forked from mirrors/linux
		
	 f2ef39727a
			
		
	
	
		f2ef39727a
		
	
	
	
	
		
			
			The only real core work we've got this time around is the completion of
 the transition to the new host/target naming for the core APIs, Kconfig
 still needs doing but that's a lot less invasive.  Otherwise the big
 changes are the new drivers that have been added:
 
  - Completion of the conversion to spi_alloc_host()/_target() and
    removal of the old naming.
  - Cleanups for Rockchip drivers, these brought in a new logging helper
    in the driver core for warnings during probe.
  - Support for configuration of the word delay via spidev_test.
  - Support for AMD HID2 controllers, Apple SPI controller and Realtek
    SPI-NAND controllers.
 
 The Rockchip cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAmc7QdQACgkQJNaLcl1U
 h9A7KAf+Od8ORLheHKrokFYWEW1zuiR45EjqWylLk835d3TQn/VfLOouRDhOPKLw
 wmxy5PjjvI+CHa9JY4TXY6iRTCc8By6fkwRWFZN5KApSC2NQriWiqgTSItFfYiLv
 yUthZjfRhbfSpf6E/0hq4axpfn+6W/MIWUg7Ag08IEU+GhDd+um8gdpBKsP1BAJF
 s34Fn3oJNoze0Wwcq5tZ91S1MsP+2vGFGIGC2HA7G2GAXjGFqBZUnIL+zjC1US3j
 XILAoy4Vx4J0Nn+f+zdGL2m5cm6O49ztaKqUxamVFigwM4va5OSOEpcnFMEPZ8HY
 013dIg7tiayUTOTcByCpzfMDWuzHig==
 =jc6e
 -----END PGP SIGNATURE-----
Merge tag 'spi-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
Pull spi updates from Mark Brown:
 "The only real core work we've got this time around is the completion
  of the transition to the new host/target naming for the core APIs,
  Kconfig still needs doing but that's a lot less invasive.
  Otherwise the big changes are the new drivers that have been added:
   - Completion of the conversion to spi_alloc_host()/_target() and
     removal of the old naming.
   - Cleanups for Rockchip drivers, these brought in a new logging
     helper in the driver core for warnings during probe.
   - Support for configuration of the word delay via spidev_test.
   - Support for AMD HID2 controllers, Apple SPI controller and Realtek
     SPI-NAND controllers"
* tag 'spi-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (58 commits)
  spi: imx: support word delay
  spi: imx: pass struct spi_transfer to prepare_transfer()
  spi: cs42l43: Add GPIO speaker id support to the bridge configuration
  spi: Delete useless checks
  spi: apple: Remove unnecessary .owner for apple_spi_driver
  spi: spidev_test: add support for word delay
  spi: apple: Add driver for Apple SPI controller
  spi: dt-bindings: apple,spi: Add binding for Apple SPI controllers
  spi: Use of_property_present() for non-boolean properties
  spi: zynqmp-gqspi: Undo runtime PM changes at driver exit time
  spi: spi-mem: rtl-snand: Correctly handle DMA transfers
  spi: tegra210-quad: Avoid shift-out-of-bounds
  spi: axi-spi-engine: Emit trace events for spi transfers
  dt-bindings: spi: sprd,sc9860-spi: convert to YAML
  spi: Replace deprecated PCI functions
  spi: dt-bindings: samsung: Add a compatible for samsung,exynos8895-spi
  spi: spi-mem: Add Realtek SPI-NAND controller
  dt-bindings: spi: Add realtek,rtl9301-snand
  spi: make class structs const
  spi: dt-bindings: brcm,bcm2835-aux-spi: Convert to dtschema
  ...
		
	
			
		
			
				
	
	
		
			1483 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1483 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| //
 | |
| // Copyright 2013 Freescale Semiconductor, Inc.
 | |
| // Copyright 2020 NXP
 | |
| //
 | |
| // Freescale DSPI driver
 | |
| // This file contains a driver for the Freescale DSPI
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pinctrl/consumer.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/spi/spi-fsl-dspi.h>
 | |
| 
 | |
| #define DRIVER_NAME			"fsl-dspi"
 | |
| 
 | |
| #define SPI_MCR				0x00
 | |
| #define SPI_MCR_HOST			BIT(31)
 | |
| #define SPI_MCR_PCSIS(x)		((x) << 16)
 | |
| #define SPI_MCR_CLR_TXF			BIT(11)
 | |
| #define SPI_MCR_CLR_RXF			BIT(10)
 | |
| #define SPI_MCR_XSPI			BIT(3)
 | |
| #define SPI_MCR_DIS_TXF			BIT(13)
 | |
| #define SPI_MCR_DIS_RXF			BIT(12)
 | |
| #define SPI_MCR_HALT			BIT(0)
 | |
| 
 | |
| #define SPI_TCR				0x08
 | |
| #define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
 | |
| 
 | |
| #define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
 | |
| #define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
 | |
| #define SPI_CTAR_CPOL			BIT(26)
 | |
| #define SPI_CTAR_CPHA			BIT(25)
 | |
| #define SPI_CTAR_LSBFE			BIT(24)
 | |
| #define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
 | |
| #define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
 | |
| #define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
 | |
| #define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
 | |
| #define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
 | |
| #define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
 | |
| #define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
 | |
| #define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
 | |
| #define SPI_CTAR_SCALE_BITS		0xf
 | |
| 
 | |
| #define SPI_CTAR0_SLAVE			0x0c
 | |
| 
 | |
| #define SPI_SR				0x2c
 | |
| #define SPI_SR_TCFQF			BIT(31)
 | |
| #define SPI_SR_TFUF			BIT(27)
 | |
| #define SPI_SR_TFFF			BIT(25)
 | |
| #define SPI_SR_CMDTCF			BIT(23)
 | |
| #define SPI_SR_SPEF			BIT(21)
 | |
| #define SPI_SR_RFOF			BIT(19)
 | |
| #define SPI_SR_TFIWF			BIT(18)
 | |
| #define SPI_SR_RFDF			BIT(17)
 | |
| #define SPI_SR_CMDFFF			BIT(16)
 | |
| #define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
 | |
| 					SPI_SR_TFUF | SPI_SR_TFFF | \
 | |
| 					SPI_SR_CMDTCF | SPI_SR_SPEF | \
 | |
| 					SPI_SR_RFOF | SPI_SR_TFIWF | \
 | |
| 					SPI_SR_RFDF | SPI_SR_CMDFFF)
 | |
| 
 | |
| #define SPI_RSER_TFFFE			BIT(25)
 | |
| #define SPI_RSER_TFFFD			BIT(24)
 | |
| #define SPI_RSER_RFDFE			BIT(17)
 | |
| #define SPI_RSER_RFDFD			BIT(16)
 | |
| 
 | |
| #define SPI_RSER			0x30
 | |
| #define SPI_RSER_TCFQE			BIT(31)
 | |
| #define SPI_RSER_CMDTCFE		BIT(23)
 | |
| 
 | |
| #define SPI_PUSHR			0x34
 | |
| #define SPI_PUSHR_CMD_CONT		BIT(15)
 | |
| #define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
