forked from mirrors/linux
		
	 024421cf39
			
		
	
	
		024421cf39
		
	
	
	
	
		
			
			BIG Create Sync requires the command to just generates a status so this
makes use of __hci_cmd_sync_status_sk to wait for
HCI_EVT_LE_BIG_SYNC_ESTABLISHED, also because of this chance it is not
longer necessary to use a custom method to serialize the process of
creating the BIG sync since the cmd_work_sync itself ensures only one
command would be pending which now awaits for
HCI_EVT_LE_BIG_SYNC_ESTABLISHED before proceeding to next connection.
Fixes: 42ecf19471 ("Bluetooth: ISO: Do not emit LE BIG Create Sync if previous is pending")
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
		
	
			
		
			
				
	
	
		
			7037 lines
		
	
	
	
		
			184 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7037 lines
		
	
	
	
		
			184 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | ||
| /*
 | ||
|  * BlueZ - Bluetooth protocol stack for Linux
 | ||
|  *
 | ||
|  * Copyright (C) 2021 Intel Corporation
 | ||
|  * Copyright 2023 NXP
 | ||
|  */
 | ||
| 
 | ||
| #include <linux/property.h>
 | ||
| 
 | ||
| #include <net/bluetooth/bluetooth.h>
 | ||
| #include <net/bluetooth/hci_core.h>
 | ||
| #include <net/bluetooth/mgmt.h>
 | ||
| 
 | ||
| #include "hci_codec.h"
 | ||
| #include "hci_debugfs.h"
 | ||
| #include "smp.h"
 | ||
| #include "eir.h"
 | ||
| #include "msft.h"
 | ||
| #include "aosp.h"
 | ||
| #include "leds.h"
 | ||
| 
 | ||
| static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
 | ||
| 				  struct sk_buff *skb)
 | ||
| {
 | ||
| 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
 | ||
| 
 | ||
| 	if (hdev->req_status != HCI_REQ_PEND)
 | ||
| 		return;
 | ||
| 
 | ||
| 	hdev->req_result = result;
 | ||
| 	hdev->req_status = HCI_REQ_DONE;
 | ||
| 
 | ||
| 	/* Free the request command so it is not used as response */
 | ||
| 	kfree_skb(hdev->req_skb);
 | ||
| 	hdev->req_skb = NULL;
 | ||
| 
 | ||
| 	if (skb) {
 | ||
| 		struct sock *sk = hci_skb_sk(skb);
 | ||
| 
 | ||
| 		/* Drop sk reference if set */
 | ||
| 		if (sk)
 | ||
| 			sock_put(sk);
 | ||
| 
 | ||
| 		hdev->req_rsp = skb_get(skb);
 | ||
| 	}
 | ||
| 
 | ||
| 	wake_up_interruptible(&hdev->req_wait_q);
 | ||
| }
 | ||
| 
 | ||
| struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen,
 | ||
| 				   const void *param, struct sock *sk)
 | ||
| {
 | ||
| 	int len = HCI_COMMAND_HDR_SIZE + plen;
 | ||
| 	struct hci_command_hdr *hdr;
 | ||
| 	struct sk_buff *skb;
 | ||
| 
 | ||
| 	skb = bt_skb_alloc(len, GFP_ATOMIC);
 | ||
| 	if (!skb)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
 | ||
| 	hdr->opcode = cpu_to_le16(opcode);
 | ||
| 	hdr->plen   = plen;
 | ||
| 
 | ||
| 	if (plen)
 | ||
| 		skb_put_data(skb, param, plen);
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "skb len %d", skb->len);
 | ||
| 
 | ||
| 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 | ||
| 	hci_skb_opcode(skb) = opcode;
 | ||
| 
 | ||
| 	/* Grab a reference if command needs to be associated with a sock (e.g.
 | ||
| 	 * likely mgmt socket that initiated the command).
 | ||
| 	 */
 | ||
| 	if (sk) {
 | ||
| 		hci_skb_sk(skb) = sk;
 | ||
| 		sock_hold(sk);
 | ||
| 	}
 | ||
| 
 | ||
| 	return skb;
 | ||
| }
 | ||
| 
 | ||
| static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
 | ||
| 			     const void *param, u8 event, struct sock *sk)
 | ||
| {
 | ||
| 	struct hci_dev *hdev = req->hdev;
 | ||
| 	struct sk_buff *skb;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 | ||
| 
 | ||
| 	/* If an error occurred during request building, there is no point in
 | ||
| 	 * queueing the HCI command. We can simply return.
 | ||
| 	 */
 | ||
| 	if (req->err)
 | ||
| 		return;
 | ||
| 
 | ||
