forked from mirrors/linux
		
	 b7c178d9e5
			
		
	
	
		b7c178d9e5
		
	
	
	
	
		
			
			During recovery/check operations, the process_checks function loops through available disks to find a 'primary' source with successfully read data. If no suitable source disk is found after checking all possibilities, the 'primary' index will reach conf->raid_disks * 2. Add an explicit check for this condition after the loop. If no source disk was found, print an error message and return early to prevent further processing without a valid primary source. Link: https://lore.kernel.org/linux-raid/20250408143808.1026534-1-meir.elisha@volumez.com Signed-off-by: Meir Elisha <meir.elisha@volumez.com> Suggested-and-reviewed-by: Yu Kuai <yukuai3@huawei.com> Signed-off-by: Yu Kuai <yukuai3@huawei.com>
		
			
				
	
	
		
			3541 lines
		
	
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3541 lines
		
	
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * raid1.c : Multiple Devices driver for Linux
 | |
|  *
 | |
|  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
 | |
|  *
 | |
|  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 | |
|  *
 | |
|  * RAID-1 management functions.
 | |
|  *
 | |
|  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
 | |
|  *
 | |
|  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
 | |
|  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
 | |
|  *
 | |
|  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
 | |
|  * bitmapped intelligence in resync:
 | |
|  *
 | |
|  *      - bitmap marked during normal i/o
 | |
|  *      - bitmap used to skip nondirty blocks during sync
 | |
|  *
 | |
|  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
 | |
|  * - persistent bitmap code
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/interval_tree_generic.h>
 | |
| 
 | |
| #include <trace/events/block.h>
 | |
| 
 | |
| #include "md.h"
 | |
| #include "raid1.h"
 | |
| #include "md-bitmap.h"
 | |
| #include "md-cluster.h"
 | |
| 
 | |
| #define UNSUPPORTED_MDDEV_FLAGS		\
 | |
| 	((1L << MD_HAS_JOURNAL) |	\
 | |
| 	 (1L << MD_JOURNAL_CLEAN) |	\
 | |
| 	 (1L << MD_HAS_PPL) |		\
 | |
| 	 (1L << MD_HAS_MULTIPLE_PPLS))
 | |
| 
 | |
| static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
 | |
| static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
 | |
| static void raid1_free(struct mddev *mddev, void *priv);
 | |
| 
 | |
| #define RAID_1_10_NAME "raid1"
 | |
| #include "raid1-10.c"
 | |
| 
 | |
| #define START(node) ((node)->start)
 | |
| #define LAST(node) ((node)->last)
 | |
| INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
 | |
| 		     START, LAST, static inline, raid1_rb);
 | |
| 
 | |
| static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
 | |
| 				struct serial_info *si, int idx)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 	sector_t lo = r1_bio->sector;
 | |
| 	sector_t hi = lo + r1_bio->sectors;
 | |
| 	struct serial_in_rdev *serial = &rdev->serial[idx];
 | |
| 
 | |
| 	spin_lock_irqsave(&serial->serial_lock, flags);
 | |
| 	/* collision happened */
 | |
| 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
 | |
| 		ret = -EBUSY;
 | |
| 	else {
 | |
| 		si->start = lo;
 | |
| 		si->last = hi;
 | |
| 		raid1_rb_insert(si, &serial->serial_rb);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&serial->serial_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct mddev *mddev = rdev->mddev;
 | |
| 	struct serial_info *si;
 | |
| 	int idx = sector_to_idx(r1_bio->sector);
 | |
| 	struct serial_in_rdev *serial = &rdev->serial[idx];
 | |
| 
 | |
| 	if (WARN_ON(!mddev->serial_info_pool))
 | |
| 		return;
 | |
| 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
 | |
| 	wait_event(serial->serial_io_wait,
 | |
| 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
 | |
| }
 | |
| 
 | |
| static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
 | |
| {
 | |
| 	struct serial_info *si;
 | |
| 	unsigned long flags;
 | |
| 	int found = 0;
 | |
| 	struct mddev *mddev = rdev->mddev;
 | |
| 	int idx = sector_to_idx(lo);
 | |
| 	struct serial_in_rdev *serial = &rdev->serial[idx];
 | |
| 
 | |
| 	spin_lock_irqsave(&serial->serial_lock, flags);
 | |
| 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 | |
| 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 | |
| 		if (si->start == lo && si->last == hi) {
 | |
| 			raid1_rb_remove(si, &serial->serial_rb);
 | |
| 			mempool_free(si, mddev->serial_info_pool);
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!found)
 | |
| 		WARN(1, "The write IO is not recorded for serialization\n");
 | |
| 	spin_unlock_irqrestore(&serial->serial_lock, flags);
 | |
| 	wake_up(&serial->serial_io_wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for resync bio, r1bio pointer can be retrieved from the per-bio
 | |
|  * 'struct resync_pages'.
 | |
|  */
 | |
| static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 | |
| {
 | |
| 	return get_resync_pages(bio)->raid_bio;
 | |
| }
 | |
| 
 | |
| static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 | |
| {
 | |
| 	struct pool_info *pi = data;
 | |
| 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 | |
| 
 | |
| 	/* allocate a r1bio with room for raid_disks entries in the bios array */
 | |
| 	return kzalloc(size, gfp_flags);
 | |
| }
 | |
| 
 | |
| #define RESYNC_DEPTH 32
 | |
| #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 | |
| #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 | |
| #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 | |
| #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 | |
| #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 | |
| 
 | |
| static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 | |
| {
 | |
| 	struct pool_info *pi = data;
 | |
| 	struct r1bio *r1_bio;
 | |
| 	struct bio *bio;
 | |
| 	int need_pages;
 | |
| 	int j;
 | |
| 	struct resync_pages *rps;
 | |
| 
 | |
| 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 | |
| 	if (!r1_bio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 | |
| 			    gfp_flags);
 | |
| 	if (!rps)
 | |
| 		goto out_free_r1bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate bios : 1 for reading, n-1 for writing
 | |
| 	 */
 | |
| 	for (j = pi->raid_disks ; j-- ; ) {
 | |
| 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 | |
| 		if (!bio)
 | |
| 			goto out_free_bio;
 | |
| 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 | |
| 		r1_bio->bios[j] = bio;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Allocate RESYNC_PAGES data pages and attach them to
 | |
| 	 * the first bio.
 | |
| 	 * If this is a user-requested check/repair, allocate
 | |
| 	 * RESYNC_PAGES for each bio.
 | |
| 	 */
 | |
| 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 | |
| 		need_pages = pi->raid_disks;
 | |
| 	else
 | |
| 		need_pages = 1;
 | |
| 	for (j = 0; j < pi->raid_disks; j++) {
 | |
| 		struct resync_pages *rp = &rps[j];
 | |
| 
 | |
| 		bio = r1_bio->bios[j];
 | |
| 
 | |
| 		if (j < need_pages) {
 | |
| 			if (resync_alloc_pages(rp, gfp_flags))
 | |
| 				goto out_free_pages;
 | |
| 		} else {
 | |
| 			memcpy(rp, &rps[0], sizeof(*rp));
 | |
| 			resync_get_all_pages(rp);
 | |
| 		}
 | |
| 
 | |
| 		rp->raid_bio = r1_bio;
 | |
| 		bio->bi_private = rp;
 | |
| 	}
 | |
| 
 | |
| 	r1_bio->master_bio = NULL;
 | |
| 
 | |
| 	return r1_bio;
 | |
| 
 | |
| out_free_pages:
 | |
| 	while (--j >= 0)
 | |
| 		resync_free_pages(&rps[j]);
 | |
| 
 | |
| out_free_bio:
 | |
| 	while (++j < pi->raid_disks) {
 | |
| 		bio_uninit(r1_bio->bios[j]);
 | |
| 		kfree(r1_bio->bios[j]);
 | |
| 	}
 | |
| 	kfree(rps);
 | |
| 
 | |
| out_free_r1bio:
 | |
| 	rbio_pool_free(r1_bio, data);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void r1buf_pool_free(void *__r1_bio, void *data)
 | |
| {
 | |
| 	struct pool_info *pi = data;
 | |
| 	int i;
 | |
| 	struct r1bio *r1bio = __r1_bio;
 | |
| 	struct resync_pages *rp = NULL;
 | |
| 
 | |
| 	for (i = pi->raid_disks; i--; ) {
 | |
| 		rp = get_resync_pages(r1bio->bios[i]);
 | |
| 		resync_free_pages(rp);
 | |
| 		bio_uninit(r1bio->bios[i]);
 | |
| 		kfree(r1bio->bios[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* resync pages array stored in the 1st bio's .bi_private */
 | |
| 	kfree(rp);
 | |
| 
 | |
| 	rbio_pool_free(r1bio, data);
 | |
| }
 | |
| 
 | |
| static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		struct bio **bio = r1_bio->bios + i;
 | |
| 		if (!BIO_SPECIAL(*bio))
 | |
| 			bio_put(*bio);
 | |
| 		*bio = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_r1bio(struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 
 | |
| 	put_all_bios(conf, r1_bio);
 | |
| 	mempool_free(r1_bio, &conf->r1bio_pool);
 | |
| }
 | |
| 
 | |
| static void put_buf(struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 	sector_t sect = r1_bio->sector;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		struct bio *bio = r1_bio->bios[i];
 | |
| 		if (bio->bi_end_io)
 | |
| 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 | |
| 	}
 | |
| 
 | |
| 	mempool_free(r1_bio, &conf->r1buf_pool);
 | |
| 
 | |
| 	lower_barrier(conf, sect);
 | |
| }
 | |
| 
 | |
| static void reschedule_retry(struct r1bio *r1_bio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = sector_to_idx(r1_bio->sector);
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	list_add(&r1_bio->retry_list, &conf->retry_list);
 | |
| 	atomic_inc(&conf->nr_queued[idx]);
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 	md_wakeup_thread(mddev->thread);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * raid_end_bio_io() is called when we have finished servicing a mirrored
 | |
|  * operation and are ready to return a success/failure code to the buffer
 | |
|  * cache layer.
 | |
|  */
 | |
| static void call_bio_endio(struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct bio *bio = r1_bio->master_bio;
 | |
| 
 | |
| 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 | |
| 		bio->bi_status = BLK_STS_IOERR;
 | |
| 
 | |
| 	bio_endio(bio);
 | |
| }
 | |
| 
 | |
| static void raid_end_bio_io(struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct bio *bio = r1_bio->master_bio;
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 	sector_t sector = r1_bio->sector;
 | |
| 
 | |
| 	/* if nobody has done the final endio yet, do it now */
 | |
| 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 | |
| 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 | |
| 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 | |
| 			 (unsigned long long) bio->bi_iter.bi_sector,
 | |
| 			 (unsigned long long) bio_end_sector(bio) - 1);
 | |
| 
 | |
| 		call_bio_endio(r1_bio);
 | |
| 	}
 | |
| 
 | |
| 	free_r1bio(r1_bio);
 | |
| 	/*
 | |
| 	 * Wake up any possible resync thread that waits for the device
 | |
| 	 * to go idle.  All I/Os, even write-behind writes, are done.
 | |
| 	 */
 | |
| 	allow_barrier(conf, sector);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update disk head position estimator based on IRQ completion info.
 | |
|  */
 | |
| static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 
 | |
| 	conf->mirrors[disk].head_position =
 | |
| 		r1_bio->sector + (r1_bio->sectors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the disk number which triggered given bio
 | |
|  */
 | |
| static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 | |
| {
 | |
| 	int mirror;
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 	int raid_disks = conf->raid_disks;
 | |
| 
 | |
| 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 | |
| 		if (r1_bio->bios[mirror] == bio)
 | |
| 			break;
 | |
| 
 | |
| 	BUG_ON(mirror == raid_disks * 2);
 | |
| 	update_head_pos(mirror, r1_bio);
 | |
| 
 | |
| 	return mirror;
 | |
| }
 | |
| 
 | |
| static void raid1_end_read_request(struct bio *bio)
 | |
| {
 | |
| 	int uptodate = !bio->bi_status;
 | |
| 	struct r1bio *r1_bio = bio->bi_private;
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 | |
| 
 | |
| 	/*
 | |
| 	 * this branch is our 'one mirror IO has finished' event handler:
 | |
| 	 */
 | |
| 	update_head_pos(r1_bio->read_disk, r1_bio);
 | |
| 
 | |
| 	if (uptodate)
 | |
| 		set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 	else if (test_bit(FailFast, &rdev->flags) &&
 | |
| 		 test_bit(R1BIO_FailFast, &r1_bio->state))
 | |
| 		/* This was a fail-fast read so we definitely
 | |
| 		 * want to retry */
 | |
| 		;
 | |
| 	else {
 | |
| 		/* If all other devices have failed, we want to return
 | |
| 		 * the error upwards rather than fail the last device.
 | |
| 		 * Here we redefine "uptodate" to mean "Don't want to retry"
 | |
| 		 */
 | |
| 		unsigned long flags;
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (r1_bio->mddev->degraded == conf->raid_disks ||
 | |
| 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 | |
| 		     test_bit(In_sync, &rdev->flags)))
 | |
| 			uptodate = 1;
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (uptodate) {
 | |
| 		raid_end_bio_io(r1_bio);
 | |
| 		rdev_dec_pending(rdev, conf->mddev);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * oops, read error:
 | |
| 		 */
 | |
| 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 | |
| 				   mdname(conf->mddev),
 | |
| 				   rdev->bdev,
 | |
| 				   (unsigned long long)r1_bio->sector);
 | |
| 		set_bit(R1BIO_ReadError, &r1_bio->state);
 | |
| 		reschedule_retry(r1_bio);
 | |
| 		/* don't drop the reference on read_disk yet */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void close_write(struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 
 | |
| 	/* it really is the end of this request */
 | |
| 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 | |
| 		bio_free_pages(r1_bio->behind_master_bio);
 | |
| 		bio_put(r1_bio->behind_master_bio);
 | |
| 		r1_bio->behind_master_bio = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(R1BIO_BehindIO, &r1_bio->state))
 | |
| 		mddev->bitmap_ops->end_behind_write(mddev);
 | |
| 	md_write_end(mddev);
 | |
| }
 | |
| 
 | |
| static void r1_bio_write_done(struct r1bio *r1_bio)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&r1_bio->remaining))
 | |
| 		return;
 | |
| 
 | |
| 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 		reschedule_retry(r1_bio);
 | |
| 	else {
 | |
| 		close_write(r1_bio);
 | |
| 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 | |
| 			reschedule_retry(r1_bio);
 | |
| 		else
 | |
| 			raid_end_bio_io(r1_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid1_end_write_request(struct bio *bio)
 | |
| {
 | |
| 	struct r1bio *r1_bio = bio->bi_private;
 | |
| 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 	struct bio *to_put = NULL;
 | |
| 	int mirror = find_bio_disk(r1_bio, bio);
 | |
| 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 | |
| 	bool discard_error;
 | |
| 	sector_t lo = r1_bio->sector;
 | |
| 	sector_t hi = r1_bio->sector + r1_bio->sectors;
 | |
| 
 | |
| 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 | |
| 
 | |
| 	/*
 | |
| 	 * 'one mirror IO has finished' event handler:
 | |
| 	 */
 | |
| 	if (bio->bi_status && !discard_error) {
 | |
| 		set_bit(WriteErrorSeen,	&rdev->flags);
 | |
| 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 			set_bit(MD_RECOVERY_NEEDED, &
 | |
| 				conf->mddev->recovery);
 | |
| 
 | |
| 		if (test_bit(FailFast, &rdev->flags) &&
 | |
| 		    (bio->bi_opf & MD_FAILFAST) &&
 | |
| 		    /* We never try FailFast to WriteMostly devices */
 | |
| 		    !test_bit(WriteMostly, &rdev->flags)) {
 | |
| 			md_error(r1_bio->mddev, rdev);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * When the device is faulty, it is not necessary to
 | |
| 		 * handle write error.
