forked from mirrors/linux
		
	 d05af90d62
			
		
	
	
		d05af90d62
		
	
	
	
	
		
			
			md_account_bio() is not called from raid10_handle_discard(), now that we
handle bitmap inside md_account_bio(), also fix missing
bitmap_startwrite for discard.
Test whole disk discard for 20G raid10:
Before:
Device   d/s     dMB/s   drqm/s  %drqm d_await dareq-sz
md0    48.00     16.00     0.00   0.00    5.42   341.33
After:
Device   d/s     dMB/s   drqm/s  %drqm d_await dareq-sz
md0    68.00  20462.00     0.00   0.00    2.65 308133.65
Link: https://lore.kernel.org/linux-raid/20250325015746.3195035-1-yukuai1@huaweicloud.com
Fixes: 528bc2cf2f ("md/raid10: enable io accounting")
Signed-off-by: Yu Kuai <yukuai3@huawei.com>
Acked-by: Coly Li <colyli@kernel.org>
		
	
			
		
			
				
	
	
		
			5161 lines
		
	
	
	
		
			140 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5161 lines
		
	
	
	
		
			140 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * raid10.c : Multiple Devices driver for Linux
 | |
|  *
 | |
|  * Copyright (C) 2000-2004 Neil Brown
 | |
|  *
 | |
|  * RAID-10 support for md.
 | |
|  *
 | |
|  * Base on code in raid1.c.  See raid1.c for further copyright information.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/raid/md_p.h>
 | |
| #include <trace/events/block.h>
 | |
| #include "md.h"
 | |
| 
 | |
| #define RAID_1_10_NAME "raid10"
 | |
| #include "raid10.h"
 | |
| #include "raid0.h"
 | |
| #include "md-bitmap.h"
 | |
| #include "md-cluster.h"
 | |
| 
 | |
| /*
 | |
|  * RAID10 provides a combination of RAID0 and RAID1 functionality.
 | |
|  * The layout of data is defined by
 | |
|  *    chunk_size
 | |
|  *    raid_disks
 | |
|  *    near_copies (stored in low byte of layout)
 | |
|  *    far_copies (stored in second byte of layout)
 | |
|  *    far_offset (stored in bit 16 of layout )
 | |
|  *    use_far_sets (stored in bit 17 of layout )
 | |
|  *    use_far_sets_bugfixed (stored in bit 18 of layout )
 | |
|  *
 | |
|  * The data to be stored is divided into chunks using chunksize.  Each device
 | |
|  * is divided into far_copies sections.   In each section, chunks are laid out
 | |
|  * in a style similar to raid0, but near_copies copies of each chunk is stored
 | |
|  * (each on a different drive).  The starting device for each section is offset
 | |
|  * near_copies from the starting device of the previous section.  Thus there
 | |
|  * are (near_copies * far_copies) of each chunk, and each is on a different
 | |
|  * drive.  near_copies and far_copies must be at least one, and their product
 | |
|  * is at most raid_disks.
 | |
|  *
 | |
|  * If far_offset is true, then the far_copies are handled a bit differently.
 | |
|  * The copies are still in different stripes, but instead of being very far
 | |
|  * apart on disk, there are adjacent stripes.
 | |
|  *
 | |
|  * The far and offset algorithms are handled slightly differently if
 | |
|  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
 | |
|  * sets that are (near_copies * far_copies) in size.  The far copied stripes
 | |
|  * are still shifted by 'near_copies' devices, but this shifting stays confined
 | |
|  * to the set rather than the entire array.  This is done to improve the number
 | |
|  * of device combinations that can fail without causing the array to fail.
 | |
|  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
 | |
|  * on a device):
 | |
|  *    A B C D    A B C D E
 | |
|  *      ...         ...
 | |
|  *    D A B C    E A B C D
 | |
|  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
 | |
|  *    [A B] [C D]    [A B] [C D E]
 | |
|  *    |...| |...|    |...| | ... |
 | |
|  *    [B A] [D C]    [B A] [E C D]
 | |
|  */
 | |
| 
 | |
| static void allow_barrier(struct r10conf *conf);
 | |
| static void lower_barrier(struct r10conf *conf);
 | |
| static int _enough(struct r10conf *conf, int previous, int ignore);
 | |
| static int enough(struct r10conf *conf, int ignore);
 | |
| static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 | |
| 				int *skipped);
 | |
| static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 | |
| static void end_reshape_write(struct bio *bio);
 | |
| static void end_reshape(struct r10conf *conf);
 | |
| 
 | |
| #include "raid1-10.c"
 | |
| 
 | |
| #define NULL_CMD
 | |
| #define cmd_before(conf, cmd) \
 | |
| 	do { \
 | |
| 		write_sequnlock_irq(&(conf)->resync_lock); \
 | |
| 		cmd; \
 | |
| 	} while (0)
 | |
| #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
 | |
| 
 | |
| #define wait_event_barrier_cmd(conf, cond, cmd) \
 | |
| 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
 | |
| 		       cmd_after(conf))
 | |
| 
 | |
| #define wait_event_barrier(conf, cond) \
 | |
| 	wait_event_barrier_cmd(conf, cond, NULL_CMD)
 | |
| 
 | |
| /*
 | |
|  * for resync bio, r10bio pointer can be retrieved from the per-bio
 | |
|  * 'struct resync_pages'.
 | |
|  */
 | |
| static inline struct r10bio *get_resync_r10bio(struct bio *bio)
 | |
| {
 | |
| 	return get_resync_pages(bio)->raid_bio;
 | |
| }
 | |
| 
 | |
| static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 | |
| {
 | |
| 	struct r10conf *conf = data;
 | |
| 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
 | |
| 
 | |
| 	/* allocate a r10bio with room for raid_disks entries in the
 | |
| 	 * bios array */
 | |
| 	return kzalloc(size, gfp_flags);
 | |
| }
 | |
| 
 | |
| #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 | |
| /* amount of memory to reserve for resync requests */
 | |
| #define RESYNC_WINDOW (1024*1024)
 | |
| /* maximum number of concurrent requests, memory permitting */
 | |
| #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 | |
| #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 | |
| #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 | |
| 
 | |
| /*
 | |
|  * When performing a resync, we need to read and compare, so
 | |
|  * we need as many pages are there are copies.
 | |
|  * When performing a recovery, we need 2 bios, one for read,
 | |
|  * one for write (we recover only one drive per r10buf)
 | |
|  *
 | |
|  */
 | |
| static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 | |
| {
 | |
| 	struct r10conf *conf = data;
 | |
| 	struct r10bio *r10_bio;
 | |
| 	struct bio *bio;
 | |
| 	int j;
 | |
| 	int nalloc, nalloc_rp;
 | |
| 	struct resync_pages *rps;
 | |
| 
 | |
| 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 | |
| 	if (!r10_bio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 | |
| 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 | |
| 		nalloc = conf->copies; /* resync */
 | |
| 	else
 | |
| 		nalloc = 2; /* recovery */
 | |
| 
 | |
| 	/* allocate once for all bios */
 | |
| 	if (!conf->have_replacement)
 | |
| 		nalloc_rp = nalloc;
 | |
| 	else
 | |
| 		nalloc_rp = nalloc * 2;
 | |
| 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 | |
| 	if (!rps)
 | |
| 		goto out_free_r10bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate bios.
 | |
| 	 */
 | |
| 	for (j = nalloc ; j-- ; ) {
 | |
| 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 | |
| 		if (!bio)
 | |
| 			goto out_free_bio;
 | |
| 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 | |
| 		r10_bio->devs[j].bio = bio;
 | |
| 		if (!conf->have_replacement)
 | |
| 			continue;
 | |
| 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 | |
| 		if (!bio)
 | |
| 			goto out_free_bio;
 | |
| 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 | |
| 		r10_bio->devs[j].repl_bio = bio;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Allocate RESYNC_PAGES data pages and attach them
 | |
| 	 * where needed.
 | |
| 	 */
 | |
| 	for (j = 0; j < nalloc; j++) {
 | |
| 		struct bio *rbio = r10_bio->devs[j].repl_bio;
 | |
| 		struct resync_pages *rp, *rp_repl;
 | |
| 
 | |
| 		rp = &rps[j];
 | |
| 		if (rbio)
 | |
| 			rp_repl = &rps[nalloc + j];
 | |
| 
 | |
| 		bio = r10_bio->devs[j].bio;
 | |
| 
 | |
| 		if (!j || test_bit(MD_RECOVERY_SYNC,
 | |
| 				   &conf->mddev->recovery)) {
 | |
| 			if (resync_alloc_pages(rp, gfp_flags))
 | |
| 				goto out_free_pages;
 | |
| 		} else {
 | |
| 			memcpy(rp, &rps[0], sizeof(*rp));
 | |
| 			resync_get_all_pages(rp);
 | |
| 		}
 | |
| 
 | |
| 		rp->raid_bio = r10_bio;
 | |
| 		bio->bi_private = rp;
 | |
| 		if (rbio) {
 | |
| 			memcpy(rp_repl, rp, sizeof(*rp));
 | |
| 			rbio->bi_private = rp_repl;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return r10_bio;
 | |
| 
 | |
| out_free_pages:
 | |
| 	while (--j >= 0)
 | |
| 		resync_free_pages(&rps[j]);
 | |
| 
 | |
| 	j = 0;
 | |
| out_free_bio:
 | |
| 	for ( ; j < nalloc; j++) {
 | |
| 		if (r10_bio->devs[j].bio)
 | |
| 			bio_uninit(r10_bio->devs[j].bio);
 | |
| 		kfree(r10_bio->devs[j].bio);
 | |
| 		if (r10_bio->devs[j].repl_bio)
 | |
| 			bio_uninit(r10_bio->devs[j].repl_bio);
 | |
| 		kfree(r10_bio->devs[j].repl_bio);
 | |
| 	}
 | |
| 	kfree(rps);
 | |
| out_free_r10bio:
 | |
| 	rbio_pool_free(r10_bio, conf);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void r10buf_pool_free(void *__r10_bio, void *data)
 | |
| {
 | |
| 	struct r10conf *conf = data;
 | |
| 	struct r10bio *r10bio = __r10_bio;
 | |
| 	int j;
 | |
| 	struct resync_pages *rp = NULL;
 | |
| 
 | |
| 	for (j = conf->copies; j--; ) {
 | |
| 		struct bio *bio = r10bio->devs[j].bio;
 | |
| 
 | |
| 		if (bio) {
 | |
| 			rp = get_resync_pages(bio);
 | |
| 			resync_free_pages(rp);
 | |
| 			bio_uninit(bio);
 | |
| 			kfree(bio);
 | |
| 		}
 | |
| 
 | |
| 		bio = r10bio->devs[j].repl_bio;
 | |
| 		if (bio) {
 | |
| 			bio_uninit(bio);
 | |
| 			kfree(bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* resync pages array stored in the 1st bio's .bi_private */
 | |
| 	kfree(rp);
 | |
| 
 | |
| 	rbio_pool_free(r10bio, conf);
 | |
| }
 | |
| 
 | |
| static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 		struct bio **bio = & r10_bio->devs[i].bio;
 | |
| 		if (!BIO_SPECIAL(*bio))
 | |
| 			bio_put(*bio);
 | |
| 		*bio = NULL;
 | |
| 		bio = &r10_bio->devs[i].repl_bio;
 | |
| 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 | |
| 			bio_put(*bio);
 | |
| 		*bio = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_r10bio(struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	put_all_bios(conf, r10_bio);
 | |
| 	mempool_free(r10_bio, &conf->r10bio_pool);
 | |
| }
 | |
| 
 | |
| static void put_buf(struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	mempool_free(r10_bio, &conf->r10buf_pool);
 | |
| 
 | |
| 	lower_barrier(conf);
 | |
| }
 | |
| 
 | |
| static void wake_up_barrier(struct r10conf *conf)
 | |
| {
 | |
| 	if (wq_has_sleeper(&conf->wait_barrier))
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static void reschedule_retry(struct r10bio *r10_bio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	list_add(&r10_bio->retry_list, &conf->retry_list);
 | |
| 	conf->nr_queued ++;
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 	/* wake up frozen array... */
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 
 | |
| 	md_wakeup_thread(mddev->thread);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * raid_end_bio_io() is called when we have finished servicing a mirrored
 | |
|  * operation and are ready to return a success/failure code to the buffer
 | |
|  * cache layer.
 | |
|  */
 | |
| static void raid_end_bio_io(struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct bio *bio = r10_bio->master_bio;
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 | |
| 		bio->bi_status = BLK_STS_IOERR;
 | |
| 
 | |
| 	bio_endio(bio);
 | |
| 	/*
 | |
| 	 * Wake up any possible resync thread that waits for the device
 | |
| 	 * to go idle.
 | |
| 	 */
 | |
| 	allow_barrier(conf);
 | |
| 
 | |
| 	free_r10bio(r10_bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update disk head position estimator based on IRQ completion info.
 | |
|  */
 | |
| static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 | |
| 		r10_bio->devs[slot].addr + (r10_bio->sectors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the disk number which triggered given bio
 | |
|  */
 | |
| static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 | |
| 			 struct bio *bio, int *slotp, int *replp)
 | |
| {
 | |
| 	int slot;
 | |
| 	int repl = 0;
 | |
| 
 | |
| 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
 | |
| 		if (r10_bio->devs[slot].bio == bio)
 | |
| 			break;
 | |
| 		if (r10_bio->devs[slot].repl_bio == bio) {
 | |
| 			repl = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	update_head_pos(slot, r10_bio);
 | |
| 
 | |
| 	if (slotp)
 | |
| 		*slotp = slot;
 | |
| 	if (replp)
 | |
| 		*replp = repl;
 | |
| 	return r10_bio->devs[slot].devnum;
 | |
| }
 | |
| 
 | |
| static void raid10_end_read_request(struct bio *bio)
 | |
| {
 | |
| 	int uptodate = !bio->bi_status;
 | |
| 	struct r10bio *r10_bio = bio->bi_private;
 | |
| 	int slot;
 | |
| 	struct md_rdev *rdev;
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	slot = r10_bio->read_slot;
 | |
| 	rdev = r10_bio->devs[slot].rdev;
 | |
| 	/*
 | |
| 	 * this branch is our 'one mirror IO has finished' event handler:
 | |
| 	 */
 | |
| 	update_head_pos(slot, r10_bio);
 | |
| 
 | |
| 	if (uptodate) {
 | |
| 		/*
 | |
| 		 * Set R10BIO_Uptodate in our master bio, so that
 | |
| 		 * we will return a good error code to the higher
 | |
| 		 * levels even if IO on some other mirrored buffer fails.
 | |
| 		 *
 | |
| 		 * The 'master' represents the composite IO operation to
 | |
| 		 * user-side. So if something waits for IO, then it will
 | |
| 		 * wait for the 'master' bio.
 | |
| 		 */
 | |
| 		set_bit(R10BIO_Uptodate, &r10_bio->state);
 | |
| 	} else {
 | |
| 		/* If all other devices that store this block have
 | |
| 		 * failed, we want to return the error upwards rather
 | |
| 		 * than fail the last device.  Here we redefine
 | |
| 		 * "uptodate" to mean "Don't want to retry"
 | |
| 		 */
 | |
| 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 | |
| 			     rdev->raid_disk))
 | |
| 			uptodate = 1;
 | |
| 	}
 | |
| 	if (uptodate) {
 | |
| 		raid_end_bio_io(r10_bio);
 | |
| 		rdev_dec_pending(rdev, conf->mddev);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * oops, read error - keep the refcount on the rdev
 | |
| 		 */
 | |
| 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
 | |
| 				   mdname(conf->mddev),
 | |
| 				   rdev->bdev,
 | |
| 				   (unsigned long long)r10_bio->sector);
 | |
| 		set_bit(R10BIO_ReadError, &r10_bio->state);
 | |
| 		reschedule_retry(r10_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void close_write(struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 
 | |
| 	md_write_end(mddev);
 | |
| }
 | |
| 
 | |
| static void one_write_done(struct r10bio *r10_bio)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&r10_bio->remaining)) {
 | |
| 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 | |
| 			reschedule_retry(r10_bio);
 | |
| 		else {
 | |
| 			close_write(r10_bio);
 | |
| 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 | |
| 				reschedule_retry(r10_bio);
 | |
| 			else
 | |
| 				raid_end_bio_io(r10_bio);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid10_end_write_request(struct bio *bio)
 | |
| {
 | |
| 	struct r10bio *r10_bio = bio->bi_private;
 | |
| 	int dev;
 | |
| 	int dec_rdev = 1;
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 	int slot, repl;
 | |
| 	struct md_rdev *rdev = NULL;
 | |
| 	struct bio *to_put = NULL;
 | |
| 	bool discard_error;
 | |
| 
 | |
| 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 | |
| 
 | |
| 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 | |
| 
 | |
| 	if (repl)
 | |
| 		rdev = conf->mirrors[dev].replacement;
 | |
| 	if (!rdev) {
 | |
| 		smp_rmb();
 | |
| 		repl = 0;
 | |
| 		rdev = conf->mirrors[dev].rdev;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * this branch is our 'one mirror IO has finished' event handler:
 | |
| 	 */
 | |
| 	if (bio->bi_status && !discard_error) {
 | |
| 		if (repl)
 | |
| 			/* Never record new bad blocks to replacement,
 | |
| 			 * just fail it.
 | |
| 			 */
 | |
| 			md_error(rdev->mddev, rdev);
 | |
| 		else {
 | |
| 			set_bit(WriteErrorSeen,	&rdev->flags);
 | |
| 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 				set_bit(MD_RECOVERY_NEEDED,
 | |
| 					&rdev->mddev->recovery);
 | |
| 
 | |
| 			dec_rdev = 0;
 | |
| 			if (test_bit(FailFast, &rdev->flags) &&
 | |
| 			    (bio->bi_opf & MD_FAILFAST)) {
 | |
| 				md_error(rdev->mddev, rdev);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * When the device is faulty, it is not necessary to
 | |
| 			 * handle write error.
 | |
| 			 */
 | |
| 			if (!test_bit(Faulty, &rdev->flags))
 | |
| 				set_bit(R10BIO_WriteError, &r10_bio->state);
 | |
| 			else {
 | |
| 				/* Fail the request */
 | |
| 				r10_bio->devs[slot].bio = NULL;
 | |
| 				to_put = bio;
 | |
| 				dec_rdev = 1;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Set R10BIO_Uptodate in our master bio, so that
 | |
| 		 * we will return a good error code for to the higher
 | |
| 		 * levels even if IO on some other mirrored buffer fails.
 | |
| 		 *
 | |
| 		 * The 'master' represents the composite IO operation to
 | |
| 		 * user-side. So if something waits for IO, then it will
 | |
| 		 * wait for the 'master' bio.
 | |
| 		 *
 | |
| 		 * Do not set R10BIO_Uptodate if the current device is
 | |
| 		 * rebuilding or Faulty. This is because we cannot use
 | |
| 		 * such device for properly reading the data back (we could
 | |
| 		 * potentially use it, if the current write would have felt
 | |
| 		 * before rdev->recovery_offset, but for simplicity we don't
 | |
| 		 * check this here.
 | |
| 		 */
 | |
| 		if (test_bit(In_sync, &rdev->flags) &&
 | |
| 		    !test_bit(Faulty, &rdev->flags))
 | |
| 			set_bit(R10BIO_Uptodate, &r10_bio->state);
 | |
| 
 | |
| 		/* Maybe we can clear some bad blocks. */
 | |
| 		if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
 | |
| 				      r10_bio->sectors) &&
 | |
| 		    !discard_error) {
 | |
| 			bio_put(bio);
 | |
| 			if (repl)
 | |
| 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 | |
| 			else
 | |
| 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 | |
| 			dec_rdev = 0;
 | |
| 			set_bit(R10BIO_MadeGood, &r10_bio->state);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *
 | |
| 	 * Let's see if all mirrored write operations have finished
 | |
| 	 * already.
 | |
| 	 */
 | |
| 	one_write_done(r10_bio);
 | |
| 	if (dec_rdev)
 | |
| 		rdev_dec_pending(rdev, conf->mddev);
 | |
| 	if (to_put)
 | |
| 		bio_put(to_put);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RAID10 layout manager
 | |
|  * As well as the chunksize and raid_disks count, there are two
 | |
|  * parameters: near_copies and far_copies.
 | |
|  * near_copies * far_copies must be <= raid_disks.
 | |
|  * Normally one of these will be 1.
 | |
|  * If both are 1, we get raid0.
 | |
|  * If near_copies == raid_disks, we get raid1.
 | |
|  *
 | |
|  * Chunks are laid out in raid0 style with near_copies copies of the
 | |
|  * first chunk, followed by near_copies copies of the next chunk and
 | |
|  * so on.
 | |
|  * If far_copies > 1, then after 1/far_copies of the array has been assigned
 | |
|  * as described above, we start again with a device offset of near_copies.
 | |
|  * So we effectively have another copy of the whole array further down all
 | |
|  * the drives, but with blocks on different drives.
 | |
|  * With this layout, and block is never stored twice on the one device.
 | |
|  *
 | |
|  * raid10_find_phys finds the sector offset of a given virtual sector
 | |
|  * on each device that it is on.
 | |
|  *
 | |
|  * raid10_find_virt does the reverse mapping, from a device and a
 | |
|  * sector offset to a virtual address
 | |
|  */
 | |
| 
 | |
| static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 | |
| {
 | |
| 	int n,f;
 | |
| 	sector_t sector;
 | |
| 	sector_t chunk;
 | |
| 	sector_t stripe;
 | |
| 	int dev;
 | |
| 	int slot = 0;
 | |
| 	int last_far_set_start, last_far_set_size;
 | |
| 
 | |
| 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 | |
| 	last_far_set_start *= geo->far_set_size;
 | |
| 
 | |
| 	last_far_set_size = geo->far_set_size;
 | |
| 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 | |
| 
 | |
| 	/* now calculate first sector/dev */
 | |
| 	chunk = r10bio->sector >> geo->chunk_shift;
 | |
| 	sector = r10bio->sector & geo->chunk_mask;
 | |
| 
 | |
| 	chunk *= geo->near_copies;
 | |
| 	stripe = chunk;
 | |
| 	dev = sector_div(stripe, geo->raid_disks);
 | |
| 	if (geo->far_offset)
 | |
| 		stripe *= geo->far_copies;
 | |
| 
 | |
| 	sector += stripe << geo->chunk_shift;
 | |
| 
 | |
| 	/* and calculate all the others */
 | |
| 	for (n = 0; n < geo->near_copies; n++) {
 | |
| 		int d = dev;
 | |
| 		int set;
 | |
| 		sector_t s = sector;
 | |
| 		r10bio->devs[slot].devnum = d;
 | |
| 		r10bio->devs[slot].addr = s;
 | |
| 		slot++;
 | |
| 
 | |
| 		for (f = 1; f < geo->far_copies; f++) {
 | |
| 			set = d / geo->far_set_size;
 | |
| 			d += geo->near_copies;
 | |
| 
 | |
| 			if ((geo->raid_disks % geo->far_set_size) &&
 | |
| 			    (d > last_far_set_start)) {
 | |
| 				d -= last_far_set_start;
 | |
| 				d %= last_far_set_size;
 | |
| 				d += last_far_set_start;
 | |
| 			} else {
 | |
| 				d %= geo->far_set_size;
 | |
| 				d += geo->far_set_size * set;
 | |
| 			}
 | |
| 			s += geo->stride;
 | |
| 			r10bio->devs[slot].devnum = d;
 | |
| 			r10bio->devs[slot].addr = s;
 | |
| 			slot++;
 | |
| 		}
 | |
| 		dev++;
 | |
| 		if (dev >= geo->raid_disks) {
 | |
| 			dev = 0;
 | |
| 			sector += (geo->chunk_mask + 1);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 | |
| {
 | |
| 	struct geom *geo = &conf->geo;
