forked from mirrors/linux
		
	 8fa7292fee
			
		
	
	
		8fa7292fee
		
	
	
	
	
		
			
			timer_delete[_sync]() replaces del_timer[_sync](). Convert the whole tree over and remove the historical wrapper inlines. Conversion was done with coccinelle plus manual fixups where necessary. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			1312 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1312 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
 | |
|  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Cross Partition Communication (XPC) support - standard version.
 | |
|  *
 | |
|  *	XPC provides a message passing capability that crosses partition
 | |
|  *	boundaries. This module is made up of two parts:
 | |
|  *
 | |
|  *	    partition	This part detects the presence/absence of other
 | |
|  *			partitions. It provides a heartbeat and monitors
 | |
|  *			the heartbeats of other partitions.
 | |
|  *
 | |
|  *	    channel	This part manages the channels and sends/receives
 | |
|  *			messages across them to/from other partitions.
 | |
|  *
 | |
|  *	There are a couple of additional functions residing in XP, which
 | |
|  *	provide an interface to XPC for its users.
 | |
|  *
 | |
|  *
 | |
|  *	Caveats:
 | |
|  *
 | |
|  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
 | |
|  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
 | |
|  *	    followed by an IPI. The amo indicates where data is to be pulled
 | |
|  *	    from, so after the IPI arrives, the remote partition checks the amo
 | |
|  *	    word. The IPI can actually arrive before the amo however, so other
 | |
|  *	    code must periodically check for this case. Also, remote amo
 | |
|  *	    operations do not reliably time out. Thus we do a remote PIO read
 | |
|  *	    solely to know whether the remote partition is down and whether we
 | |
|  *	    should stop sending IPIs to it. This remote PIO read operation is
 | |
|  *	    set up in a special nofault region so SAL knows to ignore (and
 | |
|  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
 | |
|  *	    PIO write operations.
 | |
|  *
 | |
|  *	    If/when new hardware solves this IPI problem, we should abandon
 | |
|  *	    the current approach.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/kthread.h>
 | |
| #include "xpc.h"
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| #include <asm/traps.h>
 | |
| #endif
 | |
| 
 | |
| /* define two XPC debug device structures to be used with dev_dbg() et al */
 | |
| 
 | |
| static struct device_driver xpc_dbg_name = {
 | |
| 	.name = "xpc"
 | |
| };
 | |
| 
 | |
| static struct device xpc_part_dbg_subname = {
 | |
| 	.init_name = "",	/* set to "part" at xpc_init() time */
 | |
| 	.driver = &xpc_dbg_name
 | |
| };
 | |
| 
 | |
| static struct device xpc_chan_dbg_subname = {
 | |
| 	.init_name = "",	/* set to "chan" at xpc_init() time */
 | |
| 	.driver = &xpc_dbg_name
 | |
| };
 | |
| 
 | |
| struct device *xpc_part = &xpc_part_dbg_subname;
 | |
| struct device *xpc_chan = &xpc_chan_dbg_subname;
 | |
| 
 | |
| static int xpc_kdebug_ignore;
 | |
| 
 | |
| /* systune related variables for /proc/sys directories */
 | |
| 
 | |
| static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
 | |
| static int xpc_hb_min_interval = 1;
 | |
| static int xpc_hb_max_interval = 10;
 | |
| 
 | |
| static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
 | |
| static int xpc_hb_check_min_interval = 10;
 | |
| static int xpc_hb_check_max_interval = 120;
 | |
| 
 | |
| int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
 | |
| static int xpc_disengage_min_timelimit;	/* = 0 */
 | |
| static int xpc_disengage_max_timelimit = 120;
 | |
| 
 | |
| static const struct ctl_table xpc_sys_xpc_hb[] = {
 | |
| 	{
 | |
| 	 .procname = "hb_interval",
 | |
| 	 .data = &xpc_hb_interval,
 | |
| 	 .maxlen = sizeof(int),
 | |
| 	 .mode = 0644,
 | |
| 	 .proc_handler = proc_dointvec_minmax,
 | |
| 	 .extra1 = &xpc_hb_min_interval,
 | |
| 	 .extra2 = &xpc_hb_max_interval},
 | |
| 	{
 | |
| 	 .procname = "hb_check_interval",
 | |
| 	 .data = &xpc_hb_check_interval,
 | |
| 	 .maxlen = sizeof(int),
 | |
| 	 .mode = 0644,
 | |
| 	 .proc_handler = proc_dointvec_minmax,
 | |
| 	 .extra1 = &xpc_hb_check_min_interval,
 | |
| 	 .extra2 = &xpc_hb_check_max_interval},
 | |
| };
 | |
| static const struct ctl_table xpc_sys_xpc[] = {
 | |
| 	{
 | |
| 	 .procname = "disengage_timelimit",
 | |
| 	 .data = &xpc_disengage_timelimit,
 | |
| 	 .maxlen = sizeof(int),
 | |
| 	 .mode = 0644,
 | |
| 	 .proc_handler = proc_dointvec_minmax,
 | |
| 	 .extra1 = &xpc_disengage_min_timelimit,
 | |
| 	 .extra2 = &xpc_disengage_max_timelimit},
 | |
| };
 | |
| 
 | |
| static struct ctl_table_header *xpc_sysctl;
 | |
| static struct ctl_table_header *xpc_sysctl_hb;
 | |
| 
 | |
| /* non-zero if any remote partition disengage was timed out */
 | |
| int xpc_disengage_timedout;
 | |
| 
 | |
| /* #of activate IRQs received and not yet processed */
 | |
| int xpc_activate_IRQ_rcvd;
 | |
| DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
 | |
| 
 | |
| /* IRQ handler notifies this wait queue on receipt of an IRQ */
 | |
| DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
 | |
| 
 | |
| static unsigned long xpc_hb_check_timeout;
 | |
| static struct timer_list xpc_hb_timer;
 | |
| 
 | |
| /* notification that the xpc_hb_checker thread has exited */
 | |
| static DECLARE_COMPLETION(xpc_hb_checker_exited);
 | |
| 
 | |
| /* notification that the xpc_discovery thread has exited */
 | |
| static DECLARE_COMPLETION(xpc_discovery_exited);
 | |
| 
 | |
| static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
 | |
| 
 | |
| static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
 | |
| static struct notifier_block xpc_reboot_notifier = {
 | |
| 	.notifier_call = xpc_system_reboot,
 | |
| };
 | |
| 
 | |
| static int xpc_system_die(struct notifier_block *, unsigned long, void *);
 | |
| static struct notifier_block xpc_die_notifier = {
 | |
| 	.notifier_call = xpc_system_die,
 | |
| };
 | |
| 
 | |
| struct xpc_arch_operations xpc_arch_ops;
 | |
| 
 | |
| /*
 | |
|  * Timer function to enforce the timelimit on the partition disengage.
