forked from mirrors/linux
		
	 8db7fdffaa
			
		
	
	
		8db7fdffaa
		
	
	
	
	
		
			
			After commit 0edb555a65 ("platform: Make platform_driver::remove()
return void") .remove() is (again) the right callback to implement for
platform drivers.
Convert all pwm drivers to use .remove(), with the eventual goal to drop
struct platform_driver::remove_new(). As .remove() and .remove_new() have
the same prototypes, conversion is done by just changing the structure
member name in the driver initializer.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Link: https://lore.kernel.org/r/20240909073125.382040-2-u.kleine-koenig@baylibre.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
		
	
			
		
			
				
	
	
		
			503 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			503 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Driver for Allwinner sun4i Pulse Width Modulation Controller
 | |
|  *
 | |
|  * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
 | |
|  *
 | |
|  * Limitations:
 | |
|  * - When outputing the source clock directly, the PWM logic will be bypassed
 | |
|  *   and the currently running period is not guaranteed to be completed
 | |
|  */
 | |
| 
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pwm.h>
 | |
| #include <linux/reset.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/time.h>
 | |
| 
 | |
| #define PWM_CTRL_REG		0x0
 | |
| 
 | |
| #define PWM_CH_PRD_BASE		0x4
 | |
| #define PWM_CH_PRD_OFFSET	0x4
 | |
| #define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 | |
| 
 | |
| #define PWMCH_OFFSET		15
 | |
| #define PWM_PRESCAL_MASK	GENMASK(3, 0)
 | |
| #define PWM_PRESCAL_OFF		0
 | |
| #define PWM_EN			BIT(4)
 | |
| #define PWM_ACT_STATE		BIT(5)
 | |
| #define PWM_CLK_GATING		BIT(6)
 | |
| #define PWM_MODE		BIT(7)
 | |
| #define PWM_PULSE		BIT(8)
 | |
| #define PWM_BYPASS		BIT(9)
 | |
| 
 | |
| #define PWM_RDY_BASE		28
 | |
| #define PWM_RDY_OFFSET		1
 | |
| #define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 | |
| 
 | |
| #define PWM_PRD(prd)		(((prd) - 1) << 16)
 | |
| #define PWM_PRD_MASK		GENMASK(15, 0)
 | |
| 
 | |
| #define PWM_DTY_MASK		GENMASK(15, 0)
 | |
| 
 | |
| #define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 | |
| #define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 | |
| #define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 | |
| 
 | |
| #define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 | |
| 
 | |
| static const u32 prescaler_table[] = {
 | |
| 	120,
 | |
| 	180,
 | |
| 	240,
 | |
| 	360,
 | |
| 	480,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	12000,
 | |
| 	24000,
 | |
| 	36000,
 | |
| 	48000,
 | |
| 	72000,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0, /* Actually 1 but tested separately */
 | |
| };
 | |
| 
 | |
| struct sun4i_pwm_data {
 | |
| 	bool has_prescaler_bypass;
 | |
| 	bool has_direct_mod_clk_output;
 | |
| 	unsigned int npwm;
 | |
| };
 | |
| 
 | |
| struct sun4i_pwm_chip {
 | |
| 	struct clk *bus_clk;
 | |
| 	struct clk *clk;
 | |
| 	struct reset_control *rst;
 | |
| 	void __iomem *base;
 | |
| 	spinlock_t ctrl_lock;
 | |
| 	const struct sun4i_pwm_data *data;
 | |
| };
 | |
| 
 | |
| static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 | |
| {
 | |
| 	return pwmchip_get_drvdata(chip);
 | |
| }
 | |
| 
 | |
| static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *sun4ichip,
 | |
| 				  unsigned long offset)
 | |
| {
 | |
| 	return readl(sun4ichip->base + offset);
 | |
| }
 | |
| 
 | |
| static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *sun4ichip,
 | |
| 				    u32 val, unsigned long offset)
 | |
| {
 | |
| 	writel(val, sun4ichip->base + offset);
 | |
| }
 | |
| 
 | |
| static int sun4i_pwm_get_state(struct pwm_chip *chip,
 | |
| 			       struct pwm_device *pwm,
 | |
| 			       struct pwm_state *state)
 | |
| {
 | |
| 	struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
 | |
| 	u64 clk_rate, tmp;
 | |
| 	u32 val;
 | |
| 	unsigned int prescaler;
 | |
| 
 | |
| 	clk_rate = clk_get_rate(sun4ichip->clk);
 | |
| 	if (!clk_rate)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	val = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
 | |
| 
 | |
| 	/*
 | |
