forked from mirrors/linux
		
	 3f12680913
			
		
	
	
		3f12680913
		
	
	
	
	
		
			
			acpi_parse_cfmws() currently adds empty CFMWS ranges to numa_meminfo with the expectation that numa_cleanup_meminfo moves them to numa_reserved_meminfo. There is no need for that indirection when it is known in advance that these unpopulated ranges are meant for numa_reserved_meminfo in support of future hotplug / CXL provisioning. Introduce and use numa_add_reserved_memblk() to add the empty CFMWS ranges directly. Link: https://lkml.kernel.org/r/20250508022719.3941335-1-wangyuquan1236@phytium.com.cn Signed-off-by: Yuquan Wang <wangyuquan1236@phytium.com.cn> Reviewed-by: Alison Schofield <alison.schofield@intel.com> Cc: Bruno Faccini <bfaccini@nvidia.com> Cc: Chen Baozi <chenbaozi@phytium.com.cn> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Haibo Xu <haibo1.xu@intel.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Joanthan Cameron <Jonathan.Cameron@huawei.com> Cc: Len Brown <lenb@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Robert Richter <rrichter@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			593 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			593 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| 
 | |
| #include <linux/array_size.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/printk.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/numa.h>
 | |
| #include <linux/numa_memblks.h>
 | |
| 
 | |
| int numa_distance_cnt;
 | |
| static u8 *numa_distance;
 | |
| 
 | |
| nodemask_t numa_nodes_parsed __initdata;
 | |
| 
 | |
| static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
 | |
| static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
 | |
| 
 | |
| /*
 | |
|  * Set nodes, which have memory in @mi, in *@nodemask.
 | |
|  */
 | |
| static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
 | |
| 					      const struct numa_meminfo *mi)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
 | |
| 		if (mi->blk[i].start != mi->blk[i].end &&
 | |
| 		    mi->blk[i].nid != NUMA_NO_NODE)
 | |
| 			node_set(mi->blk[i].nid, *nodemask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_reset_distance - Reset NUMA distance table
 | |
|  *
 | |
|  * The current table is freed.  The next numa_set_distance() call will
 | |
|  * create a new one.
 | |
|  */
 | |
| void __init numa_reset_distance(void)
 | |
| {
 | |
| 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
 | |
| 
 | |
| 	/* numa_distance could be 1LU marking allocation failure, test cnt */
 | |
| 	if (numa_distance_cnt)
 | |
| 		memblock_free(numa_distance, size);
 | |
| 	numa_distance_cnt = 0;
 | |
| 	numa_distance = NULL;	/* enable table creation */
 | |
| }
 | |
| 
 | |
| static int __init numa_alloc_distance(void)
 | |
| {
 | |
| 	nodemask_t nodes_parsed;
 | |
| 	size_t size;
 | |
| 	int i, j, cnt = 0;
 | |
| 
 | |
| 	/* size the new table and allocate it */
 | |
| 	nodes_parsed = numa_nodes_parsed;
 | |
| 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
 | |
| 
 | |
| 	for_each_node_mask(i, nodes_parsed)
 | |
| 		cnt = i;
 | |
| 	cnt++;
 | |
| 	size = cnt * cnt * sizeof(numa_distance[0]);
 | |
| 
 | |
| 	numa_distance = memblock_alloc(size, PAGE_SIZE);
 | |
| 	if (!numa_distance) {
 | |
| 		pr_warn("Warning: can't allocate distance table!\n");
 | |
| 		/* don't retry until explicitly reset */
 | |
| 		numa_distance = (void *)1LU;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	numa_distance_cnt = cnt;
 | |
| 
 | |
| 	/* fill with the default distances */
 | |
| 	for (i = 0; i < cnt; i++)
 | |
| 		for (j = 0; j < cnt; j++)
 | |
| 			numa_distance[i * cnt + j] = i == j ?
 | |
| 				LOCAL_DISTANCE : REMOTE_DISTANCE;
 | |
| 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_set_distance - Set NUMA distance from one NUMA to another
 | |
|  * @from: the 'from' node to set distance
 | |
|  * @to: the 'to'  node to set distance
 | |
|  * @distance: NUMA distance
 | |
|  *
 | |
|  * Set the distance from node @from to @to to @distance.  If distance table
 | |
|  * doesn't exist, one which is large enough to accommodate all the currently
 | |
|  * known nodes will be created.
 | |
|  *
 | |
|  * If such table cannot be allocated, a warning is printed and further
 | |
|  * calls are ignored until the distance table is reset with
 | |
|  * numa_reset_distance().