 | |
|  */
 | |
| static void
 | |
| xpc_timeout_partition_disengage(struct timer_list *t)
 | |
| {
 | |
| 	struct xpc_partition *part = from_timer(part, t, disengage_timer);
 | |
| 
 | |
| 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
 | |
| 
 | |
| 	xpc_partition_disengaged_from_timer(part);
 | |
| 
 | |
| 	DBUG_ON(part->disengage_timeout != 0);
 | |
| 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Timer to produce the heartbeat.  The timer structures function is
 | |
|  * already set when this is initially called.  A tunable is used to
 | |
|  * specify when the next timeout should occur.
 | |
|  */
 | |
| static void
 | |
| xpc_hb_beater(struct timer_list *unused)
 | |
| {
 | |
| 	xpc_arch_ops.increment_heartbeat();
 | |
| 
 | |
| 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
 | |
| 		wake_up_interruptible(&xpc_activate_IRQ_wq);
 | |
| 
 | |
| 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
 | |
| 	add_timer(&xpc_hb_timer);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xpc_start_hb_beater(void)
 | |
| {
 | |
| 	xpc_arch_ops.heartbeat_init();
 | |
| 	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
 | |
| 	xpc_hb_beater(NULL);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xpc_stop_hb_beater(void)
 | |
| {
 | |
| 	timer_delete_sync(&xpc_hb_timer);
 | |
| 	xpc_arch_ops.heartbeat_exit();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * At periodic intervals, scan through all active partitions and ensure
 | |
|  * their heartbeat is still active.  If not, the partition is deactivated.
 | |
|  */
 | |
| static void
 | |
| xpc_check_remote_hb(void)
 | |
| {
 | |
| 	struct xpc_partition *part;
 | |
| 	short partid;
 | |
| 	enum xp_retval ret;
 | |
| 
 | |
| 	for (partid = 0; partid < xp_max_npartitions; partid++) {
 | |
| 
 | |
| 		if (xpc_exiting)
 | |
| 			break;
 | |
| 
 | |
| 		if (partid == xp_partition_id)
 | |
| 			continue;
 | |
| 
 | |
| 		part = &xpc_partitions[partid];
 | |
| 
 | |
| 		if (part->act_state == XPC_P_AS_INACTIVE ||
 | |
| 		    part->act_state == XPC_P_AS_DEACTIVATING) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = xpc_arch_ops.get_remote_heartbeat(part);
 | |
| 		if (ret != xpSuccess)
 | |
| 			XPC_DEACTIVATE_PARTITION(part, ret);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This thread is responsible for nearly all of the partition
 | |
|  * activation/deactivation.
 | |
|  */
 | |
| static int
 | |
| xpc_hb_checker(void *ignore)
 | |
| {
 | |
| 	int force_IRQ = 0;
 | |
| 
 | |
| 	/* this thread was marked active by xpc_hb_init() */
 | |
| 
 | |
| 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
 | |
| 
 | |
| 	/* set our heartbeating to other partitions into motion */
 | |
| 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
 | |
| 	xpc_start_hb_beater();
 | |
| 
 | |
| 	while (!xpc_exiting) {
 | |
| 
 | |
| 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
 | |
| 			"been received\n",
 | |
| 			(int)(xpc_hb_check_timeout - jiffies),
 | |
| 			xpc_activate_IRQ_rcvd);
 | |
| 
 | |
| 		/* checking of remote heartbeats is skewed by IRQ handling */
 | |
| 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
 | |
| 			xpc_hb_check_timeout = jiffies +
 | |
| 			    (xpc_hb_check_interval * HZ);
 | |
| 
 | |
| 			dev_dbg(xpc_part, "checking remote heartbeats\n");
 | |
| 			xpc_check_remote_hb();
 | |
| 		}
 | |
| 
 | |
| 		/* check for outstanding IRQs */
 | |
| 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
 | |
| 			force_IRQ = 0;
 | |
| 			dev_dbg(xpc_part, "processing activate IRQs "
 | |
| 				"received\n");
 | |
| 			xpc_arch_ops.process_activate_IRQ_rcvd();
 | |
| 		}
 | |
| 
 | |
| 		/* wait for IRQ or timeout */
 | |
| 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
 | |
| 					       (time_is_before_eq_jiffies(
 | |
| 						xpc_hb_check_timeout) ||
 | |
| 						xpc_activate_IRQ_rcvd > 0 ||
 | |
| 						xpc_exiting));
 | |
| 	}
 | |
| 
 | |
| 	xpc_stop_hb_beater();
 | |
| 
 | |
| 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
 | |
| 
 | |
| 	/* mark this thread as having exited */
 | |
| 	complete(&xpc_hb_checker_exited);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This thread will attempt to discover other partitions to activate
 | |
|  * based on info provided by SAL. This new thread is short lived and
 | |
|  * will exit once discovery is complete.
 | |
|  */
 | |
| static int
 | |
| xpc_initiate_discovery(void *ignore)
 | |
| {
 | |
| 	xpc_discovery();
 | |
| 
 | |
| 	dev_dbg(xpc_part, "discovery thread is exiting\n");
 | |
| 
 | |
| 	/* mark this thread as having exited */
 | |
| 	complete(&xpc_discovery_exited);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The first kthread assigned to a newly activated partition is the one
 | |
|  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
 | |
|  * that kthread until the partition is brought down, at which time that kthread
 | |
|  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
 | |
|  * that XPC has dismantled all communication infrastructure for the associated
 | |
|  * partition.) This kthread becomes the channel manager for that partition.
