forked from mirrors/linux
		
	 494c3dc467
			
		
	
	
		494c3dc467
		
			
		
	
	
	
	
		
			
			After commit 0edb555a65 ("platform: Make platform_driver::remove()
return void") .remove() is (again) the right callback to implement for
platform drivers.
Convert all platform drivers below drivers/spi to use .remove(), with
the eventual goal to drop struct platform_driver::remove_new(). As
.remove() and .remove_new() have the same prototypes, conversion is done
by just changing the structure member name in the driver initializer.
The change for the spi-npcm-fiu stands out in the diffstat because the
inconsistent formatting style of the platform_driver initializer is
fixed to match the other struct initializer in the file.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Link: https://patch.msgid.link/20240925113501.25208-2-u.kleine-koenig@baylibre.com
Signed-off-by: Mark Brown <broonie@kernel.org>
		
	
			
		
			
				
	
	
		
			1791 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1791 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Driver for Atmel AT32 and AT91 SPI Controllers
 | |
|  *
 | |
|  * Copyright (C) 2006 Atmel Corporation
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/of.h>
 | |
| 
 | |
| #include <linux/io.h>
 | |
| #include <linux/gpio/consumer.h>
 | |
| #include <linux/pinctrl/consumer.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/iopoll.h>
 | |
| #include <trace/events/spi.h>
 | |
| 
 | |
| /* SPI register offsets */
 | |
| #define SPI_CR					0x0000
 | |
| #define SPI_MR					0x0004
 | |
| #define SPI_RDR					0x0008
 | |
| #define SPI_TDR					0x000c
 | |
| #define SPI_SR					0x0010
 | |
| #define SPI_IER					0x0014
 | |
| #define SPI_IDR					0x0018
 | |
| #define SPI_IMR					0x001c
 | |
| #define SPI_CSR0				0x0030
 | |
| #define SPI_CSR1				0x0034
 | |
| #define SPI_CSR2				0x0038
 | |
| #define SPI_CSR3				0x003c
 | |
| #define SPI_FMR					0x0040
 | |
| #define SPI_FLR					0x0044
 | |
| #define SPI_VERSION				0x00fc
 | |
| #define SPI_RPR					0x0100
 | |
| #define SPI_RCR					0x0104
 | |
| #define SPI_TPR					0x0108
 | |
| #define SPI_TCR					0x010c
 | |
| #define SPI_RNPR				0x0110
 | |
| #define SPI_RNCR				0x0114
 | |
| #define SPI_TNPR				0x0118
 | |
| #define SPI_TNCR				0x011c
 | |
| #define SPI_PTCR				0x0120
 | |
| #define SPI_PTSR				0x0124
 | |
| 
 | |
| /* Bitfields in CR */
 | |
| #define SPI_SPIEN_OFFSET			0
 | |
| #define SPI_SPIEN_SIZE				1
 | |
| #define SPI_SPIDIS_OFFSET			1
 | |
| #define SPI_SPIDIS_SIZE				1
 | |
| #define SPI_SWRST_OFFSET			7
 | |
| #define SPI_SWRST_SIZE				1
 | |
| #define SPI_LASTXFER_OFFSET			24
 | |
| #define SPI_LASTXFER_SIZE			1
 | |
| #define SPI_TXFCLR_OFFSET			16
 | |
| #define SPI_TXFCLR_SIZE				1
 | |
| #define SPI_RXFCLR_OFFSET			17
 | |
| #define SPI_RXFCLR_SIZE				1
 | |
| #define SPI_FIFOEN_OFFSET			30
 | |
| #define SPI_FIFOEN_SIZE				1
 | |
| #define SPI_FIFODIS_OFFSET			31
 | |
| #define SPI_FIFODIS_SIZE			1
 | |
| 
 | |
| /* Bitfields in MR */
 | |
| #define SPI_MSTR_OFFSET				0
 | |
| #define SPI_MSTR_SIZE				1
 | |
| #define SPI_PS_OFFSET				1
 | |
| #define SPI_PS_SIZE				1
 | |
| #define SPI_PCSDEC_OFFSET			2
 | |
| #define SPI_PCSDEC_SIZE				1
 | |
| #define SPI_FDIV_OFFSET				3
 | |
| #define SPI_FDIV_SIZE				1
 | |
| #define SPI_MODFDIS_OFFSET			4
 | |
| #define SPI_MODFDIS_SIZE			1
 | |
| #define SPI_WDRBT_OFFSET			5
 | |
| #define SPI_WDRBT_SIZE				1
 | |
| #define SPI_LLB_OFFSET				7
 | |
| #define SPI_LLB_SIZE				1
 | |
| #define SPI_PCS_OFFSET				16
 | |
| #define SPI_PCS_SIZE				4
 | |
| #define SPI_DLYBCS_OFFSET			24
 | |
| #define SPI_DLYBCS_SIZE				8
 | |
| 
 | |
| /* Bitfields in RDR */
 | |
| #define SPI_RD_OFFSET				0
 | |
| #define SPI_RD_SIZE				16
 | |
| 
 | |
| /* Bitfields in TDR */
 | |
| #define SPI_TD_OFFSET				0
 | |
| #define SPI_TD_SIZE				16
 | |
| 
 | |
| /* Bitfields in SR */
 | |
| #define SPI_RDRF_OFFSET				0
 | |
| #define SPI_RDRF_SIZE				1
 | |
| #define SPI_TDRE_OFFSET				1
 | |
| #define SPI_TDRE_SIZE				1
 | |
| #define SPI_MODF_OFFSET				2
 | |
| #define SPI_MODF_SIZE				1
 | |
| #define SPI_OVRES_OFFSET			3
 | |
| #define SPI_OVRES_SIZE				1
 | |
| #define SPI_ENDRX_OFFSET			4
 | |
| #define SPI_ENDRX_SIZE				1
 | |
| #define SPI_ENDTX_OFFSET			5
 | |
| #define SPI_ENDTX_SIZE				1
 | |
| #define SPI_RXBUFF_OFFSET			6
 | |
| #define SPI_RXBUFF_SIZE				1
 | |
| #define SPI_TXBUFE_OFFSET			7
 | |
| #define SPI_TXBUFE_SIZE				1
 | |
| #define SPI_NSSR_OFFSET				8
 | |
| #define SPI_NSSR_SIZE				1
 | |
| #define SPI_TXEMPTY_OFFSET			9
 | |
| #define SPI_TXEMPTY_SIZE			1
 | |
| #define SPI_SPIENS_OFFSET			16
 | |
| #define SPI_SPIENS_SIZE				1
 | |
| #define SPI_TXFEF_OFFSET			24
 | |
| #define SPI_TXFEF_SIZE				1
 | |
| #define SPI_TXFFF_OFFSET			25
 | |
| #define SPI_TXFFF_SIZE				1
 | |
| #define SPI_TXFTHF_OFFSET			26
 | |
| #define SPI_TXFTHF_SIZE				1
 | |
| #define SPI_RXFEF_OFFSET			27
 | |
| #define SPI_RXFEF_SIZE				1
 | |
| #define SPI_RXFFF_OFFSET			28
 | |
| #define SPI_RXFFF_SIZE				1
 | |
| #define SPI_RXFTHF_OFFSET			29
 | |
| #define SPI_RXFTHF_SIZE				1
 | |
| #define SPI_TXFPTEF_OFFSET			30
 | |
| #define SPI_TXFPTEF_SIZE			1
 | |
| #define SPI_RXFPTEF_OFFSET			31
 | |
| #define SPI_RXFPTEF_SIZE			1
 | |
| 
 | |
| /* Bitfields in CSR0 */
 | |
| #define SPI_CPOL_OFFSET				0
 | |
| #define SPI_CPOL_SIZE				1
 | |
| #define SPI_NCPHA_OFFSET			1
 | |
| #define SPI_NCPHA_SIZE				1
 | |
| #define SPI_CSAAT_OFFSET			3
 | |
| #define SPI_CSAAT_SIZE				1
 | |
| #define SPI_BITS_OFFSET				4
 | |
| #define SPI_BITS_SIZE				4
 | |
| #define SPI_SCBR_OFFSET				8
 | |
| #define SPI_SCBR_SIZE				8
 | |
| #define SPI_DLYBS_OFFSET			16
 | |
| #define SPI_DLYBS_SIZE				8
 | |
| #define SPI_DLYBCT_OFFSET			24
 | |
| #define SPI_DLYBCT_SIZE				8
 | |
| 
 | |
| /* Bitfields in RCR */
 | |
| #define SPI_RXCTR_OFFSET			0
 | |
| #define SPI_RXCTR_SIZE				16
 | |
| 
 | |
| /* Bitfields in TCR */
 | |
| #define SPI_TXCTR_OFFSET			0
 | |
| #define SPI_TXCTR_SIZE				16
 | |
| 
 | |
| /* Bitfields in RNCR */
 | |
| #define SPI_RXNCR_OFFSET			0
 | |
| #define SPI_RXNCR_SIZE				16
 | |
| 
 | |
| /* Bitfields in TNCR */
 | |
| #define SPI_TXNCR_OFFSET			0
 | |
| #define SPI_TXNCR_SIZE				16
 | |
| 
 | |
| /* Bitfields in PTCR */
 | |
| #define SPI_RXTEN_OFFSET			0
 | |
| #define SPI_RXTEN_SIZE				1