 | |
|  *
 | |
|  * If @from or @to is higher than the highest known node or lower than zero
 | |
|  * at the time of table creation or @distance doesn't make sense, the call
 | |
|  * is ignored.
 | |
|  * This is to allow simplification of specific NUMA config implementations.
 | |
|  */
 | |
| void __init numa_set_distance(int from, int to, int distance)
 | |
| {
 | |
| 	if (!numa_distance && numa_alloc_distance() < 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
 | |
| 			from < 0 || to < 0) {
 | |
| 		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
 | |
| 			     from, to, distance);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((u8)distance != distance ||
 | |
| 	    (from == to && distance != LOCAL_DISTANCE)) {
 | |
| 		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
 | |
| 			     from, to, distance);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	numa_distance[from * numa_distance_cnt + to] = distance;
 | |
| }
 | |
| 
 | |
| int __node_distance(int from, int to)
 | |
| {
 | |
| 	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
 | |
| 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
 | |
| 	return numa_distance[from * numa_distance_cnt + to];
 | |
| }
 | |
| EXPORT_SYMBOL(__node_distance);
 | |
| 
 | |
| static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
 | |
| 				     struct numa_meminfo *mi)
 | |
| {
 | |
| 	/* ignore zero length blks */
 | |
| 	if (start == end)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* whine about and ignore invalid blks */
 | |
| 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
 | |
| 		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
 | |
| 			nid, start, end - 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
 | |
| 		pr_err("too many memblk ranges\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mi->blk[mi->nr_blks].start = start;
 | |
| 	mi->blk[mi->nr_blks].end = end;
 | |
| 	mi->blk[mi->nr_blks].nid = nid;
 | |
| 	mi->nr_blks++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
 | |
|  * @idx: Index of memblk to remove
 | |
|  * @mi: numa_meminfo to remove memblk from
 | |
|  *
 | |
|  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
 | |
|  * decrementing @mi->nr_blks.
 | |
|  */
 | |
| void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
 | |
| {
 | |
| 	mi->nr_blks--;
 | |
| 	memmove(&mi->blk[idx], &mi->blk[idx + 1],
 | |
| 		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
 | |
|  * @dst: numa_meminfo to append block to
 | |
|  * @idx: Index of memblk to remove
 | |
|  * @src: numa_meminfo to remove memblk from
 | |
|  */
 | |
| static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
 | |
| 					 struct numa_meminfo *src)
 | |
| {
 | |
| 	dst->blk[dst->nr_blks++] = src->blk[idx];
 | |
| 	numa_remove_memblk_from(idx, src);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_add_memblk - Add one numa_memblk to numa_meminfo
 | |
|  * @nid: NUMA node ID of the new memblk
 | |
|  * @start: Start address of the new memblk
 | |
|  * @end: End address of the new memblk
 | |
|  *
 | |
|  * Add a new memblk to the default numa_meminfo.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init numa_add_memblk(int nid, u64 start, u64 end)
 | |
| {
 | |
| 	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_add_reserved_memblk - Add one numa_memblk to numa_reserved_meminfo
 | |
|  * @nid: NUMA node ID of the new memblk
 | |
|  * @start: Start address of the new memblk
 | |
|  * @end: End address of the new memblk
 | |
|  *
 | |
|  * Add a new memblk to the numa_reserved_meminfo.