 | |
|  *
 | |
|  * Each active partition has a channel manager, who, besides connecting and
 | |
|  * disconnecting channels, will ensure that each of the partition's connected
 | |
|  * channels has the required number of assigned kthreads to get the work done.
 | |
|  */
 | |
| static void
 | |
| xpc_channel_mgr(struct xpc_partition *part)
 | |
| {
 | |
| 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
 | |
| 	       atomic_read(&part->nchannels_active) > 0 ||
 | |
| 	       !xpc_partition_disengaged(part)) {
 | |
| 
 | |
| 		xpc_process_sent_chctl_flags(part);
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait until we've been requested to activate kthreads or
 | |
| 		 * all of the channel's message queues have been torn down or
 | |
| 		 * a signal is pending.
 | |
| 		 *
 | |
| 		 * The channel_mgr_requests is set to 1 after being awakened,
 | |
| 		 * This is done to prevent the channel mgr from making one pass
 | |
| 		 * through the loop for each request, since he will
 | |
| 		 * be servicing all the requests in one pass. The reason it's
 | |
| 		 * set to 1 instead of 0 is so that other kthreads will know
 | |
| 		 * that the channel mgr is running and won't bother trying to
 | |
| 		 * wake him up.
 | |
| 		 */
 | |
| 		atomic_dec(&part->channel_mgr_requests);
 | |
| 		(void)wait_event_interruptible(part->channel_mgr_wq,
 | |
| 				(atomic_read(&part->channel_mgr_requests) > 0 ||
 | |
| 				 part->chctl.all_flags != 0 ||
 | |
| 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
 | |
| 				 atomic_read(&part->nchannels_active) == 0 &&
 | |
| 				 xpc_partition_disengaged(part))));
 | |
| 		atomic_set(&part->channel_mgr_requests, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Guarantee that the kzalloc'd memory is cacheline aligned.
 | |
|  */
 | |
| void *
 | |
| xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
 | |
| {
 | |
| 	/* see if kzalloc will give us cachline aligned memory by default */
 | |
| 	*base = kzalloc(size, flags);
 | |
| 	if (*base == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
 | |
| 		return *base;
 | |
| 
 | |
| 	kfree(*base);
 | |
| 
 | |
| 	/* nope, we'll have to do it ourselves */
 | |
| 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
 | |
| 	if (*base == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return (void *)L1_CACHE_ALIGN((u64)*base);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup the channel structures necessary to support XPartition Communication
 | |
|  * between the specified remote partition and the local one.
 | |
|  */
 | |
| static enum xp_retval
 | |
| xpc_setup_ch_structures(struct xpc_partition *part)
 | |
| {
 | |
| 	enum xp_retval ret;
 | |
| 	int ch_number;
 | |
| 	struct xpc_channel *ch;
 | |
| 	short partid = XPC_PARTID(part);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate all of the channel structures as a contiguous chunk of
 | |
| 	 * memory.
 | |
| 	 */
 | |
| 	DBUG_ON(part->channels != NULL);
 | |
| 	part->channels = kcalloc(XPC_MAX_NCHANNELS,
 | |
| 				 sizeof(struct xpc_channel),
 | |
| 				 GFP_KERNEL);
 | |
| 	if (part->channels == NULL) {
 | |
| 		dev_err(xpc_chan, "can't get memory for channels\n");
 | |
| 		return xpNoMemory;
 | |
| 	}
 | |
| 
 | |
| 	/* allocate the remote open and close args */
 | |
| 
 | |
| 	part->remote_openclose_args =
 | |
| 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
 | |
| 					  GFP_KERNEL, &part->
 | |
| 					  remote_openclose_args_base);
 | |
| 	if (part->remote_openclose_args == NULL) {
 | |
| 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
 | |
| 		ret = xpNoMemory;
 | |
| 		goto out_1;
 | |
| 	}
 | |
| 
 | |
| 	part->chctl.all_flags = 0;
 | |
| 	spin_lock_init(&part->chctl_lock);
 | |
| 
 | |
| 	atomic_set(&part->channel_mgr_requests, 1);
 | |
| 	init_waitqueue_head(&part->channel_mgr_wq);
 | |
| 
 | |
| 	part->nchannels = XPC_MAX_NCHANNELS;
 | |
| 
 | |
| 	atomic_set(&part->nchannels_active, 0);
 | |
| 	atomic_set(&part->nchannels_engaged, 0);
 | |
| 
 | |
| 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
 | |
| 		ch = &part->channels[ch_number];
 | |
| 
 | |
| 		ch->partid = partid;
 | |
| 		ch->number = ch_number;
 | |
| 		ch->flags = XPC_C_DISCONNECTED;
 | |
| 
 | |
| 		atomic_set(&ch->kthreads_assigned, 0);
 | |
| 		atomic_set(&ch->kthreads_idle, 0);
 | |
| 		atomic_set(&ch->kthreads_active, 0);
 | |
| 
 | |
| 		atomic_set(&ch->references, 0);
 | |
| 		atomic_set(&ch->n_to_notify, 0);
 | |
| 
 | |
| 		spin_lock_init(&ch->lock);
 | |
| 		init_completion(&ch->wdisconnect_wait);
 | |
| 
 | |
| 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
 | |
| 		init_waitqueue_head(&ch->msg_allocate_wq);
 | |
| 		init_waitqueue_head(&ch->idle_wq);
 | |
| 	}
 | |
| 
 | |
| 	ret = xpc_arch_ops.setup_ch_structures(part);
 | |
| 	if (ret != xpSuccess)
 | |
| 		goto out_2;
 | |
| 
 | |
| 	/*
 | |
| 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
 | |
| 	 * we're declaring that this partition is ready to go.
 | |
| 	 */
 | |
| 	part->setup_state = XPC_P_SS_SETUP;
 | |
| 
 | |
| 	return xpSuccess;
 | |
| 
 | |
| 	/* setup of ch structures failed */
 | |
| out_2:
 | |
| 	kfree(part->remote_openclose_args_base);
 | |
| 	part->remote_openclose_args = NULL;
 | |
| out_1:
 | |
| 	kfree(part->channels);
 | |
| 	part->channels = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Teardown the channel structures necessary to support XPartition Communication
 | |
|  * between the specified remote partition and the local one.