 | |
| #define SPI_RXTDIS_OFFSET			1
 | |
| #define SPI_RXTDIS_SIZE				1
 | |
| #define SPI_TXTEN_OFFSET			8
 | |
| #define SPI_TXTEN_SIZE				1
 | |
| #define SPI_TXTDIS_OFFSET			9
 | |
| #define SPI_TXTDIS_SIZE				1
 | |
| 
 | |
| /* Bitfields in FMR */
 | |
| #define SPI_TXRDYM_OFFSET			0
 | |
| #define SPI_TXRDYM_SIZE				2
 | |
| #define SPI_RXRDYM_OFFSET			4
 | |
| #define SPI_RXRDYM_SIZE				2
 | |
| #define SPI_TXFTHRES_OFFSET			16
 | |
| #define SPI_TXFTHRES_SIZE			6
 | |
| #define SPI_RXFTHRES_OFFSET			24
 | |
| #define SPI_RXFTHRES_SIZE			6
 | |
| 
 | |
| /* Bitfields in FLR */
 | |
| #define SPI_TXFL_OFFSET				0
 | |
| #define SPI_TXFL_SIZE				6
 | |
| #define SPI_RXFL_OFFSET				16
 | |
| #define SPI_RXFL_SIZE				6
 | |
| 
 | |
| /* Constants for BITS */
 | |
| #define SPI_BITS_8_BPT				0
 | |
| #define SPI_BITS_9_BPT				1
 | |
| #define SPI_BITS_10_BPT				2
 | |
| #define SPI_BITS_11_BPT				3
 | |
| #define SPI_BITS_12_BPT				4
 | |
| #define SPI_BITS_13_BPT				5
 | |
| #define SPI_BITS_14_BPT				6
 | |
| #define SPI_BITS_15_BPT				7
 | |
| #define SPI_BITS_16_BPT				8
 | |
| #define SPI_ONE_DATA				0
 | |
| #define SPI_TWO_DATA				1
 | |
| #define SPI_FOUR_DATA				2
 | |
| 
 | |
| /* Bit manipulation macros */
 | |
| #define SPI_BIT(name) \
 | |
| 	(1 << SPI_##name##_OFFSET)
 | |
| #define SPI_BF(name, value) \
 | |
| 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 | |
| #define SPI_BFEXT(name, value) \
 | |
| 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 | |
| #define SPI_BFINS(name, value, old) \
 | |
| 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 | |
| 	  | SPI_BF(name, value))
 | |
| 
 | |
| /* Register access macros */
 | |
| #define spi_readl(port, reg) \
 | |
| 	readl_relaxed((port)->regs + SPI_##reg)
 | |
| #define spi_writel(port, reg, value) \
 | |
| 	writel_relaxed((value), (port)->regs + SPI_##reg)
 | |
| #define spi_writew(port, reg, value) \
 | |
| 	writew_relaxed((value), (port)->regs + SPI_##reg)
 | |
| 
 | |
| /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 | |
|  * cache operations; better heuristics consider wordsize and bitrate.
 | |
|  */
 | |
| #define DMA_MIN_BYTES	16
 | |
| 
 | |
| #define AUTOSUSPEND_TIMEOUT	2000
 | |
| 
 | |
| struct atmel_spi_caps {
 | |
| 	bool	is_spi2;
 | |
| 	bool	has_wdrbt;
 | |
| 	bool	has_dma_support;
 | |
| 	bool	has_pdc_support;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The core SPI transfer engine just talks to a register bank to set up
 | |
|  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 | |
|  * framework provides the base clock, subdivided for each spi_device.
 | |
|  */
 | |
| struct atmel_spi {
 | |
| 	spinlock_t		lock;
 | |
| 	unsigned long		flags;
 | |
| 
 | |
| 	phys_addr_t		phybase;
 | |
| 	void __iomem		*regs;
 | |
| 	int			irq;
 | |
| 	struct clk		*clk;
 | |
| 	struct platform_device	*pdev;
 | |
| 	unsigned long		spi_clk;
 | |
| 
 | |
| 	struct spi_transfer	*current_transfer;
 | |
| 	int			current_remaining_bytes;
 | |
| 	int			done_status;
 | |
| 	dma_addr_t		dma_addr_rx_bbuf;
 | |
| 	dma_addr_t		dma_addr_tx_bbuf;
 | |
| 	void			*addr_rx_bbuf;
 | |
| 	void			*addr_tx_bbuf;
 | |
| 
 | |
| 	struct completion	xfer_completion;
 | |
| 
 | |
| 	struct atmel_spi_caps	caps;
 | |
| 
 | |
| 	bool			use_dma;
 | |
| 	bool			use_pdc;
 | |
| 
 | |
| 	bool			keep_cs;
 | |
| 
 | |
| 	u32			fifo_size;
 | |
| 	bool			last_polarity;
 | |
| 	u8			native_cs_free;
 | |
| 	u8			native_cs_for_gpio;
 | |
| };
 | |
| 
 | |
| /* Controller-specific per-slave state */
 | |
| struct atmel_spi_device {
 | |
| 	u32			csr;
 | |
| };
 | |
| 
 | |
| #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 | |
| #define INVALID_DMA_ADDRESS	0xffffffff
 | |
| 
 | |
| /*
 | |
|  * This frequency can be anything supported by the controller, but to avoid
 | |
|  * unnecessary delay, the highest possible frequency is chosen.
 | |
|  *
 | |
|  * This frequency is the highest possible which is not interfering with other
 | |
|  * chip select registers (see Note for Serial Clock Bit Rate configuration in
 | |
|  * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
 | |
|  */
 | |
| #define DUMMY_MSG_FREQUENCY	0x02
 | |
| /*
 | |
|  * 8 bits is the minimum data the controller is capable of sending.
 | |
|  *
 | |
|  * This message can be anything as it should not be treated by any SPI device.
 | |
|  */
 | |
| #define DUMMY_MSG		0xAA
 | |
| 
 | |
| /*
 | |
|  * Version 2 of the SPI controller has
 | |
|  *  - CR.LASTXFER
 | |
|  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 | |
|  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 | |
|  *  - SPI_CSRx.CSAAT
 | |
|  *  - SPI_CSRx.SBCR allows faster clocking
 | |
|  */
 | |
| static bool atmel_spi_is_v2(struct atmel_spi *as)
 | |
| {
 | |
| 	return as->caps.is_spi2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send a dummy message.
 | |
|  *
 | |
|  * This is sometimes needed when using a CS GPIO to force clock transition when
 | |
|  * switching between devices with different polarities.
 | |
|  */
 | |
| static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
 | |
| {
 | |
| 	u32 status;
 | |
| 	u32 csr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set a clock frequency to allow sending message on SPI bus.
 | |
| 	 * The frequency here can be anything, but is needed for
 | |
| 	 * the controller to send the data.
 | |
| 	 */
 | |
| 	csr = spi_readl(as, CSR0 + 4 * chip_select);
 | |
| 	csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
 | |
| 	spi_writel(as, CSR0 + 4 * chip_select, csr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read all data coming from SPI bus, needed to be able to send
 | |
| 	 * the message.
 | |
| 	 */
 | |
| 	spi_readl(as, RDR);
 | |
| 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 | |
| 		spi_readl(as, RDR);
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| 
 | |
| 	spi_writel(as, TDR, DUMMY_MSG);
 | |
| 
 | |
| 	readl_poll_timeout_atomic(as->regs + SPI_SR, status,
 | |
| 				  (status & SPI_BIT(TXEMPTY)), 1, 1000);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 | |
|  * they assume that spi slave device state will not change on deselect, so
 | |
|  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 | |
|  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 | |
|  * controllers have CSAAT and friends.