 | |
|  *
 | |
|  * Usage Case: numa_cleanup_meminfo() reconciles all numa_memblk instances
 | |
|  * against memblock_type information and moves any that intersect reserved
 | |
|  * ranges to numa_reserved_meminfo. However, when that information is known
 | |
|  * ahead of time, we use numa_add_reserved_memblk() to add the numa_memblk
 | |
|  * to numa_reserved_meminfo directly.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init numa_add_reserved_memblk(int nid, u64 start, u64 end)
 | |
| {
 | |
| 	return numa_add_memblk_to(nid, start, end, &numa_reserved_meminfo);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_cleanup_meminfo - Cleanup a numa_meminfo
 | |
|  * @mi: numa_meminfo to clean up
 | |
|  *
 | |
|  * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
 | |
|  * conflicts and clear unused memblks.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
 | |
| {
 | |
| 	const u64 low = memblock_start_of_DRAM();
 | |
| 	const u64 high = memblock_end_of_DRAM();
 | |
| 	int i, j, k;
 | |
| 
 | |
| 	/* first, trim all entries */
 | |
| 	for (i = 0; i < mi->nr_blks; i++) {
 | |
| 		struct numa_memblk *bi = &mi->blk[i];
 | |
| 
 | |
| 		/* move / save reserved memory ranges */
 | |
| 		if (!memblock_overlaps_region(&memblock.memory,
 | |
| 					bi->start, bi->end - bi->start)) {
 | |
| 			numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure all non-reserved blocks are inside the limits */
 | |
| 		bi->start = max(bi->start, low);
 | |
| 
 | |
| 		/* preserve info for non-RAM areas above 'max_pfn': */
 | |
| 		if (bi->end > high) {
 | |
| 			numa_add_memblk_to(bi->nid, high, bi->end,
 | |
| 					   &numa_reserved_meminfo);
 | |
| 			bi->end = high;
 | |
| 		}
 | |
| 
 | |
| 		/* and there's no empty block */
 | |
| 		if (bi->start >= bi->end)
 | |
| 			numa_remove_memblk_from(i--, mi);
 | |
| 	}
 | |
| 
 | |
| 	/* merge neighboring / overlapping entries */
 | |
| 	for (i = 0; i < mi->nr_blks; i++) {
 | |
| 		struct numa_memblk *bi = &mi->blk[i];
 | |
| 
 | |
| 		for (j = i + 1; j < mi->nr_blks; j++) {
 | |
| 			struct numa_memblk *bj = &mi->blk[j];
 | |
| 			u64 start, end;
 | |
| 
 | |
| 			/*
 | |
| 			 * See whether there are overlapping blocks.  Whine
 | |
| 			 * about but allow overlaps of the same nid.  They
 | |
| 			 * will be merged below.
 | |
| 			 */
 | |
| 			if (bi->end > bj->start && bi->start < bj->end) {
 | |
| 				if (bi->nid != bj->nid) {
 | |
| 					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
 | |
| 					       bi->nid, bi->start, bi->end - 1,
 | |
| 					       bj->nid, bj->start, bj->end - 1);
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
 | |
| 					bi->nid, bi->start, bi->end - 1,
 | |
| 					bj->start, bj->end - 1);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Join together blocks on the same node, holes
 | |
| 			 * between which don't overlap with memory on other
 | |
| 			 * nodes.
 | |
| 			 */
 | |
| 			if (bi->nid != bj->nid)
 | |
| 				continue;
 | |
| 			start = min(bi->start, bj->start);
 | |
| 			end = max(bi->end, bj->end);
 | |
| 			for (k = 0; k < mi->nr_blks; k++) {
 | |
| 				struct numa_memblk *bk = &mi->blk[k];
 | |
| 
 | |
| 				if (bi->nid == bk->nid)
 | |
| 					continue;
 | |
| 				if (start < bk->end && end > bk->start)
 | |
| 					break;
 | |
| 			}
 | |
| 			if (k < mi->nr_blks)
 | |
| 				continue;
 | |
| 			pr_info("NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
 | |
| 			       bi->nid, bi->start, bi->end - 1, bj->start,
 | |
| 			       bj->end - 1, start, end - 1);
 | |
| 			bi->start = start;
 | |
| 			bi->end = end;
 | |
| 			numa_remove_memblk_from(j--, mi);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* clear unused ones */
 | |
| 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
 | |
| 		mi->blk[i].start = mi->blk[i].end = 0;
 | |
| 		mi->blk[i].nid = NUMA_NO_NODE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark all currently memblock-reserved physical memory (which covers the
 | |
|  * kernel's own memory ranges) as hot-unswappable.
 | |
|  */
 | |
| static void __init numa_clear_kernel_node_hotplug(void)
 | |
| {
 | |
| 	nodemask_t reserved_nodemask = NODE_MASK_NONE;
 | |
| 	struct memblock_region *mb_region;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to do some preprocessing of memblock regions, to
 | |
| 	 * make them suitable for reservation.
 | |
| 	 *
 | |
| 	 * At this time, all memory regions reserved by memblock are
 | |
| 	 * used by the kernel, but those regions are not split up
 | |
| 	 * along node boundaries yet, and don't necessarily have their
 | |
| 	 * node ID set yet either.
 | |
| 	 *
 | |
| 	 * So iterate over all parsed memory blocks and use those ranges to
 | |
| 	 * set the nid in memblock.reserved.  This will split up the
 | |
| 	 * memblock regions along node boundaries and will set the node IDs
 | |
| 	 * as well.