 | |
|  */
 | |
| static void
 | |
| xpc_teardown_ch_structures(struct xpc_partition *part)
 | |
| {
 | |
| 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
 | |
| 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make this partition inaccessible to local processes by marking it
 | |
| 	 * as no longer setup. Then wait before proceeding with the teardown
 | |
| 	 * until all existing references cease.
 | |
| 	 */
 | |
| 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
 | |
| 	part->setup_state = XPC_P_SS_WTEARDOWN;
 | |
| 
 | |
| 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
 | |
| 
 | |
| 	/* now we can begin tearing down the infrastructure */
 | |
| 
 | |
| 	xpc_arch_ops.teardown_ch_structures(part);
 | |
| 
 | |
| 	kfree(part->remote_openclose_args_base);
 | |
| 	part->remote_openclose_args = NULL;
 | |
| 	kfree(part->channels);
 | |
| 	part->channels = NULL;
 | |
| 
 | |
| 	part->setup_state = XPC_P_SS_TORNDOWN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When XPC HB determines that a partition has come up, it will create a new
 | |
|  * kthread and that kthread will call this function to attempt to set up the
 | |
|  * basic infrastructure used for Cross Partition Communication with the newly
 | |
|  * upped partition.
 | |
|  *
 | |
|  * The kthread that was created by XPC HB and which setup the XPC
 | |
|  * infrastructure will remain assigned to the partition becoming the channel
 | |
|  * manager for that partition until the partition is deactivating, at which
 | |
|  * time the kthread will teardown the XPC infrastructure and then exit.
 | |
|  */
 | |
| static int
 | |
| xpc_activating(void *__partid)
 | |
| {
 | |
| 	short partid = (u64)__partid;
 | |
| 	struct xpc_partition *part = &xpc_partitions[partid];
 | |
| 	unsigned long irq_flags;
 | |
| 
 | |
| 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
 | |
| 
 | |
| 	spin_lock_irqsave(&part->act_lock, irq_flags);
 | |
| 
 | |
| 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
 | |
| 		part->act_state = XPC_P_AS_INACTIVE;
 | |
| 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 | |
| 		part->remote_rp_pa = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* indicate the thread is activating */
 | |
| 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
 | |
| 	part->act_state = XPC_P_AS_ACTIVATING;
 | |
| 
 | |
| 	XPC_SET_REASON(part, 0, 0);
 | |
| 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 | |
| 
 | |
| 	dev_dbg(xpc_part, "activating partition %d\n", partid);
 | |
| 
 | |
| 	xpc_arch_ops.allow_hb(partid);
 | |
| 
 | |
| 	if (xpc_setup_ch_structures(part) == xpSuccess) {
 | |
| 		(void)xpc_part_ref(part);	/* this will always succeed */
 | |
| 
 | |
| 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
 | |
| 			xpc_mark_partition_active(part);
 | |
| 			xpc_channel_mgr(part);
 | |
| 			/* won't return until partition is deactivating */
 | |
| 		}
 | |
| 
 | |
| 		xpc_part_deref(part);
 | |
| 		xpc_teardown_ch_structures(part);
 | |
| 	}
 | |
| 
 | |
| 	xpc_arch_ops.disallow_hb(partid);
 | |
| 	xpc_mark_partition_inactive(part);
 | |
| 
 | |
| 	if (part->reason == xpReactivating) {
 | |
| 		/* interrupting ourselves results in activating partition */
 | |
| 		xpc_arch_ops.request_partition_reactivation(part);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| xpc_activate_partition(struct xpc_partition *part)
 | |
| {
 | |
| 	short partid = XPC_PARTID(part);
 | |
| 	unsigned long irq_flags;
 | |
| 	struct task_struct *kthread;
 | |
| 
 | |
| 	spin_lock_irqsave(&part->act_lock, irq_flags);
 | |
| 
 | |
| 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
 | |
| 
 | |
| 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
 | |
| 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 | |
| 
 | |
| 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
 | |
| 			      partid);
 | |
| 	if (IS_ERR(kthread)) {
 | |
| 		spin_lock_irqsave(&part->act_lock, irq_flags);
 | |
| 		part->act_state = XPC_P_AS_INACTIVE;
 | |
| 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
 | |
| 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| xpc_activate_kthreads(struct xpc_channel *ch, int needed)
 | |
| {
 | |
| 	int idle = atomic_read(&ch->kthreads_idle);
 | |
| 	int assigned = atomic_read(&ch->kthreads_assigned);
 | |
| 	int wakeup;
 | |
| 
 | |
| 	DBUG_ON(needed <= 0);
 | |
| 
 | |
| 	if (idle > 0) {
 | |
| 		wakeup = (needed > idle) ? idle : needed;
 | |
| 		needed -= wakeup;
 | |
| 
 | |
| 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
 | |
| 			"channel=%d\n", wakeup, ch->partid, ch->number);
 | |
| 
 | |
| 		/* only wakeup the requested number of kthreads */
 | |
| 		wake_up_nr(&ch->idle_wq, wakeup);
 | |
| 	}
 | |
| 
 | |
| 	if (needed <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (needed + assigned > ch->kthreads_assigned_limit) {
 | |
| 		needed = ch->kthreads_assigned_limit - assigned;
 | |
| 		if (needed <= 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
 | |
| 		needed, ch->partid, ch->number);
 | |
| 
 | |
| 	xpc_create_kthreads(ch, needed, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is where XPC's kthreads wait for messages to deliver.