 | |
|  *
 | |
|  * Even controller newer than ar91rm9200, using GPIOs can make sens as
 | |
|  * it lets us support active-high chipselects despite the controller's
 | |
|  * belief that only active-low devices/systems exists.
 | |
|  *
 | |
|  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 | |
|  * right when driven with GPIO.  ("Mode Fault does not allow more than one
 | |
|  * Master on Chip Select 0.")  No workaround exists for that ... so for
 | |
|  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 | |
|  * and (c) will trigger that first erratum in some cases.
 | |
|  *
 | |
|  * When changing the clock polarity, the SPI controller waits for the next
 | |
|  * transmission to enforce the default clock state. This may be an issue when
 | |
|  * using a GPIO as Chip Select: the clock level is applied only when the first
 | |
|  * packet is sent, once the CS has already been asserted. The workaround is to
 | |
|  * avoid this by sending a first (dummy) message before toggling the CS state.
 | |
|  */
 | |
| static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 | |
| {
 | |
| 	struct atmel_spi_device *asd = spi->controller_state;
 | |
| 	bool new_polarity;
 | |
| 	int chip_select;
 | |
| 	u32 mr;
 | |
| 
 | |
| 	if (spi_get_csgpiod(spi, 0))
 | |
| 		chip_select = as->native_cs_for_gpio;
 | |
| 	else
 | |
| 		chip_select = spi_get_chipselect(spi, 0);
 | |
| 
 | |
| 	if (atmel_spi_is_v2(as)) {
 | |
| 		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
 | |
| 		/* For the low SPI version, there is a issue that PDC transfer
 | |
| 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 | |
| 		 */
 | |
| 		spi_writel(as, CSR0, asd->csr);
 | |
| 		if (as->caps.has_wdrbt) {
 | |
| 			spi_writel(as, MR,
 | |
| 					SPI_BF(PCS, ~(0x01 << chip_select))
 | |
| 					| SPI_BIT(WDRBT)
 | |
| 					| SPI_BIT(MODFDIS)
 | |
| 					| SPI_BIT(MSTR));
 | |
| 		} else {
 | |
| 			spi_writel(as, MR,
 | |
| 					SPI_BF(PCS, ~(0x01 << chip_select))
 | |
| 					| SPI_BIT(MODFDIS)
 | |
| 					| SPI_BIT(MSTR));
 | |
| 		}
 | |
| 
 | |
| 		mr = spi_readl(as, MR);
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensures the clock polarity is valid before we actually
 | |
| 		 * assert the CS to avoid spurious clock edges to be
 | |
| 		 * processed by the spi devices.
 | |
| 		 */
 | |
| 		if (spi_get_csgpiod(spi, 0)) {
 | |
| 			new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
 | |
| 			if (new_polarity != as->last_polarity) {
 | |
| 				/*
 | |
| 				 * Need to disable the GPIO before sending the dummy
 | |
| 				 * message because it is already set by the spi core.
 | |
| 				 */
 | |
| 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
 | |
| 				atmel_spi_send_dummy(as, spi, chip_select);
 | |
| 				as->last_polarity = new_polarity;
 | |
| 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 | |
| 		int i;
 | |
| 		u32 csr;
 | |
| 
 | |
| 		/* Make sure clock polarity is correct */
 | |
| 		for (i = 0; i < spi->controller->num_chipselect; i++) {
 | |
| 			csr = spi_readl(as, CSR0 + 4 * i);
 | |
| 			if ((csr ^ cpol) & SPI_BIT(CPOL))
 | |
| 				spi_writel(as, CSR0 + 4 * i,
 | |
| 						csr ^ SPI_BIT(CPOL));
 | |
| 		}
 | |
| 
 | |
| 		mr = spi_readl(as, MR);
 | |
| 		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
 | |
| 		spi_writel(as, MR, mr);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 | |
| }
 | |
| 
 | |
| static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 | |
| {
 | |
| 	int chip_select;
 | |
| 	u32 mr;
 | |
| 
 | |
| 	if (spi_get_csgpiod(spi, 0))
 | |
| 		chip_select = as->native_cs_for_gpio;
 | |
| 	else
 | |
| 		chip_select = spi_get_chipselect(spi, 0);
 | |
| 
 | |
| 	/* only deactivate *this* device; sometimes transfers to
 | |
| 	 * another device may be active when this routine is called.
 | |
| 	 */
 | |
| 	mr = spi_readl(as, MR);
 | |
| 	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
 | |
| 		mr = SPI_BFINS(PCS, 0xf, mr);
 | |
| 		spi_writel(as, MR, mr);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 | |
| 
 | |
| 	if (!spi_get_csgpiod(spi, 0))
 | |
| 		spi_writel(as, CR, SPI_BIT(LASTXFER));
 | |
| }
 | |
| 
 | |
| static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 | |
| {
 | |
| 	spin_lock_irqsave(&as->lock, as->flags);
 | |
| }
 | |
| 
 | |
| static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 | |
| {
 | |
| 	spin_unlock_irqrestore(&as->lock, as->flags);
 | |
| }
 | |
| 
 | |
| static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 | |
| {
 | |
| 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 | |
| }
 | |
| 
 | |
| static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 | |
| 				struct spi_transfer *xfer)
 | |
| {
 | |
| 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 | |
| }
 | |
| 
 | |
| static bool atmel_spi_can_dma(struct spi_controller *host,
 | |
| 			      struct spi_device *spi,
 | |
| 			      struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct atmel_spi *as = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 | |
| 		return atmel_spi_use_dma(as, xfer) &&
 | |
| 			!atmel_spi_is_vmalloc_xfer(xfer);
 | |
| 	else
 | |
| 		return atmel_spi_use_dma(as, xfer);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
 | |
| {
 | |
| 	struct spi_controller *host = platform_get_drvdata(as->pdev);
 | |
| 	struct dma_slave_config	slave_config;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (bits_per_word > 8) {
 | |
| 		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 | |
| 		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 | |
| 	} else {
 | |
| 		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 | |
| 		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 | |
| 	}
 | |
| 
 | |
| 	slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 | |
| 	slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 | |
| 	slave_config.src_maxburst = 1;
 | |
| 	slave_config.dst_maxburst = 1;
 | |
| 	slave_config.device_fc = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 | |
| 	 * the Mode Register).
 | |
| 	 * So according to the datasheet, when FIFOs are available (and
 | |
| 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 | |
| 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 | |
| 	 * Data Register in a single access.
 | |
| 	 * However, the first data has to be written into the lowest 16 bits and
 | |
| 	 * the second data into the highest 16 bits of the Transmit
 | |
| 	 * Data Register. For 8bit data (the most frequent case), it would
 | |
| 	 * require to rework tx_buf so each data would actually fit 16 bits.
 | |
| 	 * So we'd rather write only one data at the time. Hence the transmit
 | |
| 	 * path works the same whether FIFOs are available (and enabled) or not.
 | |
| 	 */
 | |
| 	if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
 | |
| 		dev_err(&as->pdev->dev,
 | |
| 			"failed to configure tx dma channel\n");
 | |
| 		err = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This driver configures the spi controller for host mode (MSTR bit
 | |
| 	 * set to '1' in the Mode Register).
 | |
| 	 * So according to the datasheet, when FIFOs are available (and
 | |
| 	 * enabled), the Receive FIFO operates in Single Data Mode.
 | |
| 	 * So the receive path works the same whether FIFOs are available (and
 | |
| 	 * enabled) or not.
 | |
| 	 */
 | |
| 	if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
 | |
| 		dev_err(&as->pdev->dev,
 | |
| 			"failed to configure rx dma channel\n");
 | |
| 		err = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int atmel_spi_configure_dma(struct spi_controller *host,
 | |
| 				   struct atmel_spi *as)
 | |
| {
 | |
| 	struct device *dev = &as->pdev->dev;
 | |
| 	int err;
 | |
| 
 | |
| 	host->dma_tx = dma_request_chan(dev, "tx");
 | |
| 	if (IS_ERR(host->dma_tx)) {
 | |
| 		err = PTR_ERR(host->dma_tx);
 | |
| 		dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
 | |
| 		goto error_clear;
 | |
| 	}
 | |
| 
 | |
| 	host->dma_rx = dma_request_chan(dev, "rx");
 | |
| 	if (IS_ERR(host->dma_rx)) {
 | |
| 		err = PTR_ERR(host->dma_rx);
 | |
| 		/*
 | |
| 		 * No reason to check EPROBE_DEFER here since we have already
 | |
| 		 * requested tx channel.