 | |
| 
 | |
| 	if (conf->reshape_progress != MaxSector &&
 | |
| 	    ((r10bio->sector >= conf->reshape_progress) !=
 | |
| 	     conf->mddev->reshape_backwards)) {
 | |
| 		set_bit(R10BIO_Previous, &r10bio->state);
 | |
| 		geo = &conf->prev;
 | |
| 	} else
 | |
| 		clear_bit(R10BIO_Previous, &r10bio->state);
 | |
| 
 | |
| 	__raid10_find_phys(geo, r10bio);
 | |
| }
 | |
| 
 | |
| static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 | |
| {
 | |
| 	sector_t offset, chunk, vchunk;
 | |
| 	/* Never use conf->prev as this is only called during resync
 | |
| 	 * or recovery, so reshape isn't happening
 | |
| 	 */
 | |
| 	struct geom *geo = &conf->geo;
 | |
| 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 | |
| 	int far_set_size = geo->far_set_size;
 | |
| 	int last_far_set_start;
 | |
| 
 | |
| 	if (geo->raid_disks % geo->far_set_size) {
 | |
| 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 | |
| 		last_far_set_start *= geo->far_set_size;
 | |
| 
 | |
| 		if (dev >= last_far_set_start) {
 | |
| 			far_set_size = geo->far_set_size;
 | |
| 			far_set_size += (geo->raid_disks % geo->far_set_size);
 | |
| 			far_set_start = last_far_set_start;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	offset = sector & geo->chunk_mask;
 | |
| 	if (geo->far_offset) {
 | |
| 		int fc;
 | |
| 		chunk = sector >> geo->chunk_shift;
 | |
| 		fc = sector_div(chunk, geo->far_copies);
 | |
| 		dev -= fc * geo->near_copies;
 | |
| 		if (dev < far_set_start)
 | |
| 			dev += far_set_size;
 | |
| 	} else {
 | |
| 		while (sector >= geo->stride) {
 | |
| 			sector -= geo->stride;
 | |
| 			if (dev < (geo->near_copies + far_set_start))
 | |
| 				dev += far_set_size - geo->near_copies;
 | |
| 			else
 | |
| 				dev -= geo->near_copies;
 | |
| 		}
 | |
| 		chunk = sector >> geo->chunk_shift;
 | |
| 	}
 | |
| 	vchunk = chunk * geo->raid_disks + dev;
 | |
| 	sector_div(vchunk, geo->near_copies);
 | |
| 	return (vchunk << geo->chunk_shift) + offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine returns the disk from which the requested read should
 | |
|  * be done. There is a per-array 'next expected sequential IO' sector
 | |
|  * number - if this matches on the next IO then we use the last disk.
 | |
|  * There is also a per-disk 'last know head position' sector that is
 | |
|  * maintained from IRQ contexts, both the normal and the resync IO
 | |
|  * completion handlers update this position correctly. If there is no
 | |
|  * perfect sequential match then we pick the disk whose head is closest.
 | |
|  *
 | |
|  * If there are 2 mirrors in the same 2 devices, performance degrades
 | |
|  * because position is mirror, not device based.
 | |
|  *
 | |
|  * The rdev for the device selected will have nr_pending incremented.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * FIXME: possibly should rethink readbalancing and do it differently
 | |
|  * depending on near_copies / far_copies geometry.
 | |
|  */
 | |
| static struct md_rdev *read_balance(struct r10conf *conf,
 | |
| 				    struct r10bio *r10_bio,
 | |
| 				    int *max_sectors)
 | |
| {
 | |
| 	const sector_t this_sector = r10_bio->sector;
 | |
| 	int disk, slot;
 | |
| 	int sectors = r10_bio->sectors;
 | |
| 	int best_good_sectors;
 | |
| 	sector_t new_distance, best_dist;
 | |
| 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 | |
| 	int do_balance;
 | |
| 	int best_dist_slot, best_pending_slot;
 | |
| 	bool has_nonrot_disk = false;
 | |
| 	unsigned int min_pending;
 | |
| 	struct geom *geo = &conf->geo;
 | |
| 
 | |
| 	raid10_find_phys(conf, r10_bio);
 | |
| 	best_dist_slot = -1;
 | |
| 	min_pending = UINT_MAX;
 | |
| 	best_dist_rdev = NULL;
 | |
| 	best_pending_rdev = NULL;
 | |
| 	best_dist = MaxSector;
 | |
| 	best_good_sectors = 0;
 | |
| 	do_balance = 1;
 | |
| 	clear_bit(R10BIO_FailFast, &r10_bio->state);
 | |
| 
 | |
| 	if (raid1_should_read_first(conf->mddev, this_sector, sectors))
 | |
| 		do_balance = 0;
 | |
| 
 | |
| 	for (slot = 0; slot < conf->copies ; slot++) {
 | |
| 		sector_t first_bad;
 | |
| 		sector_t bad_sectors;
 | |
| 		sector_t dev_sector;
 | |
| 		unsigned int pending;
 | |
| 		bool nonrot;
 | |
| 
 | |
| 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 | |
| 			continue;
 | |
| 		disk = r10_bio->devs[slot].devnum;
 | |
| 		rdev = conf->mirrors[disk].replacement;
 | |
| 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 | |
| 		    r10_bio->devs[slot].addr + sectors >
 | |
| 		    rdev->recovery_offset)
 | |
| 			rdev = conf->mirrors[disk].rdev;
 | |
| 		if (rdev == NULL ||
 | |
| 		    test_bit(Faulty, &rdev->flags))
 | |
| 			continue;
 | |
| 		if (!test_bit(In_sync, &rdev->flags) &&
 | |
| 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 | |
| 			continue;
 | |
| 
 | |
| 		dev_sector = r10_bio->devs[slot].addr;
 | |
| 		if (is_badblock(rdev, dev_sector, sectors,
 | |
| 				&first_bad, &bad_sectors)) {
 | |
| 			if (best_dist < MaxSector)
 | |
| 				/* Already have a better slot */
 | |
| 				continue;
 | |
| 			if (first_bad <= dev_sector) {
 | |
| 				/* Cannot read here.  If this is the
 | |
| 				 * 'primary' device, then we must not read
 | |
| 				 * beyond 'bad_sectors' from another device.
 | |
| 				 */
 | |
| 				bad_sectors -= (dev_sector - first_bad);
 | |
| 				if (!do_balance && sectors > bad_sectors)
 | |
| 					sectors = bad_sectors;
 | |
| 				if (best_good_sectors > sectors)
 | |
| 					best_good_sectors = sectors;
 | |
| 			} else {
 | |
| 				sector_t good_sectors =
 | |
| 					first_bad - dev_sector;
 | |
| 				if (good_sectors > best_good_sectors) {
 | |
| 					best_good_sectors = good_sectors;
 | |
| 					best_dist_slot = slot;
 | |
| 					best_dist_rdev = rdev;
 | |
| 				}
 | |
| 				if (!do_balance)
 | |
| 					/* Must read from here */
 | |
| 					break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		} else
 | |
| 			best_good_sectors = sectors;
 | |
| 
 | |
| 		if (!do_balance)
 | |
| 			break;
 | |
| 
 | |
| 		nonrot = bdev_nonrot(rdev->bdev);
 | |
| 		has_nonrot_disk |= nonrot;
 | |
| 		pending = atomic_read(&rdev->nr_pending);
 | |
| 		if (min_pending > pending && nonrot) {
 | |
| 			min_pending = pending;
 | |
| 			best_pending_slot = slot;
 | |
| 			best_pending_rdev = rdev;
 | |
| 		}
 | |
| 
 | |
| 		if (best_dist_slot >= 0)
 | |
| 			/* At least 2 disks to choose from so failfast is OK */
 | |
| 			set_bit(R10BIO_FailFast, &r10_bio->state);
 | |
| 		/* This optimisation is debatable, and completely destroys
 | |
| 		 * sequential read speed for 'far copies' arrays.  So only
 | |
| 		 * keep it for 'near' arrays, and review those later.
 | |
| 		 */
 | |
| 		if (geo->near_copies > 1 && !pending)
 | |
| 			new_distance = 0;
 | |
| 
 | |
| 		/* for far > 1 always use the lowest address */
 | |
| 		else if (geo->far_copies > 1)
 | |
| 			new_distance = r10_bio->devs[slot].addr;
 | |
| 		else
 | |
| 			new_distance = abs(r10_bio->devs[slot].addr -
 | |
| 					   conf->mirrors[disk].head_position);
 | |
| 
 | |
| 		if (new_distance < best_dist) {
 | |
| 			best_dist = new_distance;
 | |
| 			best_dist_slot = slot;
 | |
| 			best_dist_rdev = rdev;
 | |
| 		}
 | |
| 	}
 | |
| 	if (slot >= conf->copies) {
 | |
| 		if (has_nonrot_disk) {
 | |
| 			slot = best_pending_slot;
 | |
| 			rdev = best_pending_rdev;
 | |
| 		} else {
 | |
| 			slot = best_dist_slot;
 | |
| 			rdev = best_dist_rdev;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (slot >= 0) {
 | |
| 		atomic_inc(&rdev->nr_pending);
 | |
| 		r10_bio->read_slot = slot;
 | |
| 	} else
 | |
| 		rdev = NULL;
 | |
| 	*max_sectors = best_good_sectors;
 | |
| 
 | |
| 	return rdev;
 | |
| }
 | |
| 
 | |
| static void flush_pending_writes(struct r10conf *conf)
 | |
| {
 | |
| 	/* Any writes that have been queued but are awaiting
 | |
| 	 * bitmap updates get flushed here.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 
 | |
| 	if (conf->pending_bio_list.head) {
 | |
| 		struct blk_plug plug;
 | |
| 		struct bio *bio;
 | |
| 
 | |
| 		bio = bio_list_get(&conf->pending_bio_list);
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * As this is called in a wait_event() loop (see freeze_array),
 | |
| 		 * current->state might be TASK_UNINTERRUPTIBLE which will
 | |
| 		 * cause a warning when we prepare to wait again.  As it is
 | |
| 		 * rare that this path is taken, it is perfectly safe to force
 | |
| 		 * us to go around the wait_event() loop again, so the warning
 | |
| 		 * is a false-positive. Silence the warning by resetting
 | |
| 		 * thread state
 | |
| 		 */
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 		blk_start_plug(&plug);
 | |
| 		raid1_prepare_flush_writes(conf->mddev);
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| 
 | |
| 		while (bio) { /* submit pending writes */
 | |
| 			struct bio *next = bio->bi_next;
 | |
| 
 | |
| 			raid1_submit_write(bio);
 | |
| 			bio = next;
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 		blk_finish_plug(&plug);
 | |
| 	} else
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| }
 | |
| 
 | |
| /* Barriers....
 | |
|  * Sometimes we need to suspend IO while we do something else,
 | |
|  * either some resync/recovery, or reconfigure the array.
 | |
|  * To do this we raise a 'barrier'.
 | |
|  * The 'barrier' is a counter that can be raised multiple times
 | |
|  * to count how many activities are happening which preclude
 | |
|  * normal IO.
 | |
|  * We can only raise the barrier if there is no pending IO.
 | |
|  * i.e. if nr_pending == 0.
 | |
|  * We choose only to raise the barrier if no-one is waiting for the
 | |
|  * barrier to go down.  This means that as soon as an IO request
 | |
|  * is ready, no other operations which require a barrier will start
 | |
|  * until the IO request has had a chance.
 | |
|  *
 | |
|  * So: regular IO calls 'wait_barrier'.  When that returns there
 | |
|  *    is no backgroup IO happening,  It must arrange to call
 | |
|  *    allow_barrier when it has finished its IO.
 | |
|  * backgroup IO calls must call raise_barrier.  Once that returns
 | |
|  *    there is no normal IO happeing.  It must arrange to call
 | |
|  *    lower_barrier when the particular background IO completes.
 | |
|  */
 | |
| 
 | |
| static void raise_barrier(struct r10conf *conf, int force)
 | |
| {
 | |
| 	write_seqlock_irq(&conf->resync_lock);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(force && !conf->barrier))
 | |
| 		force = false;
 | |
| 
 | |
| 	/* Wait until no block IO is waiting (unless 'force') */
 | |
| 	wait_event_barrier(conf, force || !conf->nr_waiting);
 | |
| 
 | |
| 	/* block any new IO from starting */
 | |
| 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
 | |
| 
 | |
| 	/* Now wait for all pending IO to complete */
 | |
| 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
 | |
| 				 conf->barrier < RESYNC_DEPTH);
 | |
| 
 | |
| 	write_sequnlock_irq(&conf->resync_lock);
 | |
| }
 | |
| 
 | |
| static void lower_barrier(struct r10conf *conf)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	write_seqlock_irqsave(&conf->resync_lock, flags);
 | |
| 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
 | |
| 	write_sequnlock_irqrestore(&conf->resync_lock, flags);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static bool stop_waiting_barrier(struct r10conf *conf)
 | |
| {
 | |
| 	struct bio_list *bio_list = current->bio_list;
 | |
| 	struct md_thread *thread;
 | |
| 
 | |
| 	/* barrier is dropped */
 | |
| 	if (!conf->barrier)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are already pending requests (preventing the barrier from
 | |
| 	 * rising completely), and the pre-process bio queue isn't empty, then
 | |
| 	 * don't wait, as we need to empty that queue to get the nr_pending
 | |
| 	 * count down.
 | |
| 	 */
 | |
| 	if (atomic_read(&conf->nr_pending) && bio_list &&
 | |
| 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
 | |
| 		return true;
 | |
| 
 | |
| 	/* daemon thread must exist while handling io */
 | |
| 	thread = rcu_dereference_protected(conf->mddev->thread, true);
 | |
| 	/*
 | |
| 	 * move on if io is issued from raid10d(), nr_pending is not released
 | |
| 	 * from original io(see handle_read_error()). All raise barrier is
 | |
| 	 * blocked until this io is done.
 | |
| 	 */
 | |
| 	if (thread->tsk == current) {
 | |
| 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool wait_barrier_nolock(struct r10conf *conf)
 | |
| {
 | |
| 	unsigned int seq = read_seqbegin(&conf->resync_lock);
 | |
| 
 | |
| 	if (READ_ONCE(conf->barrier))
 | |
| 		return false;
 | |
| 
 | |
| 	atomic_inc(&conf->nr_pending);
 | |
| 	if (!read_seqretry(&conf->resync_lock, seq))
 | |
| 		return true;
 | |
| 
 | |
| 	if (atomic_dec_and_test(&conf->nr_pending))
 | |
| 		wake_up_barrier(conf);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool wait_barrier(struct r10conf *conf, bool nowait)
 | |
| {
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	if (wait_barrier_nolock(conf))
 | |
| 		return true;
 | |
| 
 | |
| 	write_seqlock_irq(&conf->resync_lock);
 | |
| 	if (conf->barrier) {
 | |
| 		/* Return false when nowait flag is set */
 | |
| 		if (nowait) {
 | |
| 			ret = false;
 | |
| 		} else {
 | |
| 			conf->nr_waiting++;
 | |
| 			mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
 | |
| 			wait_event_barrier(conf, stop_waiting_barrier(conf));
 | |
| 			conf->nr_waiting--;
 | |
| 		}
 | |
| 		if (!conf->nr_waiting)
 | |
| 			wake_up(&conf->wait_barrier);
 | |
| 	}
 | |
| 	/* Only increment nr_pending when we wait */
 | |
| 	if (ret)
 | |
| 		atomic_inc(&conf->nr_pending);
 | |
| 	write_sequnlock_irq(&conf->resync_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void allow_barrier(struct r10conf *conf)
 | |
| {
 | |
| 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
 | |
| 			(conf->array_freeze_pending))
 | |
| 		wake_up_barrier(conf);
 | |
| }
 | |
| 
 | |
| static void freeze_array(struct r10conf *conf, int extra)
 | |
| {
 | |
| 	/* stop syncio and normal IO and wait for everything to
 | |
| 	 * go quiet.
 | |
| 	 * We increment barrier and nr_waiting, and then
 | |
| 	 * wait until nr_pending match nr_queued+extra
 | |
| 	 * This is called in the context of one normal IO request
 | |
| 	 * that has failed. Thus any sync request that might be pending
 | |
| 	 * will be blocked by nr_pending, and we need to wait for
 | |
| 	 * pending IO requests to complete or be queued for re-try.
 | |
| 	 * Thus the number queued (nr_queued) plus this request (extra)
 | |
| 	 * must match the number of pending IOs (nr_pending) before
 | |
| 	 * we continue.
 | |
| 	 */
 | |
| 	write_seqlock_irq(&conf->resync_lock);
 | |
| 	conf->array_freeze_pending++;
 | |
| 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
 | |
| 	conf->nr_waiting++;
 | |
| 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
 | |
| 			conf->nr_queued + extra, flush_pending_writes(conf));
 | |
| 	conf->array_freeze_pending--;
 | |
| 	write_sequnlock_irq(&conf->resync_lock);
 | |
| }
 | |
| 
 | |
| static void unfreeze_array(struct r10conf *conf)
 | |
| {
 | |
| 	/* reverse the effect of the freeze */
 | |
| 	write_seqlock_irq(&conf->resync_lock);
 | |
| 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
 | |
| 	conf->nr_waiting--;
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 	write_sequnlock_irq(&conf->resync_lock);
 | |
| }
 | |
| 
 | |
| static sector_t choose_data_offset(struct r10bio *r10_bio,
 | |
| 				   struct md_rdev *rdev)
 | |
| {
 | |
| 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
 | |
| 	    test_bit(R10BIO_Previous, &r10_bio->state))
 | |
| 		return rdev->data_offset;
 | |
| 	else
 | |
| 		return rdev->new_data_offset;
 | |
| }
 | |
| 
 | |
| static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
 | |
| {
 | |
| 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
 | |
| 	struct mddev *mddev = plug->cb.data;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	if (from_schedule) {
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		wake_up_barrier(conf);
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		kfree(plug);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* we aren't scheduling, so we can do the write-out directly. */
 | |
| 	bio = bio_list_get(&plug->pending);
 | |
| 	raid1_prepare_flush_writes(mddev);
 | |
| 	wake_up_barrier(conf);
 | |
| 
 | |
| 	while (bio) { /* submit pending writes */
 | |
| 		struct bio *next = bio->bi_next;
 | |
| 
 | |
| 		raid1_submit_write(bio);
 | |
| 		bio = next;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	kfree(plug);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 1. Register the new request and wait if the reconstruction thread has put
 | |
|  * up a bar for new requests. Continue immediately if no resync is active
 | |
|  * currently.
 | |
|  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
 | |
|  */
 | |
| static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
 | |
| 				 struct bio *bio, sector_t sectors)
 | |
| {
 | |
| 	/* Bail out if REQ_NOWAIT is set for the bio */
 | |
| 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
 | |
| 		bio_wouldblock_error(bio);
 | |
| 		return false;
 | |
| 	}
 | |
| 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
 | |
| 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
 | |
| 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
 | |
| 		allow_barrier(conf);
 | |
| 		if (bio->bi_opf & REQ_NOWAIT) {
 | |
| 			bio_wouldblock_error(bio);
 | |
| 			return false;
 | |
| 		}
 | |
| 		mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
 | |
| 		wait_event(conf->wait_barrier,
 | |
| 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
 | |
| 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
 | |
| 			   sectors);
 | |
| 		wait_barrier(conf, false);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void raid10_read_request(struct mddev *mddev, struct bio *bio,
 | |
| 				struct r10bio *r10_bio, bool io_accounting)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct bio *read_bio;
 | |
| 	int max_sectors;
 | |
| 	struct md_rdev *rdev;
 | |
| 	char b[BDEVNAME_SIZE];
 | |
| 	int slot = r10_bio->read_slot;
 | |
| 	struct md_rdev *err_rdev = NULL;
 | |
| 	gfp_t gfp = GFP_NOIO;
 | |
| 	int error;
 | |
| 
 | |
| 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
 | |
| 		/*
 | |
| 		 * This is an error retry, but we cannot
 | |
| 		 * safely dereference the rdev in the r10_bio,
 | |
| 		 * we must use the one in conf.
 | |
| 		 * If it has already been disconnected (unlikely)
 | |
| 		 * we lose the device name in error messages.
 | |
| 		 */
 | |
| 		int disk;
 | |
| 		/*
 | |
| 		 * As we are blocking raid10, it is a little safer to
 | |
| 		 * use __GFP_HIGH.
 | |
| 		 */
 | |
| 		gfp = GFP_NOIO | __GFP_HIGH;
 | |
| 
 | |
| 		disk = r10_bio->devs[slot].devnum;
 | |
| 		err_rdev = conf->mirrors[disk].rdev;
 | |
| 		if (err_rdev)
 | |
| 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
 | |
| 		else {
 | |
| 			strcpy(b, "???");
 | |
| 			/* This never gets dereferenced */
 | |
| 			err_rdev = r10_bio->devs[slot].rdev;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
 | |
| 		return;
 | |
| 	rdev = read_balance(conf, r10_bio, &max_sectors);
 | |
| 	if (!rdev) {
 | |
| 		if (err_rdev) {
 | |
| 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
 | |
| 					    mdname(mddev), b,
 | |
| 					    (unsigned long long)r10_bio->sector);
 | |
| 		}
 | |
| 		raid_end_bio_io(r10_bio);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (err_rdev)
 | |
| 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
 | |
| 				   mdname(mddev),
 | |
| 				   rdev->bdev,
 | |
| 				   (unsigned long long)r10_bio->sector);
 | |
| 	if (max_sectors < bio_sectors(bio)) {
 | |
| 		struct bio *split = bio_split(bio, max_sectors,
 | |
| 					      gfp, &conf->bio_split);
 | |
| 		if (IS_ERR(split)) {
 | |
| 			error = PTR_ERR(split);
 | |
| 			goto err_handle;
 | |
| 		}
 | |
| 		bio_chain(split, bio);
 | |
| 		allow_barrier(conf);
 | |
| 		submit_bio_noacct(bio);
 | |
| 		wait_barrier(conf, false);
 | |
| 		bio = split;
 | |
| 		r10_bio->master_bio = bio;
 | |
| 		r10_bio->sectors = max_sectors;
 | |
| 	}
 | |
| 	slot = r10_bio->read_slot;
 | |
| 
 | |
| 	if (io_accounting) {
 | |
| 		md_account_bio(mddev, &bio);
 | |
| 		r10_bio->master_bio = bio;
 | |
| 	}
 | |
| 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
 | |
| 
 | |
| 	r10_bio->devs[slot].bio = read_bio;
 | |
| 	r10_bio->devs[slot].rdev = rdev;
 | |
| 
 | |
| 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
 | |
| 		choose_data_offset(r10_bio, rdev);
 | |
| 	read_bio->bi_end_io = raid10_end_read_request;
 | |
| 	if (test_bit(FailFast, &rdev->flags) &&
 | |
| 	    test_bit(R10BIO_FailFast, &r10_bio->state))
 | |
| 	        read_bio->bi_opf |= MD_FAILFAST;
 | |
| 	read_bio->bi_private = r10_bio;
 | |
| 	mddev_trace_remap(mddev, read_bio, r10_bio->sector);
 | |
| 	submit_bio_noacct(read_bio);
 | |
| 	return;
 | |
| err_handle:
 | |
| 	atomic_dec(&rdev->nr_pending);
 | |
| 	bio->bi_status = errno_to_blk_status(error);
 | |
| 	set_bit(R10BIO_Uptodate, &r10_bio->state);
 | |
| 	raid_end_bio_io(r10_bio);
 | |
| }
 | |
| 
 | |
| static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
 | |
| 				  struct bio *bio, bool replacement,
 | |
| 				  int n_copy)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int devnum = r10_bio->devs[n_copy].devnum;
 | |
| 	struct bio *mbio;
 | |
| 
 | |
| 	rdev = replacement ? conf->mirrors[devnum].replacement :
 | |
| 			     conf->mirrors[devnum].rdev;
 | |
| 
 | |
| 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
 | |
| 	if (replacement)
 | |
| 		r10_bio->devs[n_copy].repl_bio = mbio;
