forked from mirrors/linux
		
	 26851cf65f
			
		
	
	
		26851cf65f
		
			
		
	
	
	
	
		
			
			Every ->exec_op() call correctly configures the spi bus speed to the maximum allowed frequency for the memory using the constant spi default parameter. Since we can now have per-operation constraints, let's use the value that comes from the spi-mem operation structure instead. In case there is no specific limitation for this operation, the default spi device value will be given anyway. The per-operation frequency capability is thus advertised to the spi-mem core. Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://patch.msgid.link/20241224-winbond-6-11-rc1-quad-support-v2-12-ad218dbc406f@bootlin.com Signed-off-by: Mark Brown <broonie@kernel.org>
		
			
				
	
	
		
			1349 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1349 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| 
 | |
| /*
 | |
|  * NXP FlexSPI(FSPI) controller driver.
 | |
|  *
 | |
|  * Copyright 2019-2020 NXP
 | |
|  * Copyright 2020 Puresoftware Ltd.
 | |
|  *
 | |
|  * FlexSPI is a flexsible SPI host controller which supports two SPI
 | |
|  * channels and up to 4 external devices. Each channel supports
 | |
|  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
 | |
|  * data lines).
 | |
|  *
 | |
|  * FlexSPI controller is driven by the LUT(Look-up Table) registers
 | |
|  * LUT registers are a look-up-table for sequences of instructions.
 | |
|  * A valid sequence consists of four LUT registers.
 | |
|  * Maximum 32 LUT sequences can be programmed simultaneously.
 | |
|  *
 | |
|  * LUTs are being created at run-time based on the commands passed
 | |
|  * from the spi-mem framework, thus using single LUT index.
 | |
|  *
 | |
|  * Software triggered Flash read/write access by IP Bus.
 | |
|  *
 | |
|  * Memory mapped read access by AHB Bus.
 | |
|  *
 | |
|  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
 | |
|  *
 | |
|  * Author:
 | |
|  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
 | |
|  *     Boris Brezillon <bbrezillon@kernel.org>
 | |
|  *     Frieder Schrempf <frieder.schrempf@kontron.de>
 | |
|  */
 | |
| 
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/iopoll.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_qos.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/sys_soc.h>
 | |
| 
 | |
| #include <linux/mfd/syscon.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/spi/spi-mem.h>
 | |
| 
 | |
| /* Registers used by the driver */
 | |
| #define FSPI_MCR0			0x00
 | |
| #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
 | |
| #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
 | |
| #define FSPI_MCR0_LEARN_EN		BIT(15)
 | |
| #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
 | |
| #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
 | |
| #define FSPI_MCR0_DOZE_EN		BIT(12)
 | |
| #define FSPI_MCR0_HSEN			BIT(11)
 | |
| #define FSPI_MCR0_SERCLKDIV		BIT(8)
 | |
| #define FSPI_MCR0_ATDF_EN		BIT(7)
 | |
| #define FSPI_MCR0_ARDF_EN		BIT(6)
 | |
| #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
 | |
| #define FSPI_MCR0_END_CFG(x)		((x) << 2)
 | |
| #define FSPI_MCR0_MDIS			BIT(1)
 | |
| #define FSPI_MCR0_SWRST			BIT(0)
 | |
| 
 | |
| #define FSPI_MCR1			0x04
 | |
| #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
 | |
| #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
 | |
| 
 | |
| #define FSPI_MCR2			0x08
 | |
| #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
 | |
| #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
 | |
| #define FSPI_MCR2_CLRLRPHS		BIT(14)
 | |
| #define FSPI_MCR2_ABRDATSZ		BIT(8)
 | |
| #define FSPI_MCR2_ABRLEARN		BIT(7)
 | |
| #define FSPI_MCR2_ABR_READ		BIT(6)
 | |
| #define FSPI_MCR2_ABRWRITE		BIT(5)
 | |
| #define FSPI_MCR2_ABRDUMMY		BIT(4)
 | |
| #define FSPI_MCR2_ABR_MODE		BIT(3)
 | |
| #define FSPI_MCR2_ABRCADDR		BIT(2)
 | |
| #define FSPI_MCR2_ABRRADDR		BIT(1)
 | |
| #define FSPI_MCR2_ABR_CMD		BIT(0)
 | |
| 
 | |
| #define FSPI_AHBCR			0x0c
 | |
| #define FSPI_AHBCR_RDADDROPT		BIT(6)
 | |
| #define FSPI_AHBCR_PREF_EN		BIT(5)
 | |
| #define FSPI_AHBCR_BUFF_EN		BIT(4)
 | |
| #define FSPI_AHBCR_CACH_EN		BIT(3)
 | |
| #define FSPI_AHBCR_CLRTXBUF		BIT(2)
 | |
| #define FSPI_AHBCR_CLRRXBUF		BIT(1)
 | |
| #define FSPI_AHBCR_PAR_EN		BIT(0)
 | |
| 
 | |
| #define FSPI_INTEN			0x10
 | |
| #define FSPI_INTEN_SCLKSBWR		BIT(9)
 | |
| #define FSPI_INTEN_SCLKSBRD		BIT(8)
 | |
| #define FSPI_INTEN_DATALRNFL		BIT(7)
 | |
| #define FSPI_INTEN_IPTXWE		BIT(6)
 | |
| #define FSPI_INTEN_IPRXWA		BIT(5)
 | |
| #define FSPI_INTEN_AHBCMDERR		BIT(4)
 | |
| #define FSPI_INTEN_IPCMDERR		BIT(3)
 | |
| #define FSPI_INTEN_AHBCMDGE		BIT(2)
 | |
| #define FSPI_INTEN_IPCMDGE		BIT(1)
 | |
| #define FSPI_INTEN_IPCMDDONE		BIT(0)
 | |
| 
 | |
| #define FSPI_INTR			0x14
 | |
| #define FSPI_INTR_SCLKSBWR		BIT(9)
 | |
| #define FSPI_INTR_SCLKSBRD		BIT(8)
 | |
| #define FSPI_INTR_DATALRNFL		BIT(7)
 | |
| #define FSPI_INTR_IPTXWE		BIT(6)
 | |
| #define FSPI_INTR_IPRXWA		BIT(5)
 | |
| #define FSPI_INTR_AHBCMDERR		BIT(4)
 | |
| #define FSPI_INTR_IPCMDERR		BIT(3)
 | |
| #define FSPI_INTR_AHBCMDGE		BIT(2)
 | |