 | |
| 		 */
 | |
| 		if (!test_bit(Faulty, &rdev->flags))
 | |
| 			set_bit(R1BIO_WriteError, &r1_bio->state);
 | |
| 		else {
 | |
| 			/* Finished with this branch */
 | |
| 			r1_bio->bios[mirror] = NULL;
 | |
| 			to_put = bio;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Set R1BIO_Uptodate in our master bio, so that we
 | |
| 		 * will return a good error code for to the higher
 | |
| 		 * levels even if IO on some other mirrored buffer
 | |
| 		 * fails.
 | |
| 		 *
 | |
| 		 * The 'master' represents the composite IO operation
 | |
| 		 * to user-side. So if something waits for IO, then it
 | |
| 		 * will wait for the 'master' bio.
 | |
| 		 */
 | |
| 		r1_bio->bios[mirror] = NULL;
 | |
| 		to_put = bio;
 | |
| 		/*
 | |
| 		 * Do not set R1BIO_Uptodate if the current device is
 | |
| 		 * rebuilding or Faulty. This is because we cannot use
 | |
| 		 * such device for properly reading the data back (we could
 | |
| 		 * potentially use it, if the current write would have felt
 | |
| 		 * before rdev->recovery_offset, but for simplicity we don't
 | |
| 		 * check this here.
 | |
| 		 */
 | |
| 		if (test_bit(In_sync, &rdev->flags) &&
 | |
| 		    !test_bit(Faulty, &rdev->flags))
 | |
| 			set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 
 | |
| 		/* Maybe we can clear some bad blocks. */
 | |
| 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
 | |
| 		    !discard_error) {
 | |
| 			r1_bio->bios[mirror] = IO_MADE_GOOD;
 | |
| 			set_bit(R1BIO_MadeGood, &r1_bio->state);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (behind) {
 | |
| 		if (test_bit(CollisionCheck, &rdev->flags))
 | |
| 			remove_serial(rdev, lo, hi);
 | |
| 		if (test_bit(WriteMostly, &rdev->flags))
 | |
| 			atomic_dec(&r1_bio->behind_remaining);
 | |
| 
 | |
| 		/*
 | |
| 		 * In behind mode, we ACK the master bio once the I/O
 | |
| 		 * has safely reached all non-writemostly
 | |
| 		 * disks. Setting the Returned bit ensures that this
 | |
| 		 * gets done only once -- we don't ever want to return
 | |
| 		 * -EIO here, instead we'll wait
 | |
| 		 */
 | |
| 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 | |
| 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 | |
| 			/* Maybe we can return now */
 | |
| 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 | |
| 				struct bio *mbio = r1_bio->master_bio;
 | |
| 				pr_debug("raid1: behind end write sectors"
 | |
| 					 " %llu-%llu\n",
 | |
| 					 (unsigned long long) mbio->bi_iter.bi_sector,
 | |
| 					 (unsigned long long) bio_end_sector(mbio) - 1);
 | |
| 				call_bio_endio(r1_bio);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (rdev->mddev->serialize_policy)
 | |
| 		remove_serial(rdev, lo, hi);
 | |
| 	if (r1_bio->bios[mirror] == NULL)
 | |
| 		rdev_dec_pending(rdev, conf->mddev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's see if all mirrored write operations have finished
 | |
| 	 * already.
 | |
| 	 */
 | |
| 	r1_bio_write_done(r1_bio);
 | |
| 
 | |
| 	if (to_put)
 | |
| 		bio_put(to_put);
 | |
| }
 | |
| 
 | |
| static sector_t align_to_barrier_unit_end(sector_t start_sector,
 | |
| 					  sector_t sectors)
 | |
| {
 | |
| 	sector_t len;
 | |
| 
 | |
| 	WARN_ON(sectors == 0);
 | |
| 	/*
 | |
| 	 * len is the number of sectors from start_sector to end of the
 | |
| 	 * barrier unit which start_sector belongs to.
 | |
| 	 */
 | |
| 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 | |
| 	      start_sector;
 | |
| 
 | |
| 	if (len > sectors)
 | |
| 		len = sectors;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static void update_read_sectors(struct r1conf *conf, int disk,
 | |
| 				sector_t this_sector, int len)
 | |
| {
 | |
| 	struct raid1_info *info = &conf->mirrors[disk];
 | |
| 
 | |
| 	atomic_inc(&info->rdev->nr_pending);
 | |
| 	if (info->next_seq_sect != this_sector)
 | |
| 		info->seq_start = this_sector;
 | |
| 	info->next_seq_sect = this_sector + len;
 | |
| }
 | |
| 
 | |
| static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
 | |
| 			     int *max_sectors)
 | |
| {
 | |
| 	sector_t this_sector = r1_bio->sector;
 | |
| 	int len = r1_bio->sectors;
 | |
| 	int disk;
 | |
| 
 | |
| 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 | |
| 		struct md_rdev *rdev;
 | |
| 		int read_len;
 | |
| 
 | |
| 		if (r1_bio->bios[disk] == IO_BLOCKED)
 | |
| 			continue;
 | |
| 
 | |
| 		rdev = conf->mirrors[disk].rdev;
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 			continue;
 | |
| 
 | |
| 		/* choose the first disk even if it has some bad blocks. */
 | |
| 		read_len = raid1_check_read_range(rdev, this_sector, &len);
 | |
| 		if (read_len > 0) {
 | |
| 			update_read_sectors(conf, disk, this_sector, read_len);
 | |
| 			*max_sectors = read_len;
 | |
| 			return disk;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
 | |
| {
 | |
| 	return !test_bit(In_sync, &rdev->flags) &&
 | |
| 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
 | |
| }
 | |
| 
 | |
| static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
 | |
| 			  int *max_sectors)
 | |
| {
 | |
| 	sector_t this_sector = r1_bio->sector;
 | |
| 	int best_disk = -1;
 | |
| 	int best_len = 0;
 | |
| 	int disk;
 | |
| 
 | |
| 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 | |
| 		struct md_rdev *rdev;
 | |
| 		int len;
 | |
| 		int read_len;
 | |
| 
 | |
| 		if (r1_bio->bios[disk] == IO_BLOCKED)
 | |
| 			continue;
 | |
| 
 | |
| 		rdev = conf->mirrors[disk].rdev;
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
 | |
| 		    rdev_in_recovery(rdev, r1_bio) ||
 | |
| 		    test_bit(WriteMostly, &rdev->flags))
 | |
| 			continue;
 | |
| 
 | |
| 		/* keep track of the disk with the most readable sectors. */
 | |
| 		len = r1_bio->sectors;
 | |
| 		read_len = raid1_check_read_range(rdev, this_sector, &len);
 | |
| 		if (read_len > best_len) {
 | |
| 			best_disk = disk;
 | |
| 			best_len = read_len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (best_disk != -1) {
 | |
| 		*max_sectors = best_len;
 | |
| 		update_read_sectors(conf, best_disk, this_sector, best_len);
 | |
| 	}
 | |
| 
 | |
| 	return best_disk;
 | |
| }
 | |
| 
 | |
| static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
 | |
| 			    int *max_sectors)
 | |
| {
 | |
| 	sector_t this_sector = r1_bio->sector;
 | |
| 	int bb_disk = -1;
 | |
| 	int bb_read_len = 0;
 | |
| 	int disk;
 | |
| 
 | |
| 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 | |
| 		struct md_rdev *rdev;
 | |
| 		int len;
 | |
| 		int read_len;
 | |
| 
 | |
| 		if (r1_bio->bios[disk] == IO_BLOCKED)
 | |
| 			continue;
 | |
| 
 | |
| 		rdev = conf->mirrors[disk].rdev;
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
 | |
| 		    !test_bit(WriteMostly, &rdev->flags) ||
 | |
| 		    rdev_in_recovery(rdev, r1_bio))
 | |
| 			continue;
 | |
| 
 | |
| 		/* there are no bad blocks, we can use this disk */
 | |
| 		len = r1_bio->sectors;
 | |
| 		read_len = raid1_check_read_range(rdev, this_sector, &len);
 | |
| 		if (read_len == r1_bio->sectors) {
 | |
| 			*max_sectors = read_len;
 | |
| 			update_read_sectors(conf, disk, this_sector, read_len);
 | |
| 			return disk;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * there are partial bad blocks, choose the rdev with largest
 | |
| 		 * read length.
 | |
| 		 */
 | |
| 		if (read_len > bb_read_len) {
 | |
| 			bb_disk = disk;
 | |
| 			bb_read_len = read_len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bb_disk != -1) {
 | |
| 		*max_sectors = bb_read_len;
 | |
| 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
 | |
| 	}
 | |
| 
 | |
| 	return bb_disk;
 | |
| }
 | |
| 
 | |
| static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
 | |
| {
 | |
| 	/* TODO: address issues with this check and concurrency. */
 | |
| 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
 | |
| 	       conf->mirrors[disk].head_position == r1_bio->sector;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
 | |
|  * disk. If yes, choose the idle disk.
 | |
|  */
 | |
| static bool should_choose_next(struct r1conf *conf, int disk)
 | |
| {
 | |
| 	struct raid1_info *mirror = &conf->mirrors[disk];
 | |
| 	int opt_iosize;
 | |
| 
 | |
| 	if (!test_bit(Nonrot, &mirror->rdev->flags))
 | |
| 		return false;
 | |
| 
 | |
| 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
 | |
| 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
 | |
| 	       mirror->next_seq_sect > opt_iosize &&
 | |
| 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
 | |
| }
 | |
| 
 | |
| static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
 | |
| {
 | |
| 	if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 		return false;
 | |
| 
 | |
| 	if (rdev_in_recovery(rdev, r1_bio))
 | |
| 		return false;
 | |
| 
 | |
| 	/* don't read from slow disk unless have to */
 | |
| 	if (test_bit(WriteMostly, &rdev->flags))
 | |
| 		return false;
 | |
| 
 | |
| 	/* don't split IO for bad blocks unless have to */
 | |
| 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| struct read_balance_ctl {
 | |
| 	sector_t closest_dist;
 | |
| 	int closest_dist_disk;
 | |
| 	int min_pending;
 | |
| 	int min_pending_disk;
 | |
| 	int sequential_disk;
 | |
| 	int readable_disks;
 | |
| };
 | |
| 
 | |
| static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	int disk;
 | |
| 	struct read_balance_ctl ctl = {
 | |
| 		.closest_dist_disk      = -1,
 | |
| 		.closest_dist           = MaxSector,
 | |
| 		.min_pending_disk       = -1,
 | |
| 		.min_pending            = UINT_MAX,
 | |
| 		.sequential_disk	= -1,
 | |
| 	};
 | |
| 
 | |
| 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 | |
| 		struct md_rdev *rdev;
 | |
| 		sector_t dist;
 | |
| 		unsigned int pending;
 | |
| 
 | |
| 		if (r1_bio->bios[disk] == IO_BLOCKED)
 | |
| 			continue;
 | |
| 
 | |
| 		rdev = conf->mirrors[disk].rdev;
 | |
| 		if (!rdev_readable(rdev, r1_bio))
 | |
| 			continue;
 | |
| 
 | |
| 		/* At least two disks to choose from so failfast is OK */
 | |
| 		if (ctl.readable_disks++ == 1)
 | |
| 			set_bit(R1BIO_FailFast, &r1_bio->state);
 | |
| 
 | |
| 		pending = atomic_read(&rdev->nr_pending);
 | |
| 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
 | |
| 
 | |
| 		/* Don't change to another disk for sequential reads */
 | |
| 		if (is_sequential(conf, disk, r1_bio)) {
 | |
| 			if (!should_choose_next(conf, disk))
 | |
| 				return disk;
 | |
| 
 | |
| 			/*
 | |
| 			 * Add 'pending' to avoid choosing this disk if
 | |
| 			 * there is other idle disk.
 | |
| 			 */
 | |
| 			pending++;
 | |
| 			/*
 | |
| 			 * If there is no other idle disk, this disk
 | |
| 			 * will be chosen.
 | |
| 			 */
 | |
| 			ctl.sequential_disk = disk;
 | |
| 		}
 | |
| 
 | |
| 		if (ctl.min_pending > pending) {
 | |
| 			ctl.min_pending = pending;
 | |
| 			ctl.min_pending_disk = disk;
 | |
| 		}
 | |
| 
 | |
| 		if (ctl.closest_dist > dist) {
 | |
| 			ctl.closest_dist = dist;
 | |
| 			ctl.closest_dist_disk = disk;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * sequential IO size exceeds optimal iosize, however, there is no other
 | |
| 	 * idle disk, so choose the sequential disk.
 | |
| 	 */
 | |
| 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
 | |
| 		return ctl.sequential_disk;
 | |
| 
 | |
| 	/*
 | |
| 	 * If all disks are rotational, choose the closest disk. If any disk is
 | |
| 	 * non-rotational, choose the disk with less pending request even the
 | |
| 	 * disk is rotational, which might/might not be optimal for raids with
 | |
| 	 * mixed ratation/non-rotational disks depending on workload.
 | |
| 	 */
 | |
| 	if (ctl.min_pending_disk != -1 &&
 | |
| 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
 | |
| 		return ctl.min_pending_disk;
 | |
| 	else
 | |
| 		return ctl.closest_dist_disk;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine returns the disk from which the requested read should be done.
 | |
|  *
 | |
|  * 1) If resync is in progress, find the first usable disk and use it even if it
 | |
|  * has some bad blocks.
 | |
|  *
 | |
|  * 2) Now that there is no resync, loop through all disks and skipping slow
 | |
|  * disks and disks with bad blocks for now. Only pay attention to key disk
 | |
|  * choice.
 | |
|  *
 | |
|  * 3) If we've made it this far, now look for disks with bad blocks and choose
 | |
|  * the one with most number of sectors.
 | |
|  *
 | |
|  * 4) If we are all the way at the end, we have no choice but to use a disk even
 | |
|  * if it is write mostly.
 | |
|  *
 | |
|  * The rdev for the device selected will have nr_pending incremented.
 | |
|  */
 | |
| static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
 | |
| 			int *max_sectors)
 | |
| {
 | |
| 	int disk;
 | |
| 
 | |
| 	clear_bit(R1BIO_FailFast, &r1_bio->state);
 | |
| 
 | |
| 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
 | |
| 				    r1_bio->sectors))
 | |
| 		return choose_first_rdev(conf, r1_bio, max_sectors);
 | |
| 
 | |
| 	disk = choose_best_rdev(conf, r1_bio);
 | |
| 	if (disk >= 0) {
 | |
| 		*max_sectors = r1_bio->sectors;
 | |
| 		update_read_sectors(conf, disk, r1_bio->sector,
 | |
| 				    r1_bio->sectors);
 | |
| 		return disk;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are here it means we didn't find a perfectly good disk so
 | |
| 	 * now spend a bit more time trying to find one with the most good
 | |
| 	 * sectors.