 | |
| #define SPI_PUSHR_CMD_EOQ		BIT(11)
 | |
| #define SPI_PUSHR_CMD_CTCNT		BIT(10)
 | |
| #define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
 | |
| 
 | |
| #define SPI_PUSHR_SLAVE			0x34
 | |
| 
 | |
| #define SPI_POPR			0x38
 | |
| 
 | |
| #define SPI_TXFR0			0x3c
 | |
| #define SPI_TXFR1			0x40
 | |
| #define SPI_TXFR2			0x44
 | |
| #define SPI_TXFR3			0x48
 | |
| #define SPI_RXFR0			0x7c
 | |
| #define SPI_RXFR1			0x80
 | |
| #define SPI_RXFR2			0x84
 | |
| #define SPI_RXFR3			0x88
 | |
| 
 | |
| #define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
 | |
| #define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
 | |
| #define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
 | |
| 
 | |
| #define SPI_SREX			0x13c
 | |
| 
 | |
| #define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
 | |
| #define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 | |
| 
 | |
| #define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
 | |
| 
 | |
| struct chip_data {
 | |
| 	u32			ctar_val;
 | |
| };
 | |
| 
 | |
| enum dspi_trans_mode {
 | |
| 	DSPI_XSPI_MODE,
 | |
| 	DSPI_DMA_MODE,
 | |
| };
 | |
| 
 | |
| struct fsl_dspi_devtype_data {
 | |
| 	enum dspi_trans_mode	trans_mode;
 | |
| 	u8			max_clock_factor;
 | |
| 	int			fifo_size;
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	LS1021A,
 | |
| 	LS1012A,
 | |
| 	LS1028A,
 | |
| 	LS1043A,
 | |
| 	LS1046A,
 | |
| 	LS2080A,
 | |
| 	LS2085A,
 | |
| 	LX2160A,
 | |
| 	MCF5441X,
 | |
| 	VF610,
 | |
| };
 | |
| 
 | |
| static const struct fsl_dspi_devtype_data devtype_data[] = {
 | |
| 	[VF610] = {
 | |
| 		.trans_mode		= DSPI_DMA_MODE,
 | |
| 		.max_clock_factor	= 2,
 | |
| 		.fifo_size		= 4,
 | |
| 	},
 | |
| 	[LS1021A] = {
 | |
| 		/* Has A-011218 DMA erratum */
 | |
| 		.trans_mode		= DSPI_XSPI_MODE,
 | |
| 		.max_clock_factor	= 8,
 | |
| 		.fifo_size		= 4,
 | |
| 	},
 | |
| 	[LS1012A] = {
 | |
| 		/* Has A-011218 DMA erratum */
 | |
| 		.trans_mode		= DSPI_XSPI_MODE,
 | |
| 		.max_clock_factor	= 8,
 | |
| 		.fifo_size		= 16,
 | |
| 	},
 | |
| 	[LS1028A] = {
 | |
| 		.trans_mode		= DSPI_XSPI_MODE,
 | |
| 		.max_clock_factor	= 8,
 | |
| 		.fifo_size		= 4,
 | |
| 	},
 | |
| 	[LS1043A] = {
 | |
| 		/* Has A-011218 DMA erratum */
 | |
| 		.trans_mode		= DSPI_XSPI_MODE,
 | |
| 		.max_clock_factor	= 8,
 | |
| 		.fifo_size		= 16,
 | |
| 	},
 | |
| 	[LS1046A] = {
 | |
| 		/* Has A-011218 DMA erratum */
 | |
| 		.trans_mode		= DSPI_XSPI_MODE,
 | |
| 		.max_clock_factor	= 8,
 | |
| 		.fifo_size		= 16,
 | |
| 	},
 | |
| 	[LS2080A] = {
 | |
| 		.trans_mode		= DSPI_XSPI_MODE,
 | |
| 		.max_clock_factor	= 8,
 | |
| 		.fifo_size		= 4,
 | |
| 	},
 | |
| 	[LS2085A] = {
 | |
| 		.trans_mode		= DSPI_XSPI_MODE,
 | |
| 		.max_clock_factor	= 8,
 | |
| 		.fifo_size		= 4,
 | |
| 	},
 | |
| 	[LX2160A] = {
 | |
| 		.trans_mode		= DSPI_XSPI_MODE,
 | |
| 		.max_clock_factor	= 8,
 | |
| 		.fifo_size		= 4,
 | |
| 	},
 | |
| 	[MCF5441X] = {
 | |
| 		.trans_mode		= DSPI_DMA_MODE,
 | |
| 		.max_clock_factor	= 8,
 | |
| 		.fifo_size		= 16,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| struct fsl_dspi_dma {
 | |
| 	u32					*tx_dma_buf;
 | |
| 	struct dma_chan				*chan_tx;
 | |
| 	dma_addr_t				tx_dma_phys;
 | |
| 	struct completion			cmd_tx_complete;
 | |
| 	struct dma_async_tx_descriptor		*tx_desc;
 | |
| 
 | |
| 	u32					*rx_dma_buf;
 | |
| 	struct dma_chan				*chan_rx;
 | |
| 	dma_addr_t				rx_dma_phys;
 | |
| 	struct completion			cmd_rx_complete;
 | |
| 	struct dma_async_tx_descriptor		*rx_desc;
 | |
| };
 | |
| 
 | |
| struct fsl_dspi {
 | |
| 	struct spi_controller			*ctlr;
 | |
| 	struct platform_device			*pdev;
 | |
| 
 | |
| 	struct regmap				*regmap;
 | |
| 	struct regmap				*regmap_pushr;
 | |
| 	int					irq;
 | |
| 	struct clk				*clk;
 | |
| 
 | |
| 	struct spi_transfer			*cur_transfer;
 | |
| 	struct spi_message			*cur_msg;
 | |
| 	struct chip_data			*cur_chip;
 | |
| 	size_t					progress;
 | |
| 	size_t					len;
 | |
| 	const void				*tx;
 | |
| 	void					*rx;
 | |
| 	u16					tx_cmd;
 | |
| 	const struct fsl_dspi_devtype_data	*devtype_data;
 | |
| 
 | |
| 	struct completion			xfer_done;
 | |
| 
 | |
| 	struct fsl_dspi_dma			*dma;
 | |
| 
 | |
| 	int					oper_word_size;
 | |
| 	int					oper_bits_per_word;
 | |
| 
 | |
| 	int					words_in_flight;
 | |
| 
 | |
| 	/*
 | |
| 	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
 | |
| 	 * individually (in XSPI mode)
 | |
| 	 */
 | |
| 	int					pushr_cmd;
 | |
| 	int					pushr_tx;
 | |
| 
 | |
| 	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
 | |
| 	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
 | |
| };
 | |
| 
 | |
| static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 | |
| {
 | |
| 	switch (dspi->oper_word_size) {
 | |
| 	case 1:
 | |
| 		*txdata = *(u8 *)dspi->tx;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		*txdata = *(u16 *)dspi->tx;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		*txdata = *(u32 *)dspi->tx;
 | |
| 		break;
 | |
| 	}
 | |
| 	dspi->tx += dspi->oper_word_size;
 | |
| }
 | |
| 
 | |
| static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 | |
| {
 | |
| 	switch (dspi->oper_word_size) {
 | |
| 	case 1:
 | |
| 		*(u8 *)dspi->rx = rxdata;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		*(u16 *)dspi->rx = rxdata;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		*(u32 *)dspi->rx = rxdata;
 | |
| 		break;
 | |
| 	}
 | |
| 	dspi->rx += dspi->oper_word_size;
 | |
| }
 | |
| 
 | |
| static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 | |
| {
 | |
| 	*txdata = (__force u32)cpu_to_be32(*(u32 *)dspi->tx);
 | |
| 	dspi->tx += sizeof(u32);
 | |
| }
 | |
| 
 | |
| static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 | |
| {
 | |
| 	*(u32 *)dspi->rx = be32_to_cpu((__force __be32)rxdata);
 | |
| 	dspi->rx += sizeof(u32);
 | |
| }
 | |
| 
 | |
| static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 | |
| {
 | |
| 	*txdata = (__force u32)cpu_to_be16(*(u16 *)dspi->tx);
 | |
| 	dspi->tx += sizeof(u16);
 | |
| }
 | |
| 
 | |
| static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 | |