| #define FSPI_INTR_IPCMDGE		BIT(1)
 | |
| #define FSPI_INTR_IPCMDDONE		BIT(0)
 | |
| 
 | |
| #define FSPI_LUTKEY			0x18
 | |
| #define FSPI_LUTKEY_VALUE		0x5AF05AF0
 | |
| 
 | |
| #define FSPI_LCKCR			0x1C
 | |
| 
 | |
| #define FSPI_LCKER_LOCK			0x1
 | |
| #define FSPI_LCKER_UNLOCK		0x2
 | |
| 
 | |
| #define FSPI_BUFXCR_INVALID_MSTRID	0xE
 | |
| #define FSPI_AHBRX_BUF0CR0		0x20
 | |
| #define FSPI_AHBRX_BUF1CR0		0x24
 | |
| #define FSPI_AHBRX_BUF2CR0		0x28
 | |
| #define FSPI_AHBRX_BUF3CR0		0x2C
 | |
| #define FSPI_AHBRX_BUF4CR0		0x30
 | |
| #define FSPI_AHBRX_BUF5CR0		0x34
 | |
| #define FSPI_AHBRX_BUF6CR0		0x38
 | |
| #define FSPI_AHBRX_BUF7CR0		0x3C
 | |
| #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
 | |
| 
 | |
| #define FSPI_AHBRX_BUF0CR1		0x40
 | |
| #define FSPI_AHBRX_BUF1CR1		0x44
 | |
| #define FSPI_AHBRX_BUF2CR1		0x48
 | |
| #define FSPI_AHBRX_BUF3CR1		0x4C
 | |
| #define FSPI_AHBRX_BUF4CR1		0x50
 | |
| #define FSPI_AHBRX_BUF5CR1		0x54
 | |
| #define FSPI_AHBRX_BUF6CR1		0x58
 | |
| #define FSPI_AHBRX_BUF7CR1		0x5C
 | |
| 
 | |
| #define FSPI_FLSHA1CR0			0x60
 | |
| #define FSPI_FLSHA2CR0			0x64
 | |
| #define FSPI_FLSHB1CR0			0x68
 | |
| #define FSPI_FLSHB2CR0			0x6C
 | |
| #define FSPI_FLSHXCR0_SZ_KB		10
 | |
| #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
 | |
| 
 | |
| #define FSPI_FLSHA1CR1			0x70
 | |
| #define FSPI_FLSHA2CR1			0x74
 | |
| #define FSPI_FLSHB1CR1			0x78
 | |
| #define FSPI_FLSHB2CR1			0x7C
 | |
| #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
 | |
| #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
 | |
| #define FSPI_FLSHXCR1_WA		BIT(10)
 | |
| #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
 | |
| #define FSPI_FLSHXCR1_TCSS(x)		(x)
 | |
| 
 | |
| #define FSPI_FLSHA1CR2			0x80
 | |
| #define FSPI_FLSHA2CR2			0x84
 | |
| #define FSPI_FLSHB1CR2			0x88
 | |
| #define FSPI_FLSHB2CR2			0x8C
 | |
| #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
 | |
| #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
 | |
| #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
 | |
| #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
 | |
| #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
 | |
| #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
 | |
| 
 | |
| #define FSPI_IPCR0			0xA0
 | |
| 
 | |
| #define FSPI_IPCR1			0xA4
 | |
| #define FSPI_IPCR1_IPAREN		BIT(31)
 | |
| #define FSPI_IPCR1_SEQNUM_SHIFT		24
 | |
| #define FSPI_IPCR1_SEQID_SHIFT		16
 | |
| #define FSPI_IPCR1_IDATSZ(x)		(x)
 | |
| 
 | |
| #define FSPI_IPCMD			0xB0
 | |
| #define FSPI_IPCMD_TRG			BIT(0)
 | |
| 
 | |
| #define FSPI_DLPR			0xB4
 | |
| 
 | |
| #define FSPI_IPRXFCR			0xB8
 | |
| #define FSPI_IPRXFCR_CLR		BIT(0)
 | |
| #define FSPI_IPRXFCR_DMA_EN		BIT(1)
 | |
| #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
 | |
| 
 | |
| #define FSPI_IPTXFCR			0xBC
 | |
| #define FSPI_IPTXFCR_CLR		BIT(0)
 | |
| #define FSPI_IPTXFCR_DMA_EN		BIT(1)
 | |
| #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
 | |
| 
 | |
| #define FSPI_DLLACR			0xC0
 | |
| #define FSPI_DLLACR_OVRDEN		BIT(8)
 | |
| #define FSPI_DLLACR_SLVDLY(x)		((x) << 3)
 | |
| #define FSPI_DLLACR_DLLRESET		BIT(1)
 | |
| #define FSPI_DLLACR_DLLEN		BIT(0)
 | |
| 
 | |
| #define FSPI_DLLBCR			0xC4
 | |
| #define FSPI_DLLBCR_OVRDEN		BIT(8)
 | |
| #define FSPI_DLLBCR_SLVDLY(x)		((x) << 3)
 | |
| #define FSPI_DLLBCR_DLLRESET		BIT(1)
 | |
| #define FSPI_DLLBCR_DLLEN		BIT(0)
 | |
| 
 | |
| #define FSPI_STS0			0xE0
 | |
| #define FSPI_STS0_DLPHB(x)		((x) << 8)
 | |
| #define FSPI_STS0_DLPHA(x)		((x) << 4)
 | |
| #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
 | |
| #define FSPI_STS0_ARB_IDLE		BIT(1)
 | |
| #define FSPI_STS0_SEQ_IDLE		BIT(0)
 | |
| 
 | |
| #define FSPI_STS1			0xE4
 | |
| #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
 | |
| #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
 | |
| #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
 | |
| #define FSPI_STS1_AHB_ERRID(x)		(x)
 | |
| 
 | |
| #define FSPI_STS2			0xE8
 | |
| #define FSPI_STS2_BREFLOCK		BIT(17)
 | |
| #define FSPI_STS2_BSLVLOCK		BIT(16)
 | |
| #define FSPI_STS2_AREFLOCK		BIT(1)
 | |
| #define FSPI_STS2_ASLVLOCK		BIT(0)
 | |
| #define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \
 | |
| 					 FSPI_STS2_BSLVLOCK | \
 | |
| 					 FSPI_STS2_AREFLOCK | \
 | |
| 					 FSPI_STS2_ASLVLOCK)
 | |
| 
 | |
| #define FSPI_AHBSPNST			0xEC
 | |
| #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
 | |
| #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
 | |
| #define FSPI_AHBSPNST_ACTIVE		BIT(0)
 | |
| 
 | |
| #define FSPI_IPRXFSTS			0xF0
 | |
| #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
 | |
| #define FSPI_IPRXFSTS_FILL(x)		(x)
 | |
| 
 | |
| #define FSPI_IPTXFSTS			0xF4
 | |
| #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
 | |
| #define FSPI_IPTXFSTS_FILL(x)		(x)
 | |
| 
 | |
| #define FSPI_RFDR			0x100
 | |
| #define FSPI_TFDR			0x180
 | |
| 
 | |
| #define FSPI_LUT_BASE			0x200
 | |
| 
 | |
| /* register map end */
 | |
| 
 | |
| /* Instruction set for the LUT register. */
 | |
| #define LUT_STOP			0x00
 | |
| #define LUT_CMD				0x01
 | |