 | |
| 		 */
 | |
| 		dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	err = atmel_spi_dma_slave_config(as, 8);
 | |
| 	if (err)
 | |
| 		goto error;
 | |
| 
 | |
| 	dev_info(&as->pdev->dev,
 | |
| 			"Using %s (tx) and %s (rx) for DMA transfers\n",
 | |
| 			dma_chan_name(host->dma_tx),
 | |
| 			dma_chan_name(host->dma_rx));
 | |
| 
 | |
| 	return 0;
 | |
| error:
 | |
| 	if (!IS_ERR(host->dma_rx))
 | |
| 		dma_release_channel(host->dma_rx);
 | |
| 	if (!IS_ERR(host->dma_tx))
 | |
| 		dma_release_channel(host->dma_tx);
 | |
| error_clear:
 | |
| 	host->dma_tx = host->dma_rx = NULL;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_stop_dma(struct spi_controller *host)
 | |
| {
 | |
| 	if (host->dma_rx)
 | |
| 		dmaengine_terminate_all(host->dma_rx);
 | |
| 	if (host->dma_tx)
 | |
| 		dmaengine_terminate_all(host->dma_tx);
 | |
| }
 | |
| 
 | |
| static void atmel_spi_release_dma(struct spi_controller *host)
 | |
| {
 | |
| 	if (host->dma_rx) {
 | |
| 		dma_release_channel(host->dma_rx);
 | |
| 		host->dma_rx = NULL;
 | |
| 	}
 | |
| 	if (host->dma_tx) {
 | |
| 		dma_release_channel(host->dma_tx);
 | |
| 		host->dma_tx = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This function is called by the DMA driver from tasklet context */
 | |
| static void dma_callback(void *data)
 | |
| {
 | |
| 	struct spi_controller	*host = data;
 | |
| 	struct atmel_spi	*as = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 | |
| 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 | |
| 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 | |
| 		       as->current_transfer->len);
 | |
| 	}
 | |
| 	complete(&as->xfer_completion);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Next transfer using PIO without FIFO.
 | |
|  */
 | |
| static void atmel_spi_next_xfer_single(struct spi_controller *host,
 | |
| 				       struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct atmel_spi	*as = spi_controller_get_devdata(host);
 | |
| 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 | |
| 
 | |
| 	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
 | |
| 
 | |
| 	/* Make sure data is not remaining in RDR */
 | |
| 	spi_readl(as, RDR);
 | |
| 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 | |
| 		spi_readl(as, RDR);
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| 
 | |
| 	if (xfer->bits_per_word > 8)
 | |
| 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 | |
| 	else
 | |
| 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 | |
| 
 | |
| 	dev_dbg(host->dev.parent,
 | |
| 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 | |
| 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 | |
| 		xfer->bits_per_word);
 | |
| 
 | |
| 	/* Enable relevant interrupts */
 | |
| 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Next transfer using PIO with FIFO.
 | |
|  */
 | |
| static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
 | |
| 				     struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct atmel_spi *as = spi_controller_get_devdata(host);
 | |
| 	u32 current_remaining_data, num_data;
 | |
| 	u32 offset = xfer->len - as->current_remaining_bytes;
 | |
| 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 | |
| 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 | |
| 	u16 td0, td1;
 | |
| 	u32 fifomr;
 | |
| 
 | |
| 	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
 | |
| 
 | |
| 	/* Compute the number of data to transfer in the current iteration */
 | |
| 	current_remaining_data = ((xfer->bits_per_word > 8) ?
 | |
| 				  ((u32)as->current_remaining_bytes >> 1) :
 | |
| 				  (u32)as->current_remaining_bytes);
 | |
| 	num_data = min(current_remaining_data, as->fifo_size);
 | |
| 
 | |
| 	/* Flush RX and TX FIFOs */
 | |
| 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 | |
| 	while (spi_readl(as, FLR))
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	/* Set RX FIFO Threshold to the number of data to transfer */
 | |
| 	fifomr = spi_readl(as, FMR);
 | |
| 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 | |
| 
 | |
| 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 | |
| 	(void)spi_readl(as, SR);
 | |
| 
 | |
| 	/* Fill TX FIFO */
 | |
| 	while (num_data >= 2) {
 | |
| 		if (xfer->bits_per_word > 8) {
 | |
| 			td0 = *words++;
 | |
| 			td1 = *words++;
 | |
| 		} else {
 | |
| 			td0 = *bytes++;
 | |
| 			td1 = *bytes++;
 | |
| 		}
 | |
| 
 | |
| 		spi_writel(as, TDR, (td1 << 16) | td0);
 | |
| 		num_data -= 2;
 | |
| 	}
 | |
| 
 | |
| 	if (num_data) {
 | |
| 		if (xfer->bits_per_word > 8)
 | |
| 			td0 = *words++;
 | |
| 		else
 | |
| 			td0 = *bytes++;
 | |
| 
 | |
| 		spi_writew(as, TDR, td0);
 | |
| 		num_data--;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(host->dev.parent,
 | |
| 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 | |
| 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 | |
| 		xfer->bits_per_word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 | |
| 	 * transfer completion.
 | |
| 	 */
 | |
| 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Next transfer using PIO.
 | |
|  */
 | |
| static void atmel_spi_next_xfer_pio(struct spi_controller *host,
 | |
| 				    struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct atmel_spi *as = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	if (as->fifo_size)
 | |
| 		atmel_spi_next_xfer_fifo(host, xfer);
 | |
| 	else
 | |
| 		atmel_spi_next_xfer_single(host, xfer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit next transfer for DMA.
 | |
|  */
 | |
| static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
 | |
| 				struct spi_transfer *xfer,
 | |
| 				u32 *plen)
 | |
| {
 | |
| 	struct atmel_spi	*as = spi_controller_get_devdata(host);
 | |
| 	struct dma_chan		*rxchan = host->dma_rx;
 | |
| 	struct dma_chan		*txchan = host->dma_tx;
 | |
| 	struct dma_async_tx_descriptor *rxdesc;
 | |
| 	struct dma_async_tx_descriptor *txdesc;
 | |
| 	dma_cookie_t		cookie;
 | |
| 
 | |
| 	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 | |
| 
 | |
| 	/* Check that the channels are available */
 | |
| 	if (!rxchan || !txchan)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 
 | |
| 	*plen = xfer->len;
 | |
| 
 | |
| 	if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
 | |
| 		goto err_exit;
 | |
| 
 | |
| 	/* Send both scatterlists */
 | |
| 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 | |
| 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 | |
| 		rxdesc = dmaengine_prep_slave_single(rxchan,
 | |
| 						     as->dma_addr_rx_bbuf,
 | |
| 						     xfer->len,
 | |
| 						     DMA_DEV_TO_MEM,
 | |
| 						     DMA_PREP_INTERRUPT |
 | |
| 						     DMA_CTRL_ACK);
 | |
| 	} else {
 | |
| 		rxdesc = dmaengine_prep_slave_sg(rxchan,
 | |
| 						 xfer->rx_sg.sgl,
 | |
| 						 xfer->rx_sg.nents,
 | |
| 						 DMA_DEV_TO_MEM,
 | |
| 						 DMA_PREP_INTERRUPT |
 | |
| 						 DMA_CTRL_ACK);
 | |
| 	}
 | |
| 	if (!rxdesc)
 | |
| 		goto err_dma;
 | |
| 
 | |
| 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 | |
| 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 | |
| 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 | |
| 		txdesc = dmaengine_prep_slave_single(txchan,
 | |
| 						     as->dma_addr_tx_bbuf,
 | |
| 						     xfer->len, DMA_MEM_TO_DEV,
 | |
| 						     DMA_PREP_INTERRUPT |
 | |
| 						     DMA_CTRL_ACK);
 | |
| 	} else {
 | |
| 		txdesc = dmaengine_prep_slave_sg(txchan,
 | |
| 						 xfer->tx_sg.sgl,
 | |
| 						 xfer->tx_sg.nents,
 | |
| 						 DMA_MEM_TO_DEV,
 | |
| 						 DMA_PREP_INTERRUPT |
 | |
| 						 DMA_CTRL_ACK);
 | |
| 	}
 | |
| 	if (!txdesc)
 | |
| 		goto err_dma;
 | |
| 
 | |
| 	dev_dbg(host->dev.parent,
 | |
| 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 | |
| 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 | |
| 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 | |
| 
 | |
| 	/* Enable relevant interrupts */
 | |
| 	spi_writel(as, IER, SPI_BIT(OVRES));
 | |
| 
 | |
| 	/* Put the callback on the RX transfer only, that should finish last */
 | |
| 	rxdesc->callback = dma_callback;
 | |
| 	rxdesc->callback_param = host;
 | |
| 
 | |
| 	/* Submit and fire RX and TX with TX last so we're ready to read! */
 | |
| 	cookie = rxdesc->tx_submit(rxdesc);
 | |
| 	if (dma_submit_error(cookie))
 | |
| 		goto err_dma;
 | |
| 	cookie = txdesc->tx_submit(txdesc);
 | |
| 	if (dma_submit_error(cookie))
 | |
| 		goto err_dma;
 | |
| 	rxchan->device->device_issue_pending(rxchan);
 | |
| 	txchan->device->device_issue_pending(txchan);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_dma:
 | |
| 	spi_writel(as, IDR, SPI_BIT(OVRES));
 | |
| 	atmel_spi_stop_dma(host);
 | |
| err_exit:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_next_xfer_data(struct spi_controller *host,
 | |
| 				struct spi_transfer *xfer,
 | |
| 				dma_addr_t *tx_dma,
 | |
| 				dma_addr_t *rx_dma,
 | |
| 				u32 *plen)
 | |
| {
 | |
| 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 | |
| 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 | |
| 	if (*plen > host->max_dma_len)
 | |
| 		*plen = host->max_dma_len;
 | |
| }
 | |
| 
 | |
| static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 | |
| 				    struct spi_device *spi,
 | |
| 				    struct spi_transfer *xfer)
 | |
| {
 | |
| 	u32			scbr, csr;
 | |
| 	unsigned long		bus_hz;
 | |
| 	int chip_select;
 | |
| 
 | |
| 	if (spi_get_csgpiod(spi, 0))
 | |
| 		chip_select = as->native_cs_for_gpio;
 | |
| 	else
 | |
| 		chip_select = spi_get_chipselect(spi, 0);
 | |
| 
 | |
| 	/* v1 chips start out at half the peripheral bus speed. */
 | |
| 	bus_hz = as->spi_clk;
 | |
| 	if (!atmel_spi_is_v2(as))
 | |
| 		bus_hz /= 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the lowest divider that satisfies the
 | |
| 	 * constraint, assuming div32/fdiv/mbz == 0.
