| 	if ((mddev->recovery_cp < this_sector + len))
 | |
| 		return true;
 | |
| 
 | |
| 	if (mddev_is_clustered(mddev) &&
 | |
| 	    mddev->cluster_ops->area_resyncing(mddev, READ, this_sector,
 | |
| 					       this_sector + len))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 |