| #define LUT_ADDR			0x02
 | |
| #define LUT_CADDR_SDR			0x03
 | |
| #define LUT_MODE			0x04
 | |
| #define LUT_MODE2			0x05
 | |
| #define LUT_MODE4			0x06
 | |
| #define LUT_MODE8			0x07
 | |
| #define LUT_NXP_WRITE			0x08
 | |
| #define LUT_NXP_READ			0x09
 | |
| #define LUT_LEARN_SDR			0x0A
 | |
| #define LUT_DATSZ_SDR			0x0B
 | |
| #define LUT_DUMMY			0x0C
 | |
| #define LUT_DUMMY_RWDS_SDR		0x0D
 | |
| #define LUT_JMP_ON_CS			0x1F
 | |
| #define LUT_CMD_DDR			0x21
 | |
| #define LUT_ADDR_DDR			0x22
 | |
| #define LUT_CADDR_DDR			0x23
 | |
| #define LUT_MODE_DDR			0x24
 | |
| #define LUT_MODE2_DDR			0x25
 | |
| #define LUT_MODE4_DDR			0x26
 | |
| #define LUT_MODE8_DDR			0x27
 | |
| #define LUT_WRITE_DDR			0x28
 | |
| #define LUT_READ_DDR			0x29
 | |
| #define LUT_LEARN_DDR			0x2A
 | |
| #define LUT_DATSZ_DDR			0x2B
 | |
| #define LUT_DUMMY_DDR			0x2C
 | |
| #define LUT_DUMMY_RWDS_DDR		0x2D
 | |
| 
 | |
| /*
 | |
|  * Calculate number of required PAD bits for LUT register.
 | |
|  *
 | |
|  * The pad stands for the number of IO lines [0:7].
 | |
|  * For example, the octal read needs eight IO lines,
 | |
|  * so you should use LUT_PAD(8). This macro
 | |
|  * returns 3 i.e. use eight (2^3) IP lines for read.
 | |
|  */
 | |
| #define LUT_PAD(x) (fls(x) - 1)
 | |
| 
 | |
| /*
 | |
|  * Macro for constructing the LUT entries with the following
 | |
|  * register layout:
 | |
|  *
 | |
|  *  ---------------------------------------------------
 | |
|  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 | |
|  *  ---------------------------------------------------
 | |
|  */
 | |
| #define PAD_SHIFT		8
 | |
| #define INSTR_SHIFT		10
 | |
| #define OPRND_SHIFT		16
 | |
| 
 | |
| /* Macros for constructing the LUT register. */
 | |
| #define LUT_DEF(idx, ins, pad, opr)			  \
 | |
| 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 | |
| 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
 | |
| 
 | |
| #define POLL_TOUT		5000
 | |
| #define NXP_FSPI_MAX_CHIPSELECT		4
 | |
| #define NXP_FSPI_MIN_IOMAP	SZ_4M
 | |
| 
 | |
| #define DCFG_RCWSR1		0x100
 | |
| #define SYS_PLL_RAT		GENMASK(6, 2)
 | |
| 
 | |
| /* Access flash memory using IP bus only */
 | |
| #define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
 | |
| 
 | |
| struct nxp_fspi_devtype_data {
 | |
| 	unsigned int rxfifo;
 | |
| 	unsigned int txfifo;
 | |
| 	unsigned int ahb_buf_size;
 | |
| 	unsigned int quirks;
 | |
| 	unsigned int lut_num;
 | |
| 	bool little_endian;
 | |
| };
 | |
| 
 | |
| static struct nxp_fspi_devtype_data lx2160a_data = {
 | |
| 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 | |
| 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 | |
| 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 | |
| 	.quirks = 0,
 | |
| 	.lut_num = 32,
 | |
| 	.little_endian = true,  /* little-endian    */
 | |
| };
 | |
| 
 | |
| static struct nxp_fspi_devtype_data imx8mm_data = {
 | |
| 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 | |
| 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 | |
| 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 | |
| 	.quirks = 0,
 | |
| 	.lut_num = 32,
 | |
| 	.little_endian = true,  /* little-endian    */
 | |
| };
 | |
| 
 | |
| static struct nxp_fspi_devtype_data imx8qxp_data = {
 | |
| 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 | |
| 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 | |
| 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 | |
| 	.quirks = 0,
 | |
| 	.lut_num = 32,
 | |
| 	.little_endian = true,  /* little-endian    */
 | |
| };
 | |
| 
 | |
| static struct nxp_fspi_devtype_data imx8dxl_data = {
 | |
| 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 | |
| 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 | |
| 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 | |
| 	.quirks = FSPI_QUIRK_USE_IP_ONLY,
 | |
| 	.lut_num = 32,
 | |
| 	.little_endian = true,  /* little-endian    */
 | |
| };
 | |
| 
 | |
| static struct nxp_fspi_devtype_data imx8ulp_data = {
 | |
| 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 | |
| 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 | |
| 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 | |
| 	.quirks = 0,
 | |
| 	.lut_num = 16,
 | |
| 	.little_endian = true,  /* little-endian    */
 | |
| };
 | |
| 
 | |
| struct nxp_fspi {
 | |
| 	void __iomem *iobase;
 | |
| 	void __iomem *ahb_addr;
 | |
| 	u32 memmap_phy;
 | |
| 	u32 memmap_phy_size;
 | |
| 	u32 memmap_start;
 | |
| 	u32 memmap_len;
 | |
| 	struct clk *clk, *clk_en;
 | |
| 	struct device *dev;
 | |
| 	struct completion c;
 | |
| 	struct nxp_fspi_devtype_data *devtype_data;
 | |
| 	struct mutex lock;
 | |
| 	struct pm_qos_request pm_qos_req;
 | |
| 	int selected;
 | |
| };
 | |
| 
 | |
| static inline int needs_ip_only(struct nxp_fspi *f)
 | |
| {
 | |
| 	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * R/W functions for big- or little-endian registers:
 | |
|  * The FSPI controller's endianness is independent of
 | |
|  * the CPU core's endianness. So far, although the CPU
 | |
|  * core is little-endian the FSPI controller can use
 | |
|  * big-endian or little-endian.