 | |
| 	 */
 | |
| 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
 | |
| 		struct numa_memblk *mb = numa_meminfo.blk + i;
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = memblock_set_node(mb->start, mb->end - mb->start,
 | |
| 					&memblock.reserved, mb->nid);
 | |
| 		WARN_ON_ONCE(ret);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now go over all reserved memblock regions, to construct a
 | |
| 	 * node mask of all kernel reserved memory areas.
 | |
| 	 *
 | |
| 	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
 | |
| 	 *   numa_meminfo might not include all memblock.reserved
 | |
| 	 *   memory ranges, because quirks such as trim_snb_memory()
 | |
| 	 *   reserve specific pages for Sandy Bridge graphics. ]
 | |
| 	 */
 | |
| 	for_each_reserved_mem_region(mb_region) {
 | |
| 		int nid = memblock_get_region_node(mb_region);
 | |
| 
 | |
| 		if (numa_valid_node(nid))
 | |
| 			node_set(nid, reserved_nodemask);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
 | |
| 	 * belonging to the reserved node mask.
 | |
| 	 *
 | |
| 	 * Note that this will include memory regions that reside
 | |
| 	 * on nodes that contain kernel memory - entire nodes
 | |
| 	 * become hot-unpluggable:
 | |
| 	 */
 | |
| 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
 | |
| 		struct numa_memblk *mb = numa_meminfo.blk + i;
 | |
| 
 | |
| 		if (!node_isset(mb->nid, reserved_nodemask))
 | |
| 			continue;
 | |
| 
 | |
| 		memblock_clear_hotplug(mb->start, mb->end - mb->start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init numa_register_meminfo(struct numa_meminfo *mi)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Account for nodes with cpus and no memory */
 | |
| 	node_possible_map = numa_nodes_parsed;
 | |
| 	numa_nodemask_from_meminfo(&node_possible_map, mi);
 | |
| 	if (WARN_ON(nodes_empty(node_possible_map)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = 0; i < mi->nr_blks; i++) {
 | |
| 		struct numa_memblk *mb = &mi->blk[i];
 | |
| 
 | |
| 		memblock_set_node(mb->start, mb->end - mb->start,
 | |
| 				  &memblock.memory, mb->nid);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At very early time, the kernel have to use some memory such as
 | |
| 	 * loading the kernel image. We cannot prevent this anyway. So any
 | |
| 	 * node the kernel resides in should be un-hotpluggable.
 | |
| 	 *
 | |
| 	 * And when we come here, alloc node data won't fail.
 | |
| 	 */
 | |
| 	numa_clear_kernel_node_hotplug();
 | |
| 
 | |
| 	/*
 | |
| 	 * If sections array is gonna be used for pfn -> nid mapping, check
 | |
| 	 * whether its granularity is fine enough.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
 | |
| 		unsigned long pfn_align = node_map_pfn_alignment();
 | |
| 
 | |
| 		if (pfn_align && pfn_align < PAGES_PER_SECTION) {
 | |
| 			unsigned long node_align_mb = PFN_PHYS(pfn_align) >> 20;
 | |
| 
 | |
| 			unsigned long sect_align_mb = PFN_PHYS(PAGES_PER_SECTION) >> 20;
 | |
| 
 | |
| 			pr_warn("Node alignment %luMB < min %luMB, rejecting NUMA config\n",
 | |
| 				node_align_mb, sect_align_mb);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init numa_memblks_init(int (*init_func)(void),
 | |
| 			     bool memblock_force_top_down)
 | |
| {
 | |
| 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
 | |
| 	int ret;
 | |
| 
 | |
| 	nodes_clear(numa_nodes_parsed);
 | |
| 	nodes_clear(node_possible_map);
 | |
| 	nodes_clear(node_online_map);
 | |
| 	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
 | |
| 	WARN_ON(memblock_set_node(0, max_addr, &memblock.memory, NUMA_NO_NODE));
 | |
| 	WARN_ON(memblock_set_node(0, max_addr, &memblock.reserved,
 | |
| 				  NUMA_NO_NODE));
 | |
| 	/* In case that parsing SRAT failed. */
 | |
| 	WARN_ON(memblock_clear_hotplug(0, max_addr));
 | |
| 	numa_reset_distance();
 | |
| 
 | |
| 	ret = init_func();
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We reset memblock back to the top-down direction
 | |
| 	 * here because if we configured ACPI_NUMA, we have
 | |
| 	 * parsed SRAT in init_func(). It is ok to have the
 | |
| 	 * reset here even if we did't configure ACPI_NUMA
 | |
| 	 * or acpi numa init fails and fallbacks to dummy
 | |
| 	 * numa init.