 | |
|  */
 | |
| static void
 | |
| xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
 | |
| {
 | |
| 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 | |
| 		xpc_arch_ops.n_of_deliverable_payloads;
 | |
| 
 | |
| 	do {
 | |
| 		/* deliver messages to their intended recipients */
 | |
| 
 | |
| 		while (n_of_deliverable_payloads(ch) > 0 &&
 | |
| 		       !(ch->flags & XPC_C_DISCONNECTING)) {
 | |
| 			xpc_deliver_payload(ch);
 | |
| 		}
 | |
| 
 | |
| 		if (atomic_inc_return(&ch->kthreads_idle) >
 | |
| 		    ch->kthreads_idle_limit) {
 | |
| 			/* too many idle kthreads on this channel */
 | |
| 			atomic_dec(&ch->kthreads_idle);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(xpc_chan, "idle kthread calling "
 | |
| 			"wait_event_interruptible_exclusive()\n");
 | |
| 
 | |
| 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
 | |
| 				(n_of_deliverable_payloads(ch) > 0 ||
 | |
| 				 (ch->flags & XPC_C_DISCONNECTING)));
 | |
| 
 | |
| 		atomic_dec(&ch->kthreads_idle);
 | |
| 
 | |
| 	} while (!(ch->flags & XPC_C_DISCONNECTING));
 | |
| }
 | |
| 
 | |
| static int
 | |
| xpc_kthread_start(void *args)
 | |
| {
 | |
| 	short partid = XPC_UNPACK_ARG1(args);
 | |
| 	u16 ch_number = XPC_UNPACK_ARG2(args);
 | |
| 	struct xpc_partition *part = &xpc_partitions[partid];
 | |
| 	struct xpc_channel *ch;
 | |
| 	int n_needed;
 | |
| 	unsigned long irq_flags;
 | |
| 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 | |
| 		xpc_arch_ops.n_of_deliverable_payloads;
 | |
| 
 | |
| 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
 | |
| 		partid, ch_number);
 | |
| 
 | |
| 	ch = &part->channels[ch_number];
 | |
| 
 | |
| 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
 | |
| 
 | |
| 		/* let registerer know that connection has been established */
 | |
| 
 | |
| 		spin_lock_irqsave(&ch->lock, irq_flags);
 | |
| 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
 | |
| 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
 | |
| 			spin_unlock_irqrestore(&ch->lock, irq_flags);
 | |
| 
 | |
| 			xpc_connected_callout(ch);
 | |
| 
 | |
| 			spin_lock_irqsave(&ch->lock, irq_flags);
 | |
| 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
 | |
| 			spin_unlock_irqrestore(&ch->lock, irq_flags);
 | |
| 
 | |
| 			/*
 | |
| 			 * It is possible that while the callout was being
 | |
| 			 * made that the remote partition sent some messages.
 | |
| 			 * If that is the case, we may need to activate
 | |
| 			 * additional kthreads to help deliver them. We only
 | |
| 			 * need one less than total #of messages to deliver.
 | |
| 			 */
 | |
| 			n_needed = n_of_deliverable_payloads(ch) - 1;
 | |
| 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
 | |
| 				xpc_activate_kthreads(ch, n_needed);
 | |
| 
 | |
| 		} else {
 | |
| 			spin_unlock_irqrestore(&ch->lock, irq_flags);
 | |
| 		}
 | |
| 
 | |
| 		xpc_kthread_waitmsgs(part, ch);
 | |
| 	}
 | |
| 
 | |
| 	/* let registerer know that connection is disconnecting */
 | |
| 
 | |
| 	spin_lock_irqsave(&ch->lock, irq_flags);
 | |
| 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
 | |
| 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
 | |
| 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
 | |
| 		spin_unlock_irqrestore(&ch->lock, irq_flags);
 | |
| 
 | |
| 		xpc_disconnect_callout(ch, xpDisconnecting);
 | |
| 
 | |
| 		spin_lock_irqsave(&ch->lock, irq_flags);
 | |
| 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&ch->lock, irq_flags);
 | |
| 
 | |
| 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 | |
| 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
 | |
| 		xpc_arch_ops.indicate_partition_disengaged(part);
 | |
| 	}
 | |
| 
 | |
| 	xpc_msgqueue_deref(ch);
 | |
| 
 | |
| 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
 | |
| 		partid, ch_number);
 | |
| 
 | |
| 	xpc_part_deref(part);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For each partition that XPC has established communications with, there is
 | |
|  * a minimum of one kernel thread assigned to perform any operation that
 | |
|  * may potentially sleep or block (basically the callouts to the asynchronous
 | |
|  * functions registered via xpc_connect()).
 | |
|  *
 | |
|  * Additional kthreads are created and destroyed by XPC as the workload
 | |
|  * demands.
 | |
|  *
 | |
|  * A kthread is assigned to one of the active channels that exists for a given
 | |
|  * partition.
 | |
|  */
 | |
| void
 | |
| xpc_create_kthreads(struct xpc_channel *ch, int needed,
 | |
| 		    int ignore_disconnecting)
 | |
| {
 | |
| 	unsigned long irq_flags;
 | |
| 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
 | |
| 	struct xpc_partition *part = &xpc_partitions[ch->partid];
 | |
| 	struct task_struct *kthread;
 | |
| 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
 | |
| 		xpc_arch_ops.indicate_partition_disengaged;
 | |
| 
 | |
| 	while (needed-- > 0) {
 | |
| 
 | |
| 		/*
 | |
| 		 * The following is done on behalf of the newly created
 | |
| 		 * kthread. That kthread is responsible for doing the
 | |
| 		 * counterpart to the following before it exits.
 | |
| 		 */
 | |
| 		if (ignore_disconnecting) {
 | |
| 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
 | |
| 				/* kthreads assigned had gone to zero */
 | |
| 				BUG_ON(!(ch->flags &
 | |
| 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 		} else if (ch->flags & XPC_C_DISCONNECTING) {
 | |
| 			break;
 | |
| 
 | |
| 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
 | |
| 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
 | |
| 			xpc_arch_ops.indicate_partition_engaged(part);
 | |
| 		}
 | |
| 		(void)xpc_part_ref(part);
 | |
| 		xpc_msgqueue_ref(ch);
 | |
| 
 | |
| 		kthread = kthread_run(xpc_kthread_start, (void *)args,
 | |
| 				      "xpc%02dc%d", ch->partid, ch->number);
 | |
| 		if (IS_ERR(kthread)) {
 | |
| 			/* the fork failed */
 | |
| 
 | |
| 			/*
 | |
| 			 * NOTE: if (ignore_disconnecting &&
 | |
| 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
 | |
| 			 * then we'll deadlock if all other kthreads assigned
 | |
| 			 * to this channel are blocked in the channel's
 | |
| 			 * registerer, because the only thing that will unblock
 | |
| 			 * them is the xpDisconnecting callout that this
 | |
| 			 * failed kthread_run() would have made.