 | |
|  */
 | |
| static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 | |
| {
 | |
| 	if (f->devtype_data->little_endian)
 | |
| 		iowrite32(val, addr);
 | |
| 	else
 | |
| 		iowrite32be(val, addr);
 | |
| }
 | |
| 
 | |
| static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 | |
| {
 | |
| 	if (f->devtype_data->little_endian)
 | |
| 		return ioread32(addr);
 | |
| 	else
 | |
| 		return ioread32be(addr);
 | |
| }
 | |
| 
 | |
| static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 | |
| {
 | |
| 	struct nxp_fspi *f = dev_id;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/* clear interrupt */
 | |
| 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
 | |
| 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 | |
| 
 | |
| 	if (reg & FSPI_INTR_IPCMDDONE)
 | |
| 		complete(&f->c);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 | |
| {
 | |
| 	switch (width) {
 | |
| 	case 1:
 | |
| 	case 2:
 | |
| 	case 4:
 | |
| 	case 8:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| static bool nxp_fspi_supports_op(struct spi_mem *mem,
 | |
| 				 const struct spi_mem_op *op)
 | |
| {
 | |
| 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 | |
| 
 | |
| 	if (op->addr.nbytes)
 | |
| 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 | |
| 
 | |
| 	if (op->dummy.nbytes)
 | |
| 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 | |
| 
 | |
| 	if (op->data.nbytes)
 | |
| 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The number of address bytes should be equal to or less than 4 bytes.
 | |
| 	 */
 | |
| 	if (op->addr.nbytes > 4)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If requested address value is greater than controller assigned
 | |
| 	 * memory mapped space, return error as it didn't fit in the range
 | |
| 	 * of assigned address space.
 | |
| 	 */
 | |
| 	if (op->addr.val >= f->memmap_phy_size)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Max 64 dummy clock cycles supported */
 | |
| 	if (op->dummy.buswidth &&
 | |
| 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Max data length, check controller limits and alignment */
 | |
| 	if (op->data.dir == SPI_MEM_DATA_IN &&
 | |
| 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 | |
| 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 | |
| 	      !IS_ALIGNED(op->data.nbytes, 8))))
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->data.dir == SPI_MEM_DATA_OUT &&
 | |
| 	    op->data.nbytes > f->devtype_data->txfifo)
 | |
| 		return false;
 | |
| 
 | |
| 	return spi_mem_default_supports_op(mem, op);
 | |
| }
 | |
| 
 | |
| /* Instead of busy looping invoke readl_poll_timeout functionality. */
 | |
| static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 | |
| 				u32 mask, u32 delay_us,
 | |
| 				u32 timeout_us, bool c)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (!f->devtype_data->little_endian)
 | |
| 		mask = (u32)cpu_to_be32(mask);
 | |
| 
 | |
| 	if (c)
 | |
| 		return readl_poll_timeout(base, reg, (reg & mask),
 | |
| 					  delay_us, timeout_us);
 | |
| 	else
 | |
| 		return readl_poll_timeout(base, reg, !(reg & mask),
 | |
| 					  delay_us, timeout_us);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the target device content being changed by Write/Erase, need to
 | |
|  * invalidate the AHB buffer. This can be achieved by doing the reset
 | |
|  * of controller after setting MCR0[SWRESET] bit.
 | |
|  */
 | |
| static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	int ret;
 | |
| 
 | |
| 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 | |
| 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 | |
| 
 | |
| 	/* w1c register, wait unit clear */
 | |
| 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 | |
| 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 | |
| 	WARN_ON(ret);
 | |
| }
 | |
| 
 | |
| static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 | |
| 				 const struct spi_mem_op *op)
 | |
| {
 | |
| 	void __iomem *base = f->iobase;
 | |
| 	u32 lutval[4] = {};
 | |
| 	int lutidx = 1, i;
 | |
| 	u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4;
 | |
| 	u32 target_lut_reg;
 | |
| 
 | |
| 	/* cmd */
 | |
| 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 | |
| 			     op->cmd.opcode);
 | |
| 
 | |
| 	/* addr bytes */
 | |
| 	if (op->addr.nbytes) {
 | |
| 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 | |
| 					      LUT_PAD(op->addr.buswidth),
 | |
| 					      op->addr.nbytes * 8);
 | |
| 		lutidx++;
 | |
| 	}
 | |
| 
 | |
| 	/* dummy bytes, if needed */
 | |
| 	if (op->dummy.nbytes) {
 | |
| 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 | |
| 		/*
 | |
| 		 * Due to FlexSPI controller limitation number of PAD for dummy
 | |
| 		 * buswidth needs to be programmed as equal to data buswidth.