 | |
| 	 */
 | |
| 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the resulting divider doesn't fit into the
 | |
| 	 * register bitfield, we can't satisfy the constraint.
 | |
| 	 */
 | |
| 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 | |
| 		dev_err(&spi->dev,
 | |
| 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 | |
| 			xfer->speed_hz, scbr, bus_hz/255);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (scbr == 0) {
 | |
| 		dev_err(&spi->dev,
 | |
| 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 | |
| 			xfer->speed_hz, scbr, bus_hz);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	csr = spi_readl(as, CSR0 + 4 * chip_select);
 | |
| 	csr = SPI_BFINS(SCBR, scbr, csr);
 | |
| 	spi_writel(as, CSR0 + 4 * chip_select, csr);
 | |
| 	xfer->effective_speed_hz = bus_hz / scbr;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit next transfer for PDC.
 | |
|  * lock is held, spi irq is blocked
 | |
|  */
 | |
| static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
 | |
| 					struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct atmel_spi	*as = spi_controller_get_devdata(host);
 | |
| 	u32			len;
 | |
| 	dma_addr_t		tx_dma, rx_dma;
 | |
| 
 | |
| 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 | |
| 
 | |
| 	len = as->current_remaining_bytes;
 | |
| 	atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
 | |
| 	as->current_remaining_bytes -= len;
 | |
| 
 | |
| 	spi_writel(as, RPR, rx_dma);
 | |
| 	spi_writel(as, TPR, tx_dma);
 | |
| 
 | |
| 	if (xfer->bits_per_word > 8)
 | |
| 		len >>= 1;
 | |
| 	spi_writel(as, RCR, len);
 | |
| 	spi_writel(as, TCR, len);
 | |
| 
 | |
| 	dev_dbg(&host->dev,
 | |
| 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 | |
| 		xfer, xfer->len, xfer->tx_buf,
 | |
| 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 | |
| 		(unsigned long long)xfer->rx_dma);
 | |
| 
 | |
| 	if (as->current_remaining_bytes) {
 | |
| 		len = as->current_remaining_bytes;
 | |
| 		atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
 | |
| 		as->current_remaining_bytes -= len;
 | |
| 
 | |
| 		spi_writel(as, RNPR, rx_dma);
 | |
| 		spi_writel(as, TNPR, tx_dma);
 | |
| 
 | |
| 		if (xfer->bits_per_word > 8)
 | |
| 			len >>= 1;
 | |
| 		spi_writel(as, RNCR, len);
 | |
| 		spi_writel(as, TNCR, len);
 | |
| 
 | |
| 		dev_dbg(&host->dev,
 | |
| 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 | |
| 			xfer, xfer->len, xfer->tx_buf,
 | |
| 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 | |
| 			(unsigned long long)xfer->rx_dma);
 | |
| 	}
 | |
| 
 | |
| 	/* REVISIT: We're waiting for RXBUFF before we start the next
 | |
| 	 * transfer because we need to handle some difficult timing
 | |
| 	 * issues otherwise. If we wait for TXBUFE in one transfer and
 | |
| 	 * then starts waiting for RXBUFF in the next, it's difficult
 | |
| 	 * to tell the difference between the RXBUFF interrupt we're
 | |
| 	 * actually waiting for and the RXBUFF interrupt of the
 | |
| 	 * previous transfer.
 | |
| 	 *
 | |
| 	 * It should be doable, though. Just not now...
 | |
| 	 */
 | |
| 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 | |
| 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 | |
|  *  - The buffer is either valid for CPU access, else NULL
 | |
|  *  - If the buffer is valid, so is its DMA address
 | |
|  */
 | |
| static int
 | |
| atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct device	*dev = &as->pdev->dev;
 | |
| 
 | |
| 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 | |
| 	if (xfer->tx_buf) {
 | |
| 		/* tx_buf is a const void* where we need a void * for the dma
 | |
| 		 * mapping */
 | |
| 		void *nonconst_tx = (void *)xfer->tx_buf;
 | |
| 
 | |
| 		xfer->tx_dma = dma_map_single(dev,
 | |
| 				nonconst_tx, xfer->len,
 | |
| 				DMA_TO_DEVICE);
 | |
| 		if (dma_mapping_error(dev, xfer->tx_dma))
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	if (xfer->rx_buf) {
 | |
| 		xfer->rx_dma = dma_map_single(dev,
 | |
| 				xfer->rx_buf, xfer->len,
 | |
| 				DMA_FROM_DEVICE);
 | |
| 		if (dma_mapping_error(dev, xfer->rx_dma)) {
 | |
| 			if (xfer->tx_buf)
 | |
| 				dma_unmap_single(dev,
 | |
| 						xfer->tx_dma, xfer->len,
 | |
| 						DMA_TO_DEVICE);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
 | |
| 				     struct spi_transfer *xfer)
 | |
| {
 | |
| 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 | |
| 		dma_unmap_single(host->dev.parent, xfer->tx_dma,
 | |
| 				 xfer->len, DMA_TO_DEVICE);
 | |
| 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 | |
| 		dma_unmap_single(host->dev.parent, xfer->rx_dma,
 | |
| 				 xfer->len, DMA_FROM_DEVICE);
 | |
| }
 | |
| 
 | |
| static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 | |
| {
 | |
| 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 | |
| }
 | |
| 
 | |
| static void
 | |
| atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 | |
| {
 | |
| 	u8		*rxp;
 | |
| 	u16		*rxp16;
 | |
| 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 | |
| 
 | |
| 	if (xfer->bits_per_word > 8) {
 | |
| 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 | |
| 		*rxp16 = spi_readl(as, RDR);
 | |
| 	} else {
 | |
| 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 | |
| 		*rxp = spi_readl(as, RDR);
 | |
| 	}
 | |
| 	if (xfer->bits_per_word > 8) {
 | |
| 		if (as->current_remaining_bytes > 2)
 | |
| 			as->current_remaining_bytes -= 2;
 | |
| 		else
 | |
| 			as->current_remaining_bytes = 0;
 | |
| 	} else {
 | |
| 		as->current_remaining_bytes--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
 | |
| {
 | |
| 	u32 fifolr = spi_readl(as, FLR);
 | |
| 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
 | |
| 	u32 offset = xfer->len - as->current_remaining_bytes;
 | |
| 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
 | |
| 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
 | |
| 	u16 rd; /* RD field is the lowest 16 bits of RDR */
 | |
| 
 | |
| 	/* Update the number of remaining bytes to transfer */
 | |
| 	num_bytes = ((xfer->bits_per_word > 8) ?