 | |
| 	 */
 | |
| 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
 | |
| 	if (disk >= 0)
 | |
| 		return disk;
 | |
| 
 | |
| 	return choose_slow_rdev(conf, r1_bio, max_sectors);
 | |
| }
 | |
| 
 | |
| static void wake_up_barrier(struct r1conf *conf)
 | |
| {
 | |
| 	if (wq_has_sleeper(&conf->wait_barrier))
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 | |
| {
 | |
| 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 | |
| 	raid1_prepare_flush_writes(conf->mddev);
 | |
| 	wake_up_barrier(conf);
 | |
| 
 | |
| 	while (bio) { /* submit pending writes */
 | |
| 		struct bio *next = bio->bi_next;
 | |
| 
 | |
| 		raid1_submit_write(bio);
 | |
| 		bio = next;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void flush_pending_writes(struct r1conf *conf)
 | |
| {
 | |
| 	/* Any writes that have been queued but are awaiting
 | |
| 	 * bitmap updates get flushed here.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 
 | |
| 	if (conf->pending_bio_list.head) {
 | |
| 		struct blk_plug plug;
 | |
| 		struct bio *bio;
 | |
| 
 | |
| 		bio = bio_list_get(&conf->pending_bio_list);
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * As this is called in a wait_event() loop (see freeze_array),
 | |
| 		 * current->state might be TASK_UNINTERRUPTIBLE which will
 | |
| 		 * cause a warning when we prepare to wait again.  As it is
 | |
| 		 * rare that this path is taken, it is perfectly safe to force
 | |
| 		 * us to go around the wait_event() loop again, so the warning
 | |
| 		 * is a false-positive.  Silence the warning by resetting
 | |
| 		 * thread state
 | |
| 		 */
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 		blk_start_plug(&plug);
 | |
| 		flush_bio_list(conf, bio);
 | |
| 		blk_finish_plug(&plug);
 | |
| 	} else
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| }
 | |
| 
 | |
| /* Barriers....
 | |
|  * Sometimes we need to suspend IO while we do something else,
 | |
|  * either some resync/recovery, or reconfigure the array.
 | |
|  * To do this we raise a 'barrier'.
 | |
|  * The 'barrier' is a counter that can be raised multiple times
 | |
|  * to count how many activities are happening which preclude
 | |
|  * normal IO.
 | |
|  * We can only raise the barrier if there is no pending IO.
 | |
|  * i.e. if nr_pending == 0.
 | |
|  * We choose only to raise the barrier if no-one is waiting for the
 | |
|  * barrier to go down.  This means that as soon as an IO request
 | |
|  * is ready, no other operations which require a barrier will start
 | |
|  * until the IO request has had a chance.
 | |
|  *
 | |
|  * So: regular IO calls 'wait_barrier'.  When that returns there
 | |
|  *    is no backgroup IO happening,  It must arrange to call
 | |
|  *    allow_barrier when it has finished its IO.
 | |
|  * backgroup IO calls must call raise_barrier.  Once that returns
 | |
|  *    there is no normal IO happeing.  It must arrange to call
 | |
|  *    lower_barrier when the particular background IO completes.
 | |
|  *
 | |
|  * If resync/recovery is interrupted, returns -EINTR;
 | |
|  * Otherwise, returns 0.
 | |
|  */
 | |
| static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 
 | |
| 	/* Wait until no block IO is waiting */
 | |
| 	wait_event_lock_irq(conf->wait_barrier,
 | |
| 			    !atomic_read(&conf->nr_waiting[idx]),
 | |
| 			    conf->resync_lock);
 | |
| 
 | |
| 	/* block any new IO from starting */
 | |
| 	atomic_inc(&conf->barrier[idx]);
 | |
| 	/*
 | |
| 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 | |
| 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 | |
| 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 | |
| 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 | |
| 	 * be fetched before conf->barrier[idx] is increased. Otherwise
 | |
| 	 * there will be a race between raise_barrier() and _wait_barrier().
 | |
| 	 */
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	/* For these conditions we must wait:
 | |
| 	 * A: while the array is in frozen state
 | |
| 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 | |
| 	 *    existing in corresponding I/O barrier bucket.
 | |
| 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 | |
| 	 *    max resync count which allowed on current I/O barrier bucket.
 | |
| 	 */
 | |
| 	wait_event_lock_irq(conf->wait_barrier,
 | |
| 			    (!conf->array_frozen &&
 | |
| 			     !atomic_read(&conf->nr_pending[idx]) &&
 | |
| 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 | |
| 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 | |
| 			    conf->resync_lock);
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 | |
| 		atomic_dec(&conf->barrier[idx]);
 | |
| 		spin_unlock_irq(&conf->resync_lock);
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&conf->nr_sync_pending);
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 
 | |
| 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 | |
| 
 | |
| 	atomic_dec(&conf->barrier[idx]);
 | |
| 	atomic_dec(&conf->nr_sync_pending);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
 | |
| {
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to increase conf->nr_pending[idx] very early here,
 | |
| 	 * then raise_barrier() can be blocked when it waits for
 | |
| 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 | |
| 	 * conf->resync_lock when there is no barrier raised in same
 | |
| 	 * barrier unit bucket. Also if the array is frozen, I/O
 | |
| 	 * should be blocked until array is unfrozen.
 | |
| 	 */
 | |
| 	atomic_inc(&conf->nr_pending[idx]);
 | |
| 	/*
 | |
| 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 | |
| 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 | |
| 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 | |
| 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 | |
| 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 | |
| 	 * will be a race between _wait_barrier() and raise_barrier().
 | |
| 	 */
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't worry about checking two atomic_t variables at same time
 | |
| 	 * here. If during we check conf->barrier[idx], the array is
 | |
| 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 | |
| 	 * 0, it is safe to return and make the I/O continue. Because the
 | |
| 	 * array is frozen, all I/O returned here will eventually complete
 | |
| 	 * or be queued, no race will happen. See code comment in
 | |
| 	 * frozen_array().
 | |
| 	 */
 | |
| 	if (!READ_ONCE(conf->array_frozen) &&
 | |
| 	    !atomic_read(&conf->barrier[idx]))
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * After holding conf->resync_lock, conf->nr_pending[idx]
 | |
| 	 * should be decreased before waiting for barrier to drop.
 | |
| 	 * Otherwise, we may encounter a race condition because
 | |
| 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 | |
| 	 * to be 0 at same time.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	atomic_inc(&conf->nr_waiting[idx]);
 | |
| 	atomic_dec(&conf->nr_pending[idx]);
 | |
| 	/*
 | |
| 	 * In case freeze_array() is waiting for
 | |
| 	 * get_unqueued_pending() == extra
 | |
| 	 */
 | |
| 	wake_up_barrier(conf);
 | |
| 	/* Wait for the barrier in same barrier unit bucket to drop. */
 | |
| 
 | |
| 	/* Return false when nowait flag is set */
 | |
| 	if (nowait) {
 | |
| 		ret = false;
 | |
| 	} else {
 | |
| 		wait_event_lock_irq(conf->wait_barrier,
 | |
| 				!conf->array_frozen &&
 | |
| 				!atomic_read(&conf->barrier[idx]),
 | |
| 				conf->resync_lock);
 | |
| 		atomic_inc(&conf->nr_pending[idx]);
 | |
| 	}
 | |
| 
 | |
| 	atomic_dec(&conf->nr_waiting[idx]);
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Very similar to _wait_barrier(). The difference is, for read
 | |
| 	 * I/O we don't need wait for sync I/O, but if the whole array
 | |
| 	 * is frozen, the read I/O still has to wait until the array is
 | |
| 	 * unfrozen. Since there is no ordering requirement with
 | |
| 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
 | |
| 	 */
 | |
| 	atomic_inc(&conf->nr_pending[idx]);
 | |
| 
 | |
| 	if (!READ_ONCE(conf->array_frozen))
 | |
| 		return ret;
 | |
| 
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	atomic_inc(&conf->nr_waiting[idx]);
 | |
| 	atomic_dec(&conf->nr_pending[idx]);
 | |
| 	/*
 | |
| 	 * In case freeze_array() is waiting for
 | |
| 	 * get_unqueued_pending() == extra
 | |
| 	 */
 | |
| 	wake_up_barrier(conf);
 | |
| 	/* Wait for array to be unfrozen */
 | |
| 
 | |
| 	/* Return false when nowait flag is set */
 | |
| 	if (nowait) {
 | |
| 		/* Return false when nowait flag is set */
 | |
| 		ret = false;
 | |
| 	} else {
 | |
| 		wait_event_lock_irq(conf->wait_barrier,
 | |
| 				!conf->array_frozen,
 | |
| 				conf->resync_lock);
 | |
| 		atomic_inc(&conf->nr_pending[idx]);
 | |
| 	}
 | |
| 
 | |
| 	atomic_dec(&conf->nr_waiting[idx]);
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 
 | |
| 	return _wait_barrier(conf, idx, nowait);
 | |
| }
 | |
| 
 | |
| static void _allow_barrier(struct r1conf *conf, int idx)
 | |
| {
 | |
| 	atomic_dec(&conf->nr_pending[idx]);
 | |
| 	wake_up_barrier(conf);
 | |
| }
 | |
| 
 | |
| static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 
 | |
| 	_allow_barrier(conf, idx);
 | |
| }
 | |
| 
 | |
| /* conf->resync_lock should be held */
 | |
| static int get_unqueued_pending(struct r1conf *conf)
 | |
| {
 | |
| 	int idx, ret;
 | |
| 
 | |
| 	ret = atomic_read(&conf->nr_sync_pending);
 | |
| 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
 | |
| 		ret += atomic_read(&conf->nr_pending[idx]) -
 | |
| 			atomic_read(&conf->nr_queued[idx]);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void freeze_array(struct r1conf *conf, int extra)
 | |
| {
 | |
| 	/* Stop sync I/O and normal I/O and wait for everything to
 | |
| 	 * go quiet.
 | |
| 	 * This is called in two situations:
 | |
| 	 * 1) management command handlers (reshape, remove disk, quiesce).
 | |
| 	 * 2) one normal I/O request failed.
 | |
| 
 | |
| 	 * After array_frozen is set to 1, new sync IO will be blocked at
 | |
| 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
 | |
| 	 * or wait_read_barrier(). The flying I/Os will either complete or be
 | |
| 	 * queued. When everything goes quite, there are only queued I/Os left.
 | |
| 
 | |
| 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
 | |
| 	 * barrier bucket index which this I/O request hits. When all sync and
 | |
| 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
 | |
| 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
 | |
| 	 * in handle_read_error(), we may call freeze_array() before trying to
 | |
| 	 * fix the read error. In this case, the error read I/O is not queued,
 | |
| 	 * so get_unqueued_pending() == 1.
 | |
| 	 *
 | |
| 	 * Therefore before this function returns, we need to wait until
 | |
| 	 * get_unqueued_pendings(conf) gets equal to extra. For
 | |
| 	 * normal I/O context, extra is 1, in rested situations extra is 0.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	conf->array_frozen = 1;
 | |
| 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
 | |
| 	wait_event_lock_irq_cmd(
 | |
| 		conf->wait_barrier,
 | |
| 		get_unqueued_pending(conf) == extra,
 | |
| 		conf->resync_lock,
 | |
| 		flush_pending_writes(conf));
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| }
 | |
| static void unfreeze_array(struct r1conf *conf)
 | |
| {
 | |
| 	/* reverse the effect of the freeze */
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	conf->array_frozen = 0;
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static void alloc_behind_master_bio(struct r1bio *r1_bio,
 | |
| 					   struct bio *bio)
 | |
| {
 | |
| 	int size = bio->bi_iter.bi_size;
 | |
| 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	int i = 0;
 | |
| 	struct bio *behind_bio = NULL;
 | |
| 
 | |
| 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
 | |
| 				      &r1_bio->mddev->bio_set);
 | |
| 
 | |
| 	/* discard op, we don't support writezero/writesame yet */
 | |
| 	if (!bio_has_data(bio)) {
 | |
| 		behind_bio->bi_iter.bi_size = size;
 | |
| 		goto skip_copy;
 | |
| 	}
 | |
| 
 | |
| 	while (i < vcnt && size) {
 | |
| 		struct page *page;
 | |
| 		int len = min_t(int, PAGE_SIZE, size);
 | |
| 
 | |
| 		page = alloc_page(GFP_NOIO);
 | |
| 		if (unlikely(!page))
 | |
| 			goto free_pages;
 | |
| 
 | |
| 		if (!bio_add_page(behind_bio, page, len, 0)) {
 | |
| 			put_page(page);
 | |
| 			goto free_pages;
 | |
| 		}
 | |
| 
 | |
| 		size -= len;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	bio_copy_data(behind_bio, bio);
 | |
| skip_copy:
 | |
| 	r1_bio->behind_master_bio = behind_bio;
 | |
| 	set_bit(R1BIO_BehindIO, &r1_bio->state);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| free_pages:
 | |
| 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
 | |
| 		 bio->bi_iter.bi_size);
 | |
| 	bio_free_pages(behind_bio);
 | |
| 	bio_put(behind_bio);
 | |
| }
 | |
| 
 | |
| static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
 | |
| {
 | |
| 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
 | |
| 						  cb);
 | |
| 	struct mddev *mddev = plug->cb.data;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	if (from_schedule) {
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		wake_up_barrier(conf);
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		kfree(plug);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* we aren't scheduling, so we can do the write-out directly. */
 | |
| 	bio = bio_list_get(&plug->pending);
 | |
| 	flush_bio_list(conf, bio);
 | |
| 	kfree(plug);
 | |
| }
 | |
| 
 | |
| static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	r1_bio->master_bio = bio;
 | |
| 	r1_bio->sectors = bio_sectors(bio);
 | |
| 	r1_bio->state = 0;
 | |
| 	r1_bio->mddev = mddev;
 | |
| 	r1_bio->sector = bio->bi_iter.bi_sector;
 | |
| }
 | |
| 
 | |
| static inline struct r1bio *
 | |
| alloc_r1bio(struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct r1bio *r1_bio;
 | |
| 
 | |
| 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
 | |
| 	/* Ensure no bio records IO_BLOCKED */
 | |
| 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
 | |
| 	init_r1bio(r1_bio, mddev, bio);
 | |
| 	return r1_bio;
 | |
| }
 | |
| 
 | |
| static void raid1_read_request(struct mddev *mddev, struct bio *bio,
 | |
| 			       int max_read_sectors, struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct raid1_info *mirror;
 | |
| 	struct bio *read_bio;
 | |
| 	int max_sectors;
 | |
| 	int rdisk, error;
 | |
| 	bool r1bio_existed = !!r1_bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * If r1_bio is set, we are blocking the raid1d thread
 | |
| 	 * so there is a tiny risk of deadlock.  So ask for
 | |
| 	 * emergency memory if needed.
 | |
| 	 */
 | |
| 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Still need barrier for READ in case that whole
 | |
| 	 * array is frozen.
 | |
| 	 */
 | |
| 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
 | |
| 				bio->bi_opf & REQ_NOWAIT)) {
 | |
| 		bio_wouldblock_error(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!r1_bio)
 | |
| 		r1_bio = alloc_r1bio(mddev, bio);
 | |
| 	else
 | |
| 		init_r1bio(r1_bio, mddev, bio);
 | |
| 	r1_bio->sectors = max_read_sectors;
 | |
| 
 | |
| 	/*
 | |
| 	 * make_request() can abort the operation when read-ahead is being
 | |
| 	 * used and no empty request is available.