 | |
| 	else
 | |
| 		r10_bio->devs[n_copy].bio = mbio;
 | |
| 
 | |
| 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
 | |
| 				   choose_data_offset(r10_bio, rdev));
 | |
| 	mbio->bi_end_io	= raid10_end_write_request;
 | |
| 	if (!replacement && test_bit(FailFast,
 | |
| 				     &conf->mirrors[devnum].rdev->flags)
 | |
| 			 && enough(conf, devnum))
 | |
| 		mbio->bi_opf |= MD_FAILFAST;
 | |
| 	mbio->bi_private = r10_bio;
 | |
| 	mddev_trace_remap(mddev, mbio, r10_bio->sector);
 | |
| 	/* flush_pending_writes() needs access to the rdev so...*/
 | |
| 	mbio->bi_bdev = (void *)rdev;
 | |
| 
 | |
| 	atomic_inc(&r10_bio->remaining);
 | |
| 
 | |
| 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		bio_list_add(&conf->pending_bio_list, mbio);
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct md_rdev *blocked_rdev;
 | |
| 	int i;
 | |
| 
 | |
| retry_wait:
 | |
| 	blocked_rdev = NULL;
 | |
| 	for (i = 0; i < conf->copies; i++) {
 | |
| 		struct md_rdev *rdev, *rrdev;
 | |
| 
 | |
| 		rdev = conf->mirrors[i].rdev;
 | |
| 		if (rdev) {
 | |
| 			sector_t dev_sector = r10_bio->devs[i].addr;
 | |
| 
 | |
| 			/*
 | |
| 			 * Discard request doesn't care the write result
 | |
| 			 * so it doesn't need to wait blocked disk here.
 | |
| 			 */
 | |
| 			if (test_bit(WriteErrorSeen, &rdev->flags) &&
 | |
| 			    r10_bio->sectors &&
 | |
| 			    rdev_has_badblock(rdev, dev_sector,
 | |
| 					      r10_bio->sectors) < 0)
 | |
| 				/*
 | |
| 				 * Mustn't write here until the bad
 | |
| 				 * block is acknowledged
 | |
| 				 */
 | |
| 				set_bit(BlockedBadBlocks, &rdev->flags);
 | |
| 
 | |
| 			if (rdev_blocked(rdev)) {
 | |
| 				blocked_rdev = rdev;
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		rrdev = conf->mirrors[i].replacement;
 | |
| 		if (rrdev && rdev_blocked(rrdev)) {
 | |
| 			atomic_inc(&rrdev->nr_pending);
 | |
| 			blocked_rdev = rrdev;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(blocked_rdev)) {
 | |
| 		/* Have to wait for this device to get unblocked, then retry */
 | |
| 		allow_barrier(conf);
 | |
| 		mddev_add_trace_msg(conf->mddev,
 | |
| 			"raid10 %s wait rdev %d blocked",
 | |
| 			__func__, blocked_rdev->raid_disk);
 | |
| 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
 | |
| 		wait_barrier(conf, false);
 | |
| 		goto retry_wait;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid10_write_request(struct mddev *mddev, struct bio *bio,
 | |
| 				 struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int i, k;
 | |
| 	sector_t sectors;
 | |
| 	int max_sectors;
 | |
| 	int error;
 | |
| 
 | |
| 	if ((mddev_is_clustered(mddev) &&
 | |
| 	     mddev->cluster_ops->area_resyncing(mddev, WRITE,
 | |
| 						bio->bi_iter.bi_sector,
 | |
| 						bio_end_sector(bio)))) {
 | |
| 		DEFINE_WAIT(w);
 | |
| 		/* Bail out if REQ_NOWAIT is set for the bio */
 | |
| 		if (bio->bi_opf & REQ_NOWAIT) {
 | |
| 			bio_wouldblock_error(bio);
 | |
| 			return;
 | |
| 		}
 | |
| 		for (;;) {
 | |
| 			prepare_to_wait(&conf->wait_barrier,
 | |
| 					&w, TASK_IDLE);
 | |
| 			if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
 | |
| 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
 | |
| 				break;
 | |
| 			schedule();
 | |
| 		}
 | |
| 		finish_wait(&conf->wait_barrier, &w);
 | |
| 	}
 | |
| 
 | |
| 	sectors = r10_bio->sectors;
 | |
| 	if (!regular_request_wait(mddev, conf, bio, sectors))
 | |
| 		return;
 | |
| 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
 | |
| 	    (mddev->reshape_backwards
 | |
| 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
 | |
| 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
 | |
| 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
 | |
| 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
 | |
| 		/* Need to update reshape_position in metadata */
 | |
| 		mddev->reshape_position = conf->reshape_progress;
 | |
| 		set_mask_bits(&mddev->sb_flags, 0,
 | |
| 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		if (bio->bi_opf & REQ_NOWAIT) {
 | |
| 			allow_barrier(conf);
 | |
| 			bio_wouldblock_error(bio);
 | |
| 			return;
 | |
| 		}
 | |
| 		mddev_add_trace_msg(conf->mddev,
 | |
| 			"raid10 wait reshape metadata");
 | |
| 		wait_event(mddev->sb_wait,
 | |
| 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
 | |
| 
 | |
| 		conf->reshape_safe = mddev->reshape_position;
 | |
| 	}
 | |
| 
 | |
| 	/* first select target devices under rcu_lock and
 | |
| 	 * inc refcount on their rdev.  Record them by setting
 | |
| 	 * bios[x] to bio
 | |
| 	 * If there are known/acknowledged bad blocks on any device
 | |
| 	 * on which we have seen a write error, we want to avoid
 | |
| 	 * writing to those blocks.  This potentially requires several
 | |
| 	 * writes to write around the bad blocks.  Each set of writes
 | |
| 	 * gets its own r10_bio with a set of bios attached.
 | |
| 	 */
 | |
| 
 | |
| 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
 | |
| 	raid10_find_phys(conf, r10_bio);
 | |
| 
 | |
| 	wait_blocked_dev(mddev, r10_bio);
 | |
| 
 | |
| 	max_sectors = r10_bio->sectors;
 | |
| 
 | |
| 	for (i = 0;  i < conf->copies; i++) {
 | |
| 		int d = r10_bio->devs[i].devnum;
 | |
| 		struct md_rdev *rdev, *rrdev;
 | |
| 
 | |
| 		rdev = conf->mirrors[d].rdev;
 | |
| 		rrdev = conf->mirrors[d].replacement;
 | |
| 		if (rdev && (test_bit(Faulty, &rdev->flags)))
 | |
| 			rdev = NULL;
 | |
| 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
 | |
| 			rrdev = NULL;
 | |
| 
 | |
| 		r10_bio->devs[i].bio = NULL;
 | |
| 		r10_bio->devs[i].repl_bio = NULL;
 | |
| 
 | |
| 		if (!rdev && !rrdev)
 | |
| 			continue;
 | |
| 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
 | |
| 			sector_t first_bad;
 | |
| 			sector_t dev_sector = r10_bio->devs[i].addr;
 | |
| 			sector_t bad_sectors;
 | |
| 			int is_bad;
 | |
| 
 | |
| 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
 | |
| 					     &first_bad, &bad_sectors);
 | |
| 			if (is_bad && first_bad <= dev_sector) {
 | |
| 				/* Cannot write here at all */
 | |
| 				bad_sectors -= (dev_sector - first_bad);
 | |
| 				if (bad_sectors < max_sectors)
 | |
| 					/* Mustn't write more than bad_sectors
 | |
| 					 * to other devices yet
 | |
| 					 */
 | |
| 					max_sectors = bad_sectors;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (is_bad) {
 | |
| 				int good_sectors;
 | |
| 
 | |
| 				/*
 | |
| 				 * We cannot atomically write this, so just
 | |
| 				 * error in that case. It could be possible to
 | |
| 				 * atomically write other mirrors, but the
 | |
| 				 * complexity of supporting that is not worth
 | |
| 				 * the benefit.
 | |
| 				 */
 | |
| 				if (bio->bi_opf & REQ_ATOMIC) {
 | |
| 					error = -EIO;
 | |
| 					goto err_handle;
 | |
| 				}
 | |
| 
 | |
| 				good_sectors = first_bad - dev_sector;
 | |
| 				if (good_sectors < max_sectors)
 | |
| 					max_sectors = good_sectors;
 | |
| 			}
 | |
| 		}
 | |
| 		if (rdev) {
 | |
| 			r10_bio->devs[i].bio = bio;
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 		}
 | |
| 		if (rrdev) {
 | |
| 			r10_bio->devs[i].repl_bio = bio;
 | |
| 			atomic_inc(&rrdev->nr_pending);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (max_sectors < r10_bio->sectors)
 | |
| 		r10_bio->sectors = max_sectors;
 | |
| 
 | |
| 	if (r10_bio->sectors < bio_sectors(bio)) {
 | |
| 		struct bio *split = bio_split(bio, r10_bio->sectors,
 | |
| 					      GFP_NOIO, &conf->bio_split);
 | |
| 		if (IS_ERR(split)) {
 | |
| 			error = PTR_ERR(split);
 | |
| 			goto err_handle;
 | |
| 		}
 | |
| 		bio_chain(split, bio);
 | |
| 		allow_barrier(conf);
 | |
| 		submit_bio_noacct(bio);
 | |
| 		wait_barrier(conf, false);
 | |
| 		bio = split;
 | |
| 		r10_bio->master_bio = bio;
 | |
| 	}
 | |
| 
 | |
| 	md_account_bio(mddev, &bio);
 | |
| 	r10_bio->master_bio = bio;
 | |
| 	atomic_set(&r10_bio->remaining, 1);
 | |
| 
 | |
| 	for (i = 0; i < conf->copies; i++) {
 | |
| 		if (r10_bio->devs[i].bio)
 | |
| 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
 | |
| 		if (r10_bio->devs[i].repl_bio)
 | |
| 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
 | |
| 	}
 | |
| 	one_write_done(r10_bio);
 | |
| 	return;
 | |
| err_handle:
 | |
| 	for (k = 0;  k < i; k++) {
 | |
| 		int d = r10_bio->devs[k].devnum;
 | |
| 		struct md_rdev *rdev = conf->mirrors[d].rdev;
 | |
| 		struct md_rdev *rrdev = conf->mirrors[d].replacement;
 | |
| 
 | |
| 		if (r10_bio->devs[k].bio) {
 | |
| 			rdev_dec_pending(rdev, mddev);
 | |
| 			r10_bio->devs[k].bio = NULL;
 | |
| 		}
 | |
| 		if (r10_bio->devs[k].repl_bio) {
 | |
| 			rdev_dec_pending(rrdev, mddev);
 | |
| 			r10_bio->devs[k].repl_bio = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bio->bi_status = errno_to_blk_status(error);
 | |
| 	set_bit(R10BIO_Uptodate, &r10_bio->state);
 | |
| 	raid_end_bio_io(r10_bio);
 | |
| }
 | |
| 
 | |
| static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct r10bio *r10_bio;
 | |
| 
 | |
| 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
 | |
| 
 | |
| 	r10_bio->master_bio = bio;
 | |
| 	r10_bio->sectors = sectors;
 | |
| 
 | |
| 	r10_bio->mddev = mddev;
 | |
| 	r10_bio->sector = bio->bi_iter.bi_sector;
 | |
| 	r10_bio->state = 0;
 | |
| 	r10_bio->read_slot = -1;
 | |
| 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
 | |
| 			conf->geo.raid_disks);
 | |
| 
 | |
| 	if (bio_data_dir(bio) == READ)
 | |
| 		raid10_read_request(mddev, bio, r10_bio, true);
 | |
| 	else
 | |
| 		raid10_write_request(mddev, bio, r10_bio);
 | |
| }
 | |
| 
 | |
| static void raid_end_discard_bio(struct r10bio *r10bio)
 | |
| {
 | |
| 	struct r10conf *conf = r10bio->mddev->private;
 | |
| 	struct r10bio *first_r10bio;
 | |
| 
 | |
| 	while (atomic_dec_and_test(&r10bio->remaining)) {
 | |
| 
 | |
| 		allow_barrier(conf);
 | |
| 
 | |
| 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
 | |
| 			first_r10bio = (struct r10bio *)r10bio->master_bio;
 | |
| 			free_r10bio(r10bio);
 | |
| 			r10bio = first_r10bio;
 | |
| 		} else {
 | |
| 			md_write_end(r10bio->mddev);
 | |
| 			bio_endio(r10bio->master_bio);
 | |
| 			free_r10bio(r10bio);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid10_end_discard_request(struct bio *bio)
 | |
| {
 | |
| 	struct r10bio *r10_bio = bio->bi_private;
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 	struct md_rdev *rdev = NULL;
 | |
| 	int dev;
 | |
| 	int slot, repl;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't care the return value of discard bio
 | |
| 	 */
 | |
| 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 | |
| 		set_bit(R10BIO_Uptodate, &r10_bio->state);
 | |
| 
 | |
| 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 | |
| 	rdev = repl ? conf->mirrors[dev].replacement :
 | |
| 		      conf->mirrors[dev].rdev;
 | |
| 
 | |
| 	raid_end_discard_bio(r10_bio);
 | |
| 	rdev_dec_pending(rdev, conf->mddev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are some limitations to handle discard bio
 | |
|  * 1st, the discard size is bigger than stripe_size*2.
 | |
|  * 2st, if the discard bio spans reshape progress, we use the old way to
 | |
|  * handle discard bio
 | |
|  */
 | |
| static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct geom *geo = &conf->geo;
 | |
| 	int far_copies = geo->far_copies;
 | |
| 	bool first_copy = true;
 | |
| 	struct r10bio *r10_bio, *first_r10bio;
 | |
| 	struct bio *split;
 | |
| 	int disk;
 | |
| 	sector_t chunk;
 | |
| 	unsigned int stripe_size;
 | |
| 	unsigned int stripe_data_disks;
 | |
| 	sector_t split_size;
 | |
| 	sector_t bio_start, bio_end;
 | |
| 	sector_t first_stripe_index, last_stripe_index;
 | |
| 	sector_t start_disk_offset;
 | |
| 	unsigned int start_disk_index;
 | |
| 	sector_t end_disk_offset;
 | |
| 	unsigned int end_disk_index;
 | |
| 	unsigned int remainder;
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
 | |
| 		bio_wouldblock_error(bio);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check reshape again to avoid reshape happens after checking
 | |
| 	 * MD_RECOVERY_RESHAPE and before wait_barrier
 | |
| 	 */
 | |
| 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (geo->near_copies)
 | |
| 		stripe_data_disks = geo->raid_disks / geo->near_copies +
 | |
| 					geo->raid_disks % geo->near_copies;
 | |
| 	else
 | |
| 		stripe_data_disks = geo->raid_disks;
 | |
| 
 | |
| 	stripe_size = stripe_data_disks << geo->chunk_shift;
 | |
| 
 | |
| 	bio_start = bio->bi_iter.bi_sector;
 | |
| 	bio_end = bio_end_sector(bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Maybe one discard bio is smaller than strip size or across one
 | |
| 	 * stripe and discard region is larger than one stripe size. For far
 | |
| 	 * offset layout, if the discard region is not aligned with stripe
 | |
| 	 * size, there is hole when we submit discard bio to member disk.
 | |
| 	 * For simplicity, we only handle discard bio which discard region
 | |
| 	 * is bigger than stripe_size * 2
 | |
| 	 */
 | |
| 	if (bio_sectors(bio) < stripe_size*2)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep bio aligned with strip size.
 | |
| 	 */
 | |
| 	div_u64_rem(bio_start, stripe_size, &remainder);
 | |
| 	if (remainder) {
 | |
| 		split_size = stripe_size - remainder;
 | |
| 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
 | |
| 		if (IS_ERR(split)) {
 | |
| 			bio->bi_status = errno_to_blk_status(PTR_ERR(split));
 | |
| 			bio_endio(bio);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		bio_chain(split, bio);
 | |
| 		allow_barrier(conf);
 | |
| 		/* Resend the fist split part */
 | |
| 		submit_bio_noacct(split);
 | |
| 		wait_barrier(conf, false);
 | |
| 	}
 | |
| 	div_u64_rem(bio_end, stripe_size, &remainder);
 | |
| 	if (remainder) {
 | |
| 		split_size = bio_sectors(bio) - remainder;
 | |
| 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
 | |
| 		if (IS_ERR(split)) {
 | |
| 			bio->bi_status = errno_to_blk_status(PTR_ERR(split));
 | |
| 			bio_endio(bio);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		bio_chain(split, bio);
 | |
| 		allow_barrier(conf);
 | |
| 		/* Resend the second split part */
 | |
| 		submit_bio_noacct(bio);
 | |
| 		bio = split;
 | |
| 		wait_barrier(conf, false);
 | |
| 	}
 | |
| 
 | |
| 	bio_start = bio->bi_iter.bi_sector;
 | |
| 	bio_end = bio_end_sector(bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
 | |
| 	 * One stripe contains the chunks from all member disk (one chunk from
 | |
| 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
 | |
| 	 */
 | |
| 	chunk = bio_start >> geo->chunk_shift;
 | |
| 	chunk *= geo->near_copies;
 | |
| 	first_stripe_index = chunk;
 | |
| 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
 | |
| 	if (geo->far_offset)
 | |
| 		first_stripe_index *= geo->far_copies;
 | |
| 	start_disk_offset = (bio_start & geo->chunk_mask) +
 | |
| 				(first_stripe_index << geo->chunk_shift);
 | |
| 
 | |
| 	chunk = bio_end >> geo->chunk_shift;
 | |
| 	chunk *= geo->near_copies;
 | |
| 	last_stripe_index = chunk;
 | |
| 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
 | |
| 	if (geo->far_offset)
 | |
| 		last_stripe_index *= geo->far_copies;
 | |
| 	end_disk_offset = (bio_end & geo->chunk_mask) +
 | |
| 				(last_stripe_index << geo->chunk_shift);
 | |
| 
 | |
| retry_discard:
 | |
| 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
 | |
| 	r10_bio->mddev = mddev;
 | |
| 	r10_bio->state = 0;
 | |
| 	r10_bio->sectors = 0;
 | |
| 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
 | |
| 	wait_blocked_dev(mddev, r10_bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * For far layout it needs more than one r10bio to cover all regions.
 | |
| 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
 | |
| 	 * to record the discard bio. Other r10bio->master_bio record the first
 | |
| 	 * r10bio. The first r10bio only release after all other r10bios finish.
 | |
| 	 * The discard bio returns only first r10bio finishes
 | |
| 	 */
 | |
| 	if (first_copy) {
 | |
| 		md_account_bio(mddev, &bio);
 | |
| 		r10_bio->master_bio = bio;
 | |
| 		set_bit(R10BIO_Discard, &r10_bio->state);
 | |
| 		first_copy = false;
 | |
| 		first_r10bio = r10_bio;
 | |
| 	} else
 | |
| 		r10_bio->master_bio = (struct bio *)first_r10bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * first select target devices under rcu_lock and
 | |
| 	 * inc refcount on their rdev.  Record them by setting
 | |
| 	 * bios[x] to bio
 | |
| 	 */
 | |
| 	for (disk = 0; disk < geo->raid_disks; disk++) {
 | |
| 		struct md_rdev *rdev, *rrdev;
 | |
| 
 | |
| 		rdev = conf->mirrors[disk].rdev;
 | |
| 		rrdev = conf->mirrors[disk].replacement;
 | |
| 		r10_bio->devs[disk].bio = NULL;
 | |
| 		r10_bio->devs[disk].repl_bio = NULL;
 | |
| 
 | |
| 		if (rdev && (test_bit(Faulty, &rdev->flags)))
 | |
| 			rdev = NULL;
 | |
| 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
 | |
| 			rrdev = NULL;
 | |
| 		if (!rdev && !rrdev)
 | |
| 			continue;
 | |
| 
 | |
| 		if (rdev) {
 | |
| 			r10_bio->devs[disk].bio = bio;
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 		}
 | |
| 		if (rrdev) {
 | |
| 			r10_bio->devs[disk].repl_bio = bio;
 | |
| 			atomic_inc(&rrdev->nr_pending);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&r10_bio->remaining, 1);
 | |
| 	for (disk = 0; disk < geo->raid_disks; disk++) {
 | |
| 		sector_t dev_start, dev_end;
 | |
| 		struct bio *mbio, *rbio = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Now start to calculate the start and end address for each disk.
 | |
| 		 * The space between dev_start and dev_end is the discard region.
 | |
| 		 *
 | |
| 		 * For dev_start, it needs to consider three conditions:
 | |
| 		 * 1st, the disk is before start_disk, you can imagine the disk in
 | |
| 		 * the next stripe. So the dev_start is the start address of next
 | |
| 		 * stripe.
 | |
| 		 * 2st, the disk is after start_disk, it means the disk is at the
 | |
| 		 * same stripe of first disk
 | |
| 		 * 3st, the first disk itself, we can use start_disk_offset directly
 | |
| 		 */
 | |
| 		if (disk < start_disk_index)
 | |
| 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
 | |
| 		else if (disk > start_disk_index)
 | |
| 			dev_start = first_stripe_index * mddev->chunk_sectors;
 | |
| 		else
 | |
| 			dev_start = start_disk_offset;
 | |
| 
 | |
| 		if (disk < end_disk_index)
 | |
| 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
 | |
| 		else if (disk > end_disk_index)
 | |
| 			dev_end = last_stripe_index * mddev->chunk_sectors;
 | |
| 		else
 | |
| 			dev_end = end_disk_offset;
 | |
| 
 | |
| 		/*
 | |
| 		 * It only handles discard bio which size is >= stripe size, so
 | |
| 		 * dev_end > dev_start all the time.
 | |
| 		 * It doesn't need to use rcu lock to get rdev here. We already
 | |
| 		 * add rdev->nr_pending in the first loop.
 | |
| 		 */
 | |
| 		if (r10_bio->devs[disk].bio) {
 | |
| 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
 | |
| 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
 | |
| 					       &mddev->bio_set);
 | |
| 			mbio->bi_end_io = raid10_end_discard_request;
 | |
| 			mbio->bi_private = r10_bio;
 | |
| 			r10_bio->devs[disk].bio = mbio;
 | |
| 			r10_bio->devs[disk].devnum = disk;
 | |
| 			atomic_inc(&r10_bio->remaining);
 | |
| 			md_submit_discard_bio(mddev, rdev, mbio,
 | |
| 					dev_start + choose_data_offset(r10_bio, rdev),
 | |
| 					dev_end - dev_start);
 | |
| 			bio_endio(mbio);
 | |
| 		}
 | |
| 		if (r10_bio->devs[disk].repl_bio) {
 | |
| 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
 | |
| 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
 | |
| 					       &mddev->bio_set);
 | |
| 			rbio->bi_end_io = raid10_end_discard_request;
 | |
| 			rbio->bi_private = r10_bio;
 | |
| 			r10_bio->devs[disk].repl_bio = rbio;
 | |
| 			r10_bio->devs[disk].devnum = disk;
 | |
| 			atomic_inc(&r10_bio->remaining);
 | |
| 			md_submit_discard_bio(mddev, rrdev, rbio,
 | |
| 					dev_start + choose_data_offset(r10_bio, rrdev),
 | |
| 					dev_end - dev_start);
 | |
| 			bio_endio(rbio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!geo->far_offset && --far_copies) {
 | |
| 		first_stripe_index += geo->stride >> geo->chunk_shift;
 | |
| 		start_disk_offset += geo->stride;
 | |
| 		last_stripe_index += geo->stride >> geo->chunk_shift;
 | |
| 		end_disk_offset += geo->stride;
 | |
| 		atomic_inc(&first_r10bio->remaining);
 | |
| 		raid_end_discard_bio(r10_bio);
 | |
| 		wait_barrier(conf, false);
 | |
| 		goto retry_discard;
 | |
| 	}
 | |
| 
 | |
| 	raid_end_discard_bio(r10_bio);
 | |
| 
 | |
| 	return 0;
 | |
| out:
 | |
| 	allow_barrier(conf);
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
 | |
| 	int chunk_sects = chunk_mask + 1;
 | |
| 	int sectors = bio_sectors(bio);
 | |
| 
 | |
| 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
 | |
| 	    && md_flush_request(mddev, bio))
 | |
| 		return true;
 | |
| 
 | |
| 	md_write_start(mddev, bio);
 | |
| 
 | |
| 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
 | |
| 		if (!raid10_handle_discard(mddev, bio))
 | |
| 			return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this request crosses a chunk boundary, we need to split
 | |
| 	 * it.
 | |
| 	 */
 | |
| 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
 | |
| 		     sectors > chunk_sects
 | |
| 		     && (conf->geo.near_copies < conf->geo.raid_disks
 | |
| 			 || conf->prev.near_copies <
 | |
| 			 conf->prev.raid_disks)))
 | |
| 		sectors = chunk_sects -
 | |
| 			(bio->bi_iter.bi_sector &
 | |
| 			 (chunk_sects - 1));
 | |
| 	__make_request(mddev, bio, sectors);
 | |
| 
 | |
| 	/* In case raid10d snuck in to freeze_array */
 | |