 | |
| 		 */
 | |
| 					      LUT_PAD(op->data.buswidth),
 | |
| 					      op->dummy.nbytes * 8 /
 | |
| 					      op->dummy.buswidth);
 | |
| 		lutidx++;
 | |
| 	}
 | |
| 
 | |
| 	/* read/write data bytes */
 | |
| 	if (op->data.nbytes) {
 | |
| 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
 | |
| 					      op->data.dir == SPI_MEM_DATA_IN ?
 | |
| 					      LUT_NXP_READ : LUT_NXP_WRITE,
 | |
| 					      LUT_PAD(op->data.buswidth),
 | |
| 					      0);
 | |
| 		lutidx++;
 | |
| 	}
 | |
| 
 | |
| 	/* stop condition. */
 | |
| 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 | |
| 
 | |
| 	/* unlock LUT */
 | |
| 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 | |
| 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 | |
| 
 | |
| 	/* fill LUT */
 | |
| 	for (i = 0; i < ARRAY_SIZE(lutval); i++) {
 | |
| 		target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4;
 | |
| 		fspi_writel(f, lutval[i], base + target_lut_reg);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
 | |
| 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
 | |
| 
 | |
| 	/* lock LUT */
 | |
| 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 | |
| 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (is_acpi_node(dev_fwnode(f->dev)))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = clk_prepare_enable(f->clk_en);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = clk_prepare_enable(f->clk);
 | |
| 	if (ret) {
 | |
| 		clk_disable_unprepare(f->clk_en);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 | |
| {
 | |
| 	if (is_acpi_node(dev_fwnode(f->dev)))
 | |
| 		return 0;
 | |
| 
 | |
| 	clk_disable_unprepare(f->clk);
 | |
| 	clk_disable_unprepare(f->clk_en);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
 | |
| 	fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
 | |
| 	fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
 | |
| 	fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
 | |
| 	fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable the DLL calibration mode.
 | |
| 	 * The delay target for slave delay line is:
 | |
| 	 *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
 | |
| 	 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
 | |
| 	 * means half of clock cycle of reference clock.
 | |
| 	 */
 | |
| 	fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
 | |
| 		    f->iobase + FSPI_DLLACR);
 | |
| 	fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
 | |
| 		    f->iobase + FSPI_DLLBCR);
 | |
| 
 | |
| 	/* Wait to get REF/SLV lock */
 | |
| 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
 | |
| 				   0, POLL_TOUT, true);
 | |
| 	if (ret)
 | |
| 		dev_warn(f->dev, "DLL lock failed, please fix it!\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 | |
|  * register and start base address of the target device.
 | |
|  *
 | |
|  *							    (Higher address)
 | |
|  *				--------    <-- FLSHB2CR0
 | |
|  *				|  B2  |
 | |
|  *				|      |
 | |
|  *	B2 start address -->	--------    <-- FLSHB1CR0
 | |
|  *				|  B1  |
 | |
|  *				|      |
 | |
|  *	B1 start address -->	--------    <-- FLSHA2CR0
 | |
|  *				|  A2  |
 | |
|  *				|      |
 | |
|  *	A2 start address -->	--------    <-- FLSHA1CR0
 | |
|  *				|  A1  |
 | |
|  *				|      |
 | |
|  *	A1 start address -->	--------		    (Lower address)
 | |
|  *
 | |
|  *
 | |
|  * Start base address defines the starting address range for given CS and
 | |
|  * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
 | |
|  *
 | |
|  * But, different targets are having different combinations of number of CS,
 | |
|  * some targets only have single CS or two CS covering controller's full
 | |
|  * memory mapped space area.
 | |
|  * Thus, implementation is being done as independent of the size and number
 | |
|  * of the connected target device.
 | |
|  * Assign controller memory mapped space size as the size to the connected
 | |
|  * target device.
 | |
|  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 | |
|  * chip-select Flash configuration register.
 | |
|  *
 | |
|  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 | |
|  * memory mapped size of the controller.
 | |
|  * Value for rest of the CS FLSHxxCR0 register would be zero.
 | |
|  *
 | |
|  */
 | |
| static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi,
 | |
| 				const struct spi_mem_op *op)
 | |
| {
 | |
| 	unsigned long rate = op->max_freq;
 | |
| 	int ret;
 | |
| 	uint64_t size_kb;
 | |
| 
 | |
| 	/*
 | |
| 	 * Return, if previously selected target device is same as current
 | |
| 	 * requested target device.
 | |
| 	 */
 | |
| 	if (f->selected == spi_get_chipselect(spi, 0))
 | |
| 		return;
 | |
| 
 | |
| 	/* Reset FLSHxxCR0 registers */
 | |
| 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 | |
| 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 | |
| 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 | |
| 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 | |
| 
 | |
| 	/* Assign controller memory mapped space as size, KBytes, of flash. */
 | |
| 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 | |
| 
 | |
| 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 | |
| 		    4 * spi_get_chipselect(spi, 0));
 | |
| 
 | |
| 	dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
 | |
| 
 | |
| 	nxp_fspi_clk_disable_unprep(f);
 | |
| 
 | |
| 	ret = clk_set_rate(f->clk, rate);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	ret = nxp_fspi_clk_prep_enable(f);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If clock rate > 100MHz, then switch from DLL override mode to
 | |
| 	 * DLL calibration mode.
 | |
| 	 */
 | |
| 	if (rate > 100000000)
 | |
| 		nxp_fspi_dll_calibration(f);
 | |
| 
 | |
| 	f->selected = spi_get_chipselect(spi, 0);
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 | |
| {
 | |
| 	u32 start = op->addr.val;
 | |
| 	u32 len = op->data.nbytes;
 | |
| 
 | |
| 	/* if necessary, ioremap before AHB read */
 | |
| 	if ((!f->ahb_addr) || start < f->memmap_start ||
 | |
| 	     start + len > f->memmap_start + f->memmap_len) {
 | |
| 		if (f->ahb_addr)
 | |
| 			iounmap(f->ahb_addr);
 | |
| 
 | |
| 		f->memmap_start = start;
 | |
| 		f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP);
 | |
| 
 | |
| 		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
 | |
| 					 f->memmap_len);
 | |
| 
 | |
| 		if (!f->ahb_addr) {
 | |
| 			dev_err(f->dev, "failed to alloc memory\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Read out the data directly from the AHB buffer. */
 | |
| 	memcpy_fromio(op->data.buf.in,
 | |
| 		      f->ahb_addr + start - f->memmap_start, len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 | |
| 				 const struct spi_mem_op *op)
 | |
| {
 | |
| 	void __iomem *base = f->iobase;
 | |
| 	int i, ret;
 | |
| 	u8 *buf = (u8 *) op->data.buf.out;
 | |
| 
 | |
| 	/* clear the TX FIFO. */
 | |
| 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Default value of water mark level is 8 bytes, hence in single
 | |
| 	 * write request controller can write max 8 bytes of data.