| 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
 | ||
| 	if (!skb) {
 | ||
| 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
 | ||
| 			   opcode);
 | ||
| 		req->err = -ENOMEM;
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (skb_queue_empty(&req->cmd_q))
 | ||
| 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 | ||
| 
 | ||
| 	hci_skb_event(skb) = event;
 | ||
| 
 | ||
| 	skb_queue_tail(&req->cmd_q, skb);
 | ||
| }
 | ||
| 
 | ||
| static int hci_req_sync_run(struct hci_request *req)
 | ||
| {
 | ||
| 	struct hci_dev *hdev = req->hdev;
 | ||
| 	struct sk_buff *skb;
 | ||
| 	unsigned long flags;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
 | ||
| 
 | ||
| 	/* If an error occurred during request building, remove all HCI
 | ||
| 	 * commands queued on the HCI request queue.
 | ||
| 	 */
 | ||
| 	if (req->err) {
 | ||
| 		skb_queue_purge(&req->cmd_q);
 | ||
| 		return req->err;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Do not allow empty requests */
 | ||
| 	if (skb_queue_empty(&req->cmd_q))
 | ||
| 		return -ENODATA;
 | ||
| 
 | ||
| 	skb = skb_peek_tail(&req->cmd_q);
 | ||
| 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
 | ||
| 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
 | ||
| 
 | ||
| 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
 | ||
| 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
 | ||
| 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
 | ||
| 
 | ||
| 	queue_work(hdev->workqueue, &hdev->cmd_work);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static void hci_request_init(struct hci_request *req, struct hci_dev *hdev)
 | ||
| {
 | ||
| 	skb_queue_head_init(&req->cmd_q);
 | ||
| 	req->hdev = hdev;
 | ||
| 	req->err = 0;
 | ||
| }
 | ||
| 
 | ||
| /* This function requires the caller holds hdev->req_lock. */
 | ||
| struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
 | ||
| 				  const void *param, u8 event, u32 timeout,
 | ||
| 				  struct sock *sk)
 | ||
| {
 | ||
| 	struct hci_request req;
 | ||
| 	struct sk_buff *skb;
 | ||
| 	int err = 0;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
 | ||
| 
 | ||
| 	hci_request_init(&req, hdev);
 | ||
| 
 | ||
| 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
 | ||
| 
 | ||
| 	hdev->req_status = HCI_REQ_PEND;
 | ||
| 
 | ||
| 	err = hci_req_sync_run(&req);
 | ||
| 	if (err < 0)
 | ||
| 		return ERR_PTR(err);
 | ||
| 
 | ||
| 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 | ||
| 					       hdev->req_status != HCI_REQ_PEND,
 | ||
| 					       timeout);
 | ||
| 
 | ||
| 	if (err == -ERESTARTSYS)
 | ||
| 		return ERR_PTR(-EINTR);
 | ||
| 
 | ||
| 	switch (hdev->req_status) {
 | ||
| 	case HCI_REQ_DONE:
 | ||
| 		err = -bt_to_errno(hdev->req_result);
 | ||
| 		break;
 | ||
| 
 | ||
| 	case HCI_REQ_CANCELED:
 | ||
| 		err = -hdev->req_result;
 | ||
| 		break;
 | ||
| 
 | ||
| 	default:
 | ||
| 		err = -ETIMEDOUT;
 | ||
| 		break;
 | ||
| 	}
 | ||
| 
 | ||
| 	hdev->req_status = 0;
 | ||
| 	hdev->req_result = 0;
 | ||
| 	skb = hdev->req_rsp;
 | ||
| 	hdev->req_rsp = NULL;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "end: err %d", err);
 | ||
| 
 | ||
| 	if (err < 0) {
 | ||
| 		kfree_skb(skb);
 | ||
| 		return ERR_PTR(err);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If command return a status event skb will be set to NULL as there are
 | ||
| 	 * no parameters.
 | ||
| 	 */
 | ||
| 	if (!skb)
 | ||
| 		return ERR_PTR(-ENODATA);
 | ||
| 
 | ||
| 	return skb;
 | ||
| }
 | ||
| EXPORT_SYMBOL(__hci_cmd_sync_sk);
 | ||
| 
 | ||
| /* This function requires the caller holds hdev->req_lock. */
 | ||
| struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 | ||