 | |
| 	 */
 | |
| 	rdisk = read_balance(conf, r1_bio, &max_sectors);
 | |
| 	if (rdisk < 0) {
 | |
| 		/* couldn't find anywhere to read from */
 | |
| 		if (r1bio_existed)
 | |
| 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
 | |
| 					    mdname(mddev),
 | |
| 					    conf->mirrors[r1_bio->read_disk].rdev->bdev,
 | |
| 					    r1_bio->sector);
 | |
| 		raid_end_bio_io(r1_bio);
 | |
| 		return;
 | |
| 	}
 | |
| 	mirror = conf->mirrors + rdisk;
 | |
| 
 | |
| 	if (r1bio_existed)
 | |
| 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
 | |
| 				    mdname(mddev),
 | |
| 				    (unsigned long long)r1_bio->sector,
 | |
| 				    mirror->rdev->bdev);
 | |
| 
 | |
| 	if (test_bit(WriteMostly, &mirror->rdev->flags)) {
 | |
| 		/*
 | |
| 		 * Reading from a write-mostly device must take care not to
 | |
| 		 * over-take any writes that are 'behind'
 | |
| 		 */
 | |
| 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
 | |
| 		mddev->bitmap_ops->wait_behind_writes(mddev);
 | |
| 	}
 | |
| 
 | |
| 	if (max_sectors < bio_sectors(bio)) {
 | |
| 		struct bio *split = bio_split(bio, max_sectors,
 | |
| 					      gfp, &conf->bio_split);
 | |
| 
 | |
| 		if (IS_ERR(split)) {
 | |
| 			error = PTR_ERR(split);
 | |
| 			goto err_handle;
 | |
| 		}
 | |
| 		bio_chain(split, bio);
 | |
| 		submit_bio_noacct(bio);
 | |
| 		bio = split;
 | |
| 		r1_bio->master_bio = bio;
 | |
| 		r1_bio->sectors = max_sectors;
 | |
| 	}
 | |
| 
 | |
| 	r1_bio->read_disk = rdisk;
 | |
| 	if (!r1bio_existed) {
 | |
| 		md_account_bio(mddev, &bio);
 | |
| 		r1_bio->master_bio = bio;
 | |
| 	}
 | |
| 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
 | |
| 				   &mddev->bio_set);
 | |
| 
 | |
| 	r1_bio->bios[rdisk] = read_bio;
 | |
| 
 | |
| 	read_bio->bi_iter.bi_sector = r1_bio->sector +
 | |
| 		mirror->rdev->data_offset;
 | |
| 	read_bio->bi_end_io = raid1_end_read_request;
 | |
| 	if (test_bit(FailFast, &mirror->rdev->flags) &&
 | |
| 	    test_bit(R1BIO_FailFast, &r1_bio->state))
 | |
| 	        read_bio->bi_opf |= MD_FAILFAST;
 | |
| 	read_bio->bi_private = r1_bio;
 | |
| 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
 | |
| 	submit_bio_noacct(read_bio);
 | |
| 	return;
 | |
| 
 | |
| err_handle:
 | |
| 	atomic_dec(&mirror->rdev->nr_pending);
 | |
| 	bio->bi_status = errno_to_blk_status(error);
 | |
| 	set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 	raid_end_bio_io(r1_bio);
 | |
| }
 | |
| 
 | |
| static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int disks = conf->raid_disks * 2;
 | |
| 	int i;
 | |
| 
 | |
| retry:
 | |
| 	for (i = 0; i < disks; i++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 
 | |
| 		if (!rdev)
 | |
| 			continue;
 | |
| 
 | |
| 		/* don't write here until the bad block is acknowledged */
 | |
| 		if (test_bit(WriteErrorSeen, &rdev->flags) &&
 | |
| 		    rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
 | |
| 				      bio_sectors(bio)) < 0)
 | |
| 			set_bit(BlockedBadBlocks, &rdev->flags);
 | |
| 
 | |
| 		if (rdev_blocked(rdev)) {
 | |
| 			if (bio->bi_opf & REQ_NOWAIT)
 | |
| 				return false;
 | |
| 
 | |
| 			mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
 | |
| 					    rdev->raid_disk);
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			md_wait_for_blocked_rdev(rdev, rdev->mddev);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void raid1_write_request(struct mddev *mddev, struct bio *bio,
 | |
| 				int max_write_sectors)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct r1bio *r1_bio;
 | |
| 	int i, disks, k, error;
 | |
| 	unsigned long flags;
 | |
| 	int first_clone;
 | |
| 	int max_sectors;
 | |
| 	bool write_behind = false;
 | |
| 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
 | |
| 
 | |
| 	if (mddev_is_clustered(mddev) &&
 | |
| 	    mddev->cluster_ops->area_resyncing(mddev, WRITE,
 | |
| 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
 | |
| 
 | |
| 		DEFINE_WAIT(w);
 | |
| 		if (bio->bi_opf & REQ_NOWAIT) {
 | |
| 			bio_wouldblock_error(bio);
 | |
| 			return;
 | |
| 		}
 | |
| 		for (;;) {
 | |
| 			prepare_to_wait(&conf->wait_barrier,
 | |
| 					&w, TASK_IDLE);
 | |
| 			if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
 | |
| 							bio->bi_iter.bi_sector,
 | |
| 							bio_end_sector(bio)))
 | |
| 				break;
 | |
| 			schedule();
 | |
| 		}
 | |
| 		finish_wait(&conf->wait_barrier, &w);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Register the new request and wait if the reconstruction
 | |
| 	 * thread has put up a bar for new requests.
 | |
| 	 * Continue immediately if no resync is active currently.
 | |
| 	 */
 | |
| 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
 | |
| 				bio->bi_opf & REQ_NOWAIT)) {
 | |
| 		bio_wouldblock_error(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!wait_blocked_rdev(mddev, bio)) {
 | |
| 		bio_wouldblock_error(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	r1_bio = alloc_r1bio(mddev, bio);
 | |
| 	r1_bio->sectors = max_write_sectors;
 | |
| 
 | |
| 	/* first select target devices under rcu_lock and
 | |
| 	 * inc refcount on their rdev.  Record them by setting
 | |
| 	 * bios[x] to bio
 | |
| 	 * If there are known/acknowledged bad blocks on any device on
 | |
| 	 * which we have seen a write error, we want to avoid writing those
 | |
| 	 * blocks.
 | |
| 	 * This potentially requires several writes to write around
 | |
| 	 * the bad blocks.  Each set of writes gets it's own r1bio
 | |
| 	 * with a set of bios attached.
 | |
| 	 */
 | |
| 
 | |
| 	disks = conf->raid_disks * 2;
 | |
| 	max_sectors = r1_bio->sectors;
 | |
| 	for (i = 0;  i < disks; i++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 
 | |
| 		/*
 | |
| 		 * The write-behind io is only attempted on drives marked as
 | |
| 		 * write-mostly, which means we could allocate write behind
 | |
| 		 * bio later.
 | |
| 		 */
 | |
| 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
 | |
| 			write_behind = true;
 | |
| 
 | |
| 		r1_bio->bios[i] = NULL;
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 			continue;
 | |
| 
 | |
| 		atomic_inc(&rdev->nr_pending);
 | |
| 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
 | |
| 			sector_t first_bad;
 | |
| 			sector_t bad_sectors;
 | |
| 			int is_bad;
 | |
| 
 | |
| 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 | |
| 					     &first_bad, &bad_sectors);
 | |
| 			if (is_bad && first_bad <= r1_bio->sector) {
 | |
| 				/* Cannot write here at all */
 | |
| 				bad_sectors -= (r1_bio->sector - first_bad);
 | |
| 				if (bad_sectors < max_sectors)
 | |
| 					/* mustn't write more than bad_sectors
 | |
| 					 * to other devices yet
 | |
| 					 */
 | |
| 					max_sectors = bad_sectors;
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (is_bad) {
 | |
| 				int good_sectors;
 | |
| 
 | |
| 				/*
 | |
| 				 * We cannot atomically write this, so just
 | |
| 				 * error in that case. It could be possible to
 | |
| 				 * atomically write other mirrors, but the
 | |
| 				 * complexity of supporting that is not worth
 | |
| 				 * the benefit.
 | |
| 				 */
 | |
| 				if (bio->bi_opf & REQ_ATOMIC) {
 | |
| 					error = -EIO;
 | |
| 					goto err_handle;
 | |
| 				}
 | |
| 
 | |
| 				good_sectors = first_bad - r1_bio->sector;
 | |
| 				if (good_sectors < max_sectors)
 | |
| 					max_sectors = good_sectors;
 | |
| 			}
 | |
| 		}
 | |
| 		r1_bio->bios[i] = bio;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When using a bitmap, we may call alloc_behind_master_bio below.
 | |
| 	 * alloc_behind_master_bio allocates a copy of the data payload a page
 | |
| 	 * at a time and thus needs a new bio that can fit the whole payload
 | |
| 	 * this bio in page sized chunks.
 | |
| 	 */
 | |
| 	if (write_behind && mddev->bitmap)
 | |
| 		max_sectors = min_t(int, max_sectors,
 | |
| 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
 | |
| 	if (max_sectors < bio_sectors(bio)) {
 | |
| 		struct bio *split = bio_split(bio, max_sectors,
 | |
| 					      GFP_NOIO, &conf->bio_split);
 | |
| 
 | |
| 		if (IS_ERR(split)) {
 | |
| 			error = PTR_ERR(split);
 | |
| 			goto err_handle;
 | |
| 		}
 | |
| 		bio_chain(split, bio);
 | |
| 		submit_bio_noacct(bio);
 | |
| 		bio = split;
 | |
| 		r1_bio->master_bio = bio;
 | |
| 		r1_bio->sectors = max_sectors;
 | |
| 	}
 | |
| 
 | |
| 	md_account_bio(mddev, &bio);
 | |
| 	r1_bio->master_bio = bio;
 | |
| 	atomic_set(&r1_bio->remaining, 1);
 | |
| 	atomic_set(&r1_bio->behind_remaining, 0);
 | |
| 
 | |
| 	first_clone = 1;
 | |
| 
 | |
| 	for (i = 0; i < disks; i++) {
 | |
| 		struct bio *mbio = NULL;
 | |
| 		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 		if (!r1_bio->bios[i])
 | |
| 			continue;
 | |
| 
 | |
| 		if (first_clone) {
 | |
| 			unsigned long max_write_behind =
 | |
| 				mddev->bitmap_info.max_write_behind;
 | |
| 			struct md_bitmap_stats stats;
 | |
| 			int err;
 | |
| 
 | |
| 			/* do behind I/O ?
 | |
| 			 * Not if there are too many, or cannot
 | |
| 			 * allocate memory, or a reader on WriteMostly
 | |
| 			 * is waiting for behind writes to flush */
 | |
| 			err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
 | |
| 			if (!err && write_behind && !stats.behind_wait &&
 | |
| 			    stats.behind_writes < max_write_behind)
 | |
| 				alloc_behind_master_bio(r1_bio, bio);
 | |
| 
 | |
| 			if (test_bit(R1BIO_BehindIO, &r1_bio->state))
 | |
| 				mddev->bitmap_ops->start_behind_write(mddev);
 | |
| 			first_clone = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (r1_bio->behind_master_bio) {
 | |
| 			mbio = bio_alloc_clone(rdev->bdev,
 | |
| 					       r1_bio->behind_master_bio,
 | |
| 					       GFP_NOIO, &mddev->bio_set);
 | |
| 			if (test_bit(CollisionCheck, &rdev->flags))
 | |
| 				wait_for_serialization(rdev, r1_bio);
 | |
| 			if (test_bit(WriteMostly, &rdev->flags))
 | |
| 				atomic_inc(&r1_bio->behind_remaining);
 | |
| 		} else {
 | |
| 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
 | |
| 					       &mddev->bio_set);
 | |
| 
 | |
| 			if (mddev->serialize_policy)
 | |
| 				wait_for_serialization(rdev, r1_bio);
 | |
| 		}
 | |
| 
 | |
| 		r1_bio->bios[i] = mbio;
 | |
| 
 | |
| 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
 | |
| 		mbio->bi_end_io	= raid1_end_write_request;
 | |
| 		if (test_bit(FailFast, &rdev->flags) &&
 | |
| 		    !test_bit(WriteMostly, &rdev->flags) &&
 | |
| 		    conf->raid_disks - mddev->degraded > 1)
 | |
| 			mbio->bi_opf |= MD_FAILFAST;
 | |
| 		mbio->bi_private = r1_bio;
 | |
| 
 | |
| 		atomic_inc(&r1_bio->remaining);
 | |
| 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
 | |
| 		/* flush_pending_writes() needs access to the rdev so...*/
 | |
| 		mbio->bi_bdev = (void *)rdev;
 | |
| 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
 | |
| 			spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 			bio_list_add(&conf->pending_bio_list, mbio);
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			md_wakeup_thread(mddev->thread);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r1_bio_write_done(r1_bio);
 | |
| 
 | |
| 	/* In case raid1d snuck in to freeze_array */
 | |
| 	wake_up_barrier(conf);
 | |
| 	return;
 | |
| err_handle:
 | |
| 	for (k = 0; k < i; k++) {
 | |
| 		if (r1_bio->bios[k]) {
 | |
| 			rdev_dec_pending(conf->mirrors[k].rdev, mddev);
 | |
| 			r1_bio->bios[k] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bio->bi_status = errno_to_blk_status(error);
 | |
| 	set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 	raid_end_bio_io(r1_bio);
 | |
| }
 | |
| 
 | |
| static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	sector_t sectors;
 | |
| 
 | |
| 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
 | |
| 	    && md_flush_request(mddev, bio))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is a limit to the maximum size, but
 | |
| 	 * the read/write handler might find a lower limit
 | |
| 	 * due to bad blocks.  To avoid multiple splits,
 | |
| 	 * we pass the maximum number of sectors down
 | |
| 	 * and let the lower level perform the split.
 | |
| 	 */
 | |
| 	sectors = align_to_barrier_unit_end(
 | |
| 		bio->bi_iter.bi_sector, bio_sectors(bio));
 | |
| 
 | |
| 	if (bio_data_dir(bio) == READ)
 | |
| 		raid1_read_request(mddev, bio, sectors, NULL);
 | |
| 	else {
 | |
| 		md_write_start(mddev,bio);
 | |
| 		raid1_write_request(mddev, bio, sectors);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void raid1_status(struct seq_file *seq, struct mddev *mddev)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int i;
 | |
| 
 | |
| 	lockdep_assert_held(&mddev->lock);
 | |
| 
 | |
| 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
 | |
| 		   conf->raid_disks - mddev->degraded);
 | |
| 	for (i = 0; i < conf->raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
 | |
| 
 | |
| 		seq_printf(seq, "%s",
 | |
| 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
 | |
| 	}
 | |
| 	seq_printf(seq, "]");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * raid1_error() - RAID1 error handler.
 | |
|  * @mddev: affected md device.
 | |
|  * @rdev: member device to fail.
 | |
|  *
 | |
|  * The routine acknowledges &rdev failure and determines new @mddev state.
 | |
|  * If it failed, then:
 | |
|  *	- &MD_BROKEN flag is set in &mddev->flags.
 | |
|  *	- recovery is disabled.
 | |
|  * Otherwise, it must be degraded:
 | |
|  *	- recovery is interrupted.
 | |
|  *	- &mddev->degraded is bumped.
 | |
|  *
 | |
|  * @rdev is marked as &Faulty excluding case when array is failed and
 | |
|  * &mddev->fail_last_dev is off.
 | |
|  */
 | |
| static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 
 | |
| 	if (test_bit(In_sync, &rdev->flags) &&
 | |
| 	    (conf->raid_disks - mddev->degraded) == 1) {
 | |
| 		set_bit(MD_BROKEN, &mddev->flags);
 | |
| 
 | |
| 		if (!mddev->fail_last_dev) {
 | |
| 			conf->recovery_disabled = mddev->recovery_disabled;
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	set_bit(Blocked, &rdev->flags);
 | |
| 	if (test_and_clear_bit(In_sync, &rdev->flags))
 | |
| 		mddev->degraded++;
 | |
| 	set_bit(Faulty, &rdev->flags);
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	/*
 | |
| 	 * if recovery is running, make sure it aborts.