| 	wake_up_barrier(conf);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void raid10_status(struct seq_file *seq, struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int i;
 | |
| 
 | |
| 	lockdep_assert_held(&mddev->lock);
 | |
| 
 | |
| 	if (conf->geo.near_copies < conf->geo.raid_disks)
 | |
| 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
 | |
| 	if (conf->geo.near_copies > 1)
 | |
| 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
 | |
| 	if (conf->geo.far_copies > 1) {
 | |
| 		if (conf->geo.far_offset)
 | |
| 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
 | |
| 		else
 | |
| 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
 | |
| 		if (conf->geo.far_set_size != conf->geo.raid_disks)
 | |
| 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
 | |
| 	}
 | |
| 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
 | |
| 					conf->geo.raid_disks - mddev->degraded);
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
 | |
| 
 | |
| 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
 | |
| 	}
 | |
| 	seq_printf(seq, "]");
 | |
| }
 | |
| 
 | |
| /* check if there are enough drives for
 | |
|  * every block to appear on atleast one.
 | |
|  * Don't consider the device numbered 'ignore'
 | |
|  * as we might be about to remove it.
 | |
|  */
 | |
| static int _enough(struct r10conf *conf, int previous, int ignore)
 | |
| {
 | |
| 	int first = 0;
 | |
| 	int has_enough = 0;
 | |
| 	int disks, ncopies;
 | |
| 	if (previous) {
 | |
| 		disks = conf->prev.raid_disks;
 | |
| 		ncopies = conf->prev.near_copies;
 | |
| 	} else {
 | |
| 		disks = conf->geo.raid_disks;
 | |
| 		ncopies = conf->geo.near_copies;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		int n = conf->copies;
 | |
| 		int cnt = 0;
 | |
| 		int this = first;
 | |
| 		while (n--) {
 | |
| 			struct md_rdev *rdev;
 | |
| 			if (this != ignore &&
 | |
| 			    (rdev = conf->mirrors[this].rdev) &&
 | |
| 			    test_bit(In_sync, &rdev->flags))
 | |
| 				cnt++;
 | |
| 			this = (this+1) % disks;
 | |
| 		}
 | |
| 		if (cnt == 0)
 | |
| 			goto out;
 | |
| 		first = (first + ncopies) % disks;
 | |
| 	} while (first != 0);
 | |
| 	has_enough = 1;
 | |
| out:
 | |
| 	return has_enough;
 | |
| }
 | |
| 
 | |
| static int enough(struct r10conf *conf, int ignore)
 | |
| {
 | |
| 	/* when calling 'enough', both 'prev' and 'geo' must
 | |
| 	 * be stable.
 | |
| 	 * This is ensured if ->reconfig_mutex or ->device_lock
 | |
| 	 * is held.
 | |
| 	 */
 | |
| 	return _enough(conf, 0, ignore) &&
 | |
| 		_enough(conf, 1, ignore);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * raid10_error() - RAID10 error handler.
 | |
|  * @mddev: affected md device.
 | |
|  * @rdev: member device to fail.
 | |
|  *
 | |
|  * The routine acknowledges &rdev failure and determines new @mddev state.
 | |
|  * If it failed, then:
 | |
|  *	- &MD_BROKEN flag is set in &mddev->flags.
 | |
|  * Otherwise, it must be degraded:
 | |
|  *	- recovery is interrupted.
 | |
|  *	- &mddev->degraded is bumped.
 | |
|  *
 | |
|  * @rdev is marked as &Faulty excluding case when array is failed and
 | |
|  * &mddev->fail_last_dev is off.
 | |
|  */
 | |
| static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 
 | |
| 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
 | |
| 		set_bit(MD_BROKEN, &mddev->flags);
 | |
| 
 | |
| 		if (!mddev->fail_last_dev) {
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	if (test_and_clear_bit(In_sync, &rdev->flags))
 | |
| 		mddev->degraded++;
 | |
| 
 | |
| 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 	set_bit(Blocked, &rdev->flags);
 | |
| 	set_bit(Faulty, &rdev->flags);
 | |
| 	set_mask_bits(&mddev->sb_flags, 0,
 | |
| 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
 | |
| 		"md/raid10:%s: Operation continuing on %d devices.\n",
 | |
| 		mdname(mddev), rdev->bdev,
 | |
| 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
 | |
| }
 | |
| 
 | |
| static void print_conf(struct r10conf *conf)
 | |
| {
 | |
| 	int i;
 | |
| 	struct md_rdev *rdev;
 | |
| 
 | |
| 	pr_debug("RAID10 conf printout:\n");
 | |
| 	if (!conf) {
 | |
| 		pr_debug("(!conf)\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
 | |
| 		 conf->geo.raid_disks);
 | |
| 
 | |
| 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 		rdev = conf->mirrors[i].rdev;
 | |
| 		if (rdev)
 | |
| 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
 | |
| 				 i, !test_bit(In_sync, &rdev->flags),
 | |
| 				 !test_bit(Faulty, &rdev->flags),
 | |
| 				 rdev->bdev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void close_sync(struct r10conf *conf)
 | |
| {
 | |
| 	wait_barrier(conf, false);
 | |
| 	allow_barrier(conf);
 | |
| 
 | |
| 	mempool_exit(&conf->r10buf_pool);
 | |
| }
 | |
| 
 | |
| static int raid10_spare_active(struct mddev *mddev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct raid10_info *tmp;
 | |
| 	int count = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find all non-in_sync disks within the RAID10 configuration
 | |
| 	 * and mark them in_sync
 | |
| 	 */
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 		tmp = conf->mirrors + i;
 | |
| 		if (tmp->replacement
 | |
| 		    && tmp->replacement->recovery_offset == MaxSector
 | |
| 		    && !test_bit(Faulty, &tmp->replacement->flags)
 | |
| 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
 | |
| 			/* Replacement has just become active */
 | |
| 			if (!tmp->rdev
 | |
| 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
 | |
| 				count++;
 | |
| 			if (tmp->rdev) {
 | |
| 				/* Replaced device not technically faulty,
 | |
| 				 * but we need to be sure it gets removed
 | |
| 				 * and never re-added.
 | |
| 				 */
 | |
| 				set_bit(Faulty, &tmp->rdev->flags);
 | |
| 				sysfs_notify_dirent_safe(
 | |
| 					tmp->rdev->sysfs_state);
 | |
| 			}
 | |
| 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
 | |
| 		} else if (tmp->rdev
 | |
| 			   && tmp->rdev->recovery_offset == MaxSector
 | |
| 			   && !test_bit(Faulty, &tmp->rdev->flags)
 | |
| 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
 | |
| 			count++;
 | |
| 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	mddev->degraded -= count;
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int err = -EEXIST;
 | |
| 	int mirror, repl_slot = -1;
 | |
| 	int first = 0;
 | |
| 	int last = conf->geo.raid_disks - 1;
 | |
| 	struct raid10_info *p;
 | |
| 
 | |
| 	if (mddev->recovery_cp < MaxSector)
 | |
| 		/* only hot-add to in-sync arrays, as recovery is
 | |
| 		 * very different from resync
 | |
| 		 */
 | |
| 		return -EBUSY;
 | |
| 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (rdev->raid_disk >= 0)
 | |
| 		first = last = rdev->raid_disk;
 | |
| 
 | |
| 	if (rdev->saved_raid_disk >= first &&
 | |
| 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
 | |
| 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
 | |
| 		mirror = rdev->saved_raid_disk;
 | |
| 	else
 | |
| 		mirror = first;
 | |
| 	for ( ; mirror <= last ; mirror++) {
 | |
| 		p = &conf->mirrors[mirror];
 | |
| 		if (p->recovery_disabled == mddev->recovery_disabled)
 | |
| 			continue;
 | |
| 		if (p->rdev) {
 | |
| 			if (test_bit(WantReplacement, &p->rdev->flags) &&
 | |
| 			    p->replacement == NULL && repl_slot < 0)
 | |
| 				repl_slot = mirror;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		err = mddev_stack_new_rdev(mddev, rdev);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		p->head_position = 0;
 | |
| 		p->recovery_disabled = mddev->recovery_disabled - 1;
 | |
| 		rdev->raid_disk = mirror;
 | |
| 		err = 0;
 | |
| 		if (rdev->saved_raid_disk != mirror)
 | |
| 			conf->fullsync = 1;
 | |
| 		WRITE_ONCE(p->rdev, rdev);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (err && repl_slot >= 0) {
 | |
| 		p = &conf->mirrors[repl_slot];
 | |
| 		clear_bit(In_sync, &rdev->flags);
 | |
| 		set_bit(Replacement, &rdev->flags);
 | |
| 		rdev->raid_disk = repl_slot;
 | |
| 		err = mddev_stack_new_rdev(mddev, rdev);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		conf->fullsync = 1;
 | |
| 		WRITE_ONCE(p->replacement, rdev);
 | |
| 	}
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int err = 0;
 | |
| 	int number = rdev->raid_disk;
 | |
| 	struct md_rdev **rdevp;
 | |
| 	struct raid10_info *p;
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	if (unlikely(number >= mddev->raid_disks))
 | |
| 		return 0;
 | |
| 	p = conf->mirrors + number;
 | |
| 	if (rdev == p->rdev)
 | |
| 		rdevp = &p->rdev;
 | |
| 	else if (rdev == p->replacement)
 | |
| 		rdevp = &p->replacement;
 | |
| 	else
 | |
| 		return 0;
 | |
| 
 | |
| 	if (test_bit(In_sync, &rdev->flags) ||
 | |
| 	    atomic_read(&rdev->nr_pending)) {
 | |
| 		err = -EBUSY;
 | |
| 		goto abort;
 | |
| 	}
 | |
| 	/* Only remove non-faulty devices if recovery
 | |
| 	 * is not possible.
 | |
| 	 */
 | |
| 	if (!test_bit(Faulty, &rdev->flags) &&
 | |
| 	    mddev->recovery_disabled != p->recovery_disabled &&
 | |
| 	    (!p->replacement || p->replacement == rdev) &&
 | |
| 	    number < conf->geo.raid_disks &&
 | |
| 	    enough(conf, -1)) {
 | |
| 		err = -EBUSY;
 | |
| 		goto abort;
 | |
| 	}
 | |
| 	WRITE_ONCE(*rdevp, NULL);
 | |
| 	if (p->replacement) {
 | |
| 		/* We must have just cleared 'rdev' */
 | |
| 		WRITE_ONCE(p->rdev, p->replacement);
 | |
| 		clear_bit(Replacement, &p->replacement->flags);
 | |
| 		WRITE_ONCE(p->replacement, NULL);
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(WantReplacement, &rdev->flags);
 | |
| 	err = md_integrity_register(mddev);
 | |
| 
 | |
| abort:
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
 | |
| {
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 
 | |
| 	if (!bio->bi_status)
 | |
| 		set_bit(R10BIO_Uptodate, &r10_bio->state);
 | |
| 	else
 | |
| 		/* The write handler will notice the lack of
 | |
| 		 * R10BIO_Uptodate and record any errors etc
 | |
| 		 */
 | |
| 		atomic_add(r10_bio->sectors,
 | |
| 			   &conf->mirrors[d].rdev->corrected_errors);
 | |
| 
 | |
| 	/* for reconstruct, we always reschedule after a read.
 | |
| 	 * for resync, only after all reads
 | |
| 	 */
 | |
| 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
 | |
| 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
 | |
| 	    atomic_dec_and_test(&r10_bio->remaining)) {
 | |
| 		/* we have read all the blocks,
 | |
| 		 * do the comparison in process context in raid10d
 | |
| 		 */
 | |
| 		reschedule_retry(r10_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void end_sync_read(struct bio *bio)
 | |
| {
 | |
| 	struct r10bio *r10_bio = get_resync_r10bio(bio);
 | |
| 	struct r10conf *conf = r10_bio->mddev->private;
 | |
| 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
 | |
| 
 | |
| 	__end_sync_read(r10_bio, bio, d);
 | |
| }
 | |
| 
 | |
| static void end_reshape_read(struct bio *bio)
 | |
| {
 | |
| 	/* reshape read bio isn't allocated from r10buf_pool */
 | |
| 	struct r10bio *r10_bio = bio->bi_private;
 | |
| 
 | |
| 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
 | |
| }
 | |
| 
 | |
| static void end_sync_request(struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 
 | |
| 	while (atomic_dec_and_test(&r10_bio->remaining)) {
 | |
| 		if (r10_bio->master_bio == NULL) {
 | |
| 			/* the primary of several recovery bios */
 | |
| 			sector_t s = r10_bio->sectors;
 | |
| 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
 | |
| 			    test_bit(R10BIO_WriteError, &r10_bio->state))
 | |
| 				reschedule_retry(r10_bio);
 | |
| 			else
 | |
| 				put_buf(r10_bio);
 | |
| 			md_done_sync(mddev, s, 1);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
 | |
| 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
 | |
| 			    test_bit(R10BIO_WriteError, &r10_bio->state))
 | |
| 				reschedule_retry(r10_bio);
 | |
| 			else
 | |
| 				put_buf(r10_bio);
 | |
| 			r10_bio = r10_bio2;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void end_sync_write(struct bio *bio)
 | |
| {
 | |
| 	struct r10bio *r10_bio = get_resync_r10bio(bio);
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int d;
 | |
| 	int slot;
 | |
| 	int repl;
 | |
| 	struct md_rdev *rdev = NULL;
 | |
| 
 | |
| 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 | |
| 	if (repl)
 | |
| 		rdev = conf->mirrors[d].replacement;
 | |
| 	else
 | |
| 		rdev = conf->mirrors[d].rdev;
 | |
| 
 | |
| 	if (bio->bi_status) {
 | |
| 		if (repl)
 | |
| 			md_error(mddev, rdev);
 | |
| 		else {
 | |
| 			set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 				set_bit(MD_RECOVERY_NEEDED,
 | |
| 					&rdev->mddev->recovery);
 | |
| 			set_bit(R10BIO_WriteError, &r10_bio->state);
 | |
| 		}
 | |
| 	} else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
 | |
| 				     r10_bio->sectors)) {
 | |
| 		set_bit(R10BIO_MadeGood, &r10_bio->state);
 | |
| 	}
 | |
| 
 | |
| 	rdev_dec_pending(rdev, mddev);
 | |
| 
 | |
| 	end_sync_request(r10_bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: sync and recover and handled very differently for raid10
 | |
|  * This code is for resync.
 | |
|  * For resync, we read through virtual addresses and read all blocks.
 | |
|  * If there is any error, we schedule a write.  The lowest numbered
 | |
|  * drive is authoritative.
 | |
|  * However requests come for physical address, so we need to map.
 | |
|  * For every physical address there are raid_disks/copies virtual addresses,
 | |
|  * which is always are least one, but is not necessarly an integer.
 | |
|  * This means that a physical address can span multiple chunks, so we may
 | |
|  * have to submit multiple io requests for a single sync request.
 | |
|  */
 | |
| /*
 | |
|  * We check if all blocks are in-sync and only write to blocks that
 | |
|  * aren't in sync
 | |
|  */
 | |
| static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int i, first;
 | |
| 	struct bio *tbio, *fbio;
 | |
| 	int vcnt;
 | |
| 	struct page **tpages, **fpages;
 | |
| 
 | |
| 	atomic_set(&r10_bio->remaining, 1);
 | |
| 
 | |
| 	/* find the first device with a block */
 | |
| 	for (i=0; i<conf->copies; i++)
 | |
| 		if (!r10_bio->devs[i].bio->bi_status)
 | |
| 			break;
 | |
| 
 | |
| 	if (i == conf->copies)
 | |
| 		goto done;
 | |
| 
 | |
| 	first = i;
 | |
| 	fbio = r10_bio->devs[i].bio;
 | |
| 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
 | |
| 	fbio->bi_iter.bi_idx = 0;
 | |
| 	fpages = get_resync_pages(fbio)->pages;
 | |
| 
 | |
| 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
 | |
| 	/* now find blocks with errors */
 | |
| 	for (i=0 ; i < conf->copies ; i++) {
 | |
| 		int  j, d;
 | |
| 		struct md_rdev *rdev;
 | |
| 		struct resync_pages *rp;
 | |
| 
 | |
| 		tbio = r10_bio->devs[i].bio;
 | |
| 
 | |
| 		if (tbio->bi_end_io != end_sync_read)
 | |
| 			continue;
 | |
| 		if (i == first)
 | |
| 			continue;
 | |
| 
 | |
| 		tpages = get_resync_pages(tbio)->pages;
 | |
| 		d = r10_bio->devs[i].devnum;
 | |
| 		rdev = conf->mirrors[d].rdev;
 | |
| 		if (!r10_bio->devs[i].bio->bi_status) {
 | |
| 			/* We know that the bi_io_vec layout is the same for
 | |
| 			 * both 'first' and 'i', so we just compare them.
 | |
| 			 * All vec entries are PAGE_SIZE;
 | |
| 			 */
 | |
| 			int sectors = r10_bio->sectors;
 | |
| 			for (j = 0; j < vcnt; j++) {
 | |
| 				int len = PAGE_SIZE;
 | |
| 				if (sectors < (len / 512))
 | |
| 					len = sectors * 512;
 | |
| 				if (memcmp(page_address(fpages[j]),
 | |
| 					   page_address(tpages[j]),
 | |
| 					   len))
 | |
| 					break;
 | |
| 				sectors -= len/512;
 | |
| 			}
 | |
| 			if (j == vcnt)
 | |
| 				continue;
 | |
| 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
 | |
| 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
 | |
| 				/* Don't fix anything. */
 | |
| 				continue;
 | |
| 		} else if (test_bit(FailFast, &rdev->flags)) {
 | |
| 			/* Just give up on this device */
 | |
| 			md_error(rdev->mddev, rdev);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* Ok, we need to write this bio, either to correct an
 | |
| 		 * inconsistency or to correct an unreadable block.
 | |
| 		 * First we need to fixup bv_offset, bv_len and
 | |
| 		 * bi_vecs, as the read request might have corrupted these
 | |
| 		 */
 | |
| 		rp = get_resync_pages(tbio);
 | |
| 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
 | |
| 
 | |
| 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
 | |
| 
 | |
| 		rp->raid_bio = r10_bio;
 | |
| 		tbio->bi_private = rp;
 | |
| 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
 | |
| 		tbio->bi_end_io = end_sync_write;
 | |
| 
 | |
| 		bio_copy_data(tbio, fbio);
 | |
| 
 | |
| 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 | |
| 		atomic_inc(&r10_bio->remaining);
 | |
| 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
 | |
| 
 | |
| 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
 | |
| 			tbio->bi_opf |= MD_FAILFAST;
 | |
| 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
 | |
| 		submit_bio_noacct(tbio);
 | |
| 	}
 | |
| 
 | |
| 	/* Now write out to any replacement devices
 | |
| 	 * that are active
 | |
| 	 */
 | |
| 	for (i = 0; i < conf->copies; i++) {
 | |
| 		int d;
 | |
| 
 | |
| 		tbio = r10_bio->devs[i].repl_bio;
 | |
| 		if (!tbio || !tbio->bi_end_io)
 | |
| 			continue;
 | |
| 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
 | |
| 		    && r10_bio->devs[i].bio != fbio)
 | |
| 			bio_copy_data(tbio, fbio);
 | |
| 		d = r10_bio->devs[i].devnum;
 | |
| 		atomic_inc(&r10_bio->remaining);
 | |
| 		md_sync_acct(conf->mirrors[d].replacement->bdev,
 | |
| 			     bio_sectors(tbio));
 | |
| 		submit_bio_noacct(tbio);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	if (atomic_dec_and_test(&r10_bio->remaining)) {
 | |
| 		md_done_sync(mddev, r10_bio->sectors, 1);
 | |
| 		put_buf(r10_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Now for the recovery code.
 | |
|  * Recovery happens across physical sectors.
 | |
|  * We recover all non-is_sync drives by finding the virtual address of
 | |
|  * each, and then choose a working drive that also has that virt address.
 | |
|  * There is a separate r10_bio for each non-in_sync drive.
 | |
|  * Only the first two slots are in use. The first for reading,
 | |
|  * The second for writing.
 | |
|  *
 | |
|  */
 | |
| static void fix_recovery_read_error(struct r10bio *r10_bio)
 | |
| {
 | |
| 	/* We got a read error during recovery.
 | |
| 	 * We repeat the read in smaller page-sized sections.
 | |
| 	 * If a read succeeds, write it to the new device or record
 | |
| 	 * a bad block if we cannot.
 | |
| 	 * If a read fails, record a bad block on both old and
 | |
| 	 * new devices.
 | |
| 	 */
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct bio *bio = r10_bio->devs[0].bio;
 | |
| 	sector_t sect = 0;
 | |
| 	int sectors = r10_bio->sectors;
 | |
| 	int idx = 0;
 | |
| 	int dr = r10_bio->devs[0].devnum;
 | |
| 	int dw = r10_bio->devs[1].devnum;
 | |
| 	struct page **pages = get_resync_pages(bio)->pages;
 | |
| 
 | |
| 	while (sectors) {
 | |
| 		int s = sectors;
 | |
| 		struct md_rdev *rdev;
 | |
| 		sector_t addr;
 | |
| 		int ok;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE>>9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 
 | |
| 		rdev = conf->mirrors[dr].rdev;
 | |
| 		addr = r10_bio->devs[0].addr + sect;
 | |
| 		ok = sync_page_io(rdev,
 | |
| 				  addr,
 | |
| 				  s << 9,
 | |
| 				  pages[idx],
 | |
| 				  REQ_OP_READ, false);
 | |
| 		if (ok) {
 | |
| 			rdev = conf->mirrors[dw].rdev;
 | |
| 			addr = r10_bio->devs[1].addr + sect;
 | |
| 			ok = sync_page_io(rdev,
 | |
| 					  addr,
 | |
| 					  s << 9,
 | |
| 					  pages[idx],
 | |
| 					  REQ_OP_WRITE, false);
 | |
| 			if (!ok) {
 | |
| 				set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 				if (!test_and_set_bit(WantReplacement,
 | |
| 						      &rdev->flags))
 | |
| 					set_bit(MD_RECOVERY_NEEDED,
 | |
| 						&rdev->mddev->recovery);
 | |
| 			}
 | |
| 		}
 | |
| 		if (!ok) {
 | |
| 			/* We don't worry if we cannot set a bad block -
 | |
| 			 * it really is bad so there is no loss in not
 | |
| 			 * recording it yet
 | |
| 			 */
 | |
| 			rdev_set_badblocks(rdev, addr, s, 0);
 | |
| 
 | |
| 			if (rdev != conf->mirrors[dw].rdev) {
 | |
| 				/* need bad block on destination too */
 | |
| 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
 | |
| 				addr = r10_bio->devs[1].addr + sect;
 | |
| 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
 | |
| 				if (!ok) {
 | |
| 					/* just abort the recovery */
 | |
| 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
 | |
| 						  mdname(mddev));
 | |
| 
 | |
| 					conf->mirrors[dw].recovery_disabled
 | |
| 						= mddev->recovery_disabled;
 | |
| 					set_bit(MD_RECOVERY_INTR,
 | |
| 						&mddev->recovery);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		sectors -= s;
 | |
| 		sect += s;
 | |
| 		idx++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int d;
 | |
| 	struct bio *wbio = r10_bio->devs[1].bio;
 | |
| 	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
 | |
| 
 | |
| 	/* Need to test wbio2->bi_end_io before we call
 | |
| 	 * submit_bio_noacct as if the former is NULL,
 | |
| 	 * the latter is free to free wbio2.
 | |
| 	 */
 | |
| 	if (wbio2 && !wbio2->bi_end_io)
 | |
| 		wbio2 = NULL;
 | |
| 
 | |
| 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
 | |
| 		fix_recovery_read_error(r10_bio);
 | |
| 		if (wbio->bi_end_io)
 | |
| 			end_sync_request(r10_bio);
 | |
| 		if (wbio2)
 | |
| 			end_sync_request(r10_bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * share the pages with the first bio
 | |
| 	 * and submit the write request
 | |
| 	 */
 | |
| 	d = r10_bio->devs[1].devnum;
 | |
| 	if (wbio->bi_end_io) {
 | |
| 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 | |