| {
 | |
| 	*(u16 *)dspi->rx = be16_to_cpu((__force __be16)rxdata);
 | |
| 	dspi->rx += sizeof(u16);
 | |
| }
 | |
| 
 | |
| static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 | |
| {
 | |
| 	u16 hi = *(u16 *)dspi->tx;
 | |
| 	u16 lo = *(u16 *)(dspi->tx + 2);
 | |
| 
 | |
| 	*txdata = (u32)hi << 16 | lo;
 | |
| 	dspi->tx += sizeof(u32);
 | |
| }
 | |
| 
 | |
| static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 | |
| {
 | |
| 	u16 hi = rxdata & 0xffff;
 | |
| 	u16 lo = rxdata >> 16;
 | |
| 
 | |
| 	*(u16 *)dspi->rx = lo;
 | |
| 	*(u16 *)(dspi->rx + 2) = hi;
 | |
| 	dspi->rx += sizeof(u32);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pop one word from the TX buffer for pushing into the
 | |
|  * PUSHR register (TX FIFO)
 | |
|  */
 | |
| static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	u32 txdata = 0;
 | |
| 
 | |
| 	if (dspi->tx)
 | |
| 		dspi->host_to_dev(dspi, &txdata);
 | |
| 	dspi->len -= dspi->oper_word_size;
 | |
| 	return txdata;
 | |
| }
 | |
| 
 | |
| /* Prepare one TX FIFO entry (txdata plus cmd) */
 | |
| static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 | |
| 
 | |
| 	if (spi_controller_is_target(dspi->ctlr))
 | |
| 		return data;
 | |
| 
 | |
| 	if (dspi->len > 0)
 | |
| 		cmd |= SPI_PUSHR_CMD_CONT;
 | |
| 	return cmd << 16 | data;
 | |
| }
 | |
| 
 | |
| /* Push one word to the RX buffer from the POPR register (RX FIFO) */
 | |
| static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 | |
| {
 | |
| 	if (!dspi->rx)
 | |
| 		return;
 | |
| 	dspi->dev_to_host(dspi, rxdata);
 | |
| }
 | |
| 
 | |
| static void dspi_tx_dma_callback(void *arg)
 | |
| {
 | |
| 	struct fsl_dspi *dspi = arg;
 | |
| 	struct fsl_dspi_dma *dma = dspi->dma;
 | |
| 
 | |
| 	complete(&dma->cmd_tx_complete);
 | |
| }
 | |
| 
 | |
| static void dspi_rx_dma_callback(void *arg)
 | |
| {
 | |
| 	struct fsl_dspi *dspi = arg;
 | |
| 	struct fsl_dspi_dma *dma = dspi->dma;
 | |
| 	int i;
 | |
| 
 | |
| 	if (dspi->rx) {
 | |
| 		for (i = 0; i < dspi->words_in_flight; i++)
 | |
| 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 | |
| 	}
 | |
| 
 | |
| 	complete(&dma->cmd_rx_complete);
 | |
| }
 | |
| 
 | |
| static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	struct device *dev = &dspi->pdev->dev;
 | |
| 	struct fsl_dspi_dma *dma = dspi->dma;
 | |
| 	int time_left;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < dspi->words_in_flight; i++)
 | |
| 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 | |
| 
 | |
| 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 | |
| 					dma->tx_dma_phys,
 | |
| 					dspi->words_in_flight *
 | |
| 					DMA_SLAVE_BUSWIDTH_4_BYTES,
 | |
| 					DMA_MEM_TO_DEV,
 | |
| 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!dma->tx_desc) {
 | |
| 		dev_err(dev, "Not able to get desc for DMA xfer\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	dma->tx_desc->callback = dspi_tx_dma_callback;
 | |
| 	dma->tx_desc->callback_param = dspi;
 | |
| 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 | |
| 		dev_err(dev, "DMA submit failed\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 | |
| 					dma->rx_dma_phys,
 | |
| 					dspi->words_in_flight *
 | |
| 					DMA_SLAVE_BUSWIDTH_4_BYTES,
 | |
| 					DMA_DEV_TO_MEM,
 | |
| 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!dma->rx_desc) {
 | |
| 		dev_err(dev, "Not able to get desc for DMA xfer\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	dma->rx_desc->callback = dspi_rx_dma_callback;
 | |
| 	dma->rx_desc->callback_param = dspi;
 | |
| 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 | |
| 		dev_err(dev, "DMA submit failed\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	reinit_completion(&dspi->dma->cmd_rx_complete);
 | |
| 	reinit_completion(&dspi->dma->cmd_tx_complete);
 | |
| 
 | |
| 	dma_async_issue_pending(dma->chan_rx);
 | |
| 	dma_async_issue_pending(dma->chan_tx);
 | |
| 
 | |
| 	if (spi_controller_is_target(dspi->ctlr)) {
 | |
| 		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 | |
| 						DMA_COMPLETION_TIMEOUT);
 | |
| 	if (time_left == 0) {
 | |
| 		dev_err(dev, "DMA tx timeout\n");
 | |
| 		dmaengine_terminate_all(dma->chan_tx);
 | |
| 		dmaengine_terminate_all(dma->chan_rx);
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 | |
| 						DMA_COMPLETION_TIMEOUT);
 | |
| 	if (time_left == 0) {
 | |
| 		dev_err(dev, "DMA rx timeout\n");
 | |
| 		dmaengine_terminate_all(dma->chan_tx);
 | |
| 		dmaengine_terminate_all(dma->chan_rx);
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dspi_setup_accel(struct fsl_dspi *dspi);
 | |
| 
 | |
| static int dspi_dma_xfer(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	struct spi_message *message = dspi->cur_msg;
 | |
| 	struct device *dev = &dspi->pdev->dev;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * dspi->len gets decremented by dspi_pop_tx_pushr in
 | |
| 	 * dspi_next_xfer_dma_submit
 | |
| 	 */
 | |
| 	while (dspi->len) {
 | |
| 		/* Figure out operational bits-per-word for this chunk */
 | |
| 		dspi_setup_accel(dspi);
 | |
| 
 | |
| 		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
 | |
| 		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
 | |
| 			dspi->words_in_flight = dspi->devtype_data->fifo_size;
 | |
| 
 | |
| 		message->actual_length += dspi->words_in_flight *
 | |
| 					  dspi->oper_word_size;
 | |
| 
 | |
| 		ret = dspi_next_xfer_dma_submit(dspi);
 | |
| 		if (ret) {
 | |
| 			dev_err(dev, "DMA transfer failed\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 | |
| {
 | |
| 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 | |
| 	struct device *dev = &dspi->pdev->dev;
 | |
| 	struct dma_slave_config cfg;
 | |
| 	struct fsl_dspi_dma *dma;
 | |
| 	int ret;
 | |
| 
 | |
| 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 | |
| 	if (!dma)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dma->chan_rx = dma_request_chan(dev, "rx");
 | |
| 	if (IS_ERR(dma->chan_rx))
 | |
| 		return dev_err_probe(dev, PTR_ERR(dma->chan_rx), "rx dma channel not available\n");
 | |
| 
 | |