| 	 * PWM chapter in H6 manual has a diagram which explains that if bypass
 | |
| 	 * bit is set, no other setting has any meaning. Even more, experiment
 | |
| 	 * proved that also enable bit is ignored in this case.
 | |
| 	 */
 | |
| 	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
 | |
| 	    sun4ichip->data->has_direct_mod_clk_output) {
 | |
| 		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
 | |
| 		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
 | |
| 		state->polarity = PWM_POLARITY_NORMAL;
 | |
| 		state->enabled = true;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
 | |
| 	    sun4ichip->data->has_prescaler_bypass)
 | |
| 		prescaler = 1;
 | |
| 	else
 | |
| 		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
 | |
| 
 | |
| 	if (prescaler == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
 | |
| 		state->polarity = PWM_POLARITY_NORMAL;
 | |
| 	else
 | |
| 		state->polarity = PWM_POLARITY_INVERSED;
 | |
| 
 | |
| 	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
 | |
| 	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
 | |
| 		state->enabled = true;
 | |
| 	else
 | |
| 		state->enabled = false;
 | |
| 
 | |
| 	val = sun4i_pwm_readl(sun4ichip, PWM_CH_PRD(pwm->hwpwm));
 | |
| 
 | |
| 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
 | |
| 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
 | |
| 
 | |
| 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
 | |
| 	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4ichip,
 | |
| 			       const struct pwm_state *state,
 | |
| 			       u32 *dty, u32 *prd, unsigned int *prsclr,
 | |
| 			       bool *bypass)
 | |
| {
 | |
| 	u64 clk_rate, div = 0;
 | |
| 	unsigned int prescaler = 0;
 | |
| 
 | |
| 	clk_rate = clk_get_rate(sun4ichip->clk);
 | |
| 
 | |
| 	*bypass = sun4ichip->data->has_direct_mod_clk_output &&
 | |
| 		  state->enabled &&
 | |
| 		  (state->period * clk_rate >= NSEC_PER_SEC) &&
 | |
| 		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
 | |
| 		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
 | |
| 
 | |
| 	/* Skip calculation of other parameters if we bypass them */
 | |
| 	if (*bypass)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sun4ichip->data->has_prescaler_bypass) {
 | |
| 		/* First, test without any prescaler when available */
 | |
| 		prescaler = PWM_PRESCAL_MASK;
 | |
| 		/*
 | |
| 		 * When not using any prescaler, the clock period in nanoseconds
 | |
| 		 * is not an integer so round it half up instead of
 | |
| 		 * truncating to get less surprising values.
 | |
| 		 */
 | |
| 		div = clk_rate * state->period + NSEC_PER_SEC / 2;
 | |
| 		do_div(div, NSEC_PER_SEC);
 | |
| 		if (div - 1 > PWM_PRD_MASK)
 | |
| 			prescaler = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (prescaler == 0) {
 | |
| 		/* Go up from the first divider */
 | |
| 		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
 | |
| 			unsigned int pval = prescaler_table[prescaler];
 | |
| 
 | |
| 			if (!pval)
 | |
| 				continue;
 | |
| 
 | |
| 			div = clk_rate;
 | |
| 			do_div(div, pval);
 | |
| 			div = div * state->period;
 | |
| 			do_div(div, NSEC_PER_SEC);
 | |
| 			if (div - 1 <= PWM_PRD_MASK)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (div - 1 > PWM_PRD_MASK)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*prd = div;
 | |
| 	div *= state->duty_cycle;
 | |
| 	do_div(div, state->period);
 | |
| 	*dty = div;
 | |
| 	*prsclr = prescaler;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 | |
| 			   const struct pwm_state *state)
 | |
| {
 | |
| 	struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
 | |
| 	struct pwm_state cstate;
 | |
| 	u32 ctrl, duty = 0, period = 0, val;
 | |
| 	int ret;
 | |
| 	unsigned int delay_us, prescaler = 0;
 | |
| 	bool bypass;
 | |
| 
 | |
| 	pwm_get_state(pwm, &cstate);
 | |
| 
 | |
| 	if (!cstate.enabled) {
 | |
| 		ret = clk_prepare_enable(sun4ichip->clk);
 | |
| 		if (ret) {
 | |
| 			dev_err(pwmchip_parent(chip), "failed to enable PWM clock\n");
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = sun4i_pwm_calculate(sun4ichip, state, &duty, &period, &prescaler,
 | |
| 				  &bypass);
 | |
| 	if (ret) {
 | |