| 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
 | |
| 		submit_bio_noacct(wbio);
 | |
| 	}
 | |
| 	if (wbio2) {
 | |
| 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
 | |
| 		md_sync_acct(conf->mirrors[d].replacement->bdev,
 | |
| 			     bio_sectors(wbio2));
 | |
| 		submit_bio_noacct(wbio2);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
 | |
| 			    int sectors, struct page *page, enum req_op op)
 | |
| {
 | |
| 	if (rdev_has_badblock(rdev, sector, sectors) &&
 | |
| 	    (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
 | |
| 		return -1;
 | |
| 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
 | |
| 		/* success */
 | |
| 		return 1;
 | |
| 	if (op == REQ_OP_WRITE) {
 | |
| 		set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 			set_bit(MD_RECOVERY_NEEDED,
 | |
| 				&rdev->mddev->recovery);
 | |
| 	}
 | |
| 	/* need to record an error - either for the block or the device */
 | |
| 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
 | |
| 		md_error(rdev->mddev, rdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a kernel thread which:
 | |
|  *
 | |
|  *	1.	Retries failed read operations on working mirrors.
 | |
|  *	2.	Updates the raid superblock when problems encounter.
 | |
|  *	3.	Performs writes following reads for array synchronising.
 | |
|  */
 | |
| 
 | |
| static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	int sect = 0; /* Offset from r10_bio->sector */
 | |
| 	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int d = r10_bio->devs[slot].devnum;
 | |
| 
 | |
| 	/* still own a reference to this rdev, so it cannot
 | |
| 	 * have been cleared recently.
 | |
| 	 */
 | |
| 	rdev = conf->mirrors[d].rdev;
 | |
| 
 | |
| 	if (test_bit(Faulty, &rdev->flags))
 | |
| 		/* drive has already been failed, just ignore any
 | |
| 		   more fix_read_error() attempts */
 | |
| 		return;
 | |
| 
 | |
| 	if (exceed_read_errors(mddev, rdev)) {
 | |
| 		r10_bio->devs[slot].bio = IO_BLOCKED;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while(sectors) {
 | |
| 		int s = sectors;
 | |
| 		int sl = slot;
 | |
| 		int success = 0;
 | |
| 		int start;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE>>9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 
 | |
| 		do {
 | |
| 			d = r10_bio->devs[sl].devnum;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (rdev &&
 | |
| 			    test_bit(In_sync, &rdev->flags) &&
 | |
| 			    !test_bit(Faulty, &rdev->flags) &&
 | |
| 			    rdev_has_badblock(rdev,
 | |
| 					      r10_bio->devs[sl].addr + sect,
 | |
| 					      s) == 0) {
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				success = sync_page_io(rdev,
 | |
| 						       r10_bio->devs[sl].addr +
 | |
| 						       sect,
 | |
| 						       s<<9,
 | |
| 						       conf->tmppage,
 | |
| 						       REQ_OP_READ, false);
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 				if (success)
 | |
| 					break;
 | |
| 			}
 | |
| 			sl++;
 | |
| 			if (sl == conf->copies)
 | |
| 				sl = 0;
 | |
| 		} while (sl != slot);
 | |
| 
 | |
| 		if (!success) {
 | |
| 			/* Cannot read from anywhere, just mark the block
 | |
| 			 * as bad on the first device to discourage future
 | |
| 			 * reads.
 | |
| 			 */
 | |
| 			int dn = r10_bio->devs[slot].devnum;
 | |
| 			rdev = conf->mirrors[dn].rdev;
 | |
| 
 | |
| 			if (!rdev_set_badblocks(
 | |
| 				    rdev,
 | |
| 				    r10_bio->devs[slot].addr
 | |
| 				    + sect,
 | |
| 				    s, 0)) {
 | |
| 				md_error(mddev, rdev);
 | |
| 				r10_bio->devs[slot].bio
 | |
| 					= IO_BLOCKED;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		start = sl;
 | |
| 		/* write it back and re-read */
 | |
| 		while (sl != slot) {
 | |
| 			if (sl==0)
 | |
| 				sl = conf->copies;
 | |
| 			sl--;
 | |
| 			d = r10_bio->devs[sl].devnum;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (!rdev ||
 | |
| 			    test_bit(Faulty, &rdev->flags) ||
 | |
| 			    !test_bit(In_sync, &rdev->flags))
 | |
| 				continue;
 | |
| 
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			if (r10_sync_page_io(rdev,
 | |
| 					     r10_bio->devs[sl].addr +
 | |
| 					     sect,
 | |
| 					     s, conf->tmppage, REQ_OP_WRITE)
 | |
| 			    == 0) {
 | |
| 				/* Well, this device is dead */
 | |
| 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
 | |
| 					  mdname(mddev), s,
 | |
| 					  (unsigned long long)(
 | |
| 						  sect +
 | |
| 						  choose_data_offset(r10_bio,
 | |
| 								     rdev)),
 | |
| 					  rdev->bdev);
 | |
| 				pr_notice("md/raid10:%s: %pg: failing drive\n",
 | |
| 					  mdname(mddev),
 | |
| 					  rdev->bdev);
 | |
| 			}
 | |
| 			rdev_dec_pending(rdev, mddev);
 | |
| 		}
 | |
| 		sl = start;
 | |
| 		while (sl != slot) {
 | |
| 			if (sl==0)
 | |
| 				sl = conf->copies;
 | |
| 			sl--;
 | |
| 			d = r10_bio->devs[sl].devnum;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (!rdev ||
 | |
| 			    test_bit(Faulty, &rdev->flags) ||
 | |
| 			    !test_bit(In_sync, &rdev->flags))
 | |
| 				continue;
 | |
| 
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			switch (r10_sync_page_io(rdev,
 | |
| 					     r10_bio->devs[sl].addr +
 | |
| 					     sect,
 | |
| 					     s, conf->tmppage, REQ_OP_READ)) {
 | |
| 			case 0:
 | |
| 				/* Well, this device is dead */
 | |
| 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
 | |
| 				       mdname(mddev), s,
 | |
| 				       (unsigned long long)(
 | |
| 					       sect +
 | |
| 					       choose_data_offset(r10_bio, rdev)),
 | |
| 				       rdev->bdev);
 | |
| 				pr_notice("md/raid10:%s: %pg: failing drive\n",
 | |
| 				       mdname(mddev),
 | |
| 				       rdev->bdev);
 | |
| 				break;
 | |
| 			case 1:
 | |
| 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
 | |
| 				       mdname(mddev), s,
 | |
| 				       (unsigned long long)(
 | |
| 					       sect +
 | |
| 					       choose_data_offset(r10_bio, rdev)),
 | |
| 				       rdev->bdev);
 | |
| 				atomic_add(s, &rdev->corrected_errors);
 | |
| 			}
 | |
| 
 | |
| 			rdev_dec_pending(rdev, mddev);
 | |
| 		}
 | |
| 
 | |
| 		sectors -= s;
 | |
| 		sect += s;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool narrow_write_error(struct r10bio *r10_bio, int i)
 | |
| {
 | |
| 	struct bio *bio = r10_bio->master_bio;
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
 | |
| 	/* bio has the data to be written to slot 'i' where
 | |
| 	 * we just recently had a write error.
 | |
| 	 * We repeatedly clone the bio and trim down to one block,
 | |
| 	 * then try the write.  Where the write fails we record
 | |
| 	 * a bad block.
 | |
| 	 * It is conceivable that the bio doesn't exactly align with
 | |
| 	 * blocks.  We must handle this.
 | |
| 	 *
 | |
| 	 * We currently own a reference to the rdev.
 | |
| 	 */
 | |
| 
 | |
| 	int block_sectors;
 | |
| 	sector_t sector;
 | |
| 	int sectors;
 | |
| 	int sect_to_write = r10_bio->sectors;
 | |
| 	bool ok = true;
 | |
| 
 | |
| 	if (rdev->badblocks.shift < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	block_sectors = roundup(1 << rdev->badblocks.shift,
 | |
| 				bdev_logical_block_size(rdev->bdev) >> 9);
 | |
| 	sector = r10_bio->sector;
 | |
| 	sectors = ((r10_bio->sector + block_sectors)
 | |
| 		   & ~(sector_t)(block_sectors - 1))
 | |
| 		- sector;
 | |
| 
 | |
| 	while (sect_to_write) {
 | |
| 		struct bio *wbio;
 | |
| 		sector_t wsector;
 | |
| 		if (sectors > sect_to_write)
 | |
| 			sectors = sect_to_write;
 | |
| 		/* Write at 'sector' for 'sectors' */
 | |
| 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
 | |
| 				       &mddev->bio_set);
 | |
| 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
 | |
| 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
 | |
| 		wbio->bi_iter.bi_sector = wsector +
 | |
| 				   choose_data_offset(r10_bio, rdev);
 | |
| 		wbio->bi_opf = REQ_OP_WRITE;
 | |
| 
 | |
| 		if (submit_bio_wait(wbio) < 0)
 | |
| 			/* Failure! */
 | |
| 			ok = rdev_set_badblocks(rdev, wsector,
 | |
| 						sectors, 0)
 | |
| 				&& ok;
 | |
| 
 | |
| 		bio_put(wbio);
 | |
| 		sect_to_write -= sectors;
 | |
| 		sector += sectors;
 | |
| 		sectors = block_sectors;
 | |
| 	}
 | |
| 	return ok;
 | |
| }
 | |
| 
 | |
| static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	int slot = r10_bio->read_slot;
 | |
| 	struct bio *bio;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
 | |
| 
 | |
| 	/* we got a read error. Maybe the drive is bad.  Maybe just
 | |
| 	 * the block and we can fix it.
 | |
| 	 * We freeze all other IO, and try reading the block from
 | |
| 	 * other devices.  When we find one, we re-write
 | |
| 	 * and check it that fixes the read error.
 | |
| 	 * This is all done synchronously while the array is
 | |
| 	 * frozen.
 | |
| 	 */
 | |
| 	bio = r10_bio->devs[slot].bio;
 | |
| 	bio_put(bio);
 | |
| 	r10_bio->devs[slot].bio = NULL;
 | |
| 
 | |
| 	if (mddev->ro)
 | |
| 		r10_bio->devs[slot].bio = IO_BLOCKED;
 | |
| 	else if (!test_bit(FailFast, &rdev->flags)) {
 | |
| 		freeze_array(conf, 1);
 | |
| 		fix_read_error(conf, mddev, r10_bio);
 | |
| 		unfreeze_array(conf);
 | |
| 	} else
 | |
| 		md_error(mddev, rdev);
 | |
| 
 | |
| 	rdev_dec_pending(rdev, mddev);
 | |
| 	r10_bio->state = 0;
 | |
| 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
 | |
| 	/*
 | |
| 	 * allow_barrier after re-submit to ensure no sync io
 | |
| 	 * can be issued while regular io pending.
 | |
| 	 */
 | |
| 	allow_barrier(conf);
 | |
| }
 | |
| 
 | |
| static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
 | |
| {
 | |
| 	/* Some sort of write request has finished and it
 | |
| 	 * succeeded in writing where we thought there was a
 | |
| 	 * bad block.  So forget the bad block.
 | |
| 	 * Or possibly if failed and we need to record
 | |
| 	 * a bad block.
 | |
| 	 */
 | |
| 	int m;
 | |
| 	struct md_rdev *rdev;
 | |
| 
 | |
| 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
 | |
| 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
 | |
| 		for (m = 0; m < conf->copies; m++) {
 | |
| 			int dev = r10_bio->devs[m].devnum;
 | |
| 			rdev = conf->mirrors[dev].rdev;
 | |
| 			if (r10_bio->devs[m].bio == NULL ||
 | |
| 				r10_bio->devs[m].bio->bi_end_io == NULL)
 | |
| 				continue;
 | |
| 			if (!r10_bio->devs[m].bio->bi_status) {
 | |
| 				rdev_clear_badblocks(
 | |
| 					rdev,
 | |
| 					r10_bio->devs[m].addr,
 | |
| 					r10_bio->sectors, 0);
 | |
| 			} else {
 | |
| 				if (!rdev_set_badblocks(
 | |
| 					    rdev,
 | |
| 					    r10_bio->devs[m].addr,
 | |
| 					    r10_bio->sectors, 0))
 | |
| 					md_error(conf->mddev, rdev);
 | |
| 			}
 | |
| 			rdev = conf->mirrors[dev].replacement;
 | |
| 			if (r10_bio->devs[m].repl_bio == NULL ||
 | |
| 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
 | |
| 				continue;
 | |
| 
 | |
| 			if (!r10_bio->devs[m].repl_bio->bi_status) {
 | |
| 				rdev_clear_badblocks(
 | |
| 					rdev,
 | |
| 					r10_bio->devs[m].addr,
 | |
| 					r10_bio->sectors, 0);
 | |
| 			} else {
 | |
| 				if (!rdev_set_badblocks(
 | |
| 					    rdev,
 | |
| 					    r10_bio->devs[m].addr,
 | |
| 					    r10_bio->sectors, 0))
 | |
| 					md_error(conf->mddev, rdev);
 | |
| 			}
 | |
| 		}
 | |
| 		put_buf(r10_bio);
 | |
| 	} else {
 | |
| 		bool fail = false;
 | |
| 		for (m = 0; m < conf->copies; m++) {
 | |
| 			int dev = r10_bio->devs[m].devnum;
 | |
| 			struct bio *bio = r10_bio->devs[m].bio;
 | |
| 			rdev = conf->mirrors[dev].rdev;
 | |
| 			if (bio == IO_MADE_GOOD) {
 | |
| 				rdev_clear_badblocks(
 | |
| 					rdev,
 | |
| 					r10_bio->devs[m].addr,
 | |
| 					r10_bio->sectors, 0);
 | |
| 				rdev_dec_pending(rdev, conf->mddev);
 | |
| 			} else if (bio != NULL && bio->bi_status) {
 | |
| 				fail = true;
 | |
| 				if (!narrow_write_error(r10_bio, m))
 | |
| 					md_error(conf->mddev, rdev);
 | |
| 				rdev_dec_pending(rdev, conf->mddev);
 | |
| 			}
 | |
| 			bio = r10_bio->devs[m].repl_bio;
 | |
| 			rdev = conf->mirrors[dev].replacement;
 | |
| 			if (rdev && bio == IO_MADE_GOOD) {
 | |
| 				rdev_clear_badblocks(
 | |
| 					rdev,
 | |
| 					r10_bio->devs[m].addr,
 | |
| 					r10_bio->sectors, 0);
 | |
| 				rdev_dec_pending(rdev, conf->mddev);
 | |
| 			}
 | |
| 		}
 | |
| 		if (fail) {
 | |
| 			spin_lock_irq(&conf->device_lock);
 | |
| 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
 | |
| 			conf->nr_queued++;
 | |
| 			spin_unlock_irq(&conf->device_lock);
 | |
| 			/*
 | |
| 			 * In case freeze_array() is waiting for condition
 | |
| 			 * nr_pending == nr_queued + extra to be true.
 | |
| 			 */
 | |
| 			wake_up(&conf->wait_barrier);
 | |
| 			md_wakeup_thread(conf->mddev->thread);
 | |
| 		} else {
 | |
| 			if (test_bit(R10BIO_WriteError,
 | |
| 				     &r10_bio->state))
 | |
| 				close_write(r10_bio);
 | |
| 			raid_end_bio_io(r10_bio);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid10d(struct md_thread *thread)
 | |
| {
 | |
| 	struct mddev *mddev = thread->mddev;
 | |
| 	struct r10bio *r10_bio;
 | |
| 	unsigned long flags;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct list_head *head = &conf->retry_list;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	md_check_recovery(mddev);
 | |
| 
 | |
| 	if (!list_empty_careful(&conf->bio_end_io_list) &&
 | |
| 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
 | |
| 		LIST_HEAD(tmp);
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
 | |
| 			while (!list_empty(&conf->bio_end_io_list)) {
 | |
| 				list_move(conf->bio_end_io_list.prev, &tmp);
 | |
| 				conf->nr_queued--;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 		while (!list_empty(&tmp)) {
 | |
| 			r10_bio = list_first_entry(&tmp, struct r10bio,
 | |
| 						   retry_list);
 | |
| 			list_del(&r10_bio->retry_list);
 | |
| 
 | |
| 			if (test_bit(R10BIO_WriteError,
 | |
| 				     &r10_bio->state))
 | |
| 				close_write(r10_bio);
 | |
| 			raid_end_bio_io(r10_bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	for (;;) {
 | |
| 
 | |
| 		flush_pending_writes(conf);
 | |
| 
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (list_empty(head)) {
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			break;
 | |
| 		}
 | |
| 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
 | |
| 		list_del(head->prev);
 | |
| 		conf->nr_queued--;
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 		mddev = r10_bio->mddev;
 | |
| 		conf = mddev->private;
 | |
| 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
 | |
| 		    test_bit(R10BIO_WriteError, &r10_bio->state))
 | |
| 			handle_write_completed(conf, r10_bio);
 | |
| 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
 | |
| 			reshape_request_write(mddev, r10_bio);
 | |
| 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
 | |
| 			sync_request_write(mddev, r10_bio);
 | |
| 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
 | |
| 			recovery_request_write(mddev, r10_bio);
 | |
| 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
 | |
| 			handle_read_error(mddev, r10_bio);
 | |
| 		else
 | |
| 			WARN_ON_ONCE(1);
 | |
| 
 | |
| 		cond_resched();
 | |
| 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
 | |
| 			md_check_recovery(mddev);
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| }
 | |
| 
 | |
| static int init_resync(struct r10conf *conf)
 | |
| {
 | |
| 	int ret, buffs, i;
 | |
| 
 | |
| 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
 | |
| 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
 | |
| 	conf->have_replacement = 0;
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++)
 | |
| 		if (conf->mirrors[i].replacement)
 | |
| 			conf->have_replacement = 1;
 | |
| 	ret = mempool_init(&conf->r10buf_pool, buffs,
 | |
| 			   r10buf_pool_alloc, r10buf_pool_free, conf);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	conf->next_resync = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
 | |
| {
 | |
| 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
 | |
| 	struct rsync_pages *rp;
 | |
| 	struct bio *bio;
 | |
| 	int nalloc;
 | |
| 	int i;
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 | |
| 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 | |
| 		nalloc = conf->copies; /* resync */
 | |
| 	else
 | |
| 		nalloc = 2; /* recovery */
 | |
| 
 | |
| 	for (i = 0; i < nalloc; i++) {
 | |
| 		bio = r10bio->devs[i].bio;
 | |
| 		rp = bio->bi_private;
 | |
| 		bio_reset(bio, NULL, 0);
 | |
| 		bio->bi_private = rp;
 | |
| 		bio = r10bio->devs[i].repl_bio;
 | |
| 		if (bio) {
 | |
| 			rp = bio->bi_private;
 | |
| 			bio_reset(bio, NULL, 0);
 | |
| 			bio->bi_private = rp;
 | |
| 		}
 | |
| 	}
 | |
| 	return r10bio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set cluster_sync_high since we need other nodes to add the
 | |
|  * range [cluster_sync_low, cluster_sync_high] to suspend list.
 | |
|  */
 | |
| static void raid10_set_cluster_sync_high(struct r10conf *conf)
 | |
| {
 | |
| 	sector_t window_size;
 | |
| 	int extra_chunk, chunks;
 | |
| 
 | |
| 	/*
 | |
| 	 * First, here we define "stripe" as a unit which across
 | |
| 	 * all member devices one time, so we get chunks by use
 | |
| 	 * raid_disks / near_copies. Otherwise, if near_copies is
 | |
| 	 * close to raid_disks, then resync window could increases
 | |
| 	 * linearly with the increase of raid_disks, which means
 | |
| 	 * we will suspend a really large IO window while it is not
 | |
| 	 * necessary. If raid_disks is not divisible by near_copies,
 | |
| 	 * an extra chunk is needed to ensure the whole "stripe" is
 | |
| 	 * covered.
 | |
| 	 */
 | |
| 
 | |
| 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
 | |
| 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
 | |
| 		extra_chunk = 0;
 | |
| 	else
 | |
| 		extra_chunk = 1;
 | |
| 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
 | |
| 
 | |
| 	/*
 | |
| 	 * At least use a 32M window to align with raid1's resync window
 | |
| 	 */
 | |
| 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
 | |
| 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
 | |
| 
 | |
| 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * perform a "sync" on one "block"
 | |
|  *
 | |
|  * We need to make sure that no normal I/O request - particularly write
 | |
|  * requests - conflict with active sync requests.
 | |
|  *
 | |
|  * This is achieved by tracking pending requests and a 'barrier' concept
 | |
|  * that can be installed to exclude normal IO requests.
 | |
|  *
 | |
|  * Resync and recovery are handled very differently.
 | |
|  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
 | |
|  *
 | |
|  * For resync, we iterate over virtual addresses, read all copies,
 | |
|  * and update if there are differences.  If only one copy is live,
 | |
|  * skip it.
 | |
|  * For recovery, we iterate over physical addresses, read a good
 | |
|  * value for each non-in_sync drive, and over-write.
 | |
|  *
 | |
|  * So, for recovery we may have several outstanding complex requests for a
 | |
|  * given address, one for each out-of-sync device.  We model this by allocating
 | |
|  * a number of r10_bio structures, one for each out-of-sync device.
 | |
|  * As we setup these structures, we collect all bio's together into a list
 | |
|  * which we then process collectively to add pages, and then process again
 | |
|  * to pass to submit_bio_noacct.
 | |
|  *
 | |
|  * The r10_bio structures are linked using a borrowed master_bio pointer.
 | |
|  * This link is counted in ->remaining.  When the r10_bio that points to NULL
 | |
|  * has its remaining count decremented to 0, the whole complex operation
 | |
|  * is complete.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
 | |
| 				    sector_t max_sector, int *skipped)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct r10bio *r10_bio;
 | |
| 	struct bio *biolist = NULL, *bio;
 | |
| 	sector_t nr_sectors;
 | |
| 	int i;
 | |
| 	int max_sync;
 | |
| 	sector_t sync_blocks;
 | |
| 	sector_t sectors_skipped = 0;
 | |
| 	int chunks_skipped = 0;
 | |
| 	sector_t chunk_mask = conf->geo.chunk_mask;
 | |
| 	int page_idx = 0;
 | |
| 	int error_disk = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow skipping a full rebuild for incremental assembly
 | |
| 	 * of a clean array, like RAID1 does.
 | |
| 	 */
 | |
| 	if (mddev->bitmap == NULL &&
 | |
| 	    mddev->recovery_cp == MaxSector &&
 | |
| 	    mddev->reshape_position == MaxSector &&
 | |
| 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
 | |
| 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
 | |
| 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
 | |
| 	    conf->fullsync == 0) {
 | |
| 		*skipped = 1;
 | |
| 		return mddev->dev_sectors - sector_nr;
 | |
| 	}
 | |
| 
 | |
| 	if (!mempool_initialized(&conf->r10buf_pool))
 | |
| 		if (init_resync(conf))
 | |
| 			return 0;
 | |
| 
 | |
|  skipped:
 | |
| 	if (sector_nr >= max_sector) {
 | |
| 		conf->cluster_sync_low = 0;
 | |
| 		conf->cluster_sync_high = 0;
 | |
| 
 | |
| 		/* If we aborted, we need to abort the
 | |
| 		 * sync on the 'current' bitmap chucks (there can
 | |
| 		 * be several when recovering multiple devices).
 | |
| 		 * as we may have started syncing it but not finished.
 | |
| 		 * We can find the current address in
 | |
| 		 * mddev->curr_resync, but for recovery,
 | |
| 		 * we need to convert that to several
 | |
| 		 * virtual addresses.
 | |
| 		 */
 | |
| 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
 | |
| 			end_reshape(conf);
 | |
| 			close_sync(conf);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (mddev->curr_resync < max_sector) { /* aborted */
 | |
| 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
 | |
| 				mddev->bitmap_ops->end_sync(mddev,
 | |
| 							    mddev->curr_resync,