| 	dma->chan_tx = dma_request_chan(dev, "tx");
 | |
| 	if (IS_ERR(dma->chan_tx)) {
 | |
| 		ret = dev_err_probe(dev, PTR_ERR(dma->chan_tx), "tx dma channel not available\n");
 | |
| 		goto err_tx_channel;
 | |
| 	}
 | |
| 
 | |
| 	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
 | |
| 					     dma_bufsize, &dma->tx_dma_phys,
 | |
| 					     GFP_KERNEL);
 | |
| 	if (!dma->tx_dma_buf) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_tx_dma_buf;
 | |
| 	}
 | |
| 
 | |
| 	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
 | |
| 					     dma_bufsize, &dma->rx_dma_phys,
 | |
| 					     GFP_KERNEL);
 | |
| 	if (!dma->rx_dma_buf) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_rx_dma_buf;
 | |
| 	}
 | |
| 
 | |
| 	memset(&cfg, 0, sizeof(cfg));
 | |
| 	cfg.src_addr = phy_addr + SPI_POPR;
 | |
| 	cfg.dst_addr = phy_addr + SPI_PUSHR;
 | |
| 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 	cfg.src_maxburst = 1;
 | |
| 	cfg.dst_maxburst = 1;
 | |
| 
 | |
| 	cfg.direction = DMA_DEV_TO_MEM;
 | |
| 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 | |
| 	if (ret) {
 | |
| 		dev_err_probe(dev, ret, "can't configure rx dma channel\n");
 | |
| 		goto err_slave_config;
 | |
| 	}
 | |
| 
 | |
| 	cfg.direction = DMA_MEM_TO_DEV;
 | |
| 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 | |
| 	if (ret) {
 | |
| 		dev_err_probe(dev, ret, "can't configure tx dma channel\n");
 | |
| 		goto err_slave_config;
 | |
| 	}
 | |
| 
 | |
| 	dspi->dma = dma;
 | |
| 	init_completion(&dma->cmd_tx_complete);
 | |
| 	init_completion(&dma->cmd_rx_complete);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_slave_config:
 | |
| 	dma_free_coherent(dma->chan_rx->device->dev,
 | |
| 			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
 | |
| err_rx_dma_buf:
 | |
| 	dma_free_coherent(dma->chan_tx->device->dev,
 | |
| 			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
 | |
| err_tx_dma_buf:
 | |
| 	dma_release_channel(dma->chan_tx);
 | |
| err_tx_channel:
 | |
| 	dma_release_channel(dma->chan_rx);
 | |
| 
 | |
| 	devm_kfree(dev, dma);
 | |
| 	dspi->dma = NULL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void dspi_release_dma(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 | |
| 	struct fsl_dspi_dma *dma = dspi->dma;
 | |
| 
 | |
| 	if (!dma)
 | |
| 		return;
 | |
| 
 | |
| 	if (dma->chan_tx) {
 | |
| 		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
 | |
| 				  dma->tx_dma_buf, dma->tx_dma_phys);
 | |
| 		dma_release_channel(dma->chan_tx);
 | |
| 	}
 | |
| 
 | |
| 	if (dma->chan_rx) {
 | |
| 		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
 | |
| 				  dma->rx_dma_buf, dma->rx_dma_phys);
 | |
| 		dma_release_channel(dma->chan_rx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 | |
| 			   unsigned long clkrate)
 | |
| {
 | |
| 	/* Valid baud rate pre-scaler values */
 | |
| 	int pbr_tbl[4] = {2, 3, 5, 7};
 | |
| 	int brs[16] = {	2,	4,	6,	8,
 | |
| 			16,	32,	64,	128,
 | |
| 			256,	512,	1024,	2048,
 | |
| 			4096,	8192,	16384,	32768 };
 | |
| 	int scale_needed, scale, minscale = INT_MAX;
 | |
| 	int i, j;
 | |
| 
 | |
| 	scale_needed = clkrate / speed_hz;
 | |
| 	if (clkrate % speed_hz)
 | |
| 		scale_needed++;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(brs); i++)
 | |
| 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 | |
| 			scale = brs[i] * pbr_tbl[j];
 | |
| 			if (scale >= scale_needed) {
 | |
| 				if (scale < minscale) {
 | |
| 					minscale = scale;
 | |
| 					*br = i;
 | |
| 					*pbr = j;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	if (minscale == INT_MAX) {
 | |
| 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 | |
| 			speed_hz, clkrate);
 | |
| 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 | |
| 		*br =  ARRAY_SIZE(brs) - 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 | |
| 			   unsigned long clkrate)
 | |
| {
 | |
| 	int scale_needed, scale, minscale = INT_MAX;
 | |
| 	int pscale_tbl[4] = {1, 3, 5, 7};
 | |
| 	u32 remainder;
 | |
| 	int i, j;
 | |
| 
 | |
| 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 | |
| 				   &remainder);
 | |
| 	if (remainder)
 | |
| 		scale_needed++;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 | |
| 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 | |
| 			scale = pscale_tbl[i] * (2 << j);
 | |
| 			if (scale >= scale_needed) {
 | |
| 				if (scale < minscale) {
 | |
| 					minscale = scale;
 | |
| 					*psc = i;
 | |
| 					*sc = j;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	if (minscale == INT_MAX) {
 | |
| 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 | |
| 			delay_ns, clkrate);
 | |
| 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 | |
| 		*sc = SPI_CTAR_SCALE_BITS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
 | |
| {
 | |
| 	/*
 | |
| 	 * The only time when the PCS doesn't need continuation after this word
 | |
| 	 * is when it's last. We need to look ahead, because we actually call
 | |
| 	 * dspi_pop_tx (the function that decrements dspi->len) _after_
 | |
| 	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
 | |
| 	 * word is enough. If there's more to transmit than that,
 | |
| 	 * dspi_xspi_write will know to split the FIFO writes in 2, and
 | |
| 	 * generate a new PUSHR command with the final word that will have PCS
 | |
| 	 * deasserted (not continued) here.
 | |
| 	 */
 | |
| 	if (dspi->len > dspi->oper_word_size)
 | |
| 		cmd |= SPI_PUSHR_CMD_CONT;
 | |
| 	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
 | |
| }
 | |
| 
 | |
| static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
 | |
| {
 | |
| 	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
 | |
| }
 | |
| 
 | |
| static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
 | |
| {
 | |
| 	int num_bytes = num_words * dspi->oper_word_size;
 | |
| 	u16 tx_cmd = dspi->tx_cmd;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
 | |
| 	 * and cs_change does not want the PCS to stay on), then we need a new
 | |
| 	 * PUSHR command, since this one (for the body of the buffer)
 | |
| 	 * necessarily has the CONT bit set.