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 | |
| 		/* Wait for TXFIFO empty */
 | |
| 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 | |
| 					   FSPI_INTR_IPTXWE, 0,
 | |
| 					   POLL_TOUT, true);
 | |
| 		WARN_ON(ret);
 | |
| 
 | |
| 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 | |
| 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 | |
| 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 | |
| 	}
 | |
| 
 | |
| 	if (i < op->data.nbytes) {
 | |
| 		u32 data = 0;
 | |
| 		int j;
 | |
| 		int remaining = op->data.nbytes - i;
 | |
| 		/* Wait for TXFIFO empty */
 | |
| 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 | |
| 					   FSPI_INTR_IPTXWE, 0,
 | |
| 					   POLL_TOUT, true);
 | |
| 		WARN_ON(ret);
 | |
| 
 | |
| 		for (j = 0; j < ALIGN(remaining, 4); j += 4) {
 | |
| 			memcpy(&data, buf + i + j, min_t(int, 4, remaining - j));
 | |
| 			fspi_writel(f, data, base + FSPI_TFDR + j);
 | |
| 		}
 | |
| 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 | |
| 			  const struct spi_mem_op *op)
 | |
| {
 | |
| 	void __iomem *base = f->iobase;
 | |
| 	int i, ret;
 | |
| 	int len = op->data.nbytes;
 | |
| 	u8 *buf = (u8 *) op->data.buf.in;
 | |
| 
 | |
| 	/*
 | |
| 	 * Default value of water mark level is 8 bytes, hence in single
 | |
| 	 * read request controller can read max 8 bytes of data.
 | |
| 	 */
 | |
| 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 | |
| 		/* Wait for RXFIFO available */
 | |
| 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 | |
| 					   FSPI_INTR_IPRXWA, 0,
 | |
| 					   POLL_TOUT, true);
 | |
| 		WARN_ON(ret);
 | |
| 
 | |
| 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 | |
| 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 | |
| 		/* move the FIFO pointer */
 | |
| 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 | |
| 	}
 | |
| 
 | |
| 	if (i < len) {
 | |
| 		u32 tmp;
 | |
| 		int size, j;
 | |
| 
 | |
| 		buf = op->data.buf.in + i;
 | |
| 		/* Wait for RXFIFO available */
 | |
| 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 | |
| 					   FSPI_INTR_IPRXWA, 0,
 | |
| 					   POLL_TOUT, true);
 | |
| 		WARN_ON(ret);
 | |
| 
 | |
| 		len = op->data.nbytes - i;
 | |
| 		for (j = 0; j < op->data.nbytes - i; j += 4) {
 | |
| 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
 | |
| 			size = min(len, 4);
 | |
| 			memcpy(buf + j, &tmp, size);
 | |
| 			len -= size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* invalid the RXFIFO */
 | |
| 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 | |
| 	/* move the FIFO pointer */
 | |
| 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 | |
| {
 | |
| 	void __iomem *base = f->iobase;
 | |
| 	int seqnum = 0;
 | |
| 	int err = 0;
 | |
| 	u32 reg, seqid_lut;
 | |
| 
 | |
| 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
 | |
| 	/* invalid RXFIFO first */
 | |
| 	reg &= ~FSPI_IPRXFCR_DMA_EN;
 | |
| 	reg = reg | FSPI_IPRXFCR_CLR;
 | |
| 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
 | |
| 
 | |
| 	init_completion(&f->c);
 | |
| 
 | |
| 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 | |
| 	/*
 | |
| 	 * Always start the sequence at the same index since we update
 | |
| 	 * the LUT at each exec_op() call. And also specify the DATA
 | |
| 	 * length, since it's has not been specified in the LUT.
 | |
| 	 */
 | |
| 	seqid_lut = f->devtype_data->lut_num - 1;
 | |
| 	fspi_writel(f, op->data.nbytes |
 | |
| 		 (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) |
 | |
| 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 | |
| 		 base + FSPI_IPCR1);
 | |
| 
 | |
| 	/* Trigger the LUT now. */
 | |
| 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 | |
| 
 | |
| 	/* Wait for the interrupt. */
 | |
| 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 | |
| 		err = -ETIMEDOUT;
 | |
| 
 | |
| 	/* Invoke IP data read, if request is of data read. */
 | |
| 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 | |
| 		nxp_fspi_read_rxfifo(f, op);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 | |
| {
 | |
| 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&f->lock);
 | |
| 
 | |
| 	/* Wait for controller being ready. */
 | |
| 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 | |
| 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 | |
| 	WARN_ON(err);
 | |
| 
 | |
| 	nxp_fspi_select_mem(f, mem->spi, op);
 | |
| 
 | |
| 	nxp_fspi_prepare_lut(f, op);
 | |
| 	/*
 | |
| 	 * If we have large chunks of data, we read them through the AHB bus by
 | |
| 	 * accessing the mapped memory. In all other cases we use IP commands
 | |
| 	 * to access the flash. Read via AHB bus may be corrupted due to
 | |
| 	 * existence of an errata and therefore discard AHB read in such cases.