 | |
| 	 */
 | |
| 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 	set_mask_bits(&mddev->sb_flags, 0,
 | |
| 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
 | |
| 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
 | |
| 		"md/raid1:%s: Operation continuing on %d devices.\n",
 | |
| 		mdname(mddev), rdev->bdev,
 | |
| 		mdname(mddev), conf->raid_disks - mddev->degraded);
 | |
| }
 | |
| 
 | |
| static void print_conf(struct r1conf *conf)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_debug("RAID1 conf printout:\n");
 | |
| 	if (!conf) {
 | |
| 		pr_debug("(!conf)\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
 | |
| 		 conf->raid_disks);
 | |
| 
 | |
| 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
 | |
| 	for (i = 0; i < conf->raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 		if (rdev)
 | |
| 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
 | |
| 				 i, !test_bit(In_sync, &rdev->flags),
 | |
| 				 !test_bit(Faulty, &rdev->flags),
 | |
| 				 rdev->bdev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void close_sync(struct r1conf *conf)
 | |
| {
 | |
| 	int idx;
 | |
| 
 | |
| 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
 | |
| 		_wait_barrier(conf, idx, false);
 | |
| 		_allow_barrier(conf, idx);
 | |
| 	}
 | |
| 
 | |
| 	mempool_exit(&conf->r1buf_pool);
 | |
| }
 | |
| 
 | |
| static int raid1_spare_active(struct mddev *mddev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int count = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find all failed disks within the RAID1 configuration
 | |
| 	 * and mark them readable.
 | |
| 	 * Called under mddev lock, so rcu protection not needed.
 | |
| 	 * device_lock used to avoid races with raid1_end_read_request
 | |
| 	 * which expects 'In_sync' flags and ->degraded to be consistent.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	for (i = 0; i < conf->raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
 | |
| 		if (repl
 | |
| 		    && !test_bit(Candidate, &repl->flags)
 | |
| 		    && repl->recovery_offset == MaxSector
 | |
| 		    && !test_bit(Faulty, &repl->flags)
 | |
| 		    && !test_and_set_bit(In_sync, &repl->flags)) {
 | |
| 			/* replacement has just become active */
 | |
| 			if (!rdev ||
 | |
| 			    !test_and_clear_bit(In_sync, &rdev->flags))
 | |
| 				count++;
 | |
| 			if (rdev) {
 | |
| 				/* Replaced device not technically
 | |
| 				 * faulty, but we need to be sure
 | |
| 				 * it gets removed and never re-added
 | |
| 				 */
 | |
| 				set_bit(Faulty, &rdev->flags);
 | |
| 				sysfs_notify_dirent_safe(
 | |
| 					rdev->sysfs_state);
 | |
| 			}
 | |
| 		}
 | |
| 		if (rdev
 | |
| 		    && rdev->recovery_offset == MaxSector
 | |
| 		    && !test_bit(Faulty, &rdev->flags)
 | |
| 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
 | |
| 			count++;
 | |
| 			sysfs_notify_dirent_safe(rdev->sysfs_state);
 | |
| 		}
 | |
| 	}
 | |
| 	mddev->degraded -= count;
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
 | |
| 			   bool replacement)
 | |
| {
 | |
| 	struct raid1_info *info = conf->mirrors + disk;
 | |
| 
 | |
| 	if (replacement)
 | |
| 		info += conf->raid_disks;
 | |
| 
 | |
| 	if (info->rdev)
 | |
| 		return false;
 | |
| 
 | |
| 	if (bdev_nonrot(rdev->bdev)) {
 | |
| 		set_bit(Nonrot, &rdev->flags);
 | |
| 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
 | |
| 	}
 | |
| 
 | |
| 	rdev->raid_disk = disk;
 | |
| 	info->head_position = 0;
 | |
| 	info->seq_start = MaxSector;
 | |
| 	WRITE_ONCE(info->rdev, rdev);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool raid1_remove_conf(struct r1conf *conf, int disk)
 | |
| {
 | |
| 	struct raid1_info *info = conf->mirrors + disk;
 | |
| 	struct md_rdev *rdev = info->rdev;
 | |
| 
 | |
| 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
 | |
| 	    atomic_read(&rdev->nr_pending))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Only remove non-faulty devices if recovery is not possible. */
 | |
| 	if (!test_bit(Faulty, &rdev->flags) &&
 | |
| 	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
 | |
| 	    rdev->mddev->degraded < conf->raid_disks)
 | |
| 		return false;
 | |
| 
 | |
| 	if (test_and_clear_bit(Nonrot, &rdev->flags))
 | |
| 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
 | |
| 
 | |
| 	WRITE_ONCE(info->rdev, NULL);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int err = -EEXIST;
 | |
| 	int mirror = 0, repl_slot = -1;
 | |
| 	struct raid1_info *p;
 | |
| 	int first = 0;
 | |
| 	int last = conf->raid_disks - 1;
 | |
| 
 | |
| 	if (mddev->recovery_disabled == conf->recovery_disabled)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (rdev->raid_disk >= 0)
 | |
| 		first = last = rdev->raid_disk;
 | |
| 
 | |
| 	/*
 | |
| 	 * find the disk ... but prefer rdev->saved_raid_disk
 | |
| 	 * if possible.
 | |
| 	 */
 | |
| 	if (rdev->saved_raid_disk >= 0 &&
 | |
| 	    rdev->saved_raid_disk >= first &&
 | |
| 	    rdev->saved_raid_disk < conf->raid_disks &&
 | |
| 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
 | |
| 		first = last = rdev->saved_raid_disk;
 | |
| 
 | |
| 	for (mirror = first; mirror <= last; mirror++) {
 | |
| 		p = conf->mirrors + mirror;
 | |
| 		if (!p->rdev) {
 | |
| 			err = mddev_stack_new_rdev(mddev, rdev);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			raid1_add_conf(conf, rdev, mirror, false);
 | |
| 			/* As all devices are equivalent, we don't need a full recovery
 | |
| 			 * if this was recently any drive of the array
 | |
| 			 */
 | |
| 			if (rdev->saved_raid_disk < 0)
 | |
| 				conf->fullsync = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (test_bit(WantReplacement, &p->rdev->flags) &&
 | |
| 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
 | |
| 			repl_slot = mirror;
 | |
| 	}
 | |
| 
 | |
| 	if (err && repl_slot >= 0) {
 | |
| 		/* Add this device as a replacement */
 | |
| 		clear_bit(In_sync, &rdev->flags);
 | |
| 		set_bit(Replacement, &rdev->flags);
 | |
| 		raid1_add_conf(conf, rdev, repl_slot, true);
 | |
| 		err = 0;
 | |
| 		conf->fullsync = 1;
 | |
| 	}
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int err = 0;
 | |
| 	int number = rdev->raid_disk;
 | |
| 	struct raid1_info *p = conf->mirrors + number;
 | |
| 
 | |
| 	if (unlikely(number >= conf->raid_disks))
 | |
| 		goto abort;
 | |
| 
 | |
| 	if (rdev != p->rdev) {
 | |
| 		number += conf->raid_disks;
 | |
| 		p = conf->mirrors + number;
 | |
| 	}
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	if (rdev == p->rdev) {
 | |
| 		if (!raid1_remove_conf(conf, number)) {
 | |
| 			err = -EBUSY;
 | |
| 			goto abort;
 | |
| 		}
 | |
| 
 | |
| 		if (number < conf->raid_disks &&
 | |
| 		    conf->mirrors[conf->raid_disks + number].rdev) {
 | |
| 			/* We just removed a device that is being replaced.
 | |
| 			 * Move down the replacement.  We drain all IO before
 | |
| 			 * doing this to avoid confusion.
 | |
| 			 */
 | |
| 			struct md_rdev *repl =
 | |
| 				conf->mirrors[conf->raid_disks + number].rdev;
 | |
| 			freeze_array(conf, 0);
 | |
| 			if (atomic_read(&repl->nr_pending)) {
 | |
| 				/* It means that some queued IO of retry_list
 | |
| 				 * hold repl. Thus, we cannot set replacement
 | |
| 				 * as NULL, avoiding rdev NULL pointer
 | |
| 				 * dereference in sync_request_write and
 | |
| 				 * handle_write_finished.
 | |
| 				 */
 | |
| 				err = -EBUSY;
 | |
| 				unfreeze_array(conf);
 | |
| 				goto abort;
 | |
| 			}
 | |
| 			clear_bit(Replacement, &repl->flags);
 | |
| 			WRITE_ONCE(p->rdev, repl);
 | |
| 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
 | |
| 			unfreeze_array(conf);
 | |
| 		}
 | |
| 
 | |
| 		clear_bit(WantReplacement, &rdev->flags);
 | |
| 		err = md_integrity_register(mddev);
 | |
| 	}
 | |
| abort:
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void end_sync_read(struct bio *bio)
 | |
| {
 | |
| 	struct r1bio *r1_bio = get_resync_r1bio(bio);
 | |
| 
 | |
| 	update_head_pos(r1_bio->read_disk, r1_bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * we have read a block, now it needs to be re-written,
 | |
| 	 * or re-read if the read failed.
 | |
| 	 * We don't do much here, just schedule handling by raid1d
 | |
| 	 */
 | |
| 	if (!bio->bi_status)
 | |
| 		set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&r1_bio->remaining))
 | |
| 		reschedule_retry(r1_bio);
 | |
| }
 | |
| 
 | |
| static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
 | |
| {
 | |
| 	sector_t sync_blocks = 0;
 | |
| 	sector_t s = r1_bio->sector;
 | |
| 	long sectors_to_go = r1_bio->sectors;
 | |
| 
 | |
| 	/* make sure these bits don't get cleared. */
 | |
| 	do {
 | |
| 		mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
 | |
| 		s += sync_blocks;
 | |
| 		sectors_to_go -= sync_blocks;
 | |
| 	} while (sectors_to_go > 0);
 | |
| }
 | |
| 
 | |
| static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&r1_bio->remaining)) {
 | |
| 		struct mddev *mddev = r1_bio->mddev;
 | |
| 		int s = r1_bio->sectors;
 | |
| 
 | |
| 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | |
| 		    test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 			reschedule_retry(r1_bio);
 | |
| 		else {
 | |
| 			put_buf(r1_bio);
 | |
| 			md_done_sync(mddev, s, uptodate);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void end_sync_write(struct bio *bio)
 | |
| {
 | |
| 	int uptodate = !bio->bi_status;
 | |
| 	struct r1bio *r1_bio = get_resync_r1bio(bio);
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
 | |
| 
 | |
| 	if (!uptodate) {
 | |
| 		abort_sync_write(mddev, r1_bio);
 | |
| 		set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 			set_bit(MD_RECOVERY_NEEDED, &
 | |
| 				mddev->recovery);
 | |
| 		set_bit(R1BIO_WriteError, &r1_bio->state);
 | |
| 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
 | |
| 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
 | |
| 				      r1_bio->sector, r1_bio->sectors)) {
 | |
| 		set_bit(R1BIO_MadeGood, &r1_bio->state);
 | |
| 	}
 | |
| 
 | |
| 	put_sync_write_buf(r1_bio, uptodate);
 | |
| }
 | |
| 
 | |
| static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
 | |
| 			   int sectors, struct page *page, blk_opf_t rw)
 | |
| {
 | |
| 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
 | |
| 		/* success */
 | |
| 		return 1;
 | |
| 	if (rw == REQ_OP_WRITE) {
 | |
| 		set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 		if (!test_and_set_bit(WantReplacement,
 | |
| 				      &rdev->flags))
 | |
| 			set_bit(MD_RECOVERY_NEEDED, &
 | |
| 				rdev->mddev->recovery);
 | |
| 	}
 | |
| 	/* need to record an error - either for the block or the device */
 | |
| 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
 | |
| 		md_error(rdev->mddev, rdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fix_sync_read_error(struct r1bio *r1_bio)
 | |
| {
 | |
| 	/* Try some synchronous reads of other devices to get
 | |
| 	 * good data, much like with normal read errors.  Only
 | |
| 	 * read into the pages we already have so we don't
 | |
| 	 * need to re-issue the read request.
 | |
| 	 * We don't need to freeze the array, because being in an
 | |
| 	 * active sync request, there is no normal IO, and
 | |
| 	 * no overlapping syncs.
 | |
| 	 * We don't need to check is_badblock() again as we
 | |
| 	 * made sure that anything with a bad block in range
 | |
| 	 * will have bi_end_io clear.
 | |
| 	 */
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
 | |
| 	struct page **pages = get_resync_pages(bio)->pages;
 | |
| 	sector_t sect = r1_bio->sector;
 | |
| 	int sectors = r1_bio->sectors;
 | |
| 	int idx = 0;
 | |
| 	struct md_rdev *rdev;
 | |
| 
 | |
| 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
 | |
| 	if (test_bit(FailFast, &rdev->flags)) {
 | |
| 		/* Don't try recovering from here - just fail it
 | |
| 		 * ... unless it is the last working device of course */
 | |
| 		md_error(mddev, rdev);
 | |
| 		if (test_bit(Faulty, &rdev->flags))
 | |
| 			/* Don't try to read from here, but make sure
 | |
| 			 * put_buf does it's thing
 | |
| 			 */
 | |
| 			bio->bi_end_io = end_sync_write;
 | |
| 	}
 | |
| 
 | |
| 	while(sectors) {
 | |
| 		int s = sectors;
 | |
| 		int d = r1_bio->read_disk;
 | |
| 		int success = 0;
 | |
| 		int start;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE>>9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 		do {
 | |
| 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
 | |
| 				/* No rcu protection needed here devices
 | |
| 				 * can only be removed when no resync is
 | |
| 				 * active, and resync is currently active
 | |
| 				 */
 | |
| 				rdev = conf->mirrors[d].rdev;
 | |
| 				if (sync_page_io(rdev, sect, s<<9,
 | |
| 						 pages[idx],
 | |
| 						 REQ_OP_READ, false)) {
 | |
| 					success = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			d++;
 | |
| 			if (d == conf->raid_disks * 2)
 | |
| 				d = 0;
 | |
| 		} while (!success && d != r1_bio->read_disk);
 | |
| 
 | |
| 		if (!success) {
 | |
| 			int abort = 0;
 | |
| 			/* Cannot read from anywhere, this block is lost.
 | |
| 			 * Record a bad block on each device.  If that doesn't
 | |
| 			 * work just disable and interrupt the recovery.
 | |
| 			 * Don't fail devices as that won't really help.
 | |
| 			 */
 | |
| 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
 | |
| 					    mdname(mddev), bio->bi_bdev,
 | |
| 					    (unsigned long long)r1_bio->sector);
 | |
| 			for (d = 0; d < conf->raid_disks * 2; d++) {
 | |
| 				rdev = conf->mirrors[d].rdev;
 | |
| 				if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 					continue;
 | |
| 				if (!rdev_set_badblocks(rdev, sect, s, 0))
 | |
| 					abort = 1;
 | |
| 			}
 | |
| 			if (abort)
 | |
| 				return 0;
 | |
| 
 | |
| 			/* Try next page */
 | |
| 			sectors -= s;
 | |
| 			sect += s;
 | |
| 			idx++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		start = d;
 | |
| 		/* write it back and re-read */
 | |
| 		while (d != r1_bio->read_disk) {
 | |
| 			if (d == 0)
 | |
| 				d = conf->raid_disks * 2;
 | |
| 			d--;
 | |
| 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
 | |
| 				continue;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (r1_sync_page_io(rdev, sect, s,
 | |
| 					    pages[idx],
 | |
| 					    REQ_OP_WRITE) == 0) {
 | |
| 				r1_bio->bios[d]->bi_end_io = NULL;
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 			}
 | |
| 		}
 | |
| 		d = start;
 | |
| 		while (d != r1_bio->read_disk) {
 | |
| 			if (d == 0)
 | |
| 				d = conf->raid_disks * 2;
 | |
| 			d--;
 | |
| 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
 | |
| 				continue;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (r1_sync_page_io(rdev, sect, s,
 | |
| 					    pages[idx],
 | |
| 					    REQ_OP_READ) != 0)
 | |
| 				atomic_add(s, &rdev->corrected_errors);
 | |
| 		}
 | |
| 		sectors -= s;
 | |
| 		sect += s;
 | |
| 		idx ++;
 | |
| 	}
 | |
| 	set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 	bio->bi_status = 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void process_checks(struct r1bio *r1_bio)
 | |
| {
 | |
| 	/* We have read all readable devices.  If we haven't
 | |
| 	 * got the block, then there is no hope left.