 | |
| 			 */
 | |
| 
 | |
| 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 | |
| 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
 | |
| 				indicate_partition_disengaged(part);
 | |
| 			}
 | |
| 			xpc_msgqueue_deref(ch);
 | |
| 			xpc_part_deref(part);
 | |
| 
 | |
| 			if (atomic_read(&ch->kthreads_assigned) <
 | |
| 			    ch->kthreads_idle_limit) {
 | |
| 				/*
 | |
| 				 * Flag this as an error only if we have an
 | |
| 				 * insufficient #of kthreads for the channel
 | |
| 				 * to function.
 | |
| 				 */
 | |
| 				spin_lock_irqsave(&ch->lock, irq_flags);
 | |
| 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
 | |
| 						       &irq_flags);
 | |
| 				spin_unlock_irqrestore(&ch->lock, irq_flags);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| xpc_disconnect_wait(int ch_number)
 | |
| {
 | |
| 	unsigned long irq_flags;
 | |
| 	short partid;
 | |
| 	struct xpc_partition *part;
 | |
| 	struct xpc_channel *ch;
 | |
| 	int wakeup_channel_mgr;
 | |
| 
 | |
| 	/* now wait for all callouts to the caller's function to cease */
 | |
| 	for (partid = 0; partid < xp_max_npartitions; partid++) {
 | |
| 		part = &xpc_partitions[partid];
 | |
| 
 | |
| 		if (!xpc_part_ref(part))
 | |
| 			continue;
 | |
| 
 | |
| 		ch = &part->channels[ch_number];
 | |
| 
 | |
| 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
 | |
| 			xpc_part_deref(part);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		wait_for_completion(&ch->wdisconnect_wait);
 | |
| 
 | |
| 		spin_lock_irqsave(&ch->lock, irq_flags);
 | |
| 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
 | |
| 		wakeup_channel_mgr = 0;
 | |
| 
 | |
| 		if (ch->delayed_chctl_flags) {
 | |
| 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
 | |
| 				spin_lock(&part->chctl_lock);
 | |
| 				part->chctl.flags[ch->number] |=
 | |
| 				    ch->delayed_chctl_flags;
 | |
| 				spin_unlock(&part->chctl_lock);
 | |
| 				wakeup_channel_mgr = 1;
 | |
| 			}
 | |
| 			ch->delayed_chctl_flags = 0;
 | |
| 		}
 | |
| 
 | |
| 		ch->flags &= ~XPC_C_WDISCONNECT;
 | |
| 		spin_unlock_irqrestore(&ch->lock, irq_flags);
 | |
| 
 | |
| 		if (wakeup_channel_mgr)
 | |
| 			xpc_wakeup_channel_mgr(part);
 | |
| 
 | |
| 		xpc_part_deref(part);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| xpc_setup_partitions(void)
 | |
| {
 | |
| 	short partid;
 | |
| 	struct xpc_partition *part;
 | |
| 
 | |
| 	xpc_partitions = kcalloc(xp_max_npartitions,
 | |
| 				 sizeof(struct xpc_partition),
 | |
| 				 GFP_KERNEL);
 | |
| 	if (xpc_partitions == NULL) {
 | |
| 		dev_err(xpc_part, "can't get memory for partition structure\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The first few fields of each entry of xpc_partitions[] need to
 | |
| 	 * be initialized now so that calls to xpc_connect() and
 | |
| 	 * xpc_disconnect() can be made prior to the activation of any remote
 | |
| 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
 | |
| 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
 | |
| 	 * PARTITION HAS BEEN ACTIVATED.
 | |
| 	 */
 | |
| 	for (partid = 0; partid < xp_max_npartitions; partid++) {
 | |
| 		part = &xpc_partitions[partid];
 | |
| 
 | |
| 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
 | |
| 
 | |
| 		part->activate_IRQ_rcvd = 0;
 | |
| 		spin_lock_init(&part->act_lock);
 | |
| 		part->act_state = XPC_P_AS_INACTIVE;
 | |
| 		XPC_SET_REASON(part, 0, 0);
 | |
| 
 | |
| 		timer_setup(&part->disengage_timer,
 | |
| 			    xpc_timeout_partition_disengage, 0);
 | |
| 
 | |
| 		part->setup_state = XPC_P_SS_UNSET;
 | |
| 		init_waitqueue_head(&part->teardown_wq);
 | |
| 		atomic_set(&part->references, 0);
 | |
| 	}
 | |
| 
 | |
| 	return xpc_arch_ops.setup_partitions();
 | |
| }
 | |
| 
 | |
| static void
 | |
| xpc_teardown_partitions(void)
 | |
| {
 | |
| 	xpc_arch_ops.teardown_partitions();
 | |
| 	kfree(xpc_partitions);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xpc_do_exit(enum xp_retval reason)
 | |
| {
 | |
| 	short partid;
 | |
| 	int active_part_count, printed_waiting_msg = 0;
 | |
| 	struct xpc_partition *part;
 | |
| 	unsigned long printmsg_time, disengage_timeout = 0;
 | |
| 
 | |
| 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
 | |
| 	DBUG_ON(xpc_exiting == 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let the heartbeat checker thread and the discovery thread
 | |
| 	 * (if one is running) know that they should exit. Also wake up
 | |
| 	 * the heartbeat checker thread in case it's sleeping.