| 			       const void *param, u32 timeout)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
 | ||
| }
 | ||
| EXPORT_SYMBOL(__hci_cmd_sync);
 | ||
| 
 | ||
| /* Send HCI command and wait for command complete event */
 | ||
| struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 | ||
| 			     const void *param, u32 timeout)
 | ||
| {
 | ||
| 	struct sk_buff *skb;
 | ||
| 
 | ||
| 	if (!test_bit(HCI_UP, &hdev->flags))
 | ||
| 		return ERR_PTR(-ENETDOWN);
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 | ||
| 
 | ||
| 	hci_req_sync_lock(hdev);
 | ||
| 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
 | ||
| 	hci_req_sync_unlock(hdev);
 | ||
| 
 | ||
| 	return skb;
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync);
 | ||
| 
 | ||
| /* This function requires the caller holds hdev->req_lock. */
 | ||
| struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 | ||
| 				  const void *param, u8 event, u32 timeout)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
 | ||
| 				 NULL);
 | ||
| }
 | ||
| EXPORT_SYMBOL(__hci_cmd_sync_ev);
 | ||
| 
 | ||
| /* This function requires the caller holds hdev->req_lock. */
 | ||
| int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
 | ||
| 			     const void *param, u8 event, u32 timeout,
 | ||
| 			     struct sock *sk)
 | ||
| {
 | ||
| 	struct sk_buff *skb;
 | ||
| 	u8 status;
 | ||
| 
 | ||
| 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
 | ||
| 
 | ||
| 	/* If command return a status event, skb will be set to -ENODATA */
 | ||
| 	if (skb == ERR_PTR(-ENODATA))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (IS_ERR(skb)) {
 | ||
| 		if (!event)
 | ||
| 			bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
 | ||
| 				   PTR_ERR(skb));
 | ||
| 		return PTR_ERR(skb);
 | ||
| 	}
 | ||
| 
 | ||
| 	status = skb->data[0];
 | ||
| 
 | ||
| 	kfree_skb(skb);
 | ||
| 
 | ||
| 	return status;
 | ||
| }
 | ||
| EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
 | ||
| 
 | ||
| int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
 | ||
| 			  const void *param, u32 timeout)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
 | ||
| 					NULL);
 | ||
| }
 | ||
| EXPORT_SYMBOL(__hci_cmd_sync_status);
 | ||
| 
 | ||
| int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
 | ||
| 			const void *param, u32 timeout)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	hci_req_sync_lock(hdev);
 | ||
| 	err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout);
 | ||
| 	hci_req_sync_unlock(hdev);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_status);
 | ||
| 
 | ||
| static void hci_cmd_sync_work(struct work_struct *work)
 | ||
| {
 | ||
| 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	/* Dequeue all entries and run them */
 | ||
| 	while (1) {
 | ||
| 		struct hci_cmd_sync_work_entry *entry;
 | ||
| 
 | ||
| 		mutex_lock(&hdev->cmd_sync_work_lock);
 | ||
| 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
 | ||
| 						 struct hci_cmd_sync_work_entry,
 | ||
| 						 list);
 | ||
| 		if (entry)
 | ||
| 			list_del(&entry->list);
 | ||
| 		mutex_unlock(&hdev->cmd_sync_work_lock);
 | ||
| 
 | ||
| 		if (!entry)
 | ||
| 			break;
 | ||
| 
 | ||
| 		bt_dev_dbg(hdev, "entry %p", entry);
 | ||
| 
 | ||
| 		if (entry->func) {
 | ||
| 			int err;
 | ||
| 
 | ||
| 			hci_req_sync_lock(hdev);
 | ||
| 			err = entry->func(hdev, entry->data);
 | ||
| 			if (entry->destroy)
 | ||
| 				entry->destroy(hdev, entry->data, err);
 | ||
| 			hci_req_sync_unlock(hdev);
 | ||
| 		}
 | ||
| 
 | ||
| 		kfree(entry);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void hci_cmd_sync_cancel_work(struct work_struct *work)
 | ||
| {
 | ||
| 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
 | ||
| 
 | ||