 | |
| 							    &sync_blocks);
 | |
| 			else for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 				sector_t sect =
 | |
| 					raid10_find_virt(conf, mddev->curr_resync, i);
 | |
| 
 | |
| 				mddev->bitmap_ops->end_sync(mddev, sect,
 | |
| 							    &sync_blocks);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* completed sync */
 | |
| 			if ((!mddev->bitmap || conf->fullsync)
 | |
| 			    && conf->have_replacement
 | |
| 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
 | |
| 				/* Completed a full sync so the replacements
 | |
| 				 * are now fully recovered.
 | |
| 				 */
 | |
| 				for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 					struct md_rdev *rdev =
 | |
| 						conf->mirrors[i].replacement;
 | |
| 
 | |
| 					if (rdev)
 | |
| 						rdev->recovery_offset = MaxSector;
 | |
| 				}
 | |
| 			}
 | |
| 			conf->fullsync = 0;
 | |
| 		}
 | |
| 		mddev->bitmap_ops->close_sync(mddev);
 | |
| 		close_sync(conf);
 | |
| 		*skipped = 1;
 | |
| 		return sectors_skipped;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
 | |
| 		return reshape_request(mddev, sector_nr, skipped);
 | |
| 
 | |
| 	if (chunks_skipped >= conf->geo.raid_disks) {
 | |
| 		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
 | |
| 			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
 | |
| 		if (error_disk >= 0 &&
 | |
| 		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
 | |
| 			/*
 | |
| 			 * recovery fails, set mirrors.recovery_disabled,
 | |
| 			 * device shouldn't be added to there.
 | |
| 			 */
 | |
| 			conf->mirrors[error_disk].recovery_disabled =
 | |
| 						mddev->recovery_disabled;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * if there has been nothing to do on any drive,
 | |
| 		 * then there is nothing to do at all.
 | |
| 		 */
 | |
| 		*skipped = 1;
 | |
| 		return (max_sector - sector_nr) + sectors_skipped;
 | |
| 	}
 | |
| 
 | |
| 	if (max_sector > mddev->resync_max)
 | |
| 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
 | |
| 
 | |
| 	/* make sure whole request will fit in a chunk - if chunks
 | |
| 	 * are meaningful
 | |
| 	 */
 | |
| 	if (conf->geo.near_copies < conf->geo.raid_disks &&
 | |
| 	    max_sector > (sector_nr | chunk_mask))
 | |
| 		max_sector = (sector_nr | chunk_mask) + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is non-resync activity waiting for a turn, then let it
 | |
| 	 * though before starting on this new sync request.
 | |
| 	 */
 | |
| 	if (conf->nr_waiting)
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 
 | |
| 	/* Again, very different code for resync and recovery.
 | |
| 	 * Both must result in an r10bio with a list of bios that
 | |
| 	 * have bi_end_io, bi_sector, bi_bdev set,
 | |
| 	 * and bi_private set to the r10bio.
 | |
| 	 * For recovery, we may actually create several r10bios
 | |
| 	 * with 2 bios in each, that correspond to the bios in the main one.
 | |
| 	 * In this case, the subordinate r10bios link back through a
 | |
| 	 * borrowed master_bio pointer, and the counter in the master
 | |
| 	 * includes a ref from each subordinate.
 | |
| 	 */
 | |
| 	/* First, we decide what to do and set ->bi_end_io
 | |
| 	 * To end_sync_read if we want to read, and
 | |
| 	 * end_sync_write if we will want to write.
 | |
| 	 */
 | |
| 
 | |
| 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
 | |
| 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
 | |
| 		/* recovery... the complicated one */
 | |
| 		int j;
 | |
| 		r10_bio = NULL;
 | |
| 
 | |
| 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
 | |
| 			bool still_degraded;
 | |
| 			struct r10bio *rb2;
 | |
| 			sector_t sect;
 | |
| 			bool must_sync;
 | |
| 			int any_working;
 | |
| 			struct raid10_info *mirror = &conf->mirrors[i];
 | |
| 			struct md_rdev *mrdev, *mreplace;
 | |
| 
 | |
| 			mrdev = mirror->rdev;
 | |
| 			mreplace = mirror->replacement;
 | |
| 
 | |
| 			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
 | |
| 			    test_bit(In_sync, &mrdev->flags)))
 | |
| 				mrdev = NULL;
 | |
| 			if (mreplace && test_bit(Faulty, &mreplace->flags))
 | |
| 				mreplace = NULL;
 | |
| 
 | |
| 			if (!mrdev && !mreplace)
 | |
| 				continue;
 | |
| 
 | |
| 			still_degraded = false;
 | |
| 			/* want to reconstruct this device */
 | |
| 			rb2 = r10_bio;
 | |
| 			sect = raid10_find_virt(conf, sector_nr, i);
 | |
| 			if (sect >= mddev->resync_max_sectors)
 | |
| 				/* last stripe is not complete - don't
 | |
| 				 * try to recover this sector.
 | |
| 				 */
 | |
| 				continue;
 | |
| 			/* Unless we are doing a full sync, or a replacement
 | |
| 			 * we only need to recover the block if it is set in
 | |
| 			 * the bitmap
 | |
| 			 */
 | |
| 			must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
 | |
| 								  &sync_blocks,
 | |
| 								  true);
 | |
| 			if (sync_blocks < max_sync)
 | |
| 				max_sync = sync_blocks;
 | |
| 			if (!must_sync &&
 | |
| 			    mreplace == NULL &&
 | |
| 			    !conf->fullsync) {
 | |
| 				/* yep, skip the sync_blocks here, but don't assume
 | |
| 				 * that there will never be anything to do here
 | |
| 				 */
 | |
| 				chunks_skipped = -1;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (mrdev)
 | |
| 				atomic_inc(&mrdev->nr_pending);
 | |
| 			if (mreplace)
 | |
| 				atomic_inc(&mreplace->nr_pending);
 | |
| 
 | |
| 			r10_bio = raid10_alloc_init_r10buf(conf);
 | |
| 			r10_bio->state = 0;
 | |
| 			raise_barrier(conf, rb2 != NULL);
 | |
| 			atomic_set(&r10_bio->remaining, 0);
 | |
| 
 | |
| 			r10_bio->master_bio = (struct bio*)rb2;
 | |
| 			if (rb2)
 | |
| 				atomic_inc(&rb2->remaining);
 | |
| 			r10_bio->mddev = mddev;
 | |
| 			set_bit(R10BIO_IsRecover, &r10_bio->state);
 | |
| 			r10_bio->sector = sect;
 | |
| 
 | |
| 			raid10_find_phys(conf, r10_bio);
 | |
| 
 | |
| 			/* Need to check if the array will still be
 | |
| 			 * degraded
 | |
| 			 */
 | |
| 			for (j = 0; j < conf->geo.raid_disks; j++) {
 | |
| 				struct md_rdev *rdev = conf->mirrors[j].rdev;
 | |
| 
 | |
| 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
 | |
| 					still_degraded = false;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
 | |
| 						&sync_blocks, still_degraded);
 | |
| 
 | |
| 			any_working = 0;
 | |
| 			for (j=0; j<conf->copies;j++) {
 | |
| 				int k;
 | |
| 				int d = r10_bio->devs[j].devnum;
 | |
| 				sector_t from_addr, to_addr;
 | |
| 				struct md_rdev *rdev = conf->mirrors[d].rdev;
 | |
| 				sector_t sector, first_bad;
 | |
| 				sector_t bad_sectors;
 | |
| 				if (!rdev ||
 | |
| 				    !test_bit(In_sync, &rdev->flags))
 | |
| 					continue;
 | |
| 				/* This is where we read from */
 | |
| 				any_working = 1;
 | |
| 				sector = r10_bio->devs[j].addr;
 | |
| 
 | |
| 				if (is_badblock(rdev, sector, max_sync,
 | |
| 						&first_bad, &bad_sectors)) {
 | |
| 					if (first_bad > sector)
 | |
| 						max_sync = first_bad - sector;
 | |
| 					else {
 | |
| 						bad_sectors -= (sector
 | |
| 								- first_bad);
 | |
| 						if (max_sync > bad_sectors)
 | |
| 							max_sync = bad_sectors;
 | |
| 						continue;
 | |
| 					}
 | |
| 				}
 | |
| 				bio = r10_bio->devs[0].bio;
 | |
| 				bio->bi_next = biolist;
 | |
| 				biolist = bio;
 | |
| 				bio->bi_end_io = end_sync_read;
 | |
| 				bio->bi_opf = REQ_OP_READ;
 | |
| 				if (test_bit(FailFast, &rdev->flags))
 | |
| 					bio->bi_opf |= MD_FAILFAST;
 | |
| 				from_addr = r10_bio->devs[j].addr;
 | |
| 				bio->bi_iter.bi_sector = from_addr +
 | |
| 					rdev->data_offset;
 | |
| 				bio_set_dev(bio, rdev->bdev);
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				/* and we write to 'i' (if not in_sync) */
 | |
| 
 | |
| 				for (k=0; k<conf->copies; k++)
 | |
| 					if (r10_bio->devs[k].devnum == i)
 | |
| 						break;
 | |
| 				BUG_ON(k == conf->copies);
 | |
| 				to_addr = r10_bio->devs[k].addr;
 | |
| 				r10_bio->devs[0].devnum = d;
 | |
| 				r10_bio->devs[0].addr = from_addr;
 | |
| 				r10_bio->devs[1].devnum = i;
 | |
| 				r10_bio->devs[1].addr = to_addr;
 | |
| 
 | |
| 				if (mrdev) {
 | |
| 					bio = r10_bio->devs[1].bio;
 | |
| 					bio->bi_next = biolist;
 | |
| 					biolist = bio;
 | |
| 					bio->bi_end_io = end_sync_write;
 | |
| 					bio->bi_opf = REQ_OP_WRITE;
 | |
| 					bio->bi_iter.bi_sector = to_addr
 | |
| 						+ mrdev->data_offset;
 | |
| 					bio_set_dev(bio, mrdev->bdev);
 | |
| 					atomic_inc(&r10_bio->remaining);
 | |
| 				} else
 | |
| 					r10_bio->devs[1].bio->bi_end_io = NULL;
 | |
| 
 | |
| 				/* and maybe write to replacement */
 | |
| 				bio = r10_bio->devs[1].repl_bio;
 | |
| 				if (bio)
 | |
| 					bio->bi_end_io = NULL;
 | |
| 				/* Note: if replace is not NULL, then bio
 | |
| 				 * cannot be NULL as r10buf_pool_alloc will
 | |
| 				 * have allocated it.
 | |
| 				 */
 | |
| 				if (!mreplace)
 | |
| 					break;
 | |
| 				bio->bi_next = biolist;
 | |
| 				biolist = bio;
 | |
| 				bio->bi_end_io = end_sync_write;
 | |
| 				bio->bi_opf = REQ_OP_WRITE;
 | |
| 				bio->bi_iter.bi_sector = to_addr +
 | |
| 					mreplace->data_offset;
 | |
| 				bio_set_dev(bio, mreplace->bdev);
 | |
| 				atomic_inc(&r10_bio->remaining);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (j == conf->copies) {
 | |
| 				/* Cannot recover, so abort the recovery or
 | |
| 				 * record a bad block */
 | |
| 				if (any_working) {
 | |
| 					/* problem is that there are bad blocks
 | |
| 					 * on other device(s)
 | |
| 					 */
 | |
| 					int k;
 | |
| 					for (k = 0; k < conf->copies; k++)
 | |
| 						if (r10_bio->devs[k].devnum == i)
 | |
| 							break;
 | |
| 					if (mrdev && !test_bit(In_sync,
 | |
| 						      &mrdev->flags)
 | |
| 					    && !rdev_set_badblocks(
 | |
| 						    mrdev,
 | |
| 						    r10_bio->devs[k].addr,
 | |
| 						    max_sync, 0))
 | |
| 						any_working = 0;
 | |
| 					if (mreplace &&
 | |
| 					    !rdev_set_badblocks(
 | |
| 						    mreplace,
 | |
| 						    r10_bio->devs[k].addr,
 | |
| 						    max_sync, 0))
 | |
| 						any_working = 0;
 | |
| 				}
 | |
| 				if (!any_working)  {
 | |
| 					if (!test_and_set_bit(MD_RECOVERY_INTR,
 | |
| 							      &mddev->recovery))
 | |
| 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
 | |
| 						       mdname(mddev));
 | |
| 					mirror->recovery_disabled
 | |
| 						= mddev->recovery_disabled;
 | |
| 				} else {
 | |
| 					error_disk = i;
 | |
| 				}
 | |
| 				put_buf(r10_bio);
 | |
| 				if (rb2)
 | |
| 					atomic_dec(&rb2->remaining);
 | |
| 				r10_bio = rb2;
 | |
| 				if (mrdev)
 | |
| 					rdev_dec_pending(mrdev, mddev);
 | |
| 				if (mreplace)
 | |
| 					rdev_dec_pending(mreplace, mddev);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (mrdev)
 | |
| 				rdev_dec_pending(mrdev, mddev);
 | |
| 			if (mreplace)
 | |
| 				rdev_dec_pending(mreplace, mddev);
 | |
| 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
 | |
| 				/* Only want this if there is elsewhere to
 | |
| 				 * read from. 'j' is currently the first
 | |
| 				 * readable copy.
 | |
| 				 */
 | |
| 				int targets = 1;
 | |
| 				for (; j < conf->copies; j++) {
 | |
| 					int d = r10_bio->devs[j].devnum;
 | |
| 					if (conf->mirrors[d].rdev &&
 | |
| 					    test_bit(In_sync,
 | |
| 						      &conf->mirrors[d].rdev->flags))
 | |
| 						targets++;
 | |
| 				}
 | |
| 				if (targets == 1)
 | |
| 					r10_bio->devs[0].bio->bi_opf
 | |
| 						&= ~MD_FAILFAST;
 | |
| 			}
 | |
| 		}
 | |
| 		if (biolist == NULL) {
 | |
| 			while (r10_bio) {
 | |
| 				struct r10bio *rb2 = r10_bio;
 | |
| 				r10_bio = (struct r10bio*) rb2->master_bio;
 | |
| 				rb2->master_bio = NULL;
 | |
| 				put_buf(rb2);
 | |
| 			}
 | |
| 			goto giveup;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* resync. Schedule a read for every block at this virt offset */
 | |
| 		int count = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Since curr_resync_completed could probably not update in
 | |
| 		 * time, and we will set cluster_sync_low based on it.
 | |
| 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
 | |
| 		 * safety reason, which ensures curr_resync_completed is
 | |
| 		 * updated in bitmap_cond_end_sync.
 | |
| 		 */
 | |
| 		mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
 | |
| 					mddev_is_clustered(mddev) &&
 | |
| 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
 | |
| 
 | |
| 		if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
 | |
| 						   &sync_blocks,
 | |
| 						   mddev->degraded) &&
 | |
| 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
 | |
| 						 &mddev->recovery)) {
 | |
| 			/* We can skip this block */
 | |
| 			*skipped = 1;
 | |
| 			return sync_blocks + sectors_skipped;
 | |
| 		}
 | |
| 		if (sync_blocks < max_sync)
 | |
| 			max_sync = sync_blocks;
 | |
| 		r10_bio = raid10_alloc_init_r10buf(conf);
 | |
| 		r10_bio->state = 0;
 | |
| 
 | |
| 		r10_bio->mddev = mddev;
 | |
| 		atomic_set(&r10_bio->remaining, 0);
 | |
| 		raise_barrier(conf, 0);
 | |
| 		conf->next_resync = sector_nr;
 | |
| 
 | |
| 		r10_bio->master_bio = NULL;
 | |
| 		r10_bio->sector = sector_nr;
 | |
| 		set_bit(R10BIO_IsSync, &r10_bio->state);
 | |
| 		raid10_find_phys(conf, r10_bio);
 | |
| 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
 | |
| 
 | |
| 		for (i = 0; i < conf->copies; i++) {
 | |
| 			int d = r10_bio->devs[i].devnum;
 | |
| 			sector_t first_bad, sector;
 | |
| 			sector_t bad_sectors;
 | |
| 			struct md_rdev *rdev;
 | |
| 
 | |
| 			if (r10_bio->devs[i].repl_bio)
 | |
| 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
 | |
| 
 | |
| 			bio = r10_bio->devs[i].bio;
 | |
| 			bio->bi_status = BLK_STS_IOERR;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
 | |
| 				continue;
 | |
| 
 | |
| 			sector = r10_bio->devs[i].addr;
 | |
| 			if (is_badblock(rdev, sector, max_sync,
 | |
| 					&first_bad, &bad_sectors)) {
 | |
| 				if (first_bad > sector)
 | |
| 					max_sync = first_bad - sector;
 | |
| 				else {
 | |
| 					bad_sectors -= (sector - first_bad);
 | |
| 					if (max_sync > bad_sectors)
 | |
| 						max_sync = bad_sectors;
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			atomic_inc(&r10_bio->remaining);
 | |
| 			bio->bi_next = biolist;
 | |
| 			biolist = bio;
 | |
| 			bio->bi_end_io = end_sync_read;
 | |
| 			bio->bi_opf = REQ_OP_READ;
 | |
| 			if (test_bit(FailFast, &rdev->flags))
 | |
| 				bio->bi_opf |= MD_FAILFAST;
 | |
| 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
 | |
| 			bio_set_dev(bio, rdev->bdev);
 | |
| 			count++;
 | |
| 
 | |
| 			rdev = conf->mirrors[d].replacement;
 | |
| 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
 | |
| 				continue;
 | |
| 
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 
 | |
| 			/* Need to set up for writing to the replacement */
 | |
| 			bio = r10_bio->devs[i].repl_bio;
 | |
| 			bio->bi_status = BLK_STS_IOERR;
 | |
| 
 | |
| 			sector = r10_bio->devs[i].addr;
 | |
| 			bio->bi_next = biolist;
 | |
| 			biolist = bio;
 | |
| 			bio->bi_end_io = end_sync_write;
 | |
| 			bio->bi_opf = REQ_OP_WRITE;
 | |
| 			if (test_bit(FailFast, &rdev->flags))
 | |
| 				bio->bi_opf |= MD_FAILFAST;
 | |
| 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
 | |
| 			bio_set_dev(bio, rdev->bdev);
 | |
| 			count++;
 | |
| 		}
 | |
| 
 | |
| 		if (count < 2) {
 | |
| 			for (i=0; i<conf->copies; i++) {
 | |
| 				int d = r10_bio->devs[i].devnum;
 | |
| 				if (r10_bio->devs[i].bio->bi_end_io)
 | |
| 					rdev_dec_pending(conf->mirrors[d].rdev,
 | |
| 							 mddev);
 | |
| 				if (r10_bio->devs[i].repl_bio &&
 | |
| 				    r10_bio->devs[i].repl_bio->bi_end_io)
 | |
| 					rdev_dec_pending(
 | |
| 						conf->mirrors[d].replacement,
 | |
| 						mddev);
 | |
| 			}
 | |
| 			put_buf(r10_bio);
 | |
| 			biolist = NULL;
 | |
| 			goto giveup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nr_sectors = 0;
 | |
| 	if (sector_nr + max_sync < max_sector)
 | |
| 		max_sector = sector_nr + max_sync;
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		int len = PAGE_SIZE;
 | |
| 		if (sector_nr + (len>>9) > max_sector)
 | |
| 			len = (max_sector - sector_nr) << 9;
 | |
| 		if (len == 0)
 | |
| 			break;
 | |
| 		for (bio= biolist ; bio ; bio=bio->bi_next) {
 | |
| 			struct resync_pages *rp = get_resync_pages(bio);
 | |
| 			page = resync_fetch_page(rp, page_idx);
 | |
| 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
 | |
| 				bio->bi_status = BLK_STS_RESOURCE;
 | |
| 				bio_endio(bio);
 | |
| 				goto giveup;
 | |
| 			}
 | |
| 		}
 | |
| 		nr_sectors += len>>9;
 | |
| 		sector_nr += len>>9;
 | |
| 	} while (++page_idx < RESYNC_PAGES);
 | |
| 	r10_bio->sectors = nr_sectors;
 | |
| 
 | |
| 	if (mddev_is_clustered(mddev) &&
 | |
| 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
 | |
| 		/* It is resync not recovery */
 | |
| 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
 | |
| 			conf->cluster_sync_low = mddev->curr_resync_completed;
 | |
| 			raid10_set_cluster_sync_high(conf);
 | |
| 			/* Send resync message */
 | |
| 			mddev->cluster_ops->resync_info_update(mddev,
 | |
| 						conf->cluster_sync_low,
 | |
| 						conf->cluster_sync_high);
 | |
| 		}
 | |
| 	} else if (mddev_is_clustered(mddev)) {
 | |
| 		/* This is recovery not resync */
 | |
| 		sector_t sect_va1, sect_va2;
 | |
| 		bool broadcast_msg = false;
 | |
| 
 | |
| 		for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 			/*
 | |
| 			 * sector_nr is a device address for recovery, so we
 | |
| 			 * need translate it to array address before compare
 | |
| 			 * with cluster_sync_high.
 | |
| 			 */
 | |
| 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
 | |
| 
 | |
| 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
 | |
| 				broadcast_msg = true;
 | |
| 				/*
 | |
| 				 * curr_resync_completed is similar as
 | |
| 				 * sector_nr, so make the translation too.
 | |
| 				 */
 | |
| 				sect_va2 = raid10_find_virt(conf,
 | |
| 					mddev->curr_resync_completed, i);
 | |
| 
 | |
| 				if (conf->cluster_sync_low == 0 ||
 | |
| 				    conf->cluster_sync_low > sect_va2)
 | |
| 					conf->cluster_sync_low = sect_va2;
 | |
| 			}
 | |
| 		}
 | |
| 		if (broadcast_msg) {
 | |
| 			raid10_set_cluster_sync_high(conf);
 | |
| 			mddev->cluster_ops->resync_info_update(mddev,
 | |
| 						conf->cluster_sync_low,
 | |
| 						conf->cluster_sync_high);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (biolist) {
 | |
| 		bio = biolist;
 | |
| 		biolist = biolist->bi_next;
 | |
| 
 | |
| 		bio->bi_next = NULL;
 | |
| 		r10_bio = get_resync_r10bio(bio);
 | |
| 		r10_bio->sectors = nr_sectors;
 | |
| 
 | |
| 		if (bio->bi_end_io == end_sync_read) {
 | |
| 			md_sync_acct_bio(bio, nr_sectors);
 | |
| 			bio->bi_status = 0;
 | |
| 			submit_bio_noacct(bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sectors_skipped)
 | |
| 		/* pretend they weren't skipped, it makes
 | |
| 		 * no important difference in this case
 | |
| 		 */
 | |
| 		md_done_sync(mddev, sectors_skipped, 1);
 | |
| 
 | |
| 	return sectors_skipped + nr_sectors;
 | |
|  giveup:
 | |
| 	/* There is nowhere to write, so all non-sync
 | |
| 	 * drives must be failed or in resync, all drives
 | |
| 	 * have a bad block, so try the next chunk...
 | |
| 	 */
 | |
| 	if (sector_nr + max_sync < max_sector)
 | |
| 		max_sector = sector_nr + max_sync;
 | |
| 
 | |
| 	sectors_skipped += (max_sector - sector_nr);
 | |
| 	chunks_skipped ++;
 | |
| 	sector_nr = max_sector;
 | |
| 	goto skipped;
 | |
| }
 | |
| 
 | |
| static sector_t
 | |
| raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
 | |
| {
 | |
| 	sector_t size;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 
 | |
| 	if (!raid_disks)
 | |
| 		raid_disks = min(conf->geo.raid_disks,
 | |
| 				 conf->prev.raid_disks);
 | |
| 	if (!sectors)
 | |
| 		sectors = conf->dev_sectors;
 | |
| 
 | |
| 	size = sectors >> conf->geo.chunk_shift;
 | |
| 	sector_div(size, conf->geo.far_copies);
 | |
| 	size = size * raid_disks;
 | |
| 	sector_div(size, conf->geo.near_copies);
 | |
| 
 | |
| 	return size << conf->geo.chunk_shift;
 | |
| }
 | |
| 
 | |
| static void calc_sectors(struct r10conf *conf, sector_t size)
 | |
| {
 | |
| 	/* Calculate the number of sectors-per-device that will
 | |
| 	 * actually be used, and set conf->dev_sectors and
 | |
| 	 * conf->stride
 | |
| 	 */
 | |
| 
 | |
| 	size = size >> conf->geo.chunk_shift;
 | |
| 	sector_div(size, conf->geo.far_copies);
 | |
| 	size = size * conf->geo.raid_disks;
 | |
| 	sector_div(size, conf->geo.near_copies);
 | |
| 	/* 'size' is now the number of chunks in the array */
 | |
| 	/* calculate "used chunks per device" */
 | |
| 	size = size * conf->copies;
 | |
| 
 | |
| 	/* We need to round up when dividing by raid_disks to
 | |
| 	 * get the stride size.
 | |
| 	 */
 | |
| 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
 | |
| 
 | |
| 	conf->dev_sectors = size << conf->geo.chunk_shift;
 | |
| 
 | |
| 	if (conf->geo.far_offset)
 | |
| 		conf->geo.stride = 1 << conf->geo.chunk_shift;
 | |
| 	else {
 | |
| 		sector_div(size, conf->geo.far_copies);
 | |
| 		conf->geo.stride = size << conf->geo.chunk_shift;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| enum geo_type {geo_new, geo_old, geo_start};
 | |
| static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
 | |
| {
 | |
| 	int nc, fc, fo;
 | |
| 	int layout, chunk, disks;
 | |
| 	switch (new) {
 | |
| 	case geo_old:
 | |
| 		layout = mddev->layout;
 | |
| 		chunk = mddev->chunk_sectors;
 | |
| 		disks = mddev->raid_disks - mddev->delta_disks;
 | |
| 		break;
 | |
| 	case geo_new:
 | |
| 		layout = mddev->new_layout;
 | |
| 		chunk = mddev->new_chunk_sectors;