 | |
| 	 * So send one word less during this go, to force a split and a command
 | |
| 	 * with a single word next time, when CONT will be unset.
 | |
| 	 */
 | |
| 	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
 | |
| 		tx_cmd |= SPI_PUSHR_CMD_EOQ;
 | |
| 
 | |
| 	/* Update CTARE */
 | |
| 	regmap_write(dspi->regmap, SPI_CTARE(0),
 | |
| 		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
 | |
| 		     SPI_CTARE_DTCP(num_words));
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the CMD FIFO entry first, and then the two
 | |
| 	 * corresponding TX FIFO entries (or one...).
 | |
| 	 */
 | |
| 	dspi_pushr_cmd_write(dspi, tx_cmd);
 | |
| 
 | |
| 	/* Fill TX FIFO with as many transfers as possible */
 | |
| 	while (num_words--) {
 | |
| 		u32 data = dspi_pop_tx(dspi);
 | |
| 
 | |
| 		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
 | |
| 		if (dspi->oper_bits_per_word > 16)
 | |
| 			dspi_pushr_txdata_write(dspi, data >> 16);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 dspi_popr_read(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	u32 rxdata = 0;
 | |
| 
 | |
| 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 | |
| 	return rxdata;
 | |
| }
 | |
| 
 | |
| static void dspi_fifo_read(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	int num_fifo_entries = dspi->words_in_flight;
 | |
| 
 | |
| 	/* Read one FIFO entry and push to rx buffer */
 | |
| 	while (num_fifo_entries--)
 | |
| 		dspi_push_rx(dspi, dspi_popr_read(dspi));
 | |
| }
 | |
| 
 | |
| static void dspi_setup_accel(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	struct spi_transfer *xfer = dspi->cur_transfer;
 | |
| 	bool odd = !!(dspi->len & 1);
 | |
| 
 | |
| 	/* No accel for frames not multiple of 8 bits at the moment */
 | |
| 	if (xfer->bits_per_word % 8)
 | |
| 		goto no_accel;
 | |
| 
 | |
| 	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
 | |
| 		dspi->oper_bits_per_word = 16;
 | |
| 	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
 | |
| 		dspi->oper_bits_per_word = 8;
 | |
| 	} else {
 | |
| 		/* Start off with maximum supported by hardware */
 | |
| 		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 | |
| 			dspi->oper_bits_per_word = 32;
 | |
| 		else
 | |
| 			dspi->oper_bits_per_word = 16;
 | |
| 
 | |
| 		/*
 | |
| 		 * And go down only if the buffer can't be sent with
 | |
| 		 * words this big
 | |
| 		 */
 | |
| 		do {
 | |
| 			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
 | |
| 				break;
 | |
| 
 | |
| 			dspi->oper_bits_per_word /= 2;
 | |
| 		} while (dspi->oper_bits_per_word > 8);
 | |
| 	}
 | |
| 
 | |
| 	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
 | |
| 		dspi->dev_to_host = dspi_8on32_dev_to_host;
 | |
| 		dspi->host_to_dev = dspi_8on32_host_to_dev;
 | |
| 	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
 | |
| 		dspi->dev_to_host = dspi_8on16_dev_to_host;
 | |
| 		dspi->host_to_dev = dspi_8on16_host_to_dev;
 | |
| 	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
 | |
| 		dspi->dev_to_host = dspi_16on32_dev_to_host;
 | |
| 		dspi->host_to_dev = dspi_16on32_host_to_dev;
 | |
| 	} else {
 | |
| no_accel:
 | |
| 		dspi->dev_to_host = dspi_native_dev_to_host;
 | |
| 		dspi->host_to_dev = dspi_native_host_to_dev;
 | |
| 		dspi->oper_bits_per_word = xfer->bits_per_word;
 | |
| 	}
 | |
| 
 | |
| 	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update CTAR here (code is common for XSPI and DMA modes).
 | |
| 	 * We will update CTARE in the portion specific to XSPI, when we
 | |
| 	 * also know the preload value (DTCP).
 | |
| 	 */
 | |
| 	regmap_write(dspi->regmap, SPI_CTAR(0),
 | |
| 		     dspi->cur_chip->ctar_val |
 | |
| 		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
 | |
| }
 | |
| 
 | |
| static void dspi_fifo_write(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	int num_fifo_entries = dspi->devtype_data->fifo_size;
 | |
| 	struct spi_transfer *xfer = dspi->cur_transfer;
 | |
| 	struct spi_message *msg = dspi->cur_msg;
 | |
| 	int num_words, num_bytes;
 | |
| 
 | |
| 	dspi_setup_accel(dspi);
 | |
| 
 | |
| 	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
 | |
| 	if (dspi->oper_word_size == 4)
 | |
| 		num_fifo_entries /= 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Integer division intentionally trims off odd (or non-multiple of 4)
 | |
| 	 * numbers of bytes at the end of the buffer, which will be sent next
 | |
| 	 * time using a smaller oper_word_size.
 | |
| 	 */
 | |
| 	num_words = dspi->len / dspi->oper_word_size;
 | |
| 	if (num_words > num_fifo_entries)
 | |
| 		num_words = num_fifo_entries;
 | |
| 
 | |
| 	/* Update total number of bytes that were transferred */
 | |
| 	num_bytes = num_words * dspi->oper_word_size;
 | |
| 	msg->actual_length += num_bytes;
 | |
| 	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update shared variable for use in the next interrupt (both in
 | |
| 	 * dspi_fifo_read and in dspi_fifo_write).
 | |
| 	 */
 | |
| 	dspi->words_in_flight = num_words;
 | |
| 
 | |
| 	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
 | |
| 
 | |
| 	dspi_xspi_fifo_write(dspi, num_words);
 | |
| 	/*
 | |
| 	 * Everything after this point is in a potential race with the next
 | |
| 	 * interrupt, so we must never use dspi->words_in_flight again since it
 | |
| 	 * might already be modified by the next dspi_fifo_write.