 | |
| 	 * If we have, then we want to do a comparison
 | |
| 	 * and skip the write if everything is the same.
 | |
| 	 * If any blocks failed to read, then we need to
 | |
| 	 * attempt an over-write
 | |
| 	 */
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int primary;
 | |
| 	int i;
 | |
| 	int vcnt;
 | |
| 
 | |
| 	/* Fix variable parts of all bios */
 | |
| 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		blk_status_t status;
 | |
| 		struct bio *b = r1_bio->bios[i];
 | |
| 		struct resync_pages *rp = get_resync_pages(b);
 | |
| 		if (b->bi_end_io != end_sync_read)
 | |
| 			continue;
 | |
| 		/* fixup the bio for reuse, but preserve errno */
 | |
| 		status = b->bi_status;
 | |
| 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
 | |
| 		b->bi_status = status;
 | |
| 		b->bi_iter.bi_sector = r1_bio->sector +
 | |
| 			conf->mirrors[i].rdev->data_offset;
 | |
| 		b->bi_end_io = end_sync_read;
 | |
| 		rp->raid_bio = r1_bio;
 | |
| 		b->bi_private = rp;
 | |
| 
 | |
| 		/* initialize bvec table again */
 | |
| 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
 | |
| 	}
 | |
| 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
 | |
| 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
 | |
| 		    !r1_bio->bios[primary]->bi_status) {
 | |
| 			r1_bio->bios[primary]->bi_end_io = NULL;
 | |
| 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
 | |
| 			break;
 | |
| 		}
 | |
| 	r1_bio->read_disk = primary;
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		int j = 0;
 | |
| 		struct bio *pbio = r1_bio->bios[primary];
 | |
| 		struct bio *sbio = r1_bio->bios[i];
 | |
| 		blk_status_t status = sbio->bi_status;
 | |
| 		struct page **ppages = get_resync_pages(pbio)->pages;
 | |
| 		struct page **spages = get_resync_pages(sbio)->pages;
 | |
| 		struct bio_vec *bi;
 | |
| 		int page_len[RESYNC_PAGES] = { 0 };
 | |
| 		struct bvec_iter_all iter_all;
 | |
| 
 | |
| 		if (sbio->bi_end_io != end_sync_read)
 | |
| 			continue;
 | |
| 		/* Now we can 'fixup' the error value */
 | |
| 		sbio->bi_status = 0;
 | |
| 
 | |
| 		bio_for_each_segment_all(bi, sbio, iter_all)
 | |
| 			page_len[j++] = bi->bv_len;
 | |
| 
 | |
| 		if (!status) {
 | |
| 			for (j = vcnt; j-- ; ) {
 | |
| 				if (memcmp(page_address(ppages[j]),
 | |
| 					   page_address(spages[j]),
 | |
| 					   page_len[j]))
 | |
| 					break;
 | |
| 			}
 | |
| 		} else
 | |
| 			j = 0;
 | |
| 		if (j >= 0)
 | |
| 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
 | |
| 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
 | |
| 			      && !status)) {
 | |
| 			/* No need to write to this device. */
 | |
| 			sbio->bi_end_io = NULL;
 | |
| 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		bio_copy_data(sbio, pbio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int i;
 | |
| 	int disks = conf->raid_disks * 2;
 | |
| 	struct bio *wbio;
 | |
| 
 | |
| 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 | |
| 		/*
 | |
| 		 * ouch - failed to read all of that.
 | |
| 		 * No need to fix read error for check/repair
 | |
| 		 * because all member disks are read.
 | |
| 		 */
 | |
| 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) ||
 | |
| 		    !fix_sync_read_error(r1_bio)) {
 | |
| 			conf->recovery_disabled = mddev->recovery_disabled;
 | |
| 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 			md_done_sync(mddev, r1_bio->sectors, 0);
 | |
| 			put_buf(r1_bio);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
 | |
| 		process_checks(r1_bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * schedule writes
 | |
| 	 */
 | |
| 	atomic_set(&r1_bio->remaining, 1);
 | |
| 	for (i = 0; i < disks ; i++) {
 | |
| 		wbio = r1_bio->bios[i];
 | |
| 		if (wbio->bi_end_io == NULL ||
 | |
| 		    (wbio->bi_end_io == end_sync_read &&
 | |
| 		     (i == r1_bio->read_disk ||
 | |
| 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
 | |
| 			continue;
 | |
| 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
 | |
| 			abort_sync_write(mddev, r1_bio);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		wbio->bi_opf = REQ_OP_WRITE;
 | |
| 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
 | |
| 			wbio->bi_opf |= MD_FAILFAST;
 | |
| 
 | |
| 		wbio->bi_end_io = end_sync_write;
 | |
| 		atomic_inc(&r1_bio->remaining);
 | |
| 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
 | |
| 
 | |
| 		submit_bio_noacct(wbio);
 | |
| 	}
 | |
| 
 | |
| 	put_sync_write_buf(r1_bio, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a kernel thread which:
 | |
|  *
 | |
|  *	1.	Retries failed read operations on working mirrors.
 | |
|  *	2.	Updates the raid superblock when problems encounter.
 | |
|  *	3.	Performs writes following reads for array synchronising.
 | |
|  */
 | |
| 
 | |
| static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	sector_t sect = r1_bio->sector;
 | |
| 	int sectors = r1_bio->sectors;
 | |
| 	int read_disk = r1_bio->read_disk;
 | |
| 	struct mddev *mddev = conf->mddev;
 | |
| 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
 | |
| 
 | |
| 	if (exceed_read_errors(mddev, rdev)) {
 | |
| 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while(sectors) {
 | |
| 		int s = sectors;
 | |
| 		int d = read_disk;
 | |
| 		int success = 0;
 | |
| 		int start;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE>>9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 
 | |
| 		do {
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (rdev &&
 | |
| 			    (test_bit(In_sync, &rdev->flags) ||
 | |
| 			     (!test_bit(Faulty, &rdev->flags) &&
 | |
| 			      rdev->recovery_offset >= sect + s)) &&
 | |
| 			    rdev_has_badblock(rdev, sect, s) == 0) {
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				if (sync_page_io(rdev, sect, s<<9,
 | |
| 					 conf->tmppage, REQ_OP_READ, false))
 | |
| 					success = 1;
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 				if (success)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 			d++;
 | |
| 			if (d == conf->raid_disks * 2)
 | |
| 				d = 0;
 | |
| 		} while (d != read_disk);
 | |
| 
 | |
| 		if (!success) {
 | |
| 			/* Cannot read from anywhere - mark it bad */
 | |
| 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
 | |
| 			if (!rdev_set_badblocks(rdev, sect, s, 0))
 | |
| 				md_error(mddev, rdev);
 | |
| 			break;
 | |
| 		}
 | |
| 		/* write it back and re-read */
 | |
| 		start = d;
 | |
| 		while (d != read_disk) {
 | |
| 			if (d==0)
 | |
| 				d = conf->raid_disks * 2;
 | |
| 			d--;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (rdev &&
 | |
| 			    !test_bit(Faulty, &rdev->flags)) {
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				r1_sync_page_io(rdev, sect, s,
 | |
| 						conf->tmppage, REQ_OP_WRITE);
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 			}
 | |
| 		}
 | |
| 		d = start;
 | |
| 		while (d != read_disk) {
 | |
| 			if (d==0)
 | |
| 				d = conf->raid_disks * 2;
 | |
| 			d--;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (rdev &&
 | |
| 			    !test_bit(Faulty, &rdev->flags)) {
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				if (r1_sync_page_io(rdev, sect, s,
 | |
| 						conf->tmppage, REQ_OP_READ)) {
 | |
| 					atomic_add(s, &rdev->corrected_errors);
 | |
| 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
 | |
| 						mdname(mddev), s,
 | |
| 						(unsigned long long)(sect +
 | |
| 								     rdev->data_offset),
 | |
| 						rdev->bdev);
 | |
| 				}
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 			}
 | |
| 		}
 | |
| 		sectors -= s;
 | |
| 		sect += s;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool narrow_write_error(struct r1bio *r1_bio, int i)
 | |
| {
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 
 | |
| 	/* bio has the data to be written to device 'i' where
 | |
| 	 * we just recently had a write error.
 | |
| 	 * We repeatedly clone the bio and trim down to one block,
 | |
| 	 * then try the write.  Where the write fails we record
 | |
| 	 * a bad block.
 | |
| 	 * It is conceivable that the bio doesn't exactly align with
 | |
| 	 * blocks.  We must handle this somehow.
 | |
| 	 *
 | |
| 	 * We currently own a reference on the rdev.
 | |
| 	 */
 | |
| 
 | |
| 	int block_sectors;
 | |
| 	sector_t sector;
 | |
| 	int sectors;
 | |
| 	int sect_to_write = r1_bio->sectors;
 | |
| 	bool ok = true;
 | |
| 
 | |
| 	if (rdev->badblocks.shift < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	block_sectors = roundup(1 << rdev->badblocks.shift,
 | |
| 				bdev_logical_block_size(rdev->bdev) >> 9);
 | |
| 	sector = r1_bio->sector;
 | |
| 	sectors = ((sector + block_sectors)
 | |
| 		   & ~(sector_t)(block_sectors - 1))
 | |
| 		- sector;
 | |
| 
 | |
| 	while (sect_to_write) {
 | |
| 		struct bio *wbio;
 | |
| 		if (sectors > sect_to_write)
 | |
| 			sectors = sect_to_write;
 | |
| 		/* Write at 'sector' for 'sectors'*/
 | |
| 
 | |
| 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 | |
| 			wbio = bio_alloc_clone(rdev->bdev,
 | |
| 					       r1_bio->behind_master_bio,
 | |
| 					       GFP_NOIO, &mddev->bio_set);
 | |
| 		} else {
 | |
| 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
 | |
| 					       GFP_NOIO, &mddev->bio_set);
 | |
| 		}
 | |
| 
 | |
| 		wbio->bi_opf = REQ_OP_WRITE;
 | |
| 		wbio->bi_iter.bi_sector = r1_bio->sector;
 | |
| 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
 | |
| 
 | |
| 		bio_trim(wbio, sector - r1_bio->sector, sectors);
 | |
| 		wbio->bi_iter.bi_sector += rdev->data_offset;
 | |
| 
 | |
| 		if (submit_bio_wait(wbio) < 0)
 | |
| 			/* failure! */
 | |
| 			ok = rdev_set_badblocks(rdev, sector,
 | |
| 						sectors, 0)
 | |
| 				&& ok;
 | |
| 
 | |
| 		bio_put(wbio);
 | |
| 		sect_to_write -= sectors;
 | |
| 		sector += sectors;
 | |
| 		sectors = block_sectors;
 | |
| 	}
 | |
| 	return ok;
 | |
| }
 | |
| 
 | |
| static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	int m;
 | |
| 	int s = r1_bio->sectors;
 | |
| 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[m].rdev;
 | |
| 		struct bio *bio = r1_bio->bios[m];
 | |
| 		if (bio->bi_end_io == NULL)
 | |
| 			continue;
 | |
| 		if (!bio->bi_status &&
 | |
| 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
 | |
| 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
 | |
| 		}
 | |
| 		if (bio->bi_status &&
 | |
| 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
 | |
| 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
 | |
| 				md_error(conf->mddev, rdev);
 | |
| 		}
 | |
| 	}
 | |
| 	put_buf(r1_bio);
 | |
| 	md_done_sync(conf->mddev, s, 1);
 | |
| }
 | |
| 
 | |
| static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	int m, idx;
 | |
| 	bool fail = false;
 | |
| 
 | |
| 	for (m = 0; m < conf->raid_disks * 2 ; m++)
 | |
| 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
 | |
| 			struct md_rdev *rdev = conf->mirrors[m].rdev;
 | |
| 			rdev_clear_badblocks(rdev,
 | |
| 					     r1_bio->sector,
 | |
| 					     r1_bio->sectors, 0);
 | |
| 			rdev_dec_pending(rdev, conf->mddev);
 | |
| 		} else if (r1_bio->bios[m] != NULL) {
 | |
| 			/* This drive got a write error.  We need to
 | |
| 			 * narrow down and record precise write
 | |
| 			 * errors.
 | |
| 			 */
 | |
| 			fail = true;
 | |
| 			if (!narrow_write_error(r1_bio, m))
 | |
| 				md_error(conf->mddev,
 | |
| 					 conf->mirrors[m].rdev);
 | |
| 				/* an I/O failed, we can't clear the bitmap */
 | |
| 			rdev_dec_pending(conf->mirrors[m].rdev,
 | |
| 					 conf->mddev);
 | |
| 		}
 | |
| 	if (fail) {
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
 | |
| 		idx = sector_to_idx(r1_bio->sector);
 | |
| 		atomic_inc(&conf->nr_queued[idx]);
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		/*
 | |
| 		 * In case freeze_array() is waiting for condition
 | |
| 		 * get_unqueued_pending() == extra to be true.
 | |
| 		 */
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| 		md_wakeup_thread(conf->mddev->thread);
 | |
| 	} else {
 | |
| 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 			close_write(r1_bio);
 | |
| 		raid_end_bio_io(r1_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct mddev *mddev = conf->mddev;
 | |
| 	struct bio *bio;
 | |
| 	struct md_rdev *rdev;
 | |
| 	sector_t sector;
 | |
| 
 | |
| 	clear_bit(R1BIO_ReadError, &r1_bio->state);
 | |
| 	/* we got a read error. Maybe the drive is bad.  Maybe just
 | |
| 	 * the block and we can fix it.
 | |
| 	 * We freeze all other IO, and try reading the block from
 | |
| 	 * other devices.  When we find one, we re-write
 | |
| 	 * and check it that fixes the read error.