| 	cancel_delayed_work_sync(&hdev->cmd_timer);
 | ||
| 	cancel_delayed_work_sync(&hdev->ncmd_timer);
 | ||
| 	atomic_set(&hdev->cmd_cnt, 1);
 | ||
| 
 | ||
| 	wake_up_interruptible(&hdev->req_wait_q);
 | ||
| }
 | ||
| 
 | ||
| static int hci_scan_disable_sync(struct hci_dev *hdev);
 | ||
| static int scan_disable_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	return hci_scan_disable_sync(hdev);
 | ||
| }
 | ||
| 
 | ||
| static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0);
 | ||
| }
 | ||
| 
 | ||
| static void le_scan_disable(struct work_struct *work)
 | ||
| {
 | ||
| 	struct hci_dev *hdev = container_of(work, struct hci_dev,
 | ||
| 					    le_scan_disable.work);
 | ||
| 	int status;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 | ||
| 		goto _return;
 | ||
| 
 | ||
| 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
 | ||
| 	if (status) {
 | ||
| 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
 | ||
| 		goto _return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If we were running LE only scan, change discovery state. If
 | ||
| 	 * we were running both LE and BR/EDR inquiry simultaneously,
 | ||
| 	 * and BR/EDR inquiry is already finished, stop discovery,
 | ||
| 	 * otherwise BR/EDR inquiry will stop discovery when finished.
 | ||
| 	 * If we will resolve remote device name, do not change
 | ||
| 	 * discovery state.
 | ||
| 	 */
 | ||
| 
 | ||
| 	if (hdev->discovery.type == DISCOV_TYPE_LE)
 | ||
| 		goto discov_stopped;
 | ||
| 
 | ||
| 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
 | ||
| 		goto _return;
 | ||
| 
 | ||
| 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
 | ||
| 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
 | ||
| 		    hdev->discovery.state != DISCOVERY_RESOLVING)
 | ||
| 			goto discov_stopped;
 | ||
| 
 | ||
| 		goto _return;
 | ||
| 	}
 | ||
| 
 | ||
| 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
 | ||
| 	if (status) {
 | ||
| 		bt_dev_err(hdev, "inquiry failed: status %d", status);
 | ||
| 		goto discov_stopped;
 | ||
| 	}
 | ||
| 
 | ||
| 	goto _return;
 | ||
| 
 | ||
| discov_stopped:
 | ||
| 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
 | ||
| 
 | ||
| _return:
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
 | ||
| 				       u8 filter_dup);
 | ||
| 
 | ||
| static int reenable_adv_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
 | ||
| 	    list_empty(&hdev->adv_instances))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (hdev->cur_adv_instance) {
 | ||
| 		return hci_schedule_adv_instance_sync(hdev,
 | ||
| 						      hdev->cur_adv_instance,
 | ||
| 						      true);
 | ||
| 	} else {
 | ||
| 		if (ext_adv_capable(hdev)) {
 | ||
| 			hci_start_ext_adv_sync(hdev, 0x00);
 | ||
| 		} else {
 | ||
| 			hci_update_adv_data_sync(hdev, 0x00);
 | ||
| 			hci_update_scan_rsp_data_sync(hdev, 0x00);
 | ||
| 			hci_enable_advertising_sync(hdev);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static void reenable_adv(struct work_struct *work)
 | ||
| {
 | ||
| 	struct hci_dev *hdev = container_of(work, struct hci_dev,
 | ||
| 					    reenable_adv_work);
 | ||
| 	int status;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
 | ||
| 	if (status)
 | ||
| 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
 | ||
| 
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| }
 | ||
| 
 | ||
| static void cancel_adv_timeout(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (hdev->adv_instance_timeout) {
 | ||
| 		hdev->adv_instance_timeout = 0;
 | ||
| 		cancel_delayed_work(&hdev->adv_instance_expire);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /* For a single instance:
 | ||
|  * - force == true: The instance will be removed even when its remaining