 | |
| 	 */
 | |
| 
 | |
| 	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
 | |
| 				dspi->progress, !dspi->irq);
 | |
| }
 | |
| 
 | |
| static int dspi_rxtx(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	dspi_fifo_read(dspi);
 | |
| 
 | |
| 	if (!dspi->len)
 | |
| 		/* Success! */
 | |
| 		return 0;
 | |
| 
 | |
| 	dspi_fifo_write(dspi);
 | |
| 
 | |
| 	return -EINPROGRESS;
 | |
| }
 | |
| 
 | |
| static int dspi_poll(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	int tries = 1000;
 | |
| 	u32 spi_sr;
 | |
| 
 | |
| 	do {
 | |
| 		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 | |
| 		regmap_write(dspi->regmap, SPI_SR, spi_sr);
 | |
| 
 | |
| 		if (spi_sr & SPI_SR_CMDTCF)
 | |
| 			break;
 | |
| 	} while (--tries);
 | |
| 
 | |
| 	if (!tries)
 | |
| 		return -ETIMEDOUT;
 | |
| 
 | |
| 	return dspi_rxtx(dspi);
 | |
| }
 | |
| 
 | |
| static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 | |
| 	u32 spi_sr;
 | |
| 
 | |
| 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 | |
| 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 | |
| 
 | |
| 	if (!(spi_sr & SPI_SR_CMDTCF))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (dspi_rxtx(dspi) == 0)
 | |
| 		complete(&dspi->xfer_done);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void dspi_assert_cs(struct spi_device *spi, bool *cs)
 | |
| {
 | |
| 	if (!spi_get_csgpiod(spi, 0) || *cs)
 | |
| 		return;
 | |
| 
 | |
| 	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
 | |
| 	*cs = true;
 | |
| }
 | |
| 
 | |
| static void dspi_deassert_cs(struct spi_device *spi, bool *cs)
 | |
| {
 | |
| 	if (!spi_get_csgpiod(spi, 0) || !*cs)
 | |
| 		return;
 | |
| 
 | |
| 	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
 | |
| 	*cs = false;
 | |
| }
 | |
| 
 | |
| static int dspi_transfer_one_message(struct spi_controller *ctlr,
 | |
| 				     struct spi_message *message)
 | |
| {
 | |
| 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 | |
| 	struct spi_device *spi = message->spi;
 | |
| 	struct spi_transfer *transfer;
 | |
| 	bool cs = false;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	message->actual_length = 0;
 | |
| 
 | |
| 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 | |
| 		dspi->cur_transfer = transfer;
 | |
| 		dspi->cur_msg = message;
 | |
| 		dspi->cur_chip = spi_get_ctldata(spi);
 | |
| 
 | |
| 		dspi_assert_cs(spi, &cs);
 | |
| 
 | |
| 		/* Prepare command word for CMD FIFO */
 | |
| 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0);
 | |
| 		if (!spi_get_csgpiod(spi, 0))
 | |
| 			dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0));
 | |
| 
 | |
| 		if (list_is_last(&dspi->cur_transfer->transfer_list,
 | |
| 				 &dspi->cur_msg->transfers)) {
 | |
| 			/* Leave PCS activated after last transfer when
 | |
| 			 * cs_change is set.
 | |
| 			 */
 | |
| 			if (transfer->cs_change)
 | |
| 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 | |
| 		} else {
 | |
| 			/* Keep PCS active between transfers in same message
 | |
| 			 * when cs_change is not set, and de-activate PCS
 | |
| 			 * between transfers in the same message when
 | |
| 			 * cs_change is set.
 | |
| 			 */
 | |
| 			if (!transfer->cs_change)
 | |
| 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 | |
| 		}
 | |
| 
 | |
| 		dspi->tx = transfer->tx_buf;
 | |
| 		dspi->rx = transfer->rx_buf;
 | |
| 		dspi->len = transfer->len;
 | |
| 		dspi->progress = 0;
 | |
| 
 | |
| 		regmap_update_bits(dspi->regmap, SPI_MCR,
 | |
| 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 | |
| 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 | |
| 
 | |
| 		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
 | |
| 				       dspi->progress, !dspi->irq);
 | |
| 
 | |
| 		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 | |
| 			status = dspi_dma_xfer(dspi);
 | |
| 		} else {
 | |
| 			dspi_fifo_write(dspi);
 | |
| 
 | |
| 			if (dspi->irq) {
 | |
| 				wait_for_completion(&dspi->xfer_done);
 | |
| 				reinit_completion(&dspi->xfer_done);
 | |
| 			} else {
 | |
| 				do {
 | |
| 					status = dspi_poll(dspi);
 | |
| 				} while (status == -EINPROGRESS);
 | |
| 			}
 | |
| 		}
 | |
| 		if (status)
 | |
| 			break;
 | |
| 
 | |
| 		spi_transfer_delay_exec(transfer);
 | |
| 
 | |
| 		if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT))
 | |
| 			dspi_deassert_cs(spi, &cs);
 | |
| 	}
 | |
| 
 | |
| 	message->status = status;
 | |
| 	spi_finalize_current_message(ctlr);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int dspi_setup(struct spi_device *spi)
 | |
| {
 | |
| 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
 | |
| 	u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
 | |
| 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
 | |
| 	u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
 | |
| 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
 | |
| 	struct fsl_dspi_platform_data *pdata;
 | |
| 	unsigned char pasc = 0, asc = 0;
 | |
| 	struct gpio_desc *gpio_cs;
 | |
| 	struct chip_data *chip;
 | |
| 	unsigned long clkrate;
 | |
| 	bool cs = true;
 | |
| 	int val;
 | |
| 
 | |
| 	/* Only alloc on first setup */
 | |
| 	chip = spi_get_ctldata(spi);
 | |
| 	if (chip == NULL) {
 | |
| 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
 | |
| 		if (!chip)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	pdata = dev_get_platdata(&dspi->pdev->dev);
 | |
| 
 | |
| 	if (!pdata) {
 | |
| 		val = spi_delay_to_ns(&spi->cs_setup, NULL);
 | |
| 		cs_sck_delay = val >= 0 ? val : 0;
 | |
| 		if (!cs_sck_delay)
 | |
| 			of_property_read_u32(spi->dev.of_node,
 | |
| 					     "fsl,spi-cs-sck-delay",
 | |
| 					     &cs_sck_delay);
 | |
| 
 | |
| 		val = spi_delay_to_ns(&spi->cs_hold, NULL);
 | |
| 		sck_cs_delay =  val >= 0 ? val : 0;
 | |
| 		if (!sck_cs_delay)
 | |
| 			of_property_read_u32(spi->dev.of_node,
 | |
| 					     "fsl,spi-sck-cs-delay",
 | |
| 					     &sck_cs_delay);
 | |
| 	} else {
 | |
| 		cs_sck_delay = pdata->cs_sck_delay;
 | |
| 		sck_cs_delay = pdata->sck_cs_delay;
 | |
| 	}
 | |
| 
 | |
| 	/* Since tCSC and tASC apply to continuous transfers too, avoid SCK
 | |
| 	 * glitches of half a cycle by never allowing tCSC + tASC to go below
 | |
| 	 * half a SCK period.
