forked from mirrors/linux
		
	 57014f0726
			
		
	
	
		57014f0726
		
	
	
	
	
		
			
			This prepares the pwm-sl28cpld driver to further changes of the pwm core outlined in the commit introducing devm_pwmchip_alloc(). There is no intended semantical change and the driver should behave as before. Reviewed-by: Michael Walle <mwalle@kernel.org> Link: https://lore.kernel.org/r/ee687086f7fc78264fac723f65ddc96cb7518c03.1707900770.git.u.kleine-koenig@pengutronix.de Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
		
			
				
	
	
		
			263 lines
		
	
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			263 lines
		
	
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * sl28cpld PWM driver
 | |
|  *
 | |
|  * Copyright (c) 2020 Michael Walle <michael@walle.cc>
 | |
|  *
 | |
|  * There is no public datasheet available for this PWM core. But it is easy
 | |
|  * enough to be briefly explained. It consists of one 8-bit counter. The PWM
 | |
|  * supports four distinct frequencies by selecting when to reset the counter.
 | |
|  * With the prescaler setting you can select which bit of the counter is used
 | |
|  * to reset it. This implies that the higher the frequency the less remaining
 | |
|  * bits are available for the actual counter.
 | |
|  *
 | |
|  * Let cnt[7:0] be the counter, clocked at 32kHz:
 | |
|  * +-----------+--------+--------------+-----------+---------------+
 | |
|  * | prescaler |  reset | counter bits | frequency | period length |
 | |
|  * +-----------+--------+--------------+-----------+---------------+
 | |
|  * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
 | |
|  * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
 | |
|  * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
 | |
|  * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
 | |
|  * +-----------+--------+--------------+-----------+---------------+
 | |
|  *
 | |
|  * Limitations:
 | |
|  * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
 | |
|  * - The hardware cannot atomically set the prescaler and the counter value,
 | |
|  *   which might lead to glitches and inconsistent states if a write fails.
 | |
|  * - The counter is not reset if you switch the prescaler which leads
 | |
|  *   to glitches, too.
 | |
|  * - The duty cycle will switch immediately and not after a complete cycle.
 | |
|  * - Depending on the actual implementation, disabling the PWM might have
 | |
|  *   side effects. For example, if the output pin is shared with a GPIO pin
 | |
|  *   it will automatically switch back to GPIO mode.
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mod_devicetable.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/property.h>
 | |
| #include <linux/pwm.h>
 | |
| #include <linux/regmap.h>
 | |
| 
 | |
| /*
 | |
|  * PWM timer block registers.
 | |
|  */
 | |
| #define SL28CPLD_PWM_CTRL			0x00
 | |
| #define   SL28CPLD_PWM_CTRL_ENABLE		BIT(7)
 | |
| #define   SL28CPLD_PWM_CTRL_PRESCALER_MASK	GENMASK(1, 0)
 | |
| #define SL28CPLD_PWM_CYCLE			0x01
 | |
| #define   SL28CPLD_PWM_CYCLE_MAX		GENMASK(6, 0)
 | |
| 
 | |
| #define SL28CPLD_PWM_CLK			32000 /* 32 kHz */
 | |
| #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)	(1 << (7 - (prescaler)))
 | |
| #define SL28CPLD_PWM_PERIOD(prescaler) \
 | |
| 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
 | |
| 
 | |
| /*
 | |
|  * We calculate the duty cycle like this:
 | |
|  *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
 | |
|  *
 | |
|  * With
 | |
|  *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 | |
|  *   max_duty_cycle = 1 << (7 - prescaler)
 | |
|  * this then simplifies to:
 | |
|  *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 | |
|  *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
 | |
|  *
 | |
|  * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
 | |
|  * precision by doing the divison first.
 | |
|  */
 | |
| #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
 | |
| 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
 | |
| #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
 | |
| 	(DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
 | |
| 
 | |
| #define sl28cpld_pwm_read(priv, reg, val) \
 | |
| 	regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
 | |
| #define sl28cpld_pwm_write(priv, reg, val) \
 | |
| 	regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
 | |
| 
 | |
| struct sl28cpld_pwm {
 | |
| 	struct regmap *regmap;
 | |
| 	u32 offset;
 | |
| };
 | |
| 
 | |
| static inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip)
 | |
| {
 | |
| 	return pwmchip_get_drvdata(chip);
 | |
| }
 | |
| 
 | |
| static int sl28cpld_pwm_get_state(struct pwm_chip *chip,
 | |
| 				  struct pwm_device *pwm,
 | |
| 				  struct pwm_state *state)
 | |
| {
 | |
| 	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
 | |
| 	unsigned int reg;
 | |
| 	int prescaler;
 | |
| 
 | |
| 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®);