 | |
| 	 */
 | |
| 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 | |
| 	    op->data.dir == SPI_MEM_DATA_IN &&
 | |
| 	    !needs_ip_only(f)) {
 | |
| 		err = nxp_fspi_read_ahb(f, op);
 | |
| 	} else {
 | |
| 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 | |
| 			nxp_fspi_fill_txfifo(f, op);
 | |
| 
 | |
| 		err = nxp_fspi_do_op(f, op);
 | |
| 	}
 | |
| 
 | |
| 	/* Invalidate the data in the AHB buffer. */
 | |
| 	nxp_fspi_invalid(f);
 | |
| 
 | |
| 	mutex_unlock(&f->lock);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 | |
| {
 | |
| 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 | |
| 
 | |
| 	if (op->data.dir == SPI_MEM_DATA_OUT) {
 | |
| 		if (op->data.nbytes > f->devtype_data->txfifo)
 | |
| 			op->data.nbytes = f->devtype_data->txfifo;
 | |
| 	} else {
 | |
| 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 | |
| 			op->data.nbytes = f->devtype_data->ahb_buf_size;
 | |
| 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 | |
| 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 | |
| 	}
 | |
| 
 | |
| 	/* Limit data bytes to RX FIFO in case of IP read only */
 | |
| 	if (op->data.dir == SPI_MEM_DATA_IN &&
 | |
| 	    needs_ip_only(f) &&
 | |
| 	    op->data.nbytes > f->devtype_data->rxfifo)
 | |
| 		op->data.nbytes = f->devtype_data->rxfifo;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void erratum_err050568(struct nxp_fspi *f)
 | |
| {
 | |
| 	static const struct soc_device_attribute ls1028a_soc_attr[] = {
 | |
| 		{ .family = "QorIQ LS1028A" },
 | |
| 		{ /* sentinel */ }
 | |
| 	};
 | |
| 	struct regmap *map;
 | |
| 	u32 val, sys_pll_ratio;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Check for LS1028A family */
 | |
| 	if (!soc_device_match(ls1028a_soc_attr)) {
 | |
| 		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
 | |
| 	if (IS_ERR(map)) {
 | |
| 		dev_err(f->dev, "No syscon regmap\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	ret = regmap_read(map, DCFG_RCWSR1, &val);
 | |
| 	if (ret < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
 | |
| 	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
 | |
| 
 | |
| 	/* Use IP bus only if platform clock is 300MHz */
 | |
| 	if (sys_pll_ratio == 3)
 | |
| 		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| err:
 | |
| 	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_default_setup(struct nxp_fspi *f)
 | |
| {
 | |
| 	void __iomem *base = f->iobase;
 | |
| 	int ret, i;
 | |
| 	u32 reg, seqid_lut;
 | |
| 
 | |
| 	/* disable and unprepare clock to avoid glitch pass to controller */
 | |
| 	nxp_fspi_clk_disable_unprep(f);
 | |
| 
 | |
| 	/* the default frequency, we will change it later if necessary. */
 | |
| 	ret = clk_set_rate(f->clk, 20000000);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = nxp_fspi_clk_prep_enable(f);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * ERR050568: Flash access by FlexSPI AHB command may not work with
 | |
| 	 * platform frequency equal to 300 MHz on LS1028A.
 | |
| 	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
 | |
| 	 * Layerscape LS1028A platform.
 | |
| 	 */
 | |
| 	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
 | |
| 		erratum_err050568(f);
 | |
| 
 | |
| 	/* Reset the module */
 | |
| 	/* w1c register, wait unit clear */
 | |
| 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 | |
| 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 | |
| 	WARN_ON(ret);
 | |
| 
 | |
| 	/* Disable the module */
 | |
| 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Config the DLL register to default value, enable the target clock delay
 | |
| 	 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
 | |
| 	 * chain, this is the suggested setting when clock rate < 100MHz.
 | |
| 	 */
 | |
| 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
 | |
| 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
 | |
| 
 | |
| 	/* enable module */
 | |
| 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
 | |
| 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
 | |
| 		    base + FSPI_MCR0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable same device enable bit and configure all target devices
 | |
| 	 * independently.
 | |
| 	 */
 | |
| 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
 | |
| 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
 | |
| 	fspi_writel(f, reg, base + FSPI_MCR2);
 | |
| 
 | |
| 	/* AHB configuration for access buffer 0~7. */
 | |
| 	for (i = 0; i < 7; i++)
 | |
| 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
 | |
| 	 * performance.
 | |
| 	 */
 | |
| 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
 | |
| 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
 | |
| 
 | |
| 	/* prefetch and no start address alignment limitation */
 | |
| 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
 | |
| 		 base + FSPI_AHBCR);
 | |
| 
 | |
| 	/* Reset the FLSHxCR1 registers. */
 | |
| 	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
 | |
| 	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
 | |
| 	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
 | |
| 	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
 | |
| 	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
 | |
| 
 | |
| 	/*
 | |
| 	 * The driver only uses one single LUT entry, that is updated on
 | |
| 	 * each call of exec_op(). Index 0 is preset at boot with a basic
 | |
| 	 * read operation, so let's use the last entry.
 | |
| 	 */
 | |
| 	seqid_lut = f->devtype_data->lut_num - 1;
 | |
| 	/* AHB Read - Set lut sequence ID for all CS. */
 | |
| 	fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2);
 | |
| 	fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2);
 | |
| 	fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2);
 | |
| 	fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2);
 | |
| 
 | |
| 	f->selected = -1;
 | |
| 
 | |
| 	/* enable the interrupt */
 | |
| 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const char *nxp_fspi_get_name(struct spi_mem *mem)
 | |
| {
 | |
| 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 | |
| 	struct device *dev = &mem->spi->dev;
 | |
| 	const char *name;
 | |
| 
 | |
| 	// Set custom name derived from the platform_device of the controller.