 | |
| 	 */
 | |
| 	if (cs_sck_delay < quarter_period_ns)
 | |
| 		cs_sck_delay = quarter_period_ns;
 | |
| 	if (sck_cs_delay < quarter_period_ns)
 | |
| 		sck_cs_delay = quarter_period_ns;
 | |
| 
 | |
| 	dev_dbg(&spi->dev,
 | |
| 		"DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
 | |
| 		cs_sck_delay, sck_cs_delay);
 | |
| 
 | |
| 	clkrate = clk_get_rate(dspi->clk);
 | |
| 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
 | |
| 
 | |
| 	/* Set PCS to SCK delay scale values */
 | |
| 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
 | |
| 
 | |
| 	/* Set After SCK delay scale values */
 | |
| 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
 | |
| 
 | |
| 	chip->ctar_val = 0;
 | |
| 	if (spi->mode & SPI_CPOL)
 | |
| 		chip->ctar_val |= SPI_CTAR_CPOL;
 | |
| 	if (spi->mode & SPI_CPHA)
 | |
| 		chip->ctar_val |= SPI_CTAR_CPHA;
 | |
| 
 | |
| 	if (!spi_controller_is_target(dspi->ctlr)) {
 | |
| 		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
 | |
| 				  SPI_CTAR_CSSCK(cssck) |
 | |
| 				  SPI_CTAR_PASC(pasc) |
 | |
| 				  SPI_CTAR_ASC(asc) |
 | |
| 				  SPI_CTAR_PBR(pbr) |
 | |
| 				  SPI_CTAR_BR(br);
 | |
| 
 | |
| 		if (spi->mode & SPI_LSB_FIRST)
 | |
| 			chip->ctar_val |= SPI_CTAR_LSBFE;
 | |
| 	}
 | |
| 
 | |
| 	gpio_cs = spi_get_csgpiod(spi, 0);
 | |
| 	if (gpio_cs)
 | |
| 		gpiod_direction_output(gpio_cs, false);
 | |
| 
 | |
| 	dspi_deassert_cs(spi, &cs);
 | |
| 
 | |
| 	spi_set_ctldata(spi, chip);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dspi_cleanup(struct spi_device *spi)
 | |
| {
 | |
| 	struct chip_data *chip = spi_get_ctldata(spi);
 | |
| 
 | |
| 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
 | |
| 		spi->controller->bus_num, spi_get_chipselect(spi, 0));
 | |
| 
 | |
| 	kfree(chip);
 | |
| }
 | |
| 
 | |
| static const struct of_device_id fsl_dspi_dt_ids[] = {
 | |
| 	{
 | |
| 		.compatible = "fsl,vf610-dspi",
 | |
| 		.data = &devtype_data[VF610],
 | |
| 	}, {
 | |
| 		.compatible = "fsl,ls1021a-v1.0-dspi",
 | |
| 		.data = &devtype_data[LS1021A],
 | |
| 	}, {
 | |
| 		.compatible = "fsl,ls1012a-dspi",
 | |
| 		.data = &devtype_data[LS1012A],
 | |
| 	}, {
 | |
| 		.compatible = "fsl,ls1028a-dspi",
 | |
| 		.data = &devtype_data[LS1028A],
 | |
| 	}, {
 | |
| 		.compatible = "fsl,ls1043a-dspi",
 | |
| 		.data = &devtype_data[LS1043A],
 | |
| 	}, {
 | |
| 		.compatible = "fsl,ls1046a-dspi",
 | |
| 		.data = &devtype_data[LS1046A],
 | |
| 	}, {
 | |
| 		.compatible = "fsl,ls2080a-dspi",
 | |
| 		.data = &devtype_data[LS2080A],
 | |
| 	}, {
 | |
| 		.compatible = "fsl,ls2085a-dspi",
 | |
| 		.data = &devtype_data[LS2085A],
 | |
| 	}, {
 | |
| 		.compatible = "fsl,lx2160a-dspi",
 | |
| 		.data = &devtype_data[LX2160A],
 | |
| 	},
 | |
| 	{ /* sentinel */ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int dspi_suspend(struct device *dev)
 | |
| {
 | |
| 	struct fsl_dspi *dspi = dev_get_drvdata(dev);
 | |
| 
 | |
| 	if (dspi->irq)
 | |
| 		disable_irq(dspi->irq);
 | |
| 	spi_controller_suspend(dspi->ctlr);
 | |
| 	clk_disable_unprepare(dspi->clk);
 | |
| 
 | |
| 	pinctrl_pm_select_sleep_state(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dspi_resume(struct device *dev)
 | |
| {
 | |
| 	struct fsl_dspi *dspi = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	pinctrl_pm_select_default_state(dev);
 | |
| 
 | |
| 	ret = clk_prepare_enable(dspi->clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	spi_controller_resume(dspi->ctlr);
 | |
| 	if (dspi->irq)
 | |
| 		enable_irq(dspi->irq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_PM_SLEEP */
 | |
| 
 | |
| static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
 | |
| 
 | |
| static const struct regmap_range dspi_volatile_ranges[] = {
 | |
| 	regmap_reg_range(SPI_MCR, SPI_TCR),
 | |
| 	regmap_reg_range(SPI_SR, SPI_SR),
 | |
| 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
 | |
| };
 | |
| 
 | |
| static const struct regmap_access_table dspi_volatile_table = {
 | |
| 	.yes_ranges	= dspi_volatile_ranges,
 | |
| 	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
 | |
| };
 | |
| 
 | |
| static const struct regmap_config dspi_regmap_config = {
 | |
| 	.reg_bits	= 32,
 | |
| 	.val_bits	= 32,
 | |
| 	.reg_stride	= 4,
 | |
| 	.max_register	= 0x88,
 | |
| 	.volatile_table	= &dspi_volatile_table,
 | |
| };
 | |
| 
 | |
| static const struct regmap_range dspi_xspi_volatile_ranges[] = {
 | |
| 	regmap_reg_range(SPI_MCR, SPI_TCR),
 | |
| 	regmap_reg_range(SPI_SR, SPI_SR),
 | |
| 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
 | |
| 	regmap_reg_range(SPI_SREX, SPI_SREX),
 | |
| };
 | |
| 
 | |
| static const struct regmap_access_table dspi_xspi_volatile_table = {
 | |
| 	.yes_ranges	= dspi_xspi_volatile_ranges,
 | |
| 	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
 | |
| };
 | |
| 
 | |
| static const struct regmap_config dspi_xspi_regmap_config[] = {
 | |
| 	{
 | |
| 		.reg_bits	= 32,
 | |
| 		.val_bits	= 32,
 | |
| 		.reg_stride	= 4,
 | |
| 		.max_register	= 0x13c,
 | |
| 		.volatile_table	= &dspi_xspi_volatile_table,
 | |
| 	},
 | |
| 	{
 | |
| 		.name		= "pushr",
 | |
| 		.reg_bits	= 16,
 | |
| 		.val_bits	= 16,
 | |
| 		.reg_stride	= 2,
 | |
| 		.max_register	= 0x2,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int dspi_init(struct fsl_dspi *dspi)
 | |
| {
 | |
| 	unsigned int mcr;
 | |
| 
 | |
| 	/* Set idle states for all chip select signals to high */
 | |
| 	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
 | |
| 
 | |
| 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 | |
| 		mcr |= SPI_MCR_XSPI;
 | |
| 	if (!spi_controller_is_target(dspi->ctlr))
 | |
| 		mcr |= SPI_MCR_HOST;
 | |
| 
 | |
| 	regmap_write(dspi->regmap, SPI_MCR, mcr);
 | |
| 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
 | |
| 
 | |
| 	switch (dspi->devtype_data->trans_mode) {
 | |
| 	case DSPI_XSPI_MODE:
 | |
| 		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
 | |
| 		break;
 | |
| 	case DSPI_DMA_MODE:
 | |
| 		regmap_write(dspi->regmap, SPI_RSER,
 | |
| 			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
 | |
| 			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
 | |
| 			dspi->devtype_data->trans_mode);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dspi_target_abort(struct spi_controller *host)
 | |
| {
 | |
| 	struct fsl_dspi *dspi = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	/*
 | |
| 	 * Terminate all pending DMA transactions for the SPI working
 | |
| 	 * in TARGET mode.