 | |
| 		     (num_data << 1) :
 | |
| 		     num_data);
 | |
| 
 | |
| 	if (as->current_remaining_bytes > num_bytes)
 | |
| 		as->current_remaining_bytes -= num_bytes;
 | |
| 	else
 | |
| 		as->current_remaining_bytes = 0;
 | |
| 
 | |
| 	/* Handle odd number of bytes when data are more than 8bit width */
 | |
| 	if (xfer->bits_per_word > 8)
 | |
| 		as->current_remaining_bytes &= ~0x1;
 | |
| 
 | |
| 	/* Read data */
 | |
| 	while (num_data) {
 | |
| 		rd = spi_readl(as, RDR);
 | |
| 		if (xfer->bits_per_word > 8)
 | |
| 			*words++ = rd;
 | |
| 		else
 | |
| 			*bytes++ = rd;
 | |
| 		num_data--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Called from IRQ
 | |
|  *
 | |
|  * Must update "current_remaining_bytes" to keep track of data
 | |
|  * to transfer.
 | |
|  */
 | |
| static void
 | |
| atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
 | |
| {
 | |
| 	if (as->fifo_size)
 | |
| 		atmel_spi_pump_fifo_data(as, xfer);
 | |
| 	else
 | |
| 		atmel_spi_pump_single_data(as, xfer);
 | |
| }
 | |
| 
 | |
| /* Interrupt
 | |
|  *
 | |
|  */
 | |
| static irqreturn_t
 | |
| atmel_spi_pio_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct spi_controller	*host = dev_id;
 | |
| 	struct atmel_spi	*as = spi_controller_get_devdata(host);
 | |
| 	u32			status, pending, imr;
 | |
| 	struct spi_transfer	*xfer;
 | |
| 	int			ret = IRQ_NONE;
 | |
| 
 | |
| 	imr = spi_readl(as, IMR);
 | |
| 	status = spi_readl(as, SR);
 | |
| 	pending = status & imr;
 | |
| 
 | |
| 	if (pending & SPI_BIT(OVRES)) {
 | |
| 		ret = IRQ_HANDLED;
 | |
| 		spi_writel(as, IDR, SPI_BIT(OVRES));
 | |
| 		dev_warn(host->dev.parent, "overrun\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * When we get an overrun, we disregard the current
 | |
| 		 * transfer. Data will not be copied back from any
 | |
| 		 * bounce buffer and msg->actual_len will not be
 | |
| 		 * updated with the last xfer.
 | |
| 		 *
 | |
| 		 * We will also not process any remaning transfers in
 | |
| 		 * the message.
 | |
| 		 */
 | |
| 		as->done_status = -EIO;
 | |
| 		smp_wmb();
 | |
| 
 | |
| 		/* Clear any overrun happening while cleaning up */
 | |
| 		spi_readl(as, SR);
 | |
| 
 | |
| 		complete(&as->xfer_completion);
 | |
| 
 | |
| 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
 | |
| 		atmel_spi_lock(as);
 | |
| 
 | |
| 		if (as->current_remaining_bytes) {
 | |
| 			ret = IRQ_HANDLED;
 | |
| 			xfer = as->current_transfer;
 | |
| 			atmel_spi_pump_pio_data(as, xfer);
 | |
| 			if (!as->current_remaining_bytes)
 | |
| 				spi_writel(as, IDR, pending);
 | |
| 
 | |
| 			complete(&as->xfer_completion);
 | |
| 		}
 | |
| 
 | |
| 		atmel_spi_unlock(as);
 | |
| 	} else {
 | |
| 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
 | |
| 		ret = IRQ_HANDLED;
 | |
| 		spi_writel(as, IDR, pending);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static irqreturn_t
 | |
| atmel_spi_pdc_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct spi_controller	*host = dev_id;
 | |
| 	struct atmel_spi	*as = spi_controller_get_devdata(host);
 | |
| 	u32			status, pending, imr;
 | |
| 	int			ret = IRQ_NONE;
 | |
| 
 | |
| 	imr = spi_readl(as, IMR);
 | |
| 	status = spi_readl(as, SR);
 | |
| 	pending = status & imr;
 | |
| 
 | |
| 	if (pending & SPI_BIT(OVRES)) {
 | |
| 
 | |
| 		ret = IRQ_HANDLED;
 | |
| 
 | |
| 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
 | |
| 				     | SPI_BIT(OVRES)));
 | |
| 
 | |
| 		/* Clear any overrun happening while cleaning up */
 | |
| 		spi_readl(as, SR);
 | |
| 
 | |
| 		as->done_status = -EIO;
 | |
| 
 | |
| 		complete(&as->xfer_completion);
 | |
| 
 | |
| 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
 | |
| 		ret = IRQ_HANDLED;
 | |
| 
 | |
| 		spi_writel(as, IDR, pending);
 | |
| 
 | |
| 		complete(&as->xfer_completion);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
 | |
| {
 | |
| 	struct spi_delay *delay = &spi->word_delay;
 | |
| 	u32 value = delay->value;
 | |
| 
 | |
| 	switch (delay->unit) {
 | |
| 	case SPI_DELAY_UNIT_NSECS:
 | |
| 		value /= 1000;
 | |
| 		break;
 | |
| 	case SPI_DELAY_UNIT_USECS:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return (as->spi_clk / 1000000 * value) >> 5;
 | |
| }
 | |
| 
 | |
| static void initialize_native_cs_for_gpio(struct atmel_spi *as)
 | |
| {
 | |
| 	int i;
 | |
| 	struct spi_controller *host = platform_get_drvdata(as->pdev);
 | |
| 
 | |
| 	if (!as->native_cs_free)
 | |
| 		return; /* already initialized */
 | |
| 
 | |
| 	if (!host->cs_gpiods)
 | |
| 		return; /* No CS GPIO */
 | |
| 
 | |
| 	/*
 | |
| 	 * On the first version of the controller (AT91RM9200), CS0
 | |
| 	 * can't be used associated with GPIO
 | |
| 	 */
 | |
| 	if (atmel_spi_is_v2(as))
 | |
| 		i = 0;
 | |
| 	else
 | |
| 		i = 1;
 | |
| 
 | |
| 	for (; i < 4; i++)
 | |
| 		if (host->cs_gpiods[i])
 | |
| 			as->native_cs_free |= BIT(i);
 | |
| 
 | |
| 	if (as->native_cs_free)
 | |
| 		as->native_cs_for_gpio = ffs(as->native_cs_free);
 | |
| }
 | |
| 
 | |
| static int atmel_spi_setup(struct spi_device *spi)
 | |
| {
 | |
| 	struct atmel_spi	*as;
 | |
| 	struct atmel_spi_device	*asd;
 | |
| 	u32			csr;
 | |
| 	unsigned int		bits = spi->bits_per_word;
 | |
| 	int chip_select;
 | |
| 	int			word_delay_csr;
 | |
| 
 | |
| 	as = spi_controller_get_devdata(spi->controller);
 | |
| 
 | |
| 	/* see notes above re chipselect */
 | |
| 	if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
 | |
| 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup() is called during spi_register_controller(aka
 | |
| 	 * spi_register_master) but after all membmers of the cs_gpiod
 | |
| 	 * array have been filled, so we can looked for which native
 | |
| 	 * CS will be free for using with GPIO
 | |
| 	 */
 | |
| 	initialize_native_cs_for_gpio(as);
 | |
| 
 | |
| 	if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
 | |
| 		dev_err(&spi->dev,
 | |
| 			"No native CS available to support this GPIO CS\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (spi_get_csgpiod(spi, 0))
 | |
| 		chip_select = as->native_cs_for_gpio;
 | |
| 	else
 | |
| 		chip_select = spi_get_chipselect(spi, 0);
 | |
| 
 | |
| 	csr = SPI_BF(BITS, bits - 8);
 | |
| 	if (spi->mode & SPI_CPOL)
 | |
| 		csr |= SPI_BIT(CPOL);
 | |
| 	if (!(spi->mode & SPI_CPHA))
 | |
| 		csr |= SPI_BIT(NCPHA);
 | |
| 
 | |
| 	if (!spi_get_csgpiod(spi, 0))
 | |
| 		csr |= SPI_BIT(CSAAT);
 | |
| 	csr |= SPI_BF(DLYBS, 0);
 | |
| 
 | |
| 	word_delay_csr = atmel_word_delay_csr(spi, as);
 | |
| 	if (word_delay_csr < 0)
 | |
| 		return word_delay_csr;
 | |
| 
 | |
| 	/* DLYBCT adds delays between words.  This is useful for slow devices
 | |
| 	 * that need a bit of time to setup the next transfer.