 | ||
|  *   lifetime is not zero.
 | ||
|  * - force == false: the instance will be deactivated but kept stored unless
 | ||
|  *   the remaining lifetime is zero.
 | ||
|  *
 | ||
|  * For instance == 0x00:
 | ||
|  * - force == true: All instances will be removed regardless of their timeout
 | ||
|  *   setting.
 | ||
|  * - force == false: Only instances that have a timeout will be removed.
 | ||
|  */
 | ||
| int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
 | ||
| 				u8 instance, bool force)
 | ||
| {
 | ||
| 	struct adv_info *adv_instance, *n, *next_instance = NULL;
 | ||
| 	int err;
 | ||
| 	u8 rem_inst;
 | ||
| 
 | ||
| 	/* Cancel any timeout concerning the removed instance(s). */
 | ||
| 	if (!instance || hdev->cur_adv_instance == instance)
 | ||
| 		cancel_adv_timeout(hdev);
 | ||
| 
 | ||
| 	/* Get the next instance to advertise BEFORE we remove
 | ||
| 	 * the current one. This can be the same instance again
 | ||
| 	 * if there is only one instance.
 | ||
| 	 */
 | ||
| 	if (instance && hdev->cur_adv_instance == instance)
 | ||
| 		next_instance = hci_get_next_instance(hdev, instance);
 | ||
| 
 | ||
| 	if (instance == 0x00) {
 | ||
| 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
 | ||
| 					 list) {
 | ||
| 			if (!(force || adv_instance->timeout))
 | ||
| 				continue;
 | ||
| 
 | ||
| 			rem_inst = adv_instance->instance;
 | ||
| 			err = hci_remove_adv_instance(hdev, rem_inst);
 | ||
| 			if (!err)
 | ||
| 				mgmt_advertising_removed(sk, hdev, rem_inst);
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		adv_instance = hci_find_adv_instance(hdev, instance);
 | ||
| 
 | ||
| 		if (force || (adv_instance && adv_instance->timeout &&
 | ||
| 			      !adv_instance->remaining_time)) {
 | ||
| 			/* Don't advertise a removed instance. */
 | ||
| 			if (next_instance &&
 | ||
| 			    next_instance->instance == instance)
 | ||
| 				next_instance = NULL;
 | ||
| 
 | ||
| 			err = hci_remove_adv_instance(hdev, instance);
 | ||
| 			if (!err)
 | ||
| 				mgmt_advertising_removed(sk, hdev, instance);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (next_instance && !ext_adv_capable(hdev))
 | ||
| 		return hci_schedule_adv_instance_sync(hdev,
 | ||
| 						      next_instance->instance,
 | ||
| 						      false);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	u8 instance = *(u8 *)data;
 | ||
| 
 | ||
| 	kfree(data);
 | ||
| 
 | ||
| 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
 | ||
| 
 | ||
| 	if (list_empty(&hdev->adv_instances))
 | ||
| 		return hci_disable_advertising_sync(hdev);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static void adv_timeout_expire(struct work_struct *work)
 | ||
| {
 | ||
| 	u8 *inst_ptr;
 | ||
| 	struct hci_dev *hdev = container_of(work, struct hci_dev,
 | ||
| 					    adv_instance_expire.work);
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	hdev->adv_instance_timeout = 0;
 | ||
| 
 | ||
| 	if (hdev->cur_adv_instance == 0x00)
 | ||
| 		goto unlock;
 | ||
| 
 | ||
| 	inst_ptr = kmalloc(1, GFP_KERNEL);
 | ||
| 	if (!inst_ptr)
 | ||
| 		goto unlock;
 | ||
| 
 | ||
| 	*inst_ptr = hdev->cur_adv_instance;
 | ||
| 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
 | ||
| 
 | ||
| unlock:
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| }
 | ||
| 
 | ||
| static bool is_interleave_scanning(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
 | ||
| }
 | ||
| 
 | ||
| static int hci_passive_scan_sync(struct hci_dev *hdev);
 | ||
| 
 | ||
| static void interleave_scan_work(struct work_struct *work)
 | ||
| {
 | ||
| 	struct hci_dev *hdev = container_of(work, struct hci_dev,
 | ||
| 					    interleave_scan.work);
 | ||
| 	unsigned long timeout;