 | |
| 	 * This is all done synchronously while the array is
 | |
| 	 * frozen
 | |
| 	 */
 | |
| 
 | |
| 	bio = r1_bio->bios[r1_bio->read_disk];
 | |
| 	bio_put(bio);
 | |
| 	r1_bio->bios[r1_bio->read_disk] = NULL;
 | |
| 
 | |
| 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
 | |
| 	if (mddev->ro == 0
 | |
| 	    && !test_bit(FailFast, &rdev->flags)) {
 | |
| 		freeze_array(conf, 1);
 | |
| 		fix_read_error(conf, r1_bio);
 | |
| 		unfreeze_array(conf);
 | |
| 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
 | |
| 		md_error(mddev, rdev);
 | |
| 	} else {
 | |
| 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
 | |
| 	}
 | |
| 
 | |
| 	rdev_dec_pending(rdev, conf->mddev);
 | |
| 	sector = r1_bio->sector;
 | |
| 	bio = r1_bio->master_bio;
 | |
| 
 | |
| 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
 | |
| 	r1_bio->state = 0;
 | |
| 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
 | |
| 	allow_barrier(conf, sector);
 | |
| }
 | |
| 
 | |
| static void raid1d(struct md_thread *thread)
 | |
| {
 | |
| 	struct mddev *mddev = thread->mddev;
 | |
| 	struct r1bio *r1_bio;
 | |
| 	unsigned long flags;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct list_head *head = &conf->retry_list;
 | |
| 	struct blk_plug plug;
 | |
| 	int idx;
 | |
| 
 | |
| 	md_check_recovery(mddev);
 | |
| 
 | |
| 	if (!list_empty_careful(&conf->bio_end_io_list) &&
 | |
| 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
 | |
| 		LIST_HEAD(tmp);
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
 | |
| 			list_splice_init(&conf->bio_end_io_list, &tmp);
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 		while (!list_empty(&tmp)) {
 | |
| 			r1_bio = list_first_entry(&tmp, struct r1bio,
 | |
| 						  retry_list);
 | |
| 			list_del(&r1_bio->retry_list);
 | |
| 			idx = sector_to_idx(r1_bio->sector);
 | |
| 			atomic_dec(&conf->nr_queued[idx]);
 | |
| 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 				close_write(r1_bio);
 | |
| 			raid_end_bio_io(r1_bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	for (;;) {
 | |
| 
 | |
| 		flush_pending_writes(conf);
 | |
| 
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (list_empty(head)) {
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			break;
 | |
| 		}
 | |
| 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
 | |
| 		list_del(head->prev);
 | |
| 		idx = sector_to_idx(r1_bio->sector);
 | |
| 		atomic_dec(&conf->nr_queued[idx]);
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 		mddev = r1_bio->mddev;
 | |
| 		conf = mddev->private;
 | |
| 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
 | |
| 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | |
| 			    test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 				handle_sync_write_finished(conf, r1_bio);
 | |
| 			else
 | |
| 				sync_request_write(mddev, r1_bio);
 | |
| 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | |
| 			   test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 			handle_write_finished(conf, r1_bio);
 | |
| 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
 | |
| 			handle_read_error(conf, r1_bio);
 | |
| 		else
 | |
| 			WARN_ON_ONCE(1);
 | |
| 
 | |
| 		cond_resched();
 | |
| 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
 | |
| 			md_check_recovery(mddev);
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| }
 | |
| 
 | |
| static int init_resync(struct r1conf *conf)
 | |
| {
 | |
| 	int buffs;
 | |
| 
 | |
| 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
 | |
| 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
 | |
| 
 | |
| 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
 | |
| 			    r1buf_pool_free, conf->poolinfo);
 | |
| }
 | |
| 
 | |
| static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
 | |
| {
 | |
| 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
 | |
| 	struct resync_pages *rps;
 | |
| 	struct bio *bio;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = conf->poolinfo->raid_disks; i--; ) {
 | |
| 		bio = r1bio->bios[i];
 | |
| 		rps = bio->bi_private;
 | |
| 		bio_reset(bio, NULL, 0);
 | |
| 		bio->bi_private = rps;
 | |
| 	}
 | |
| 	r1bio->master_bio = NULL;
 | |
| 	return r1bio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * perform a "sync" on one "block"
 | |
|  *
 | |
|  * We need to make sure that no normal I/O request - particularly write
 | |
|  * requests - conflict with active sync requests.
 | |
|  *
 | |
|  * This is achieved by tracking pending requests and a 'barrier' concept
 | |
|  * that can be installed to exclude normal IO requests.
 | |
|  */
 | |
| 
 | |
| static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
 | |
| 				   sector_t max_sector, int *skipped)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct r1bio *r1_bio;
 | |
| 	struct bio *bio;
 | |
| 	sector_t nr_sectors;
 | |
| 	int disk = -1;
 | |
| 	int i;
 | |
| 	int wonly = -1;
 | |
| 	int write_targets = 0, read_targets = 0;
 | |
| 	sector_t sync_blocks;
 | |
| 	bool still_degraded = false;
 | |
| 	int good_sectors = RESYNC_SECTORS;
 | |
| 	int min_bad = 0; /* number of sectors that are bad in all devices */
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 	int page_idx = 0;
 | |
| 
 | |
| 	if (!mempool_initialized(&conf->r1buf_pool))
 | |
| 		if (init_resync(conf))
 | |
| 			return 0;
 | |
| 
 | |
| 	if (sector_nr >= max_sector) {
 | |
| 		/* If we aborted, we need to abort the
 | |
| 		 * sync on the 'current' bitmap chunk (there will
 | |
| 		 * only be one in raid1 resync.
 | |
| 		 * We can find the current addess in mddev->curr_resync
 | |
| 		 */
 | |
| 		if (mddev->curr_resync < max_sector) /* aborted */
 | |
| 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
 | |
| 						    &sync_blocks);
 | |
| 		else /* completed sync */
 | |
| 			conf->fullsync = 0;
 | |
| 
 | |
| 		mddev->bitmap_ops->close_sync(mddev);
 | |
| 		close_sync(conf);
 | |
| 
 | |
| 		if (mddev_is_clustered(mddev)) {
 | |
| 			conf->cluster_sync_low = 0;
 | |
| 			conf->cluster_sync_high = 0;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (mddev->bitmap == NULL &&
 | |
| 	    mddev->recovery_cp == MaxSector &&
 | |
| 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
 | |
| 	    conf->fullsync == 0) {
 | |
| 		*skipped = 1;
 | |
| 		return max_sector - sector_nr;
 | |
| 	}
 | |
| 	/* before building a request, check if we can skip these blocks..
 | |
| 	 * This call the bitmap_start_sync doesn't actually record anything
 | |
| 	 */
 | |
| 	if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
 | |
| 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
 | |
| 		/* We can skip this block, and probably several more */
 | |
| 		*skipped = 1;
 | |
| 		return sync_blocks;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is non-resync activity waiting for a turn, then let it
 | |
| 	 * though before starting on this new sync request.
 | |
| 	 */
 | |
| 	if (atomic_read(&conf->nr_waiting[idx]))
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 
 | |
| 	/* we are incrementing sector_nr below. To be safe, we check against
 | |
| 	 * sector_nr + two times RESYNC_SECTORS
 | |
| 	 */
 | |
| 
 | |
| 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
 | |
| 		mddev_is_clustered(mddev) &&
 | |
| 		(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
 | |
| 
 | |
| 	if (raise_barrier(conf, sector_nr))
 | |
| 		return 0;
 | |
| 
 | |
| 	r1_bio = raid1_alloc_init_r1buf(conf);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we get a correctably read error during resync or recovery,
 | |
| 	 * we might want to read from a different device.  So we
 | |
| 	 * flag all drives that could conceivably be read from for READ,
 | |
| 	 * and any others (which will be non-In_sync devices) for WRITE.
 | |
| 	 * If a read fails, we try reading from something else for which READ
 | |
| 	 * is OK.
 | |
| 	 */
 | |
| 
 | |
| 	r1_bio->mddev = mddev;
 | |
| 	r1_bio->sector = sector_nr;
 | |
| 	r1_bio->state = 0;
 | |
| 	set_bit(R1BIO_IsSync, &r1_bio->state);
 | |
| 	/* make sure good_sectors won't go across barrier unit boundary */
 | |
| 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
 | |
| 
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		struct md_rdev *rdev;
 | |
| 		bio = r1_bio->bios[i];
 | |
| 
 | |
| 		rdev = conf->mirrors[i].rdev;
 | |
| 		if (rdev == NULL ||
 | |
| 		    test_bit(Faulty, &rdev->flags)) {
 | |
| 			if (i < conf->raid_disks)
 | |
| 				still_degraded = true;
 | |
| 		} else if (!test_bit(In_sync, &rdev->flags)) {
 | |
| 			bio->bi_opf = REQ_OP_WRITE;
 | |
| 			bio->bi_end_io = end_sync_write;
 | |
| 			write_targets ++;
 | |
| 		} else {
 | |
| 			/* may need to read from here */
 | |
| 			sector_t first_bad = MaxSector;
 | |
| 			sector_t bad_sectors;
 | |
| 
 | |
| 			if (is_badblock(rdev, sector_nr, good_sectors,
 | |
| 					&first_bad, &bad_sectors)) {
 | |
| 				if (first_bad > sector_nr)
 | |
| 					good_sectors = first_bad - sector_nr;
 | |
| 				else {
 | |
| 					bad_sectors -= (sector_nr - first_bad);
 | |
| 					if (min_bad == 0 ||
 | |
| 					    min_bad > bad_sectors)
 | |
| 						min_bad = bad_sectors;
 | |
| 				}
 | |
| 			}
 | |
| 			if (sector_nr < first_bad) {
 | |
| 				if (test_bit(WriteMostly, &rdev->flags)) {
 | |
| 					if (wonly < 0)
 | |
| 						wonly = i;
 | |
| 				} else {
 | |
| 					if (disk < 0)
 | |
| 						disk = i;
 | |
| 				}
 | |
| 				bio->bi_opf = REQ_OP_READ;
 | |
| 				bio->bi_end_io = end_sync_read;
 | |
| 				read_targets++;
 | |
| 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
 | |
| 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
 | |
| 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
 | |
| 				/*
 | |
| 				 * The device is suitable for reading (InSync),
 | |
| 				 * but has bad block(s) here. Let's try to correct them,
 | |
| 				 * if we are doing resync or repair. Otherwise, leave
 | |
| 				 * this device alone for this sync request.
 | |
| 				 */
 | |
| 				bio->bi_opf = REQ_OP_WRITE;
 | |
| 				bio->bi_end_io = end_sync_write;
 | |
| 				write_targets++;
 | |
| 			}
 | |
| 		}
 | |
| 		if (rdev && bio->bi_end_io) {
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
 | |
| 			bio_set_dev(bio, rdev->bdev);
 | |
| 			if (test_bit(FailFast, &rdev->flags))
 | |
| 				bio->bi_opf |= MD_FAILFAST;
 | |
| 		}
 | |
| 	}
 | |
| 	if (disk < 0)
 | |
| 		disk = wonly;
 | |
| 	r1_bio->read_disk = disk;
 | |
| 
 | |
| 	if (read_targets == 0 && min_bad > 0) {
 | |
| 		/* These sectors are bad on all InSync devices, so we
 | |
| 		 * need to mark them bad on all write targets
 | |
| 		 */
 | |
| 		int ok = 1;
 | |
| 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
 | |
| 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
 | |
| 				struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 				ok = rdev_set_badblocks(rdev, sector_nr,
 | |
| 							min_bad, 0
 | |
| 					) && ok;
 | |
| 			}
 | |
| 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
 | |
| 		*skipped = 1;
 | |
| 		put_buf(r1_bio);
 | |
| 
 | |
| 		if (!ok) {
 | |
| 			/* Cannot record the badblocks, so need to
 | |
| 			 * abort the resync.
 | |
| 			 * If there are multiple read targets, could just
 | |
| 			 * fail the really bad ones ???
 | |
| 			 */
 | |
| 			conf->recovery_disabled = mddev->recovery_disabled;
 | |
| 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 			return 0;
 | |
| 		} else
 | |
| 			return min_bad;
 | |
| 
 | |
| 	}
 | |
| 	if (min_bad > 0 && min_bad < good_sectors) {
 | |
| 		/* only resync enough to reach the next bad->good
 | |
| 		 * transition */
 | |
| 		good_sectors = min_bad;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
 | |
| 		/* extra read targets are also write targets */
 | |
| 		write_targets += read_targets-1;
 | |
| 
 | |
| 	if (write_targets == 0 || read_targets == 0) {
 | |
| 		/* There is nowhere to write, so all non-sync
 | |
| 		 * drives must be failed - so we are finished
 | |
| 		 */
 | |
| 		sector_t rv;
 | |
| 		if (min_bad > 0)
 | |
| 			max_sector = sector_nr + min_bad;
 | |
| 		rv = max_sector - sector_nr;
 | |
| 		*skipped = 1;
 | |
| 		put_buf(r1_bio);
 | |
| 		return rv;
 | |
| 	}
 | |
| 
 | |
| 	if (max_sector > mddev->resync_max)
 | |
| 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
 | |
| 	if (max_sector > sector_nr + good_sectors)
 | |
| 		max_sector = sector_nr + good_sectors;
 | |
| 	nr_sectors = 0;
 | |
| 	sync_blocks = 0;
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		int len = PAGE_SIZE;
 | |
| 		if (sector_nr + (len>>9) > max_sector)
 | |
| 			len = (max_sector - sector_nr) << 9;
 | |
| 		if (len == 0)
 | |
| 			break;
 | |
| 		if (sync_blocks == 0) {
 | |
| 			if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
 | |
| 						&sync_blocks, still_degraded) &&
 | |
| 			    !conf->fullsync &&
 | |
| 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
 | |
| 				break;
 | |
| 			if ((len >> 9) > sync_blocks)
 | |
| 				len = sync_blocks<<9;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
 | |
| 			struct resync_pages *rp;
 | |
| 
 | |
| 			bio = r1_bio->bios[i];
 | |
| 			rp = get_resync_pages(bio);
 | |
| 			if (bio->bi_end_io) {
 | |
| 				page = resync_fetch_page(rp, page_idx);
 | |
| 
 | |
| 				/*
 | |
| 				 * won't fail because the vec table is big
 | |
| 				 * enough to hold all these pages
 | |
| 				 */
 | |
| 				__bio_add_page(bio, page, len, 0);
 | |
| 			}
 | |
| 		}
 | |
| 		nr_sectors += len>>9;
 | |
| 		sector_nr += len>>9;
 | |
| 		sync_blocks -= (len>>9);
 | |
| 	} while (++page_idx < RESYNC_PAGES);
 | |
| 
 | |
| 	r1_bio->sectors = nr_sectors;
 | |
| 
 | |
| 	if (mddev_is_clustered(mddev) &&
 | |
| 			conf->cluster_sync_high < sector_nr + nr_sectors) {
 | |
| 		conf->cluster_sync_low = mddev->curr_resync_completed;
 | |
| 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
 | |
| 		/* Send resync message */
 | |
| 		mddev->cluster_ops->resync_info_update(mddev,
 | |
| 						       conf->cluster_sync_low,
 | |
| 						       conf->cluster_sync_high);
 | |
| 	}
 | |
| 
 | |
| 	/* For a user-requested sync, we read all readable devices and do a
 | |
| 	 * compare
 | |
| 	 */
 | |
| 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
 | |
| 		atomic_set(&r1_bio->remaining, read_targets);
 | |
| 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
 | |
| 			bio = r1_bio->bios[i];
 | |
| 			if (bio->bi_end_io == end_sync_read) {
 | |
| 				read_targets--;
 | |
| 				md_sync_acct_bio(bio, nr_sectors);
 | |
| 				if (read_targets == 1)
 | |