 | |
| 	 */
 | |
| 	if (memblock_force_top_down)
 | |
| 		memblock_set_bottom_up(false);
 | |
| 
 | |
| 	ret = numa_cleanup_meminfo(&numa_meminfo);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	numa_emulation(&numa_meminfo, numa_distance_cnt);
 | |
| 
 | |
| 	return numa_register_meminfo(&numa_meminfo);
 | |
| }
 | |
| 
 | |
| static int __init cmp_memblk(const void *a, const void *b)
 | |
| {
 | |
| 	const struct numa_memblk *ma = *(const struct numa_memblk **)a;
 | |
| 	const struct numa_memblk *mb = *(const struct numa_memblk **)b;
 | |
| 
 | |
| 	return (ma->start > mb->start) - (ma->start < mb->start);
 | |
| }
 | |
| 
 | |
| static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;
 | |
| 
 | |
| /**
 | |
|  * numa_fill_memblks - Fill gaps in numa_meminfo memblks
 | |
|  * @start: address to begin fill
 | |
|  * @end: address to end fill
 | |
|  *
 | |
|  * Find and extend numa_meminfo memblks to cover the physical
 | |
|  * address range @start-@end
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0		  : Success
 | |
|  * NUMA_NO_MEMBLK : No memblks exist in address range @start-@end
 | |
|  */
 | |
| 
 | |
| int __init numa_fill_memblks(u64 start, u64 end)
 | |
| {
 | |
| 	struct numa_memblk **blk = &numa_memblk_list[0];
 | |
| 	struct numa_meminfo *mi = &numa_meminfo;
 | |
| 	int count = 0;
 | |
| 	u64 prev_end;
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a list of pointers to numa_meminfo memblks that
 | |
| 	 * overlap start, end. The list is used to make in-place
 | |
| 	 * changes that fill out the numa_meminfo memblks.
 | |
| 	 */
 | |
| 	for (int i = 0; i < mi->nr_blks; i++) {
 | |
| 		struct numa_memblk *bi = &mi->blk[i];
 | |
| 
 | |
| 		if (memblock_addrs_overlap(start, end - start, bi->start,
 | |
| 					   bi->end - bi->start)) {
 | |
| 			blk[count] = &mi->blk[i];
 | |
| 			count++;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!count)
 | |
| 		return NUMA_NO_MEMBLK;
 | |
| 
 | |
| 	/* Sort the list of pointers in memblk->start order */
 | |
| 	sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);
 | |
| 
 | |
| 	/* Make sure the first/last memblks include start/end */
 | |
| 	blk[0]->start = min(blk[0]->start, start);
 | |
| 	blk[count - 1]->end = max(blk[count - 1]->end, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill any gaps by tracking the previous memblks
 | |
| 	 * end address and backfilling to it if needed.
 | |
| 	 */
 | |
| 	prev_end = blk[0]->end;
 | |
| 	for (int i = 1; i < count; i++) {
 | |
| 		struct numa_memblk *curr = blk[i];
 | |
| 
 | |
| 		if (prev_end >= curr->start) {
 | |
| 			if (prev_end < curr->end)
 | |
| 				prev_end = curr->end;
 | |
| 		} else {
 | |
| 			curr->start = prev_end;
 | |
| 			prev_end = curr->end;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_KEEP_MEMINFO
 | |
| static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < mi->nr_blks; i++)
 | |
| 		if (mi->blk[i].start <= start && mi->blk[i].end > start)
 | |
| 			return mi->blk[i].nid;
 | |
| 	return NUMA_NO_NODE;
 | |
| }
 | |
| 
 | |
| int phys_to_target_node(u64 start)
 | |
| {
 | |
| 	int nid = meminfo_to_nid(&numa_meminfo, start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Prefer online nodes, but if reserved memory might be
 | |
| 	 * hot-added continue the search with reserved ranges.
 | |
| 	 */
 | |
| 	if (nid != NUMA_NO_NODE)
 | |
| 		return nid;
 | |
| 
 | |
| 	return meminfo_to_nid(&numa_reserved_meminfo, start);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(phys_to_target_node);
 | |
| 
 | |
| int memory_add_physaddr_to_nid(u64 start)
 | |
| {
 | |
| 	int nid = meminfo_to_nid(&numa_meminfo, start);
 | |
| 
 | |
| 	if (nid == NUMA_NO_NODE)
 | |
| 		nid = numa_meminfo.blk[0].nid;
 | |
| 	return nid;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 | |
| 
 | |
| #endif /* CONFIG_NUMA_KEEP_MEMINFO */
 |