 | |
| 		disks = mddev->raid_disks;
 | |
| 		break;
 | |
| 	default: /* avoid 'may be unused' warnings */
 | |
| 	case geo_start: /* new when starting reshape - raid_disks not
 | |
| 			 * updated yet. */
 | |
| 		layout = mddev->new_layout;
 | |
| 		chunk = mddev->new_chunk_sectors;
 | |
| 		disks = mddev->raid_disks + mddev->delta_disks;
 | |
| 		break;
 | |
| 	}
 | |
| 	if (layout >> 19)
 | |
| 		return -1;
 | |
| 	if (chunk < (PAGE_SIZE >> 9) ||
 | |
| 	    !is_power_of_2(chunk))
 | |
| 		return -2;
 | |
| 	nc = layout & 255;
 | |
| 	fc = (layout >> 8) & 255;
 | |
| 	fo = layout & (1<<16);
 | |
| 	geo->raid_disks = disks;
 | |
| 	geo->near_copies = nc;
 | |
| 	geo->far_copies = fc;
 | |
| 	geo->far_offset = fo;
 | |
| 	switch (layout >> 17) {
 | |
| 	case 0:	/* original layout.  simple but not always optimal */
 | |
| 		geo->far_set_size = disks;
 | |
| 		break;
 | |
| 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
 | |
| 		 * actually using this, but leave code here just in case.*/
 | |
| 		geo->far_set_size = disks/fc;
 | |
| 		WARN(geo->far_set_size < fc,
 | |
| 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
 | |
| 		break;
 | |
| 	case 2: /* "improved" layout fixed to match documentation */
 | |
| 		geo->far_set_size = fc * nc;
 | |
| 		break;
 | |
| 	default: /* Not a valid layout */
 | |
| 		return -1;
 | |
| 	}
 | |
| 	geo->chunk_mask = chunk - 1;
 | |
| 	geo->chunk_shift = ffz(~chunk);
 | |
| 	return nc*fc;
 | |
| }
 | |
| 
 | |
| static void raid10_free_conf(struct r10conf *conf)
 | |
| {
 | |
| 	if (!conf)
 | |
| 		return;
 | |
| 
 | |
| 	mempool_exit(&conf->r10bio_pool);
 | |
| 	kfree(conf->mirrors);
 | |
| 	kfree(conf->mirrors_old);
 | |
| 	kfree(conf->mirrors_new);
 | |
| 	safe_put_page(conf->tmppage);
 | |
| 	bioset_exit(&conf->bio_split);
 | |
| 	kfree(conf);
 | |
| }
 | |
| 
 | |
| static struct r10conf *setup_conf(struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf = NULL;
 | |
| 	int err = -EINVAL;
 | |
| 	struct geom geo;
 | |
| 	int copies;
 | |
| 
 | |
| 	copies = setup_geo(&geo, mddev, geo_new);
 | |
| 
 | |
| 	if (copies == -2) {
 | |
| 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
 | |
| 			mdname(mddev), PAGE_SIZE);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (copies < 2 || copies > mddev->raid_disks) {
 | |
| 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
 | |
| 			mdname(mddev), mddev->new_layout);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
 | |
| 	if (!conf)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* FIXME calc properly */
 | |
| 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
 | |
| 				sizeof(struct raid10_info),
 | |
| 				GFP_KERNEL);
 | |
| 	if (!conf->mirrors)
 | |
| 		goto out;
 | |
| 
 | |
| 	conf->tmppage = alloc_page(GFP_KERNEL);
 | |
| 	if (!conf->tmppage)
 | |
| 		goto out;
 | |
| 
 | |
| 	conf->geo = geo;
 | |
| 	conf->copies = copies;
 | |
| 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
 | |
| 			   rbio_pool_free, conf);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	calc_sectors(conf, mddev->dev_sectors);
 | |
| 	if (mddev->reshape_position == MaxSector) {
 | |
| 		conf->prev = conf->geo;
 | |
| 		conf->reshape_progress = MaxSector;
 | |
| 	} else {
 | |
| 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		conf->reshape_progress = mddev->reshape_position;
 | |
| 		if (conf->prev.far_offset)
 | |
| 			conf->prev.stride = 1 << conf->prev.chunk_shift;
 | |
| 		else
 | |
| 			/* far_copies must be 1 */
 | |
| 			conf->prev.stride = conf->dev_sectors;
 | |
| 	}
 | |
| 	conf->reshape_safe = conf->reshape_progress;
 | |
| 	spin_lock_init(&conf->device_lock);
 | |
| 	INIT_LIST_HEAD(&conf->retry_list);
 | |
| 	INIT_LIST_HEAD(&conf->bio_end_io_list);
 | |
| 
 | |
| 	seqlock_init(&conf->resync_lock);
 | |
| 	init_waitqueue_head(&conf->wait_barrier);
 | |
| 	atomic_set(&conf->nr_pending, 0);
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	rcu_assign_pointer(conf->thread,
 | |
| 			   md_register_thread(raid10d, mddev, "raid10"));
 | |
| 	if (!conf->thread)
 | |
| 		goto out;
 | |
| 
 | |
| 	conf->mddev = mddev;
 | |
| 	return conf;
 | |
| 
 | |
|  out:
 | |
| 	raid10_free_conf(conf);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static unsigned int raid10_nr_stripes(struct r10conf *conf)
 | |
| {
 | |
| 	unsigned int raid_disks = conf->geo.raid_disks;
 | |
| 
 | |
| 	if (conf->geo.raid_disks % conf->geo.near_copies)
 | |
| 		return raid_disks;
 | |
| 	return raid_disks / conf->geo.near_copies;
 | |
| }
 | |
| 
 | |
| static int raid10_set_queue_limits(struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct queue_limits lim;
 | |
| 	int err;
 | |
| 
 | |
| 	md_init_stacking_limits(&lim);
 | |
| 	lim.max_write_zeroes_sectors = 0;
 | |
| 	lim.io_min = mddev->chunk_sectors << 9;
 | |
| 	lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
 | |
| 	lim.features |= BLK_FEAT_ATOMIC_WRITES;
 | |
| 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return queue_limits_set(mddev->gendisk->queue, &lim);
 | |
| }
 | |
| 
 | |
| static int raid10_run(struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf;
 | |
| 	int i, disk_idx;
 | |
| 	struct raid10_info *disk;
 | |
| 	struct md_rdev *rdev;
 | |
| 	sector_t size;
 | |
| 	sector_t min_offset_diff = 0;
 | |
| 	int first = 1;
 | |
| 	int ret = -EIO;
 | |
| 
 | |
| 	if (mddev->private == NULL) {
 | |
| 		conf = setup_conf(mddev);
 | |
| 		if (IS_ERR(conf))
 | |
| 			return PTR_ERR(conf);
 | |
| 		mddev->private = conf;
 | |
| 	}
 | |
| 	conf = mddev->private;
 | |
| 	if (!conf)
 | |
| 		goto out;
 | |
| 
 | |
| 	rcu_assign_pointer(mddev->thread, conf->thread);
 | |
| 	rcu_assign_pointer(conf->thread, NULL);
 | |
| 
 | |
| 	if (mddev_is_clustered(conf->mddev)) {
 | |
| 		int fc, fo;
 | |
| 
 | |
| 		fc = (mddev->layout >> 8) & 255;
 | |
| 		fo = mddev->layout & (1<<16);
 | |
| 		if (fc > 1 || fo > 0) {
 | |
| 			pr_err("only near layout is supported by clustered"
 | |
| 				" raid10\n");
 | |
| 			goto out_free_conf;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rdev_for_each(rdev, mddev) {
 | |
| 		long long diff;
 | |
| 
 | |
| 		disk_idx = rdev->raid_disk;
 | |
| 		if (disk_idx < 0)
 | |
| 			continue;
 | |
| 		if (disk_idx >= conf->geo.raid_disks &&
 | |
| 		    disk_idx >= conf->prev.raid_disks)
 | |
| 			continue;
 | |
| 		disk = conf->mirrors + disk_idx;
 | |
| 
 | |
| 		if (test_bit(Replacement, &rdev->flags)) {
 | |
| 			if (disk->replacement)
 | |
| 				goto out_free_conf;
 | |
| 			disk->replacement = rdev;
 | |
| 		} else {
 | |
| 			if (disk->rdev)
 | |
| 				goto out_free_conf;
 | |
| 			disk->rdev = rdev;
 | |
| 		}
 | |
| 		diff = (rdev->new_data_offset - rdev->data_offset);
 | |
| 		if (!mddev->reshape_backwards)
 | |
| 			diff = -diff;
 | |
| 		if (diff < 0)
 | |
| 			diff = 0;
 | |
| 		if (first || diff < min_offset_diff)
 | |
| 			min_offset_diff = diff;
 | |
| 
 | |
| 		disk->head_position = 0;
 | |
| 		first = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!mddev_is_dm(conf->mddev)) {
 | |
| 		int err = raid10_set_queue_limits(mddev);
 | |
| 
 | |
| 		if (err) {
 | |
| 			ret = err;
 | |
| 			goto out_free_conf;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* need to check that every block has at least one working mirror */
 | |
| 	if (!enough(conf, -1)) {
 | |
| 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
 | |
| 		       mdname(mddev));
 | |
| 		goto out_free_conf;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->reshape_progress != MaxSector) {
 | |
| 		/* must ensure that shape change is supported */
 | |
| 		if (conf->geo.far_copies != 1 &&
 | |
| 		    conf->geo.far_offset == 0)
 | |
| 			goto out_free_conf;
 | |
| 		if (conf->prev.far_copies != 1 &&
 | |
| 		    conf->prev.far_offset == 0)
 | |
| 			goto out_free_conf;
 | |
| 	}
 | |
| 
 | |
| 	mddev->degraded = 0;
 | |
| 	for (i = 0;
 | |
| 	     i < conf->geo.raid_disks
 | |
| 		     || i < conf->prev.raid_disks;
 | |
| 	     i++) {
 | |
| 
 | |
| 		disk = conf->mirrors + i;
 | |
| 
 | |
| 		if (!disk->rdev && disk->replacement) {
 | |
| 			/* The replacement is all we have - use it */
 | |
| 			disk->rdev = disk->replacement;
 | |
| 			disk->replacement = NULL;
 | |
| 			clear_bit(Replacement, &disk->rdev->flags);
 | |
| 		}
 | |
| 
 | |
| 		if (!disk->rdev ||
 | |
| 		    !test_bit(In_sync, &disk->rdev->flags)) {
 | |
| 			disk->head_position = 0;
 | |
| 			mddev->degraded++;
 | |
| 			if (disk->rdev &&
 | |
| 			    disk->rdev->saved_raid_disk < 0)
 | |
| 				conf->fullsync = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (disk->replacement &&
 | |
| 		    !test_bit(In_sync, &disk->replacement->flags) &&
 | |
| 		    disk->replacement->saved_raid_disk < 0) {
 | |
| 			conf->fullsync = 1;
 | |
| 		}
 | |
| 
 | |
| 		disk->recovery_disabled = mddev->recovery_disabled - 1;
 | |
| 	}
 | |
| 
 | |
| 	if (mddev->recovery_cp != MaxSector)
 | |
| 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
 | |
| 			  mdname(mddev));
 | |
| 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
 | |
| 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
 | |
| 		conf->geo.raid_disks);
 | |
| 	/*
 | |
| 	 * Ok, everything is just fine now
 | |
| 	 */
 | |
| 	mddev->dev_sectors = conf->dev_sectors;
 | |
| 	size = raid10_size(mddev, 0, 0);
 | |
| 	md_set_array_sectors(mddev, size);
 | |
| 	mddev->resync_max_sectors = size;
 | |
| 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
 | |
| 
 | |
| 	if (md_integrity_register(mddev))
 | |
| 		goto out_free_conf;
 | |
| 
 | |
| 	if (conf->reshape_progress != MaxSector) {
 | |
| 		unsigned long before_length, after_length;
 | |
| 
 | |
| 		before_length = ((1 << conf->prev.chunk_shift) *
 | |
| 				 conf->prev.far_copies);
 | |
| 		after_length = ((1 << conf->geo.chunk_shift) *
 | |
| 				conf->geo.far_copies);
 | |
| 
 | |
| 		if (max(before_length, after_length) > min_offset_diff) {
 | |
| 			/* This cannot work */
 | |
| 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
 | |
| 			goto out_free_conf;
 | |
| 		}
 | |
| 		conf->offset_diff = min_offset_diff;
 | |
| 
 | |
| 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
 | |
| 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
 | |
| 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
 | |
| 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_conf:
 | |
| 	md_unregister_thread(mddev, &mddev->thread);
 | |
| 	raid10_free_conf(conf);
 | |
| 	mddev->private = NULL;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void raid10_free(struct mddev *mddev, void *priv)
 | |
| {
 | |
| 	raid10_free_conf(priv);
 | |
| }
 | |
| 
 | |
| static void raid10_quiesce(struct mddev *mddev, int quiesce)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 
 | |
| 	if (quiesce)
 | |
| 		raise_barrier(conf, 0);
 | |
| 	else
 | |
| 		lower_barrier(conf);
 | |
| }
 | |
| 
 | |
| static int raid10_resize(struct mddev *mddev, sector_t sectors)
 | |
| {
 | |
| 	/* Resize of 'far' arrays is not supported.
 | |
| 	 * For 'near' and 'offset' arrays we can set the
 | |
| 	 * number of sectors used to be an appropriate multiple
 | |
| 	 * of the chunk size.
 | |
| 	 * For 'offset', this is far_copies*chunksize.
 | |
| 	 * For 'near' the multiplier is the LCM of
 | |
| 	 * near_copies and raid_disks.
 | |
| 	 * So if far_copies > 1 && !far_offset, fail.
 | |
| 	 * Else find LCM(raid_disks, near_copy)*far_copies and
 | |
| 	 * multiply by chunk_size.  Then round to this number.
 | |
| 	 * This is mostly done by raid10_size()
 | |
| 	 */
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	sector_t oldsize, size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mddev->reshape_position != MaxSector)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	oldsize = raid10_size(mddev, 0, 0);
 | |
| 	size = raid10_size(mddev, sectors, 0);
 | |
| 	if (mddev->external_size &&
 | |
| 	    mddev->array_sectors > size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	md_set_array_sectors(mddev, size);
 | |
| 	if (sectors > mddev->dev_sectors &&
 | |
| 	    mddev->recovery_cp > oldsize) {
 | |
| 		mddev->recovery_cp = oldsize;
 | |
| 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 	}
 | |
| 	calc_sectors(conf, sectors);
 | |
| 	mddev->dev_sectors = conf->dev_sectors;
 | |
| 	mddev->resync_max_sectors = size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
 | |
| {
 | |
| 	struct md_rdev *rdev;
 | |
| 	struct r10conf *conf;
 | |
| 
 | |
| 	if (mddev->degraded > 0) {
 | |
| 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
 | |
| 			mdname(mddev));
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 	sector_div(size, devs);
 | |
| 
 | |
| 	/* Set new parameters */
 | |
| 	mddev->new_level = 10;
 | |
| 	/* new layout: far_copies = 1, near_copies = 2 */
 | |
| 	mddev->new_layout = (1<<8) + 2;
 | |
| 	mddev->new_chunk_sectors = mddev->chunk_sectors;
 | |
| 	mddev->delta_disks = mddev->raid_disks;
 | |
| 	mddev->raid_disks *= 2;
 | |
| 	/* make sure it will be not marked as dirty */
 | |
| 	mddev->recovery_cp = MaxSector;
 | |
| 	mddev->dev_sectors = size;
 | |
| 
 | |
| 	conf = setup_conf(mddev);
 | |
| 	if (!IS_ERR(conf)) {
 | |
| 		rdev_for_each(rdev, mddev)
 | |
| 			if (rdev->raid_disk >= 0) {
 | |
| 				rdev->new_raid_disk = rdev->raid_disk * 2;
 | |
| 				rdev->sectors = size;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	return conf;
 | |
| }
 | |
| 
 | |
| static void *raid10_takeover(struct mddev *mddev)
 | |
| {
 | |
| 	struct r0conf *raid0_conf;
 | |
| 
 | |
| 	/* raid10 can take over:
 | |
| 	 *  raid0 - providing it has only two drives
 | |
| 	 */
 | |
| 	if (mddev->level == 0) {
 | |
| 		/* for raid0 takeover only one zone is supported */
 | |
| 		raid0_conf = mddev->private;
 | |
| 		if (raid0_conf->nr_strip_zones > 1) {
 | |
| 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
 | |
| 				mdname(mddev));
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 		}
 | |
| 		return raid10_takeover_raid0(mddev,
 | |
| 			raid0_conf->strip_zone->zone_end,
 | |
| 			raid0_conf->strip_zone->nb_dev);
 | |
| 	}
 | |
| 	return ERR_PTR(-EINVAL);
 | |
| }
 | |
| 
 | |
| static int raid10_check_reshape(struct mddev *mddev)
 | |
| {
 | |
| 	/* Called when there is a request to change
 | |
| 	 * - layout (to ->new_layout)
 | |
| 	 * - chunk size (to ->new_chunk_sectors)
 | |
| 	 * - raid_disks (by delta_disks)
 | |
| 	 * or when trying to restart a reshape that was ongoing.
 | |
| 	 *
 | |
| 	 * We need to validate the request and possibly allocate
 | |
| 	 * space if that might be an issue later.
 | |
| 	 *
 | |
| 	 * Currently we reject any reshape of a 'far' mode array,
 | |
| 	 * allow chunk size to change if new is generally acceptable,
 | |
| 	 * allow raid_disks to increase, and allow
 | |
| 	 * a switch between 'near' mode and 'offset' mode.
 | |
| 	 */
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct geom geo;
 | |
| 
 | |
| 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
 | |
| 		/* mustn't change number of copies */
 | |
| 		return -EINVAL;
 | |
| 	if (geo.far_copies > 1 && !geo.far_offset)
 | |
| 		/* Cannot switch to 'far' mode */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (mddev->array_sectors & geo.chunk_mask)
 | |
| 			/* not factor of array size */
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	if (!enough(conf, -1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	kfree(conf->mirrors_new);
 | |
| 	conf->mirrors_new = NULL;
 | |
| 	if (mddev->delta_disks > 0) {
 | |
| 		/* allocate new 'mirrors' list */
 | |
| 		conf->mirrors_new =
 | |
| 			kcalloc(mddev->raid_disks + mddev->delta_disks,
 | |
| 				sizeof(struct raid10_info),
 | |
| 				GFP_KERNEL);
 | |
| 		if (!conf->mirrors_new)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Need to check if array has failed when deciding whether to:
 | |
|  *  - start an array
 | |
|  *  - remove non-faulty devices
 | |
|  *  - add a spare
 | |
|  *  - allow a reshape
 | |
|  * This determination is simple when no reshape is happening.
 | |
|  * However if there is a reshape, we need to carefully check
 | |
|  * both the before and after sections.
 | |
|  * This is because some failed devices may only affect one
 | |
|  * of the two sections, and some non-in_sync devices may
 | |
|  * be insync in the section most affected by failed devices.
 | |
|  */
 | |
| static int calc_degraded(struct r10conf *conf)
 | |
| {
 | |
| 	int degraded, degraded2;
 | |
| 	int i;
 | |
| 
 | |
| 	degraded = 0;
 | |
| 	/* 'prev' section first */
 | |
| 	for (i = 0; i < conf->prev.raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 			degraded++;
 | |
| 		else if (!test_bit(In_sync, &rdev->flags))
 | |
| 			/* When we can reduce the number of devices in
 | |
| 			 * an array, this might not contribute to
 | |
| 			 * 'degraded'.  It does now.
 | |
| 			 */
 | |
| 			degraded++;
 | |
| 	}
 | |
| 	if (conf->geo.raid_disks == conf->prev.raid_disks)
 | |
| 		return degraded;
 | |
| 	degraded2 = 0;
 | |
| 	for (i = 0; i < conf->geo.raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 			degraded2++;
 | |
| 		else if (!test_bit(In_sync, &rdev->flags)) {
 | |
| 			/* If reshape is increasing the number of devices,
 | |
| 			 * this section has already been recovered, so
 | |
| 			 * it doesn't contribute to degraded.
 | |
| 			 * else it does.
 | |
| 			 */
 | |
| 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
 | |
| 				degraded2++;
 | |
| 		}
 | |
| 	}
 | |
| 	if (degraded2 > degraded)
 | |
| 		return degraded2;
 | |
| 	return degraded;
 | |
| }
 | |
| 
 | |
| static int raid10_start_reshape(struct mddev *mddev)
 | |
| {
 | |
| 	/* A 'reshape' has been requested. This commits
 | |
| 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
 | |
| 	 * This also checks if there are enough spares and adds them
 | |
| 	 * to the array.
 | |
| 	 * We currently require enough spares to make the final
 | |
| 	 * array non-degraded.  We also require that the difference
 | |
| 	 * between old and new data_offset - on each device - is
 | |
| 	 * enough that we never risk over-writing.
 | |
| 	 */
 | |
| 
 | |
| 	unsigned long before_length, after_length;
 | |
| 	sector_t min_offset_diff = 0;
 | |
| 	int first = 1;
 | |
| 	struct geom new;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int spares = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	before_length = ((1 << conf->prev.chunk_shift) *
 | |
| 			 conf->prev.far_copies);
 | |
| 	after_length = ((1 << conf->geo.chunk_shift) *
 | |
| 			conf->geo.far_copies);
 | |
| 
 | |
| 	rdev_for_each(rdev, mddev) {
 | |
| 		if (!test_bit(In_sync, &rdev->flags)
 | |
| 		    && !test_bit(Faulty, &rdev->flags))
 | |
| 			spares++;
 | |
| 		if (rdev->raid_disk >= 0) {
 | |
| 			long long diff = (rdev->new_data_offset
 | |
| 					  - rdev->data_offset);
 | |
| 			if (!mddev->reshape_backwards)
 | |
| 				diff = -diff;
 | |
| 			if (diff < 0)
 | |
| 				diff = 0;
 | |
| 			if (first || diff < min_offset_diff)
 | |
| 				min_offset_diff = diff;
 | |
| 			first = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (max(before_length, after_length) > min_offset_diff)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (spares < mddev->delta_disks)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	conf->offset_diff = min_offset_diff;
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	if (conf->mirrors_new) {
 | |
| 		memcpy(conf->mirrors_new, conf->mirrors,
 | |
| 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
 | |
| 		smp_mb();
 | |
| 		kfree(conf->mirrors_old);
 | |
| 		conf->mirrors_old = conf->mirrors;
 | |
| 		conf->mirrors = conf->mirrors_new;
 | |
| 		conf->mirrors_new = NULL;
 | |
| 	}
 | |
| 	setup_geo(&conf->geo, mddev, geo_start);
 | |
| 	smp_mb();
 | |
| 	if (mddev->reshape_backwards) {
 | |
| 		sector_t size = raid10_size(mddev, 0, 0);
 | |
| 		if (size < mddev->array_sectors) {
 | |
| 			spin_unlock_irq(&conf->device_lock);
 | |
| 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
 | |
| 				mdname(mddev));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		mddev->resync_max_sectors = size;
 | |
| 		conf->reshape_progress = size;
 | |
| 	} else
 | |
| 		conf->reshape_progress = 0;
 | |
| 	conf->reshape_safe = conf->reshape_progress;
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 
 | |
| 	if (mddev->delta_disks && mddev->bitmap) {
 | |
| 		struct mdp_superblock_1 *sb = NULL;
 | |
| 		sector_t oldsize, newsize;
 | |
| 
 | |
| 		oldsize = raid10_size(mddev, 0, 0);
 | |
| 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
 | |
| 
 | |
| 		if (!mddev_is_clustered(mddev)) {
 | |
| 			ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
 | |
| 			if (ret)
 | |
| 				goto abort;
 | |
| 			else
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		rdev_for_each(rdev, mddev) {
 | |
| 			if (rdev->raid_disk > -1 &&
 | |
| 			    !test_bit(Faulty, &rdev->flags))
 | |
| 				sb = page_address(rdev->sb_page);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * some node is already performing reshape, and no need to
 | |
| 		 * call bitmap_ops->resize again since it should be called when
 | |
| 		 * receiving BITMAP_RESIZE msg
 | |
| 		 */
 | |
| 		if ((sb && (le32_to_cpu(sb->feature_map) &
 | |
| 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
 | |
| 			goto out;
 | |
| 
 | |
| 		ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
 | |
| 		if (ret)
 | |
| 			goto abort;
 | |
| 
 | |
| 		ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
 | |
| 		if (ret) {
 | |
| 			mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
 | |
| 			goto abort;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	if (mddev->delta_disks > 0) {
 | |
| 		rdev_for_each(rdev, mddev)