 | |
| 	 */
 | |
| 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 | |
| 		dmaengine_terminate_sync(dspi->dma->chan_rx);
 | |
| 		dmaengine_terminate_sync(dspi->dma->chan_tx);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear the internal DSPI RX and TX FIFO buffers */
 | |
| 	regmap_update_bits(dspi->regmap, SPI_MCR,
 | |
| 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 | |
| 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dspi_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device_node *np = pdev->dev.of_node;
 | |
| 	const struct regmap_config *regmap_config;
 | |
| 	struct fsl_dspi_platform_data *pdata;
 | |
| 	struct spi_controller *ctlr;
 | |
| 	int ret, cs_num, bus_num = -1;
 | |
| 	struct fsl_dspi *dspi;
 | |
| 	struct resource *res;
 | |
| 	void __iomem *base;
 | |
| 	bool big_endian;
 | |
| 
 | |
| 	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
 | |
| 	if (!dspi)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctlr = spi_alloc_host(&pdev->dev, 0);
 | |
| 	if (!ctlr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spi_controller_set_devdata(ctlr, dspi);
 | |
| 	platform_set_drvdata(pdev, dspi);
 | |
| 
 | |
| 	dspi->pdev = pdev;
 | |
| 	dspi->ctlr = ctlr;
 | |
| 
 | |
| 	ctlr->setup = dspi_setup;
 | |
| 	ctlr->transfer_one_message = dspi_transfer_one_message;
 | |
| 	ctlr->dev.of_node = pdev->dev.of_node;
 | |
| 
 | |
| 	ctlr->cleanup = dspi_cleanup;
 | |
| 	ctlr->target_abort = dspi_target_abort;
 | |
| 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
 | |
| 	ctlr->use_gpio_descriptors = true;
 | |
| 
 | |
| 	pdata = dev_get_platdata(&pdev->dev);
 | |
| 	if (pdata) {
 | |
| 		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
 | |
| 		ctlr->bus_num = pdata->bus_num;
 | |
| 
 | |
| 		/* Only Coldfire uses platform data */
 | |
| 		dspi->devtype_data = &devtype_data[MCF5441X];
 | |
| 		big_endian = true;
 | |
| 	} else {
 | |
| 
 | |
| 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
 | |
| 			goto out_ctlr_put;
 | |
| 		}
 | |
| 		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
 | |
| 
 | |
| 		of_property_read_u32(np, "bus-num", &bus_num);
 | |
| 		ctlr->bus_num = bus_num;
 | |
| 
 | |
| 		if (of_property_read_bool(np, "spi-slave"))
 | |
| 			ctlr->target = true;
 | |
| 
 | |
| 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
 | |
| 		if (!dspi->devtype_data) {
 | |
| 			dev_err(&pdev->dev, "can't get devtype_data\n");
 | |
| 			ret = -EFAULT;
 | |
| 			goto out_ctlr_put;
 | |
| 		}
 | |
| 
 | |
| 		big_endian = of_device_is_big_endian(np);
 | |
| 	}
 | |
| 	if (big_endian) {
 | |
| 		dspi->pushr_cmd = 0;
 | |
| 		dspi->pushr_tx = 2;
 | |
| 	} else {
 | |
| 		dspi->pushr_cmd = 2;
 | |
| 		dspi->pushr_tx = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 | |
| 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
 | |
| 	else
 | |
| 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
 | |
| 
 | |
| 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
 | |
| 	if (IS_ERR(base)) {
 | |
| 		ret = PTR_ERR(base);
 | |
| 		goto out_ctlr_put;
 | |
| 	}
 | |
| 
 | |
| 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 | |
| 		regmap_config = &dspi_xspi_regmap_config[0];
 | |
| 	else
 | |
| 		regmap_config = &dspi_regmap_config;
 | |
| 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
 | |
| 	if (IS_ERR(dspi->regmap)) {
 | |
| 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
 | |
| 				PTR_ERR(dspi->regmap));
 | |
| 		ret = PTR_ERR(dspi->regmap);
 | |
| 		goto out_ctlr_put;
 | |
| 	}
 | |
| 
 | |
| 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
 | |
| 		dspi->regmap_pushr = devm_regmap_init_mmio(
 | |
| 			&pdev->dev, base + SPI_PUSHR,
 | |
| 			&dspi_xspi_regmap_config[1]);
 | |
| 		if (IS_ERR(dspi->regmap_pushr)) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"failed to init pushr regmap: %ld\n",
 | |
| 				PTR_ERR(dspi->regmap_pushr));
 | |
| 			ret = PTR_ERR(dspi->regmap_pushr);
 | |
| 			goto out_ctlr_put;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dspi->clk = devm_clk_get_enabled(&pdev->dev, "dspi");
 | |
| 	if (IS_ERR(dspi->clk)) {
 | |
| 		ret = PTR_ERR(dspi->clk);
 | |
| 		dev_err(&pdev->dev, "unable to get clock\n");
 | |
| 		goto out_ctlr_put;
 | |
| 	}
 | |
| 
 | |
| 	ret = dspi_init(dspi);
 | |
| 	if (ret)
 | |
| 		goto out_ctlr_put;
 | |
| 
 | |
| 	dspi->irq = platform_get_irq(pdev, 0);
 | |
| 	if (dspi->irq <= 0) {
 | |
| 		dev_info(&pdev->dev,
 | |
| 			 "can't get platform irq, using poll mode\n");
 | |
| 		dspi->irq = 0;
 | |
| 		goto poll_mode;
 | |
| 	}
 | |
| 
 | |
| 	init_completion(&dspi->xfer_done);
 | |
| 
 | |
| 	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
 | |
| 				   IRQF_SHARED, pdev->name, dspi);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
 | |
| 		goto out_ctlr_put;
 | |
| 	}
 | |
| 
 | |
| poll_mode:
 | |
| 
 | |
| 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 | |
| 		ret = dspi_request_dma(dspi, res->start);
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(&pdev->dev, "can't get dma channels\n");
 | |
| 			goto out_free_irq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ctlr->max_speed_hz =
 | |
| 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
 | |
| 
 | |
| 	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
 | |
| 		ctlr->ptp_sts_supported = true;
 | |
| 
 | |
| 	ret = spi_register_controller(ctlr);
 | |
| 	if (ret != 0) {
 | |
| 		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
 | |
| 		goto out_release_dma;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| out_release_dma:
 | |
| 	dspi_release_dma(dspi);
 | |
| out_free_irq:
 | |
| 	if (dspi->irq)
 | |
| 		free_irq(dspi->irq, dspi);
 | |
| out_ctlr_put:
 | |
| 	spi_controller_put(ctlr);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void dspi_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	/* Disconnect from the SPI framework */
 | |
| 	spi_unregister_controller(dspi->ctlr);
 | |
| 
 | |
| 	/* Disable RX and TX */
 | |
| 	regmap_update_bits(dspi->regmap, SPI_MCR,
 | |
| 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
 | |
| 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
 | |
| 
 | |
| 	/* Stop Running */
 | |
| 	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
 | |
| 
 | |
| 	dspi_release_dma(dspi);
 | |
| 	if (dspi->irq)
 | |
| 		free_irq(dspi->irq, dspi);
 | |
| }
 | |
| 
 | |
| static void dspi_shutdown(struct platform_device *pdev)
 | |
| {
 | |
| 	dspi_remove(pdev);
 | |
| }
 | |
| 
 | |
| static struct platform_driver fsl_dspi_driver = {
 | |
| 	.driver.name		= DRIVER_NAME,
 | |
| 	.driver.of_match_table	= fsl_dspi_dt_ids,
 | |
| 	.driver.pm		= &dspi_pm,
 | |
| 	.probe			= dspi_probe,
 | |
| 	.remove			= dspi_remove,
 | |
| 	.shutdown		= dspi_shutdown,
 | |
| };
 | |
| module_platform_driver(fsl_dspi_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("platform:" DRIVER_NAME);
 |