| 		dev_err(pwmchip_parent(chip), "period exceeds the maximum value\n");
 | |
| 		if (!cstate.enabled)
 | |
| 			clk_disable_unprepare(sun4ichip->clk);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&sun4ichip->ctrl_lock);
 | |
| 	ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
 | |
| 
 | |
| 	if (sun4ichip->data->has_direct_mod_clk_output) {
 | |
| 		if (bypass) {
 | |
| 			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
 | |
| 			/* We can skip other parameter */
 | |
| 			sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
 | |
| 			spin_unlock(&sun4ichip->ctrl_lock);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
 | |
| 	}
 | |
| 
 | |
| 	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
 | |
| 		/* Prescaler changed, the clock has to be gated */
 | |
| 		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
 | |
| 		sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
 | |
| 
 | |
| 		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
 | |
| 		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
 | |
| 	}
 | |
| 
 | |
| 	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
 | |
| 	sun4i_pwm_writel(sun4ichip, val, PWM_CH_PRD(pwm->hwpwm));
 | |
| 
 | |
| 	if (state->polarity != PWM_POLARITY_NORMAL)
 | |
| 		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
 | |
| 	else
 | |
| 		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
 | |
| 
 | |
| 	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
 | |
| 
 | |
| 	if (state->enabled)
 | |
| 		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
 | |
| 
 | |
| 	sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
 | |
| 
 | |
| 	spin_unlock(&sun4ichip->ctrl_lock);
 | |
| 
 | |
| 	if (state->enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* We need a full period to elapse before disabling the channel. */
 | |
| 	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
 | |
| 	if ((delay_us / 500) > MAX_UDELAY_MS)
 | |
| 		msleep(delay_us / 1000 + 1);
 | |
| 	else
 | |
| 		usleep_range(delay_us, delay_us * 2);
 | |
| 
 | |
| 	spin_lock(&sun4ichip->ctrl_lock);
 | |
| 	ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
 | |
| 	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
 | |
| 	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
 | |
| 	sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
 | |
| 	spin_unlock(&sun4ichip->ctrl_lock);
 | |
| 
 | |
| 	clk_disable_unprepare(sun4ichip->clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct pwm_ops sun4i_pwm_ops = {
 | |
| 	.apply = sun4i_pwm_apply,
 | |
| 	.get_state = sun4i_pwm_get_state,
 | |
| };
 | |
| 
 | |
| static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
 | |
| 	.has_prescaler_bypass = false,
 | |
| 	.npwm = 2,
 | |
| };
 | |
| 
 | |
| static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
 | |
| 	.has_prescaler_bypass = true,
 | |
| 	.npwm = 2,
 | |
| };
 | |
| 
 | |
| static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
 | |
| 	.has_prescaler_bypass = true,
 | |
| 	.npwm = 1,
 | |
| };
 | |
| 
 | |
| static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
 | |
| 	.has_prescaler_bypass = true,
 | |
| 	.has_direct_mod_clk_output = true,
 | |
| 	.npwm = 1,
 | |
| };
 | |
| 
 | |
| static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
 | |
| 	.has_prescaler_bypass = true,
 | |
| 	.has_direct_mod_clk_output = true,
 | |
| 	.npwm = 2,
 | |
| };
 | |
| 
 | |
| static const struct of_device_id sun4i_pwm_dt_ids[] = {
 | |
| 	{
 | |
| 		.compatible = "allwinner,sun4i-a10-pwm",
 | |
| 		.data = &sun4i_pwm_dual_nobypass,
 | |
| 	}, {
 | |
| 		.compatible = "allwinner,sun5i-a10s-pwm",
 | |
| 		.data = &sun4i_pwm_dual_bypass,
 | |
| 	}, {
 | |
| 		.compatible = "allwinner,sun5i-a13-pwm",
 | |
| 		.data = &sun4i_pwm_single_bypass,
 | |
| 	}, {
 | |
| 		.compatible = "allwinner,sun7i-a20-pwm",
 | |
| 		.data = &sun4i_pwm_dual_bypass,
 | |
| 	}, {
 | |
| 		.compatible = "allwinner,sun8i-h3-pwm",
 | |
| 		.data = &sun4i_pwm_single_bypass,
 | |
| 	}, {
 | |
| 		.compatible = "allwinner,sun50i-a64-pwm",
 | |
| 		.data = &sun50i_a64_pwm_data,
 | |
| 	}, {
 | |
| 		.compatible = "allwinner,sun50i-h6-pwm",
 | |
| 		.data = &sun50i_h6_pwm_data,
 | |
| 	}, {