 | |
| 
 | |
| 	state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
 | |
| 
 | |
| 	prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
 | |
| 	state->period = SL28CPLD_PWM_PERIOD(prescaler);
 | |
| 
 | |
| 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®);
 | |
| 	state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
 | |
| 	state->polarity = PWM_POLARITY_NORMAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanitize values for the PWM core. Depending on the prescaler it
 | |
| 	 * might happen that we calculate a duty_cycle greater than the actual
 | |
| 	 * period. This might happen if someone (e.g. the bootloader) sets an
 | |
| 	 * invalid combination of values. The behavior of the hardware is
 | |
| 	 * undefined in this case. But we need to report sane values back to
 | |
| 	 * the PWM core.
 | |
| 	 */
 | |
| 	state->duty_cycle = min(state->duty_cycle, state->period);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 | |
| 			      const struct pwm_state *state)
 | |
| {
 | |
| 	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
 | |
| 	unsigned int cycle, prescaler;
 | |
| 	bool write_duty_cycle_first;
 | |
| 	int ret;
 | |
| 	u8 ctrl;
 | |
| 
 | |
| 	/* Polarity inversion is not supported */
 | |
| 	if (state->polarity != PWM_POLARITY_NORMAL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the prescaler. Pick the biggest period that isn't
 | |
| 	 * bigger than the requested period.
 | |
| 	 */
 | |
| 	prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
 | |
| 	prescaler = order_base_2(prescaler);
 | |
| 
 | |
| 	if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
 | |
| 	if (state->enabled)
 | |
| 		ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
 | |
| 
 | |
| 	cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
 | |
| 	cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
 | |
| 
 | |
| 	/*
 | |
| 	 * Work around the hardware limitation. See also above. Trap 100% duty
 | |
| 	 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
 | |
| 	 * care about the frequency because its "all-one" in either case.
 | |
| 	 *
 | |
| 	 * We don't need to check the actual prescaler setting, because only
 | |
| 	 * if the prescaler is 0 we can have this particular value.
 | |
| 	 */
 | |
| 	if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
 | |
| 		ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
 | |
| 		ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
 | |
| 		cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * To avoid glitches when we switch the prescaler, we have to make sure
 | |
| 	 * we have a valid duty cycle for the new mode.
 | |
| 	 *
 | |
| 	 * Take the current prescaler (or the current period length) into
 | |
| 	 * account to decide whether we have to write the duty cycle or the new
 | |
| 	 * prescaler first. If the period length is decreasing we have to
 | |
| 	 * write the duty cycle first.
 | |
| 	 */
 | |
| 	write_duty_cycle_first = pwm->state.period > state->period;
 | |
| 
 | |
| 	if (write_duty_cycle_first) {
 | |
| 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!write_duty_cycle_first) {
 | |
| 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct pwm_ops sl28cpld_pwm_ops = {
 | |
| 	.apply = sl28cpld_pwm_apply,
 | |
| 	.get_state = sl28cpld_pwm_get_state,
 | |
| };
 | |
| 
 | |
| static int sl28cpld_pwm_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct sl28cpld_pwm *priv;
 | |
| 	struct pwm_chip *chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pdev->dev.parent) {
 | |
| 		dev_err(&pdev->dev, "no parent device\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	chip = devm_pwmchip_alloc(&pdev->dev, 1, sizeof(*priv));
 | |
| 	if (IS_ERR(chip))
 | |
| 		return PTR_ERR(chip);
 | |
| 	priv = sl28cpld_pwm_from_chip(chip);
 | |
| 
 | |
| 	priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
 | |
| 	if (!priv->regmap) {
 | |
| 		dev_err(&pdev->dev, "could not get parent regmap\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
 | |
| 			ERR_PTR(ret));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize the pwm_chip structure */
 | |
| 	chip->ops = &sl28cpld_pwm_ops;
 | |
| 
 | |
| 	ret = devm_pwmchip_add(&pdev->dev, chip);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
 | |
| 			ERR_PTR(ret));
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id sl28cpld_pwm_of_match[] = {
 | |
| 	{ .compatible = "kontron,sl28cpld-pwm" },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
 | |
| 
 | |
| static struct platform_driver sl28cpld_pwm_driver = {
 | |
| 	.probe = sl28cpld_pwm_probe,
 | |
| 	.driver = {
 | |
| 		.name = "sl28cpld-pwm",
 | |
| 		.of_match_table = sl28cpld_pwm_of_match,
 | |
| 	},
 | |
| };
 | |
| module_platform_driver(sl28cpld_pwm_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("sl28cpld PWM Driver");
 | |
| MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
 | |
| MODULE_LICENSE("GPL");
 |