 | ||
| 
 | ||
| 	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
 | ||
| 		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
 | ||
| 	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
 | ||
| 		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
 | ||
| 	} else {
 | ||
| 		bt_dev_err(hdev, "unexpected error");
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	hci_passive_scan_sync(hdev);
 | ||
| 
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	switch (hdev->interleave_scan_state) {
 | ||
| 	case INTERLEAVE_SCAN_ALLOWLIST:
 | ||
| 		bt_dev_dbg(hdev, "next state: allowlist");
 | ||
| 		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
 | ||
| 		break;
 | ||
| 	case INTERLEAVE_SCAN_NO_FILTER:
 | ||
| 		bt_dev_dbg(hdev, "next state: no filter");
 | ||
| 		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
 | ||
| 		break;
 | ||
| 	case INTERLEAVE_SCAN_NONE:
 | ||
| 		bt_dev_err(hdev, "unexpected error");
 | ||
| 	}
 | ||
| 
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| 
 | ||
| 	/* Don't continue interleaving if it was canceled */
 | ||
| 	if (is_interleave_scanning(hdev))
 | ||
| 		queue_delayed_work(hdev->req_workqueue,
 | ||
| 				   &hdev->interleave_scan, timeout);
 | ||
| }
 | ||
| 
 | ||
| void hci_cmd_sync_init(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
 | ||
| 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
 | ||
| 	mutex_init(&hdev->cmd_sync_work_lock);
 | ||
| 	mutex_init(&hdev->unregister_lock);
 | ||
| 
 | ||
| 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
 | ||
| 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
 | ||
| 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
 | ||
| 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
 | ||
| 	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
 | ||
| }
 | ||
| 
 | ||
| static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev,
 | ||
| 				       struct hci_cmd_sync_work_entry *entry,
 | ||
| 				       int err)
 | ||
| {
 | ||
| 	if (entry->destroy)
 | ||
| 		entry->destroy(hdev, entry->data, err);
 | ||
| 
 | ||
| 	list_del(&entry->list);
 | ||
| 	kfree(entry);
 | ||
| }
 | ||
| 
 | ||
| void hci_cmd_sync_clear(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cmd_sync_work_entry *entry, *tmp;
 | ||
| 
 | ||
| 	cancel_work_sync(&hdev->cmd_sync_work);
 | ||
| 	cancel_work_sync(&hdev->reenable_adv_work);
 | ||
| 
 | ||
| 	mutex_lock(&hdev->cmd_sync_work_lock);
 | ||
| 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list)
 | ||
| 		_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
 | ||
| 	mutex_unlock(&hdev->cmd_sync_work_lock);
 | ||
| }
 | ||
| 
 | ||
| void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
 | ||
| {
 | ||
| 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
 | ||
| 
 | ||
| 	if (hdev->req_status == HCI_REQ_PEND) {
 | ||
| 		hdev->req_result = err;
 | ||
| 		hdev->req_status = HCI_REQ_CANCELED;
 | ||
| 
 | ||
| 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
 | ||
| 	}
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_cancel);
 | ||
| 
 | ||
| /* Cancel ongoing command request synchronously:
 | ||
|  *
 | ||
|  * - Set result and mark status to HCI_REQ_CANCELED
 | ||
|  * - Wakeup command sync thread
 | ||
|  */
 | ||
| void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err)
 | ||
| {
 | ||
| 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
 | ||
| 
 | ||
| 	if (hdev->req_status == HCI_REQ_PEND) {
 | ||
| 		/* req_result is __u32 so error must be positive to be properly
 | ||
| 		 * propagated.
 | ||
| 		 */
 | ||
| 		hdev->req_result = err < 0 ? -err : err;
 | ||
| 		hdev->req_status = HCI_REQ_CANCELED;
 | ||
| 
 | ||
| 		wake_up_interruptible(&hdev->req_wait_q);