 | |
| 			if (rdev->raid_disk < 0 &&
 | |
| 			    !test_bit(Faulty, &rdev->flags)) {
 | |
| 				if (raid10_add_disk(mddev, rdev) == 0) {
 | |
| 					if (rdev->raid_disk >=
 | |
| 					    conf->prev.raid_disks)
 | |
| 						set_bit(In_sync, &rdev->flags);
 | |
| 					else
 | |
| 						rdev->recovery_offset = 0;
 | |
| 
 | |
| 					/* Failure here is OK */
 | |
| 					sysfs_link_rdev(mddev, rdev);
 | |
| 				}
 | |
| 			} else if (rdev->raid_disk >= conf->prev.raid_disks
 | |
| 				   && !test_bit(Faulty, &rdev->flags)) {
 | |
| 				/* This is a spare that was manually added */
 | |
| 				set_bit(In_sync, &rdev->flags);
 | |
| 			}
 | |
| 	}
 | |
| 	/* When a reshape changes the number of devices,
 | |
| 	 * ->degraded is measured against the larger of the
 | |
| 	 * pre and  post numbers.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	mddev->degraded = calc_degraded(conf);
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 	mddev->raid_disks = conf->geo.raid_disks;
 | |
| 	mddev->reshape_position = conf->reshape_progress;
 | |
| 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
 | |
| 
 | |
| 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
 | |
| 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
 | |
| 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
 | |
| 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
 | |
| 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 	conf->reshape_checkpoint = jiffies;
 | |
| 	md_new_event();
 | |
| 	return 0;
 | |
| 
 | |
| abort:
 | |
| 	mddev->recovery = 0;
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	conf->geo = conf->prev;
 | |
| 	mddev->raid_disks = conf->geo.raid_disks;
 | |
| 	rdev_for_each(rdev, mddev)
 | |
| 		rdev->new_data_offset = rdev->data_offset;
 | |
| 	smp_wmb();
 | |
| 	conf->reshape_progress = MaxSector;
 | |
| 	conf->reshape_safe = MaxSector;
 | |
| 	mddev->reshape_position = MaxSector;
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Calculate the last device-address that could contain
 | |
|  * any block from the chunk that includes the array-address 's'
 | |
|  * and report the next address.
 | |
|  * i.e. the address returned will be chunk-aligned and after
 | |
|  * any data that is in the chunk containing 's'.
 | |
|  */
 | |
| static sector_t last_dev_address(sector_t s, struct geom *geo)
 | |
| {
 | |
| 	s = (s | geo->chunk_mask) + 1;
 | |
| 	s >>= geo->chunk_shift;
 | |
| 	s *= geo->near_copies;
 | |
| 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
 | |
| 	s *= geo->far_copies;
 | |
| 	s <<= geo->chunk_shift;
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| /* Calculate the first device-address that could contain
 | |
|  * any block from the chunk that includes the array-address 's'.
 | |
|  * This too will be the start of a chunk
 | |
|  */
 | |
| static sector_t first_dev_address(sector_t s, struct geom *geo)
 | |
| {
 | |
| 	s >>= geo->chunk_shift;
 | |
| 	s *= geo->near_copies;
 | |
| 	sector_div(s, geo->raid_disks);
 | |
| 	s *= geo->far_copies;
 | |
| 	s <<= geo->chunk_shift;
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 | |
| 				int *skipped)
 | |
| {
 | |
| 	/* We simply copy at most one chunk (smallest of old and new)
 | |
| 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
 | |
| 	 * or we hit a bad block or something.
 | |
| 	 * This might mean we pause for normal IO in the middle of
 | |
| 	 * a chunk, but that is not a problem as mddev->reshape_position
 | |
| 	 * can record any location.
 | |
| 	 *
 | |
| 	 * If we will want to write to a location that isn't
 | |
| 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
 | |
| 	 * we need to flush all reshape requests and update the metadata.
 | |
| 	 *
 | |
| 	 * When reshaping forwards (e.g. to more devices), we interpret
 | |
| 	 * 'safe' as the earliest block which might not have been copied
 | |
| 	 * down yet.  We divide this by previous stripe size and multiply
 | |
| 	 * by previous stripe length to get lowest device offset that we
 | |
| 	 * cannot write to yet.
 | |
| 	 * We interpret 'sector_nr' as an address that we want to write to.
 | |
| 	 * From this we use last_device_address() to find where we might
 | |
| 	 * write to, and first_device_address on the  'safe' position.
 | |
| 	 * If this 'next' write position is after the 'safe' position,
 | |
| 	 * we must update the metadata to increase the 'safe' position.
 | |
| 	 *
 | |
| 	 * When reshaping backwards, we round in the opposite direction
 | |
| 	 * and perform the reverse test:  next write position must not be
 | |
| 	 * less than current safe position.
 | |
| 	 *
 | |
| 	 * In all this the minimum difference in data offsets
 | |
| 	 * (conf->offset_diff - always positive) allows a bit of slack,
 | |
| 	 * so next can be after 'safe', but not by more than offset_diff
 | |
| 	 *
 | |
| 	 * We need to prepare all the bios here before we start any IO
 | |
| 	 * to ensure the size we choose is acceptable to all devices.
 | |
| 	 * The means one for each copy for write-out and an extra one for
 | |
| 	 * read-in.
 | |
| 	 * We store the read-in bio in ->master_bio and the others in
 | |
| 	 * ->devs[x].bio and ->devs[x].repl_bio.
 | |
| 	 */
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct r10bio *r10_bio;
 | |
| 	sector_t next, safe, last;
 | |
| 	int max_sectors;
 | |
| 	int nr_sectors;
 | |
| 	int s;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int need_flush = 0;
 | |
| 	struct bio *blist;
 | |
| 	struct bio *bio, *read_bio;
 | |
| 	int sectors_done = 0;
 | |
| 	struct page **pages;
 | |
| 
 | |
| 	if (sector_nr == 0) {
 | |
| 		/* If restarting in the middle, skip the initial sectors */
 | |
| 		if (mddev->reshape_backwards &&
 | |
| 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
 | |
| 			sector_nr = (raid10_size(mddev, 0, 0)
 | |
| 				     - conf->reshape_progress);
 | |
| 		} else if (!mddev->reshape_backwards &&
 | |
| 			   conf->reshape_progress > 0)
 | |
| 			sector_nr = conf->reshape_progress;
 | |
| 		if (sector_nr) {
 | |
| 			mddev->curr_resync_completed = sector_nr;
 | |
| 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
 | |
| 			*skipped = 1;
 | |
| 			return sector_nr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We don't use sector_nr to track where we are up to
 | |
| 	 * as that doesn't work well for ->reshape_backwards.
 | |
| 	 * So just use ->reshape_progress.
 | |
| 	 */
 | |
| 	if (mddev->reshape_backwards) {
 | |
| 		/* 'next' is the earliest device address that we might
 | |
| 		 * write to for this chunk in the new layout
 | |
| 		 */
 | |
| 		next = first_dev_address(conf->reshape_progress - 1,
 | |
| 					 &conf->geo);
 | |
| 
 | |
| 		/* 'safe' is the last device address that we might read from
 | |
| 		 * in the old layout after a restart
 | |
| 		 */
 | |
| 		safe = last_dev_address(conf->reshape_safe - 1,
 | |
| 					&conf->prev);
 | |
| 
 | |
| 		if (next + conf->offset_diff < safe)
 | |
| 			need_flush = 1;
 | |
| 
 | |
| 		last = conf->reshape_progress - 1;
 | |
| 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
 | |
| 					       & conf->prev.chunk_mask);
 | |
| 		if (sector_nr + RESYNC_SECTORS < last)
 | |
| 			sector_nr = last + 1 - RESYNC_SECTORS;
 | |
| 	} else {
 | |
| 		/* 'next' is after the last device address that we
 | |
| 		 * might write to for this chunk in the new layout
 | |
| 		 */
 | |
| 		next = last_dev_address(conf->reshape_progress, &conf->geo);
 | |
| 
 | |
| 		/* 'safe' is the earliest device address that we might
 | |
| 		 * read from in the old layout after a restart
 | |
| 		 */
 | |
| 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
 | |
| 
 | |
| 		/* Need to update metadata if 'next' might be beyond 'safe'
 | |
| 		 * as that would possibly corrupt data
 | |
| 		 */
 | |
| 		if (next > safe + conf->offset_diff)
 | |
| 			need_flush = 1;
 | |
| 
 | |
| 		sector_nr = conf->reshape_progress;
 | |
| 		last  = sector_nr | (conf->geo.chunk_mask
 | |
| 				     & conf->prev.chunk_mask);
 | |
| 
 | |
| 		if (sector_nr + RESYNC_SECTORS <= last)
 | |
| 			last = sector_nr + RESYNC_SECTORS - 1;
 | |
| 	}
 | |
| 
 | |
| 	if (need_flush ||
 | |
| 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
 | |
| 		/* Need to update reshape_position in metadata */
 | |
| 		wait_barrier(conf, false);
 | |
| 		mddev->reshape_position = conf->reshape_progress;
 | |
| 		if (mddev->reshape_backwards)
 | |
| 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
 | |
| 				- conf->reshape_progress;
 | |
| 		else
 | |
| 			mddev->curr_resync_completed = conf->reshape_progress;
 | |
| 		conf->reshape_checkpoint = jiffies;
 | |
| 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
 | |
| 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
 | |
| 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
 | |
| 			allow_barrier(conf);
 | |
| 			return sectors_done;
 | |
| 		}
 | |
| 		conf->reshape_safe = mddev->reshape_position;
 | |
| 		allow_barrier(conf);
 | |
| 	}
 | |
| 
 | |
| 	raise_barrier(conf, 0);
 | |
| read_more:
 | |
| 	/* Now schedule reads for blocks from sector_nr to last */
 | |
| 	r10_bio = raid10_alloc_init_r10buf(conf);
 | |
| 	r10_bio->state = 0;
 | |
| 	raise_barrier(conf, 1);
 | |
| 	atomic_set(&r10_bio->remaining, 0);
 | |
| 	r10_bio->mddev = mddev;
 | |
| 	r10_bio->sector = sector_nr;
 | |
| 	set_bit(R10BIO_IsReshape, &r10_bio->state);
 | |
| 	r10_bio->sectors = last - sector_nr + 1;
 | |
| 	rdev = read_balance(conf, r10_bio, &max_sectors);
 | |
| 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
 | |
| 
 | |
| 	if (!rdev) {
 | |
| 		/* Cannot read from here, so need to record bad blocks
 | |
| 		 * on all the target devices.
 | |
| 		 */
 | |
| 		// FIXME
 | |
| 		mempool_free(r10_bio, &conf->r10buf_pool);
 | |
| 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 		return sectors_done;
 | |
| 	}
 | |
| 
 | |
| 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
 | |
| 				    GFP_KERNEL, &mddev->bio_set);
 | |
| 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
 | |
| 			       + rdev->data_offset);
 | |
| 	read_bio->bi_private = r10_bio;
 | |
| 	read_bio->bi_end_io = end_reshape_read;
 | |
| 	r10_bio->master_bio = read_bio;
 | |
| 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
 | |
| 
 | |
| 	/*
 | |
| 	 * Broadcast RESYNC message to other nodes, so all nodes would not
 | |
| 	 * write to the region to avoid conflict.
 | |
| 	*/
 | |
| 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
 | |
| 		struct mdp_superblock_1 *sb = NULL;
 | |
| 		int sb_reshape_pos = 0;
 | |
| 
 | |
| 		conf->cluster_sync_low = sector_nr;
 | |
| 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
 | |
| 		sb = page_address(rdev->sb_page);
 | |
| 		if (sb) {
 | |
| 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
 | |
| 			/*
 | |
| 			 * Set cluster_sync_low again if next address for array
 | |
| 			 * reshape is less than cluster_sync_low. Since we can't
 | |
| 			 * update cluster_sync_low until it has finished reshape.
 | |
| 			 */
 | |
| 			if (sb_reshape_pos < conf->cluster_sync_low)
 | |
| 				conf->cluster_sync_low = sb_reshape_pos;
 | |
| 		}
 | |
| 
 | |
| 		mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
 | |
| 							  conf->cluster_sync_high);
 | |
| 	}
 | |
| 
 | |
| 	/* Now find the locations in the new layout */
 | |
| 	__raid10_find_phys(&conf->geo, r10_bio);
 | |
| 
 | |
| 	blist = read_bio;
 | |
| 	read_bio->bi_next = NULL;
 | |
| 
 | |
| 	for (s = 0; s < conf->copies*2; s++) {
 | |
| 		struct bio *b;
 | |
| 		int d = r10_bio->devs[s/2].devnum;
 | |
| 		struct md_rdev *rdev2;
 | |
| 		if (s&1) {
 | |
| 			rdev2 = conf->mirrors[d].replacement;
 | |
| 			b = r10_bio->devs[s/2].repl_bio;
 | |
| 		} else {
 | |
| 			rdev2 = conf->mirrors[d].rdev;
 | |
| 			b = r10_bio->devs[s/2].bio;
 | |
| 		}
 | |
| 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
 | |
| 			continue;
 | |
| 
 | |
| 		bio_set_dev(b, rdev2->bdev);
 | |
| 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
 | |
| 			rdev2->new_data_offset;
 | |
| 		b->bi_end_io = end_reshape_write;
 | |
| 		b->bi_opf = REQ_OP_WRITE;
 | |
| 		b->bi_next = blist;
 | |
| 		blist = b;
 | |
| 	}
 | |
| 
 | |
| 	/* Now add as many pages as possible to all of these bios. */
 | |
| 
 | |
| 	nr_sectors = 0;
 | |
| 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
 | |
| 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
 | |
| 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
 | |
| 		int len = (max_sectors - s) << 9;
 | |
| 		if (len > PAGE_SIZE)
 | |
| 			len = PAGE_SIZE;
 | |
| 		for (bio = blist; bio ; bio = bio->bi_next) {
 | |
| 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
 | |
| 				bio->bi_status = BLK_STS_RESOURCE;
 | |
| 				bio_endio(bio);
 | |
| 				return sectors_done;
 | |
| 			}
 | |
| 		}
 | |
| 		sector_nr += len >> 9;
 | |
| 		nr_sectors += len >> 9;
 | |
| 	}
 | |
| 	r10_bio->sectors = nr_sectors;
 | |
| 
 | |
| 	/* Now submit the read */
 | |
| 	md_sync_acct_bio(read_bio, r10_bio->sectors);
 | |
| 	atomic_inc(&r10_bio->remaining);
 | |
| 	read_bio->bi_next = NULL;
 | |
| 	submit_bio_noacct(read_bio);
 | |
| 	sectors_done += nr_sectors;
 | |
| 	if (sector_nr <= last)
 | |
| 		goto read_more;
 | |
| 
 | |
| 	lower_barrier(conf);
 | |
| 
 | |
| 	/* Now that we have done the whole section we can
 | |
| 	 * update reshape_progress
 | |
| 	 */
 | |
| 	if (mddev->reshape_backwards)
 | |
| 		conf->reshape_progress -= sectors_done;
 | |
| 	else
 | |
| 		conf->reshape_progress += sectors_done;
 | |
| 
 | |
| 	return sectors_done;
 | |
| }
 | |
| 
 | |
| static void end_reshape_request(struct r10bio *r10_bio);
 | |
| static int handle_reshape_read_error(struct mddev *mddev,
 | |
| 				     struct r10bio *r10_bio);
 | |
| static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
 | |
| {
 | |
| 	/* Reshape read completed.  Hopefully we have a block
 | |
| 	 * to write out.
 | |
| 	 * If we got a read error then we do sync 1-page reads from
 | |
| 	 * elsewhere until we find the data - or give up.
 | |
| 	 */
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int s;
 | |
| 
 | |
| 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 | |
| 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
 | |
| 			/* Reshape has been aborted */
 | |
| 			md_done_sync(mddev, r10_bio->sectors, 0);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 	/* We definitely have the data in the pages, schedule the
 | |
| 	 * writes.
 | |
| 	 */
 | |
| 	atomic_set(&r10_bio->remaining, 1);
 | |
| 	for (s = 0; s < conf->copies*2; s++) {
 | |
| 		struct bio *b;
 | |
| 		int d = r10_bio->devs[s/2].devnum;
 | |
| 		struct md_rdev *rdev;
 | |
| 		if (s&1) {
 | |
| 			rdev = conf->mirrors[d].replacement;
 | |
| 			b = r10_bio->devs[s/2].repl_bio;
 | |
| 		} else {
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			b = r10_bio->devs[s/2].bio;
 | |
| 		}
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 			continue;
 | |
| 
 | |
| 		atomic_inc(&rdev->nr_pending);
 | |
| 		md_sync_acct_bio(b, r10_bio->sectors);
 | |
| 		atomic_inc(&r10_bio->remaining);
 | |
| 		b->bi_next = NULL;
 | |
| 		submit_bio_noacct(b);
 | |
| 	}
 | |
| 	end_reshape_request(r10_bio);
 | |
| }
 | |
| 
 | |
| static void end_reshape(struct r10conf *conf)
 | |
| {
 | |
| 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	conf->prev = conf->geo;
 | |
| 	md_finish_reshape(conf->mddev);
 | |
| 	smp_wmb();
 | |
| 	conf->reshape_progress = MaxSector;
 | |
| 	conf->reshape_safe = MaxSector;
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 
 | |
| 	mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
 | |
| 	conf->fullsync = 0;
 | |
| }
 | |
| 
 | |
| static void raid10_update_reshape_pos(struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	sector_t lo, hi;
 | |
| 
 | |
| 	mddev->cluster_ops->resync_info_get(mddev, &lo, &hi);
 | |
| 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
 | |
| 	    || mddev->reshape_position == MaxSector)
 | |
| 		conf->reshape_progress = mddev->reshape_position;
 | |
| 	else
 | |
| 		WARN_ON_ONCE(1);
 | |
| }
 | |
| 
 | |
| static int handle_reshape_read_error(struct mddev *mddev,
 | |
| 				     struct r10bio *r10_bio)
 | |
| {
 | |
| 	/* Use sync reads to get the blocks from somewhere else */
 | |
| 	int sectors = r10_bio->sectors;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	struct r10bio *r10b;
 | |
| 	int slot = 0;
 | |
| 	int idx = 0;
 | |
| 	struct page **pages;
 | |
| 
 | |
| 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
 | |
| 	if (!r10b) {
 | |
| 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* reshape IOs share pages from .devs[0].bio */
 | |
| 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
 | |
| 
 | |
| 	r10b->sector = r10_bio->sector;
 | |
| 	__raid10_find_phys(&conf->prev, r10b);
 | |
| 
 | |
| 	while (sectors) {
 | |
| 		int s = sectors;
 | |
| 		int success = 0;
 | |
| 		int first_slot = slot;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE >> 9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 
 | |
| 		while (!success) {
 | |
| 			int d = r10b->devs[slot].devnum;
 | |
| 			struct md_rdev *rdev = conf->mirrors[d].rdev;
 | |
| 			sector_t addr;
 | |
| 			if (rdev == NULL ||
 | |
| 			    test_bit(Faulty, &rdev->flags) ||
 | |
| 			    !test_bit(In_sync, &rdev->flags))
 | |
| 				goto failed;
 | |
| 
 | |
| 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			success = sync_page_io(rdev,
 | |
| 					       addr,
 | |
| 					       s << 9,
 | |
| 					       pages[idx],
 | |
| 					       REQ_OP_READ, false);
 | |
| 			rdev_dec_pending(rdev, mddev);
 | |
| 			if (success)
 | |
| 				break;
 | |
| 		failed:
 | |
| 			slot++;
 | |
| 			if (slot >= conf->copies)
 | |
| 				slot = 0;
 | |
| 			if (slot == first_slot)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (!success) {
 | |
| 			/* couldn't read this block, must give up */
 | |
| 			set_bit(MD_RECOVERY_INTR,
 | |
| 				&mddev->recovery);
 | |
| 			kfree(r10b);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		sectors -= s;
 | |
| 		idx++;
 | |
| 	}
 | |
| 	kfree(r10b);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void end_reshape_write(struct bio *bio)
 | |
| {
 | |
| 	struct r10bio *r10_bio = get_resync_r10bio(bio);
 | |
| 	struct mddev *mddev = r10_bio->mddev;
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 	int d;
 | |
| 	int slot;
 | |
| 	int repl;
 | |
| 	struct md_rdev *rdev = NULL;
 | |
| 
 | |
| 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 | |
| 	rdev = repl ? conf->mirrors[d].replacement :
 | |
| 		      conf->mirrors[d].rdev;
 | |
| 
 | |
| 	if (bio->bi_status) {
 | |
| 		/* FIXME should record badblock */
 | |
| 		md_error(mddev, rdev);
 | |
| 	}
 | |
| 
 | |
| 	rdev_dec_pending(rdev, mddev);
 | |
| 	end_reshape_request(r10_bio);
 | |
| }
 | |
| 
 | |
| static void end_reshape_request(struct r10bio *r10_bio)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&r10_bio->remaining))
 | |
| 		return;
 | |
| 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
 | |
| 	bio_put(r10_bio->master_bio);
 | |
| 	put_buf(r10_bio);
 | |
| }
 | |
| 
 | |
| static void raid10_finish_reshape(struct mddev *mddev)
 | |
| {
 | |
| 	struct r10conf *conf = mddev->private;
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
 | |
| 		return;
 | |
| 
 | |
| 	if (mddev->delta_disks > 0) {
 | |
| 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
 | |
| 			mddev->recovery_cp = mddev->resync_max_sectors;
 | |
| 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 		}
 | |
| 		mddev->resync_max_sectors = mddev->array_sectors;
 | |
| 	} else {
 | |
| 		int d;
 | |
| 		for (d = conf->geo.raid_disks ;
 | |
| 		     d < conf->geo.raid_disks - mddev->delta_disks;
 | |
| 		     d++) {
 | |
| 			struct md_rdev *rdev = conf->mirrors[d].rdev;
 | |
| 			if (rdev)
 | |
| 				clear_bit(In_sync, &rdev->flags);
 | |
| 			rdev = conf->mirrors[d].replacement;
 | |
| 			if (rdev)
 | |
| 				clear_bit(In_sync, &rdev->flags);
 | |
| 		}
 | |
| 	}
 | |
| 	mddev->layout = mddev->new_layout;
 | |
| 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
 | |
| 	mddev->reshape_position = MaxSector;
 | |
| 	mddev->delta_disks = 0;
 | |
| 	mddev->reshape_backwards = 0;
 | |
| }
 | |
| 
 | |
| static struct md_personality raid10_personality =
 | |
| {
 | |
| 	.head = {
 | |
| 		.type	= MD_PERSONALITY,
 | |
| 		.id	= ID_RAID10,
 | |
| 		.name	= "raid10",
 | |
| 		.owner	= THIS_MODULE,
 | |
| 	},
 | |
| 
 | |
| 	.make_request	= raid10_make_request,
 | |
| 	.run		= raid10_run,
 | |
| 	.free		= raid10_free,
 | |
| 	.status		= raid10_status,
 | |
| 	.error_handler	= raid10_error,
 | |
| 	.hot_add_disk	= raid10_add_disk,
 | |
| 	.hot_remove_disk= raid10_remove_disk,
 | |
| 	.spare_active	= raid10_spare_active,
 | |
| 	.sync_request	= raid10_sync_request,
 | |
| 	.quiesce	= raid10_quiesce,
 | |
| 	.size		= raid10_size,
 | |
| 	.resize		= raid10_resize,
 | |
| 	.takeover	= raid10_takeover,
 | |
| 	.check_reshape	= raid10_check_reshape,
 | |
| 	.start_reshape	= raid10_start_reshape,
 | |
| 	.finish_reshape	= raid10_finish_reshape,
 | |
| 	.update_reshape_pos = raid10_update_reshape_pos,
 | |
| };
 | |
| 
 | |
| static int __init raid10_init(void)
 | |
| {
 | |
| 	return register_md_submodule(&raid10_personality.head);
 | |
| }
 | |
| 
 | |
| static void __exit raid10_exit(void)
 | |
| {
 | |
| 	unregister_md_submodule(&raid10_personality.head);
 | |
| }
 | |
| 
 | |
| module_init(raid10_init);
 | |
| module_exit(raid10_exit);
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
 | |
| MODULE_ALIAS("md-personality-9"); /* RAID10 */
 | |
| MODULE_ALIAS("md-raid10");
 | |
| MODULE_ALIAS("md-level-10");
 |