| 					bio->bi_opf &= ~MD_FAILFAST;
 | |
| 				submit_bio_noacct(bio);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		atomic_set(&r1_bio->remaining, 1);
 | |
| 		bio = r1_bio->bios[r1_bio->read_disk];
 | |
| 		md_sync_acct_bio(bio, nr_sectors);
 | |
| 		if (read_targets == 1)
 | |
| 			bio->bi_opf &= ~MD_FAILFAST;
 | |
| 		submit_bio_noacct(bio);
 | |
| 	}
 | |
| 	return nr_sectors;
 | |
| }
 | |
| 
 | |
| static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
 | |
| {
 | |
| 	if (sectors)
 | |
| 		return sectors;
 | |
| 
 | |
| 	return mddev->dev_sectors;
 | |
| }
 | |
| 
 | |
| static struct r1conf *setup_conf(struct mddev *mddev)
 | |
| {
 | |
| 	struct r1conf *conf;
 | |
| 	int i;
 | |
| 	struct raid1_info *disk;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int err = -ENOMEM;
 | |
| 
 | |
| 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
 | |
| 	if (!conf)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
 | |
| 				   sizeof(atomic_t), GFP_KERNEL);
 | |
| 	if (!conf->nr_pending)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
 | |
| 				   sizeof(atomic_t), GFP_KERNEL);
 | |
| 	if (!conf->nr_waiting)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
 | |
| 				  sizeof(atomic_t), GFP_KERNEL);
 | |
| 	if (!conf->nr_queued)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
 | |
| 				sizeof(atomic_t), GFP_KERNEL);
 | |
| 	if (!conf->barrier)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
 | |
| 					    mddev->raid_disks, 2),
 | |
| 				GFP_KERNEL);
 | |
| 	if (!conf->mirrors)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->tmppage = alloc_page(GFP_KERNEL);
 | |
| 	if (!conf->tmppage)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
 | |
| 	if (!conf->poolinfo)
 | |
| 		goto abort;
 | |
| 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
 | |
| 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
 | |
| 			   rbio_pool_free, conf->poolinfo);
 | |
| 	if (err)
 | |
| 		goto abort;
 | |
| 
 | |
| 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
 | |
| 	if (err)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->poolinfo->mddev = mddev;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	spin_lock_init(&conf->device_lock);
 | |
| 	conf->raid_disks = mddev->raid_disks;
 | |
| 	rdev_for_each(rdev, mddev) {
 | |
| 		int disk_idx = rdev->raid_disk;
 | |
| 
 | |
| 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!raid1_add_conf(conf, rdev, disk_idx,
 | |
| 				    test_bit(Replacement, &rdev->flags)))
 | |
| 			goto abort;
 | |
| 	}
 | |
| 	conf->mddev = mddev;
 | |
| 	INIT_LIST_HEAD(&conf->retry_list);
 | |
| 	INIT_LIST_HEAD(&conf->bio_end_io_list);
 | |
| 
 | |
| 	spin_lock_init(&conf->resync_lock);
 | |
| 	init_waitqueue_head(&conf->wait_barrier);
 | |
| 
 | |
| 	bio_list_init(&conf->pending_bio_list);
 | |
| 	conf->recovery_disabled = mddev->recovery_disabled - 1;
 | |
| 
 | |
| 	err = -EIO;
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 
 | |
| 		disk = conf->mirrors + i;
 | |
| 
 | |
| 		if (i < conf->raid_disks &&
 | |
| 		    disk[conf->raid_disks].rdev) {
 | |
| 			/* This slot has a replacement. */
 | |
| 			if (!disk->rdev) {
 | |
| 				/* No original, just make the replacement
 | |
| 				 * a recovering spare
 | |
| 				 */
 | |
| 				disk->rdev =
 | |
| 					disk[conf->raid_disks].rdev;
 | |
| 				disk[conf->raid_disks].rdev = NULL;
 | |
| 			} else if (!test_bit(In_sync, &disk->rdev->flags))
 | |
| 				/* Original is not in_sync - bad */
 | |
| 				goto abort;
 | |
| 		}
 | |
| 
 | |
| 		if (!disk->rdev ||
 | |
| 		    !test_bit(In_sync, &disk->rdev->flags)) {
 | |
| 			disk->head_position = 0;
 | |
| 			if (disk->rdev &&
 | |
| 			    (disk->rdev->saved_raid_disk < 0))
 | |
| 				conf->fullsync = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	rcu_assign_pointer(conf->thread,
 | |
| 			   md_register_thread(raid1d, mddev, "raid1"));
 | |
| 	if (!conf->thread)
 | |
| 		goto abort;
 | |
| 
 | |
| 	return conf;
 | |
| 
 | |
|  abort:
 | |
| 	if (conf) {
 | |
| 		mempool_exit(&conf->r1bio_pool);
 | |
| 		kfree(conf->mirrors);
 | |
| 		safe_put_page(conf->tmppage);
 | |
| 		kfree(conf->poolinfo);
 | |
| 		kfree(conf->nr_pending);
 | |
| 		kfree(conf->nr_waiting);
 | |
| 		kfree(conf->nr_queued);
 | |
| 		kfree(conf->barrier);
 | |
| 		bioset_exit(&conf->bio_split);
 | |
| 		kfree(conf);
 | |
| 	}
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static int raid1_set_limits(struct mddev *mddev)
 | |
| {
 | |
| 	struct queue_limits lim;
 | |
| 	int err;
 | |
| 
 | |
| 	md_init_stacking_limits(&lim);
 | |
| 	lim.max_write_zeroes_sectors = 0;
 | |
| 	lim.features |= BLK_FEAT_ATOMIC_WRITES;
 | |
| 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return queue_limits_set(mddev->gendisk->queue, &lim);
 | |
| }
 | |
| 
 | |
| static int raid1_run(struct mddev *mddev)
 | |
| {
 | |
| 	struct r1conf *conf;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mddev->level != 1) {
 | |
| 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
 | |
| 			mdname(mddev), mddev->level);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (mddev->reshape_position != MaxSector) {
 | |
| 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
 | |
| 			mdname(mddev));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * copy the already verified devices into our private RAID1
 | |
| 	 * bookkeeping area. [whatever we allocate in run(),
 | |
| 	 * should be freed in raid1_free()]
 | |
| 	 */
 | |
| 	if (mddev->private == NULL)
 | |
| 		conf = setup_conf(mddev);
 | |
| 	else
 | |
| 		conf = mddev->private;
 | |
| 
 | |
| 	if (IS_ERR(conf))
 | |
| 		return PTR_ERR(conf);
 | |
| 
 | |
| 	if (!mddev_is_dm(mddev)) {
 | |
| 		ret = raid1_set_limits(mddev);
 | |
| 		if (ret) {
 | |
| 			if (!mddev->private)
 | |
| 				raid1_free(mddev, conf);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mddev->degraded = 0;
 | |
| 	for (i = 0; i < conf->raid_disks; i++)
 | |
| 		if (conf->mirrors[i].rdev == NULL ||
 | |
| 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
 | |
| 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
 | |
| 			mddev->degraded++;
 | |
| 	/*
 | |
| 	 * RAID1 needs at least one disk in active
 | |
| 	 */
 | |
| 	if (conf->raid_disks - mddev->degraded < 1) {
 | |
| 		md_unregister_thread(mddev, &conf->thread);
 | |
| 		if (!mddev->private)
 | |
| 			raid1_free(mddev, conf);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->raid_disks - mddev->degraded == 1)
 | |
| 		mddev->recovery_cp = MaxSector;
 | |
| 
 | |
| 	if (mddev->recovery_cp != MaxSector)
 | |
| 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
 | |
| 			mdname(mddev));
 | |
| 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
 | |
| 		mdname(mddev), mddev->raid_disks - mddev->degraded,
 | |
| 		mddev->raid_disks);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, everything is just fine now
 | |
| 	 */
 | |
| 	rcu_assign_pointer(mddev->thread, conf->thread);
 | |
| 	rcu_assign_pointer(conf->thread, NULL);
 | |
| 	mddev->private = conf;
 | |
| 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
 | |
| 
 | |
| 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
 | |
| 
 | |
| 	ret = md_integrity_register(mddev);
 | |
| 	if (ret)
 | |
| 		md_unregister_thread(mddev, &mddev->thread);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void raid1_free(struct mddev *mddev, void *priv)
 | |
| {
 | |
| 	struct r1conf *conf = priv;
 | |
| 
 | |
| 	mempool_exit(&conf->r1bio_pool);
 | |
| 	kfree(conf->mirrors);
 | |
| 	safe_put_page(conf->tmppage);
 | |
| 	kfree(conf->poolinfo);
 | |
| 	kfree(conf->nr_pending);
 | |
| 	kfree(conf->nr_waiting);
 | |
| 	kfree(conf->nr_queued);
 | |
| 	kfree(conf->barrier);
 | |
| 	bioset_exit(&conf->bio_split);
 | |
| 	kfree(conf);
 | |
| }
 | |
| 
 | |
| static int raid1_resize(struct mddev *mddev, sector_t sectors)
 | |
| {
 | |
| 	/* no resync is happening, and there is enough space
 | |
| 	 * on all devices, so we can resize.
 | |
| 	 * We need to make sure resync covers any new space.
 | |
| 	 * If the array is shrinking we should possibly wait until
 | |
| 	 * any io in the removed space completes, but it hardly seems
 | |
| 	 * worth it.
 | |
| 	 */
 | |
| 	sector_t newsize = raid1_size(mddev, sectors, 0);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mddev->external_size &&
 | |
| 	    mddev->array_sectors > newsize)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	md_set_array_sectors(mddev, newsize);
 | |
| 	if (sectors > mddev->dev_sectors &&
 | |
| 	    mddev->recovery_cp > mddev->dev_sectors) {
 | |
| 		mddev->recovery_cp = mddev->dev_sectors;
 | |
| 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 	}
 | |
| 	mddev->dev_sectors = sectors;
 | |
| 	mddev->resync_max_sectors = sectors;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int raid1_reshape(struct mddev *mddev)
 | |
| {
 | |
| 	/* We need to:
 | |
| 	 * 1/ resize the r1bio_pool
 | |
| 	 * 2/ resize conf->mirrors
 | |
| 	 *
 | |
| 	 * We allocate a new r1bio_pool if we can.
 | |
| 	 * Then raise a device barrier and wait until all IO stops.
 | |
| 	 * Then resize conf->mirrors and swap in the new r1bio pool.
 | |
| 	 *
 | |
| 	 * At the same time, we "pack" the devices so that all the missing
 | |
| 	 * devices have the higher raid_disk numbers.
 | |
| 	 */
 | |
| 	mempool_t newpool, oldpool;
 | |
| 	struct pool_info *newpoolinfo;
 | |
| 	struct raid1_info *newmirrors;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int cnt, raid_disks;
 | |
| 	unsigned long flags;
 | |
| 	int d, d2;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(&newpool, 0, sizeof(newpool));
 | |
| 	memset(&oldpool, 0, sizeof(oldpool));
 | |
| 
 | |
| 	/* Cannot change chunk_size, layout, or level */
 | |
| 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
 | |
| 	    mddev->layout != mddev->new_layout ||
 | |
| 	    mddev->level != mddev->new_level) {
 | |
| 		mddev->new_chunk_sectors = mddev->chunk_sectors;
 | |
| 		mddev->new_layout = mddev->layout;
 | |
| 		mddev->new_level = mddev->level;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!mddev_is_clustered(mddev))
 | |
| 		md_allow_write(mddev);
 | |
| 
 | |
| 	raid_disks = mddev->raid_disks + mddev->delta_disks;
 | |
| 
 | |
| 	if (raid_disks < conf->raid_disks) {
 | |
| 		cnt=0;
 | |
| 		for (d= 0; d < conf->raid_disks; d++)
 | |
| 			if (conf->mirrors[d].rdev)
 | |
| 				cnt++;
 | |
| 		if (cnt > raid_disks)
 | |
| 			return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
 | |
| 	if (!newpoolinfo)
 | |
| 		return -ENOMEM;
 | |
| 	newpoolinfo->mddev = mddev;
 | |
| 	newpoolinfo->raid_disks = raid_disks * 2;
 | |
| 
 | |
| 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
 | |
| 			   rbio_pool_free, newpoolinfo);
 | |
| 	if (ret) {
 | |
| 		kfree(newpoolinfo);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
 | |
| 					 raid_disks, 2),
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!newmirrors) {
 | |
| 		kfree(newpoolinfo);
 | |
| 		mempool_exit(&newpool);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	freeze_array(conf, 0);
 | |
| 
 | |
| 	/* ok, everything is stopped */
 | |
| 	oldpool = conf->r1bio_pool;
 | |
| 	conf->r1bio_pool = newpool;
 | |
| 
 | |
| 	for (d = d2 = 0; d < conf->raid_disks; d++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[d].rdev;
 | |
| 		if (rdev && rdev->raid_disk != d2) {
 | |
| 			sysfs_unlink_rdev(mddev, rdev);
 | |
| 			rdev->raid_disk = d2;
 | |
| 			sysfs_unlink_rdev(mddev, rdev);
 | |
| 			if (sysfs_link_rdev(mddev, rdev))
 | |
| 				pr_warn("md/raid1:%s: cannot register rd%d\n",
 | |
| 					mdname(mddev), rdev->raid_disk);
 | |
| 		}
 | |
| 		if (rdev)
 | |
| 			newmirrors[d2++].rdev = rdev;
 | |
| 	}
 | |
| 	kfree(conf->mirrors);
 | |
| 	conf->mirrors = newmirrors;
 | |
| 	kfree(conf->poolinfo);
 | |
| 	conf->poolinfo = newpoolinfo;
 | |
| 
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	mddev->degraded += (raid_disks - conf->raid_disks);
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	conf->raid_disks = mddev->raid_disks = raid_disks;
 | |
| 	mddev->delta_disks = 0;
 | |
| 
 | |
| 	unfreeze_array(conf);
 | |
| 
 | |
| 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
 | |
| 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 	md_wakeup_thread(mddev->thread);
 | |
| 
 | |
| 	mempool_exit(&oldpool);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void raid1_quiesce(struct mddev *mddev, int quiesce)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 
 | |
| 	if (quiesce)
 | |
| 		freeze_array(conf, 0);
 | |
| 	else
 | |
| 		unfreeze_array(conf);
 | |
| }
 | |
| 
 | |
| static void *raid1_takeover(struct mddev *mddev)
 | |
| {
 | |
| 	/* raid1 can take over:
 | |
| 	 *  raid5 with 2 devices, any layout or chunk size
 | |
| 	 */
 | |
| 	if (mddev->level == 5 && mddev->raid_disks == 2) {
 | |
| 		struct r1conf *conf;
 | |
| 		mddev->new_level = 1;
 | |
| 		mddev->new_layout = 0;
 | |
| 		mddev->new_chunk_sectors = 0;
 | |
| 		conf = setup_conf(mddev);
 | |
| 		if (!IS_ERR(conf)) {
 | |
| 			/* Array must appear to be quiesced */
 | |
| 			conf->array_frozen = 1;
 | |
| 			mddev_clear_unsupported_flags(mddev,
 | |
| 				UNSUPPORTED_MDDEV_FLAGS);
 | |
| 		}
 | |
| 		return conf;
 | |
| 	}
 | |
| 	return ERR_PTR(-EINVAL);
 | |
| }
 | |
| 
 | |
| static struct md_personality raid1_personality =
 | |
| {
 | |
| 	.head = {
 | |
| 		.type	= MD_PERSONALITY,
 | |
| 		.id	= ID_RAID1,
 | |
| 		.name	= "raid1",
 | |
| 		.owner	= THIS_MODULE,
 | |
| 	},
 | |
| 
 | |
| 	.make_request	= raid1_make_request,
 | |
| 	.run		= raid1_run,
 | |
| 	.free		= raid1_free,
 | |
| 	.status		= raid1_status,
 | |
| 	.error_handler	= raid1_error,
 | |
| 	.hot_add_disk	= raid1_add_disk,
 | |
| 	.hot_remove_disk= raid1_remove_disk,
 | |
| 	.spare_active	= raid1_spare_active,
 | |
| 	.sync_request	= raid1_sync_request,
 | |
| 	.resize		= raid1_resize,
 | |
| 	.size		= raid1_size,
 | |
| 	.check_reshape	= raid1_reshape,
 | |
| 	.quiesce	= raid1_quiesce,
 | |
| 	.takeover	= raid1_takeover,
 | |
| };
 | |
| 
 | |
| static int __init raid1_init(void)
 | |
| {
 | |
| 	return register_md_submodule(&raid1_personality.head);
 | |
| }
 | |
| 
 | |
| static void __exit raid1_exit(void)
 | |
| {
 | |
| 	unregister_md_submodule(&raid1_personality.head);
 | |
| }
 | |
| 
 | |
| module_init(raid1_init);
 | |
| module_exit(raid1_exit);
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
 | |
| MODULE_ALIAS("md-personality-3"); /* RAID1 */
 | |
| MODULE_ALIAS("md-raid1");
 | |
| MODULE_ALIAS("md-level-1");
 |