 | |
| 	if (of_get_available_child_count(f->dev->of_node) == 1)
 | |
| 		return dev_name(f->dev);
 | |
| 
 | |
| 	name = devm_kasprintf(dev, GFP_KERNEL,
 | |
| 			      "%s-%d", dev_name(f->dev),
 | |
| 			      spi_get_chipselect(mem->spi, 0));
 | |
| 
 | |
| 	if (!name) {
 | |
| 		dev_err(dev, "failed to get memory for custom flash name\n");
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
 | |
| 	.adjust_op_size = nxp_fspi_adjust_op_size,
 | |
| 	.supports_op = nxp_fspi_supports_op,
 | |
| 	.exec_op = nxp_fspi_exec_op,
 | |
| 	.get_name = nxp_fspi_get_name,
 | |
| };
 | |
| 
 | |
| static const struct spi_controller_mem_caps nxp_fspi_mem_caps = {
 | |
| 	.per_op_freq = true,
 | |
| };
 | |
| 
 | |
| static int nxp_fspi_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct spi_controller *ctlr;
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct device_node *np = dev->of_node;
 | |
| 	struct resource *res;
 | |
| 	struct nxp_fspi *f;
 | |
| 	int ret;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	ctlr = spi_alloc_host(&pdev->dev, sizeof(*f));
 | |
| 	if (!ctlr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
 | |
| 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
 | |
| 
 | |
| 	f = spi_controller_get_devdata(ctlr);
 | |
| 	f->dev = dev;
 | |
| 	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
 | |
| 	if (!f->devtype_data) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto err_put_ctrl;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, f);
 | |
| 
 | |
| 	/* find the resources - configuration register address space */
 | |
| 	if (is_acpi_node(dev_fwnode(f->dev)))
 | |
| 		f->iobase = devm_platform_ioremap_resource(pdev, 0);
 | |
| 	else
 | |
| 		f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
 | |
| 
 | |
| 	if (IS_ERR(f->iobase)) {
 | |
| 		ret = PTR_ERR(f->iobase);
 | |
| 		goto err_put_ctrl;
 | |
| 	}
 | |
| 
 | |
| 	/* find the resources - controller memory mapped space */
 | |
| 	if (is_acpi_node(dev_fwnode(f->dev)))
 | |
| 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 | |
| 	else
 | |
| 		res = platform_get_resource_byname(pdev,
 | |
| 				IORESOURCE_MEM, "fspi_mmap");
 | |
| 
 | |
| 	if (!res) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto err_put_ctrl;
 | |
| 	}
 | |
| 
 | |
| 	/* assign memory mapped starting address and mapped size. */
 | |
| 	f->memmap_phy = res->start;
 | |
| 	f->memmap_phy_size = resource_size(res);
 | |
| 
 | |
| 	/* find the clocks */
 | |
| 	if (dev_of_node(&pdev->dev)) {
 | |
| 		f->clk_en = devm_clk_get(dev, "fspi_en");
 | |
| 		if (IS_ERR(f->clk_en)) {
 | |
| 			ret = PTR_ERR(f->clk_en);
 | |
| 			goto err_put_ctrl;
 | |
| 		}
 | |
| 
 | |
| 		f->clk = devm_clk_get(dev, "fspi");
 | |
| 		if (IS_ERR(f->clk)) {
 | |
| 			ret = PTR_ERR(f->clk);
 | |
| 			goto err_put_ctrl;
 | |
| 		}
 | |
| 
 | |
| 		ret = nxp_fspi_clk_prep_enable(f);
 | |
| 		if (ret) {
 | |
| 			dev_err(dev, "can not enable the clock\n");
 | |
| 			goto err_put_ctrl;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Clear potential interrupts */
 | |
| 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
 | |
| 	if (reg)
 | |
| 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
 | |
| 
 | |
| 	/* find the irq */
 | |
| 	ret = platform_get_irq(pdev, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto err_disable_clk;
 | |
| 
 | |
| 	ret = devm_request_irq(dev, ret,
 | |
| 			nxp_fspi_irq_handler, 0, pdev->name, f);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to request irq: %d\n", ret);
 | |
| 		goto err_disable_clk;
 | |
| 	}
 | |
| 
 | |
| 	mutex_init(&f->lock);
 | |
| 
 | |
| 	ctlr->bus_num = -1;
 | |
| 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
 | |
| 	ctlr->mem_ops = &nxp_fspi_mem_ops;
 | |
| 	ctlr->mem_caps = &nxp_fspi_mem_caps;
 | |
| 
 | |
| 	nxp_fspi_default_setup(f);
 | |
| 
 | |
| 	ctlr->dev.of_node = np;
 | |
| 
 | |
| 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
 | |
| 	if (ret)
 | |
| 		goto err_destroy_mutex;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_destroy_mutex:
 | |
| 	mutex_destroy(&f->lock);
 | |
| 
 | |
| err_disable_clk:
 | |
| 	nxp_fspi_clk_disable_unprep(f);
 | |
| 
 | |
| err_put_ctrl:
 | |
| 	spi_controller_put(ctlr);
 | |
| 
 | |
| 	dev_err(dev, "NXP FSPI probe failed\n");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void nxp_fspi_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct nxp_fspi *f = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	/* disable the hardware */
 | |
| 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
 | |
| 
 | |
| 	nxp_fspi_clk_disable_unprep(f);
 | |
| 
 | |
| 	mutex_destroy(&f->lock);
 | |
| 
 | |
| 	if (f->ahb_addr)
 | |
| 		iounmap(f->ahb_addr);
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_suspend(struct device *dev)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nxp_fspi_resume(struct device *dev)
 | |
| {
 | |
| 	struct nxp_fspi *f = dev_get_drvdata(dev);
 | |
| 
 | |
| 	nxp_fspi_default_setup(f);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id nxp_fspi_dt_ids[] = {
 | |
| 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
 | |
| 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
 | |
| 	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
 | |
| 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
 | |
| 	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
 | |
| 	{ .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, },
 | |
| 	{ /* sentinel */ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
 | |
| 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
 | |
| #endif
 | |
| 
 | |
| static const struct dev_pm_ops nxp_fspi_pm_ops = {
 | |
| 	.suspend	= nxp_fspi_suspend,
 | |
| 	.resume		= nxp_fspi_resume,
 | |
| };
 | |
| 
 | |
| static struct platform_driver nxp_fspi_driver = {
 | |
| 	.driver = {
 | |
| 		.name	= "nxp-fspi",
 | |
| 		.of_match_table = nxp_fspi_dt_ids,
 | |
| 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
 | |
| 		.pm =   &nxp_fspi_pm_ops,
 | |
| 	},
 | |
| 	.probe          = nxp_fspi_probe,
 | |
| 	.remove		= nxp_fspi_remove,
 | |
| };
 | |
| module_platform_driver(nxp_fspi_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("NXP FSPI Controller Driver");
 | |
| MODULE_AUTHOR("NXP Semiconductor");
 | |
| MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
 | |
| MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
 | |
| MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
 | |
| MODULE_LICENSE("GPL v2");
 |