 | |
| 	 */
 | |
| 	csr |= SPI_BF(DLYBCT, word_delay_csr);
 | |
| 
 | |
| 	asd = spi->controller_state;
 | |
| 	if (!asd) {
 | |
| 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
 | |
| 		if (!asd)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		spi->controller_state = asd;
 | |
| 	}
 | |
| 
 | |
| 	asd->csr = csr;
 | |
| 
 | |
| 	dev_dbg(&spi->dev,
 | |
| 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
 | |
| 		bits, spi->mode, spi_get_chipselect(spi, 0), csr);
 | |
| 
 | |
| 	if (!atmel_spi_is_v2(as))
 | |
| 		spi_writel(as, CSR0 + 4 * chip_select, csr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
 | |
| {
 | |
| 	struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
 | |
| 	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
 | |
| 	 * since we already have routines for activate/deactivate translate
 | |
| 	 * high/low to active/inactive
 | |
| 	 */
 | |
| 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
 | |
| 
 | |
| 	if (enable) {
 | |
| 		cs_activate(as, spi);
 | |
| 	} else {
 | |
| 		cs_deactivate(as, spi);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static int atmel_spi_one_transfer(struct spi_controller *host,
 | |
| 					struct spi_device *spi,
 | |
| 					struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct atmel_spi	*as;
 | |
| 	u8			bits;
 | |
| 	u32			len;
 | |
| 	struct atmel_spi_device	*asd;
 | |
| 	int			timeout;
 | |
| 	int			ret;
 | |
| 	unsigned int		dma_timeout;
 | |
| 	long			ret_timeout;
 | |
| 
 | |
| 	as = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	asd = spi->controller_state;
 | |
| 	bits = (asd->csr >> 4) & 0xf;
 | |
| 	if (bits != xfer->bits_per_word - 8) {
 | |
| 		dev_dbg(&spi->dev,
 | |
| 			"you can't yet change bits_per_word in transfers\n");
 | |
| 		return -ENOPROTOOPT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * DMA map early, for performance (empties dcache ASAP) and
 | |
| 	 * better fault reporting.
 | |
| 	 */
 | |
| 	if (as->use_pdc) {
 | |
| 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	atmel_spi_set_xfer_speed(as, spi, xfer);
 | |
| 
 | |
| 	as->done_status = 0;
 | |
| 	as->current_transfer = xfer;
 | |
| 	as->current_remaining_bytes = xfer->len;
 | |
| 	while (as->current_remaining_bytes) {
 | |
| 		reinit_completion(&as->xfer_completion);
 | |
| 
 | |
| 		if (as->use_pdc) {
 | |
| 			atmel_spi_lock(as);
 | |
| 			atmel_spi_pdc_next_xfer(host, xfer);
 | |
| 			atmel_spi_unlock(as);
 | |
| 		} else if (atmel_spi_use_dma(as, xfer)) {
 | |
| 			len = as->current_remaining_bytes;
 | |
| 			ret = atmel_spi_next_xfer_dma_submit(host,
 | |
| 								xfer, &len);
 | |
| 			if (ret) {
 | |
| 				dev_err(&spi->dev,
 | |
| 					"unable to use DMA, fallback to PIO\n");
 | |
| 				as->done_status = ret;
 | |
| 				break;
 | |
| 			} else {
 | |
| 				as->current_remaining_bytes -= len;
 | |
| 				if (as->current_remaining_bytes < 0)
 | |
| 					as->current_remaining_bytes = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			atmel_spi_lock(as);
 | |
| 			atmel_spi_next_xfer_pio(host, xfer);
 | |
| 			atmel_spi_unlock(as);
 | |
| 		}
 | |
| 
 | |
| 		dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
 | |
| 		ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
 | |
| 		if (!ret_timeout) {
 | |
| 			dev_err(&spi->dev, "spi transfer timeout\n");
 | |
| 			as->done_status = -EIO;
 | |
| 		}
 | |
| 
 | |
| 		if (as->done_status)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (as->done_status) {
 | |
| 		if (as->use_pdc) {
 | |
| 			dev_warn(host->dev.parent,
 | |
| 				"overrun (%u/%u remaining)\n",
 | |
| 				spi_readl(as, TCR), spi_readl(as, RCR));
 | |
| 
 | |
| 			/*
 | |
| 			 * Clean up DMA registers and make sure the data
 | |
| 			 * registers are empty.
 | |
| 			 */
 | |
| 			spi_writel(as, RNCR, 0);
 | |
| 			spi_writel(as, TNCR, 0);
 | |
| 			spi_writel(as, RCR, 0);
 | |
| 			spi_writel(as, TCR, 0);
 | |
| 			for (timeout = 1000; timeout; timeout--)
 | |
| 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
 | |
| 					break;
 | |
| 			if (!timeout)
 | |
| 				dev_warn(host->dev.parent,
 | |
| 					 "timeout waiting for TXEMPTY");
 | |
| 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
 | |
| 				spi_readl(as, RDR);
 | |
| 
 | |
| 			/* Clear any overrun happening while cleaning up */
 | |
| 			spi_readl(as, SR);
 | |
| 
 | |
| 		} else if (atmel_spi_use_dma(as, xfer)) {
 | |
| 			atmel_spi_stop_dma(host);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (as->use_pdc)
 | |
| 		atmel_spi_dma_unmap_xfer(host, xfer);
 | |
| 
 | |
| 	if (as->use_pdc)
 | |
| 		atmel_spi_disable_pdc_transfer(as);
 | |
| 
 | |
| 	return as->done_status;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_cleanup(struct spi_device *spi)
 | |
| {
 | |
| 	struct atmel_spi_device	*asd = spi->controller_state;
 | |
| 
 | |
| 	if (!asd)
 | |
| 		return;
 | |
| 
 | |
| 	spi->controller_state = NULL;
 | |
| 	kfree(asd);
 | |
| }
 | |
| 
 | |
| static inline unsigned int atmel_get_version(struct atmel_spi *as)
 | |
| {
 | |
| 	return spi_readl(as, VERSION) & 0x00000fff;
 | |
| }
 | |
| 
 | |
| static void atmel_get_caps(struct atmel_spi *as)
 | |
| {
 | |
| 	unsigned int version;
 | |
| 
 | |
| 	version = atmel_get_version(as);
 | |
| 
 | |
| 	as->caps.is_spi2 = version > 0x121;
 | |
| 	as->caps.has_wdrbt = version >= 0x210;
 | |
| 	as->caps.has_dma_support = version >= 0x212;
 | |
| 	as->caps.has_pdc_support = version < 0x212;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_init(struct atmel_spi *as)
 | |
| {
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST));
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 | |
| 
 | |
| 	/* It is recommended to enable FIFOs first thing after reset */
 | |
| 	if (as->fifo_size)
 | |
| 		spi_writel(as, CR, SPI_BIT(FIFOEN));
 | |
| 
 | |
| 	if (as->caps.has_wdrbt) {
 | |
| 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
 | |
| 				| SPI_BIT(MSTR));
 | |
| 	} else {
 | |
| 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 | |
| 	}
 | |
| 
 | |
| 	if (as->use_pdc)
 | |
| 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 | |
| 	spi_writel(as, CR, SPI_BIT(SPIEN));
 | |
| }
 | |
| 
 | |
| static int atmel_spi_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct resource		*regs;
 | |
| 	int			irq;
 | |
| 	struct clk		*clk;
 | |
| 	int			ret;
 | |
| 	struct spi_controller	*host;
 | |
| 	struct atmel_spi	*as;
 | |
| 
 | |
| 	/* Select default pin state */
 | |
| 	pinctrl_pm_select_default_state(&pdev->dev);
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return irq;
 | |
| 
 | |
| 	clk = devm_clk_get(&pdev->dev, "spi_clk");
 | |
| 	if (IS_ERR(clk))
 | |
| 		return PTR_ERR(clk);
 | |
| 
 | |
| 	/* setup spi core then atmel-specific driver state */
 | |
| 	host = spi_alloc_host(&pdev->dev, sizeof(*as));
 | |
| 	if (!host)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* the spi->mode bits understood by this driver: */
 | |
| 	host->use_gpio_descriptors = true;
 | |
| 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 | |
| 	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
 | |
| 	host->dev.of_node = pdev->dev.of_node;
 | |
| 	host->bus_num = pdev->id;
 | |
| 	host->num_chipselect = 4;
 | |
| 	host->setup = atmel_spi_setup;
 | |
| 	host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
 | |
| 			SPI_CONTROLLER_GPIO_SS);
 | |
| 	host->transfer_one = atmel_spi_one_transfer;
 | |
| 	host->set_cs = atmel_spi_set_cs;