 | |
| 		/* sentinel */
 | |
| 	},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
 | |
| 
 | |
| static int sun4i_pwm_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct pwm_chip *chip;
 | |
| 	const struct sun4i_pwm_data *data;
 | |
| 	struct sun4i_pwm_chip *sun4ichip;
 | |
| 	int ret;
 | |
| 
 | |
| 	data = of_device_get_match_data(&pdev->dev);
 | |
| 	if (!data)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	chip = devm_pwmchip_alloc(&pdev->dev, data->npwm, sizeof(*sun4ichip));
 | |
| 	if (IS_ERR(chip))
 | |
| 		return PTR_ERR(chip);
 | |
| 	sun4ichip = to_sun4i_pwm_chip(chip);
 | |
| 
 | |
| 	sun4ichip->data = data;
 | |
| 	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
 | |
| 	if (IS_ERR(sun4ichip->base))
 | |
| 		return PTR_ERR(sun4ichip->base);
 | |
| 
 | |
| 	/*
 | |
| 	 * All hardware variants need a source clock that is divided and
 | |
| 	 * then feeds the counter that defines the output wave form. In the
 | |
| 	 * device tree this clock is either unnamed or called "mod".
 | |
| 	 * Some variants (e.g. H6) need another clock to access the
 | |
| 	 * hardware registers; this is called "bus".
 | |
| 	 * So we request "mod" first (and ignore the corner case that a
 | |
| 	 * parent provides a "mod" clock while the right one would be the
 | |
| 	 * unnamed one of the PWM device) and if this is not found we fall
 | |
| 	 * back to the first clock of the PWM.
 | |
| 	 */
 | |
| 	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
 | |
| 	if (IS_ERR(sun4ichip->clk))
 | |
| 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
 | |
| 				     "get mod clock failed\n");
 | |
| 
 | |
| 	if (!sun4ichip->clk) {
 | |
| 		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
 | |
| 		if (IS_ERR(sun4ichip->clk))
 | |
| 			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
 | |
| 					     "get unnamed clock failed\n");
 | |
| 	}
 | |
| 
 | |
| 	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
 | |
| 	if (IS_ERR(sun4ichip->bus_clk))
 | |
| 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
 | |
| 				     "get bus clock failed\n");
 | |
| 
 | |
| 	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
 | |
| 	if (IS_ERR(sun4ichip->rst))
 | |
| 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
 | |
| 				     "get reset failed\n");
 | |
| 
 | |
| 	/* Deassert reset */
 | |
| 	ret = reset_control_deassert(sun4ichip->rst);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
 | |
| 			ERR_PTR(ret));
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We're keeping the bus clock on for the sake of simplicity.
 | |
| 	 * Actually it only needs to be on for hardware register accesses.
 | |
| 	 */
 | |
| 	ret = clk_prepare_enable(sun4ichip->bus_clk);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
 | |
| 			ERR_PTR(ret));
 | |
| 		goto err_bus;
 | |
| 	}
 | |
| 
 | |
| 	chip->ops = &sun4i_pwm_ops;
 | |
| 
 | |
| 	spin_lock_init(&sun4ichip->ctrl_lock);
 | |
| 
 | |
| 	ret = pwmchip_add(chip);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
 | |
| 		goto err_pwm_add;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, chip);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_pwm_add:
 | |
| 	clk_disable_unprepare(sun4ichip->bus_clk);
 | |
| err_bus:
 | |
| 	reset_control_assert(sun4ichip->rst);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sun4i_pwm_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct pwm_chip *chip = platform_get_drvdata(pdev);
 | |
| 	struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
 | |
| 
 | |
| 	pwmchip_remove(chip);
 | |
| 
 | |
| 	clk_disable_unprepare(sun4ichip->bus_clk);
 | |
| 	reset_control_assert(sun4ichip->rst);
 | |
| }
 | |
| 
 | |
| static struct platform_driver sun4i_pwm_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "sun4i-pwm",
 | |
| 		.of_match_table = sun4i_pwm_dt_ids,
 | |
| 	},
 | |
| 	.probe = sun4i_pwm_probe,
 | |
| 	.remove = sun4i_pwm_remove,
 | |
| };
 | |
| module_platform_driver(sun4i_pwm_driver);
 | |
| 
 | |
| MODULE_ALIAS("platform:sun4i-pwm");
 | |
| MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
 | |
| MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
 | |
| MODULE_LICENSE("GPL v2");
 |