forked from mirrors/linux
		
	 68ea3c2ae0
			
		
	
	
		68ea3c2ae0
		
	
	
	
	
		
			
			Following the standardization on crc32c() as the lib entry point for the Castagnoli CRC32 instead of the previous mix of crc32c(), crc32c_le(), and __crc32c_le(), make the same change to the underlying base and arch functions that implement it. Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20250208024911.14936-7-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
		
			
				
	
	
		
			134 lines
		
	
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
 | |
|  * cleaned up code to current version of sparse and added the slicing-by-8
 | |
|  * algorithm to the closely similar existing slicing-by-4 algorithm.
 | |
|  *
 | |
|  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
 | |
|  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
 | |
|  * Code was from the public domain, copyright abandoned.  Code was
 | |
|  * subsequently included in the kernel, thus was re-licensed under the
 | |
|  * GNU GPL v2.
 | |
|  *
 | |
|  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
 | |
|  * Same crc32 function was used in 5 other places in the kernel.
 | |
|  * I made one version, and deleted the others.
 | |
|  * There are various incantations of crc32().  Some use a seed of 0 or ~0.
 | |
|  * Some xor at the end with ~0.  The generic crc32() function takes
 | |
|  * seed as an argument, and doesn't xor at the end.  Then individual
 | |
|  * users can do whatever they need.
 | |
|  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
 | |
|  *   fs/jffs2 uses seed 0, doesn't xor with ~0.
 | |
|  *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
 | |
|  *
 | |
|  * This source code is licensed under the GNU General Public License,
 | |
|  * Version 2.  See the file COPYING for more details.
 | |
|  */
 | |
| 
 | |
| /* see: Documentation/staging/crc32.rst for a description of algorithms */
 | |
| 
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/crc32poly.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| #include "crc32table.h"
 | |
| 
 | |
| MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
 | |
| MODULE_DESCRIPTION("Various CRC32 calculations");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| u32 crc32_le_base(u32 crc, const u8 *p, size_t len)
 | |
| {
 | |
| 	while (len--)
 | |
| 		crc = (crc >> 8) ^ crc32table_le[(crc & 255) ^ *p++];
 | |
| 	return crc;
 | |
| }
 | |
| EXPORT_SYMBOL(crc32_le_base);
 | |
| 
 | |
| u32 crc32c_base(u32 crc, const u8 *p, size_t len)
 | |
| {
 | |
| 	while (len--)
 | |
| 		crc = (crc >> 8) ^ crc32ctable_le[(crc & 255) ^ *p++];
 | |
| 	return crc;
 | |
| }
 | |
| EXPORT_SYMBOL(crc32c_base);
 | |
| 
 | |
| /*
 | |
|  * This multiplies the polynomials x and y modulo the given modulus.
 | |
|  * This follows the "little-endian" CRC convention that the lsbit
 | |
|  * represents the highest power of x, and the msbit represents x^0.
 | |
|  */
 | |
| static u32 gf2_multiply(u32 x, u32 y, u32 modulus)
 | |
| {
 | |
| 	u32 product = x & 1 ? y : 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 31; i++) {
 | |
| 		product = (product >> 1) ^ (product & 1 ? modulus : 0);
 | |
| 		x >>= 1;
 | |
| 		product ^= x & 1 ? y : 0;
 | |
| 	}
 | |
| 
 | |
| 	return product;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
 | |
|  * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
 | |
|  * @len: The number of bytes. @crc is multiplied by x^(8*@len)
 | |
|  * @polynomial: The modulus used to reduce the result to 32 bits.
 | |
|  *
 | |
|  * It's possible to parallelize CRC computations by computing a CRC
 | |
|  * over separate ranges of a buffer, then summing them.
 | |
|  * This shifts the given CRC by 8*len bits (i.e. produces the same effect
 | |
|  * as appending len bytes of zero to the data), in time proportional
 | |
|  * to log(len).
 | |
|  */
 | |
| static u32 crc32_generic_shift(u32 crc, size_t len, u32 polynomial)
 | |
| {
 | |
| 	u32 power = polynomial;	/* CRC of x^32 */
 | |
| 	int i;
 | |
| 
 | |
| 	/* Shift up to 32 bits in the simple linear way */
 | |
| 	for (i = 0; i < 8 * (int)(len & 3); i++)
 | |
| 		crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
 | |
| 
 | |
| 	len >>= 2;
 | |
| 	if (!len)
 | |
| 		return crc;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/* "power" is x^(2^i), modulo the polynomial */
 | |
| 		if (len & 1)
 | |
| 			crc = gf2_multiply(crc, power, polynomial);
 | |
| 
 | |
| 		len >>= 1;
 | |
| 		if (!len)
 | |
| 			break;
 | |
| 
 | |
| 		/* Square power, advancing to x^(2^(i+1)) */
 | |
| 		power = gf2_multiply(power, power, polynomial);
 | |
| 	}
 | |
| 
 | |
| 	return crc;
 | |
| }
 | |
| 
 | |
| u32 crc32_le_shift(u32 crc, size_t len)
 | |
| {
 | |
| 	return crc32_generic_shift(crc, len, CRC32_POLY_LE);
 | |
| }
 | |
| EXPORT_SYMBOL(crc32_le_shift);
 | |
| 
 | |
| u32 crc32c_shift(u32 crc, size_t len)
 | |
| {
 | |
| 	return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
 | |
| }
 | |
| EXPORT_SYMBOL(crc32c_shift);
 | |
| 
 | |
| u32 crc32_be_base(u32 crc, const u8 *p, size_t len)
 | |
| {
 | |
| 	while (len--)
 | |
| 		crc = (crc << 8) ^ crc32table_be[(crc >> 24) ^ *p++];
 | |
| 	return crc;
 | |
| }
 | |
| EXPORT_SYMBOL(crc32_be_base);
 |