 | |
| 	host->cleanup = atmel_spi_cleanup;
 | |
| 	host->auto_runtime_pm = true;
 | |
| 	host->max_dma_len = SPI_MAX_DMA_XFER;
 | |
| 	host->can_dma = atmel_spi_can_dma;
 | |
| 	platform_set_drvdata(pdev, host);
 | |
| 
 | |
| 	as = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	spin_lock_init(&as->lock);
 | |
| 
 | |
| 	as->pdev = pdev;
 | |
| 	as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
 | |
| 	if (IS_ERR(as->regs)) {
 | |
| 		ret = PTR_ERR(as->regs);
 | |
| 		goto out_unmap_regs;
 | |
| 	}
 | |
| 	as->phybase = regs->start;
 | |
| 	as->irq = irq;
 | |
| 	as->clk = clk;
 | |
| 
 | |
| 	init_completion(&as->xfer_completion);
 | |
| 
 | |
| 	atmel_get_caps(as);
 | |
| 
 | |
| 	as->use_dma = false;
 | |
| 	as->use_pdc = false;
 | |
| 	if (as->caps.has_dma_support) {
 | |
| 		ret = atmel_spi_configure_dma(host, as);
 | |
| 		if (ret == 0) {
 | |
| 			as->use_dma = true;
 | |
| 		} else if (ret == -EPROBE_DEFER) {
 | |
| 			goto out_unmap_regs;
 | |
| 		}
 | |
| 	} else if (as->caps.has_pdc_support) {
 | |
| 		as->use_pdc = true;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 | |
| 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
 | |
| 						      SPI_MAX_DMA_XFER,
 | |
| 						      &as->dma_addr_rx_bbuf,
 | |
| 						      GFP_KERNEL | GFP_DMA);
 | |
| 		if (!as->addr_rx_bbuf) {
 | |
| 			as->use_dma = false;
 | |
| 		} else {
 | |
| 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
 | |
| 					SPI_MAX_DMA_XFER,
 | |
| 					&as->dma_addr_tx_bbuf,
 | |
| 					GFP_KERNEL | GFP_DMA);
 | |
| 			if (!as->addr_tx_bbuf) {
 | |
| 				as->use_dma = false;
 | |
| 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
 | |
| 						  as->addr_rx_bbuf,
 | |
| 						  as->dma_addr_rx_bbuf);
 | |
| 			}
 | |
| 		}
 | |
| 		if (!as->use_dma)
 | |
| 			dev_info(host->dev.parent,
 | |
| 				 "  can not allocate dma coherent memory\n");
 | |
| 	}
 | |
| 
 | |
| 	if (as->caps.has_dma_support && !as->use_dma)
 | |
| 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
 | |
| 
 | |
| 	if (as->use_pdc) {
 | |
| 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
 | |
| 					0, dev_name(&pdev->dev), host);
 | |
| 	} else {
 | |
| 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
 | |
| 					0, dev_name(&pdev->dev), host);
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		goto out_unmap_regs;
 | |
| 
 | |
| 	/* Initialize the hardware */
 | |
| 	ret = clk_prepare_enable(clk);
 | |
| 	if (ret)
 | |
| 		goto out_free_irq;
 | |
| 
 | |
| 	as->spi_clk = clk_get_rate(clk);
 | |
| 
 | |
| 	as->fifo_size = 0;
 | |
| 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
 | |
| 				  &as->fifo_size)) {
 | |
| 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
 | |
| 	}
 | |
| 
 | |
| 	atmel_spi_init(as);
 | |
| 
 | |
| 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
 | |
| 	pm_runtime_use_autosuspend(&pdev->dev);
 | |
| 	pm_runtime_set_active(&pdev->dev);
 | |
| 	pm_runtime_enable(&pdev->dev);
 | |
| 
 | |
| 	ret = devm_spi_register_controller(&pdev->dev, host);
 | |
| 	if (ret)
 | |
| 		goto out_free_dma;
 | |
| 
 | |
| 	/* go! */
 | |
| 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
 | |
| 			atmel_get_version(as), (unsigned long)regs->start,
 | |
| 			irq);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_dma:
 | |
| 	pm_runtime_disable(&pdev->dev);
 | |
| 	pm_runtime_set_suspended(&pdev->dev);
 | |
| 
 | |
| 	if (as->use_dma)
 | |
| 		atmel_spi_release_dma(host);
 | |
| 
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST));
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 | |
| 	clk_disable_unprepare(clk);
 | |
| out_free_irq:
 | |
| out_unmap_regs:
 | |
| 	spi_controller_put(host);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void atmel_spi_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct spi_controller	*host = platform_get_drvdata(pdev);
 | |
| 	struct atmel_spi	*as = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	pm_runtime_get_sync(&pdev->dev);
 | |
| 
 | |
| 	/* reset the hardware and block queue progress */
 | |
| 	if (as->use_dma) {
 | |
| 		atmel_spi_stop_dma(host);
 | |
| 		atmel_spi_release_dma(host);
 | |
| 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 | |
| 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
 | |
| 					  as->addr_tx_bbuf,
 | |
| 					  as->dma_addr_tx_bbuf);
 | |
| 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
 | |
| 					  as->addr_rx_bbuf,
 | |
| 					  as->dma_addr_rx_bbuf);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&as->lock);
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST));
 | |
| 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
 | |
| 	spi_readl(as, SR);
 | |
| 	spin_unlock_irq(&as->lock);
 | |
| 
 | |
| 	clk_disable_unprepare(as->clk);
 | |
| 
 | |
| 	pm_runtime_put_noidle(&pdev->dev);
 | |
| 	pm_runtime_disable(&pdev->dev);
 | |
| }
 | |
| 
 | |
| static int atmel_spi_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct spi_controller *host = dev_get_drvdata(dev);
 | |
| 	struct atmel_spi *as = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	clk_disable_unprepare(as->clk);
 | |
| 	pinctrl_pm_select_sleep_state(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int atmel_spi_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct spi_controller *host = dev_get_drvdata(dev);
 | |
| 	struct atmel_spi *as = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	pinctrl_pm_select_default_state(dev);
 | |
| 
 | |
| 	return clk_prepare_enable(as->clk);
 | |
| }
 | |
| 
 | |
| static int atmel_spi_suspend(struct device *dev)
 | |
| {
 | |
| 	struct spi_controller *host = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Stop the queue running */
 | |
| 	ret = spi_controller_suspend(host);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!pm_runtime_suspended(dev))
 | |
| 		atmel_spi_runtime_suspend(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int atmel_spi_resume(struct device *dev)
 | |
| {
 | |
| 	struct spi_controller *host = dev_get_drvdata(dev);
 | |
| 	struct atmel_spi *as = spi_controller_get_devdata(host);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = clk_prepare_enable(as->clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	atmel_spi_init(as);
 | |
| 
 | |
| 	clk_disable_unprepare(as->clk);
 | |
| 
 | |
| 	if (!pm_runtime_suspended(dev)) {
 | |
| 		ret = atmel_spi_runtime_resume(dev);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Start the queue running */
 | |
| 	return spi_controller_resume(host);
 | |
| }
 | |
| 
 | |
| static const struct dev_pm_ops atmel_spi_pm_ops = {
 | |
| 	SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
 | |
| 	RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
 | |
| 		       atmel_spi_runtime_resume, NULL)
 | |
| };
 | |
| 
 | |
| static const struct of_device_id atmel_spi_dt_ids[] = {
 | |
| 	{ .compatible = "atmel,at91rm9200-spi" },
 | |
| 	{ /* sentinel */ }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
 | |
| 
 | |
| static struct platform_driver atmel_spi_driver = {
 | |
| 	.driver		= {
 | |
| 		.name	= "atmel_spi",
 | |
| 		.pm	= pm_ptr(&atmel_spi_pm_ops),
 | |
| 		.of_match_table	= atmel_spi_dt_ids,
 | |
| 	},
 | |
| 	.probe		= atmel_spi_probe,
 | |
| 	.remove		= atmel_spi_remove,
 | |
| };
 | |
| module_platform_driver(atmel_spi_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
 | |
| MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("platform:atmel_spi");
 |