 | |
| 	 */
 | |
| 	xpc_exiting = 1;
 | |
| 	wake_up_interruptible(&xpc_activate_IRQ_wq);
 | |
| 
 | |
| 	/* wait for the discovery thread to exit */
 | |
| 	wait_for_completion(&xpc_discovery_exited);
 | |
| 
 | |
| 	/* wait for the heartbeat checker thread to exit */
 | |
| 	wait_for_completion(&xpc_hb_checker_exited);
 | |
| 
 | |
| 	/* sleep for a 1/3 of a second or so */
 | |
| 	(void)msleep_interruptible(300);
 | |
| 
 | |
| 	/* wait for all partitions to become inactive */
 | |
| 
 | |
| 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
 | |
| 	xpc_disengage_timedout = 0;
 | |
| 
 | |
| 	do {
 | |
| 		active_part_count = 0;
 | |
| 
 | |
| 		for (partid = 0; partid < xp_max_npartitions; partid++) {
 | |
| 			part = &xpc_partitions[partid];
 | |
| 
 | |
| 			if (xpc_partition_disengaged(part) &&
 | |
| 			    part->act_state == XPC_P_AS_INACTIVE) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			active_part_count++;
 | |
| 
 | |
| 			XPC_DEACTIVATE_PARTITION(part, reason);
 | |
| 
 | |
| 			if (part->disengage_timeout > disengage_timeout)
 | |
| 				disengage_timeout = part->disengage_timeout;
 | |
| 		}
 | |
| 
 | |
| 		if (xpc_arch_ops.any_partition_engaged()) {
 | |
| 			if (time_is_before_jiffies(printmsg_time)) {
 | |
| 				dev_info(xpc_part, "waiting for remote "
 | |
| 					 "partitions to deactivate, timeout in "
 | |
| 					 "%ld seconds\n", (disengage_timeout -
 | |
| 					 jiffies) / HZ);
 | |
| 				printmsg_time = jiffies +
 | |
| 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
 | |
| 				printed_waiting_msg = 1;
 | |
| 			}
 | |
| 
 | |
| 		} else if (active_part_count > 0) {
 | |
| 			if (printed_waiting_msg) {
 | |
| 				dev_info(xpc_part, "waiting for local partition"
 | |
| 					 " to deactivate\n");
 | |
| 				printed_waiting_msg = 0;
 | |
| 			}
 | |
| 
 | |
| 		} else {
 | |
| 			if (!xpc_disengage_timedout) {
 | |
| 				dev_info(xpc_part, "all partitions have "
 | |
| 					 "deactivated\n");
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* sleep for a 1/3 of a second or so */
 | |
| 		(void)msleep_interruptible(300);
 | |
| 
 | |
| 	} while (1);
 | |
| 
 | |
| 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
 | |
| 
 | |
| 	xpc_teardown_rsvd_page();
 | |
| 
 | |
| 	if (reason == xpUnloading) {
 | |
| 		(void)unregister_die_notifier(&xpc_die_notifier);
 | |
| 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
 | |
| 	}
 | |
| 
 | |
| 	/* clear the interface to XPC's functions */
 | |
| 	xpc_clear_interface();
 | |
| 
 | |
| 	if (xpc_sysctl)
 | |
| 		unregister_sysctl_table(xpc_sysctl);
 | |
| 	if (xpc_sysctl_hb)
 | |
| 		unregister_sysctl_table(xpc_sysctl_hb);
 | |
| 
 | |
| 	xpc_teardown_partitions();
 | |
| 
 | |
| 	if (is_uv_system())
 | |
| 		xpc_exit_uv();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called when the system is being rebooted.
 | |
|  */
 | |
| static int
 | |
| xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
 | |
| {
 | |
| 	enum xp_retval reason;
 | |
| 
 | |
| 	switch (event) {
 | |
| 	case SYS_RESTART:
 | |
| 		reason = xpSystemReboot;
 | |
| 		break;
 | |
| 	case SYS_HALT:
 | |
| 		reason = xpSystemHalt;
 | |
| 		break;
 | |
| 	case SYS_POWER_OFF:
 | |
| 		reason = xpSystemPoweroff;
 | |
| 		break;
 | |
| 	default:
 | |
| 		reason = xpSystemGoingDown;
 | |
| 	}
 | |
| 
 | |
| 	xpc_do_exit(reason);
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| /* Used to only allow one cpu to complete disconnect */
 | |
| static unsigned int xpc_die_disconnecting;
 | |
| 
 | |
| /*
 | |
|  * Notify other partitions to deactivate from us by first disengaging from all
 | |
|  * references to our memory.
 | |
|  */
 | |
| static void
 | |
| xpc_die_deactivate(void)
 | |
| {
 | |
| 	struct xpc_partition *part;
 | |
| 	short partid;
 | |
| 	int any_engaged;
 | |
| 	long keep_waiting;
 | |
| 	long wait_to_print;
 | |
| 
 | |
| 	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
 | |
| 		return;
 | |
| 
 | |
| 	/* keep xpc_hb_checker thread from doing anything (just in case) */
 | |
| 	xpc_exiting = 1;
 | |
| 
 | |
| 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
 | |
| 
 | |
| 	for (partid = 0; partid < xp_max_npartitions; partid++) {
 | |
| 		part = &xpc_partitions[partid];
 | |
| 
 | |
| 		if (xpc_arch_ops.partition_engaged(partid) ||
 | |
| 		    part->act_state != XPC_P_AS_INACTIVE) {
 | |
| 			xpc_arch_ops.request_partition_deactivation(part);
 | |
| 			xpc_arch_ops.indicate_partition_disengaged(part);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Though we requested that all other partitions deactivate from us,
 | |
| 	 * we only wait until they've all disengaged or we've reached the
 | |
| 	 * defined timelimit.
 | |
| 	 *
 | |
| 	 * Given that one iteration through the following while-loop takes
 | |
| 	 * approximately 200 microseconds, calculate the #of loops to take
 | |
| 	 * before bailing and the #of loops before printing a waiting message.
 | |
| 	 */
 | |
| 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
 | |
| 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
 | |
| 
 | |
| 	while (1) {
 | |
| 		any_engaged = xpc_arch_ops.any_partition_engaged();
 | |
| 		if (!any_engaged) {
 | |
| 			dev_info(xpc_part, "all partitions have deactivated\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!keep_waiting--) {
 | |
| 			for (partid = 0; partid < xp_max_npartitions;
 | |
| 			     partid++) {
 | |
| 				if (xpc_arch_ops.partition_engaged(partid)) {
 | |
| 					dev_info(xpc_part, "deactivate from "
 | |
| 						 "remote partition %d timed "
 | |
| 						 "out\n", partid);
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!wait_to_print--) {
 | |
| 			dev_info(xpc_part, "waiting for remote partitions to "
 | |
| 				 "deactivate, timeout in %ld seconds\n",
 | |
| 				 keep_waiting / (1000 * 5));
 | |
| 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
 | |
| 			    1000 * 5;
 | |
| 		}
 | |
| 
 | |
| 		udelay(200);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called when the system is being restarted or halted due
 | |
|  * to some sort of system failure. If this is the case we need to notify the
 | |
|  * other partitions to disengage from all references to our memory.
 | |
|  * This function can also be called when our heartbeater could be offlined
 | |
|  * for a time. In this case we need to notify other partitions to not worry
 | |
|  * about the lack of a heartbeat.
 | |
|  */
 | |
| static int
 | |
| xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
 | |
| {
 | |
| 	struct die_args *die_args = _die_args;
 | |
| 
 | |
| 	switch (event) {
 | |
| 	case DIE_TRAP:
 | |
| 		if (die_args->trapnr == X86_TRAP_DF)
 | |
| 			xpc_die_deactivate();
 | |
| 
 | |
| 		if (((die_args->trapnr == X86_TRAP_MF) ||
 | |
| 		     (die_args->trapnr == X86_TRAP_XF)) &&
 | |
| 		    !user_mode(die_args->regs))
 | |
| 			xpc_die_deactivate();
 | |
| 
 | |
| 		break;
 | |
| 	case DIE_INT3:
 | |
| 	case DIE_DEBUG:
 | |
| 		break;
 | |
| 	case DIE_OOPS:
 | |
| 	case DIE_GPF:
 | |
| 	default:
 | |
| 		xpc_die_deactivate();
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static int __init
 | |
| xpc_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct task_struct *kthread;
 | |
| 
 | |
| 	dev_set_name(xpc_part, "part");
 | |
| 	dev_set_name(xpc_chan, "chan");
 | |
| 
 | |
| 	if (is_uv_system()) {
 | |
| 		ret = xpc_init_uv();
 | |
| 
 | |
| 	} else {
 | |
| 		ret = -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = xpc_setup_partitions();
 | |
| 	if (ret != 0) {
 | |
| 		dev_err(xpc_part, "can't get memory for partition structure\n");
 | |
| 		goto out_1;
 | |
| 	}
 | |
| 
 | |
| 	xpc_sysctl = register_sysctl("xpc", xpc_sys_xpc);
 | |
| 	xpc_sysctl_hb = register_sysctl("xpc/hb", xpc_sys_xpc_hb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill the partition reserved page with the information needed by
 | |
| 	 * other partitions to discover we are alive and establish initial
 | |
| 	 * communications.
 | |
| 	 */
 | |
| 	ret = xpc_setup_rsvd_page();
 | |
| 	if (ret != 0) {
 | |
| 		dev_err(xpc_part, "can't setup our reserved page\n");
 | |
| 		goto out_2;
 | |
| 	}
 | |
| 
 | |
| 	/* add ourselves to the reboot_notifier_list */
 | |
| 	ret = register_reboot_notifier(&xpc_reboot_notifier);
 | |
| 	if (ret != 0)
 | |
| 		dev_warn(xpc_part, "can't register reboot notifier\n");
 | |
| 
 | |
| 	/* add ourselves to the die_notifier list */
 | |
| 	ret = register_die_notifier(&xpc_die_notifier);
 | |
| 	if (ret != 0)
 | |
| 		dev_warn(xpc_part, "can't register die notifier\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * The real work-horse behind xpc.  This processes incoming
 | |
| 	 * interrupts and monitors remote heartbeats.
 | |
| 	 */
 | |
| 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
 | |
| 	if (IS_ERR(kthread)) {
 | |
| 		dev_err(xpc_part, "failed while forking hb check thread\n");
 | |
| 		ret = -EBUSY;
 | |
| 		goto out_3;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Startup a thread that will attempt to discover other partitions to
 | |
| 	 * activate based on info provided by SAL. This new thread is short
 | |
| 	 * lived and will exit once discovery is complete.
 | |
| 	 */
 | |
| 	kthread = kthread_run(xpc_initiate_discovery, NULL,
 | |
| 			      XPC_DISCOVERY_THREAD_NAME);
 | |
| 	if (IS_ERR(kthread)) {
 | |
| 		dev_err(xpc_part, "failed while forking discovery thread\n");
 | |
| 
 | |
| 		/* mark this new thread as a non-starter */
 | |
| 		complete(&xpc_discovery_exited);
 | |
| 
 | |
| 		xpc_do_exit(xpUnloading);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* set the interface to point at XPC's functions */
 | |
| 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
 | |
| 			  xpc_initiate_send, xpc_initiate_send_notify,
 | |
| 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| 	/* initialization was not successful */
 | |
| out_3:
 | |
| 	xpc_teardown_rsvd_page();
 | |
| 
 | |
| 	(void)unregister_die_notifier(&xpc_die_notifier);
 | |
| 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
 | |
| out_2:
 | |
| 	if (xpc_sysctl_hb)
 | |
| 		unregister_sysctl_table(xpc_sysctl_hb);
 | |
| 	if (xpc_sysctl)
 | |
| 		unregister_sysctl_table(xpc_sysctl);
 | |
| 
 | |
| 	xpc_teardown_partitions();
 | |
| out_1:
 | |
| 	if (is_uv_system())
 | |
| 		xpc_exit_uv();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| module_init(xpc_init);
 | |
| 
 | |
| static void __exit
 | |
| xpc_exit(void)
 | |
| {
 | |
| 	xpc_do_exit(xpUnloading);
 | |
| }
 | |
| 
 | |
| module_exit(xpc_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Silicon Graphics, Inc.");
 | |
| MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| module_param(xpc_hb_interval, int, 0);
 | |
| MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
 | |
| 		 "heartbeat increments.");
 | |
| 
 | |
| module_param(xpc_hb_check_interval, int, 0);
 | |
| MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
 | |
| 		 "heartbeat checks.");
 | |
| 
 | |
| module_param(xpc_disengage_timelimit, int, 0);
 | |
| MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
 | |
| 		 "for disengage to complete.");
 | |
| 
 | |
| module_param(xpc_kdebug_ignore, int, 0);
 | |
| MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
 | |
| 		 "other partitions when dropping into kdebug.");
 |