 | ||
| 	}
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_cancel_sync);
 | ||
| 
 | ||
| /* Submit HCI command to be run in as cmd_sync_work:
 | ||
|  *
 | ||
|  * - hdev must _not_ be unregistered
 | ||
|  */
 | ||
| int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
 | ||
| 			void *data, hci_cmd_sync_work_destroy_t destroy)
 | ||
| {
 | ||
| 	struct hci_cmd_sync_work_entry *entry;
 | ||
| 	int err = 0;
 | ||
| 
 | ||
| 	mutex_lock(&hdev->unregister_lock);
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
 | ||
| 		err = -ENODEV;
 | ||
| 		goto unlock;
 | ||
| 	}
 | ||
| 
 | ||
| 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
 | ||
| 	if (!entry) {
 | ||
| 		err = -ENOMEM;
 | ||
| 		goto unlock;
 | ||
| 	}
 | ||
| 	entry->func = func;
 | ||
| 	entry->data = data;
 | ||
| 	entry->destroy = destroy;
 | ||
| 
 | ||
| 	mutex_lock(&hdev->cmd_sync_work_lock);
 | ||
| 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
 | ||
| 	mutex_unlock(&hdev->cmd_sync_work_lock);
 | ||
| 
 | ||
| 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
 | ||
| 
 | ||
| unlock:
 | ||
| 	mutex_unlock(&hdev->unregister_lock);
 | ||
| 	return err;
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_submit);
 | ||
| 
 | ||
| /* Queue HCI command:
 | ||
|  *
 | ||
|  * - hdev must be running
 | ||
|  */
 | ||
| int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
 | ||
| 		       void *data, hci_cmd_sync_work_destroy_t destroy)
 | ||
| {
 | ||
| 	/* Only queue command if hdev is running which means it had been opened
 | ||
| 	 * and is either on init phase or is already up.
 | ||
| 	 */
 | ||
| 	if (!test_bit(HCI_RUNNING, &hdev->flags))
 | ||
| 		return -ENETDOWN;
 | ||
| 
 | ||
| 	return hci_cmd_sync_submit(hdev, func, data, destroy);
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_queue);
 | ||
| 
 | ||
| static struct hci_cmd_sync_work_entry *
 | ||
| _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
 | ||
| 			   void *data, hci_cmd_sync_work_destroy_t destroy)
 | ||
| {
 | ||
| 	struct hci_cmd_sync_work_entry *entry, *tmp;
 | ||
| 
 | ||
| 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
 | ||
| 		if (func && entry->func != func)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (data && entry->data != data)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		if (destroy && entry->destroy != destroy)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		return entry;
 | ||
| 	}
 | ||
| 
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Queue HCI command entry once:
 | ||
|  *
 | ||
|  * - Lookup if an entry already exist and only if it doesn't creates a new entry
 | ||
|  *   and queue it.
 | ||
|  */
 | ||
| int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
 | ||
| 			    void *data, hci_cmd_sync_work_destroy_t destroy)
 | ||
| {
 | ||
| 	if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return hci_cmd_sync_queue(hdev, func, data, destroy);
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_queue_once);
 | ||
| 
 | ||
| /* Run HCI command:
 | ||
|  *
 | ||
|  * - hdev must be running
 | ||
|  * - if on cmd_sync_work then run immediately otherwise queue
 | ||
|  */
 | ||
| int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
 | ||
| 		     void *data, hci_cmd_sync_work_destroy_t destroy)
 | ||
| {
 | ||
| 	/* Only queue command if hdev is running which means it had been opened
 | ||
| 	 * and is either on init phase or is already up.
 | ||
| 	 */
 | ||
| 	if (!test_bit(HCI_RUNNING, &hdev->flags))
 | ||
| 		return -ENETDOWN;
 | ||
| 
 | ||
| 	/* If on cmd_sync_work then run immediately otherwise queue */
 | ||
| 	if (current_work() == &hdev->cmd_sync_work)
 | ||
| 		return func(hdev, data);
 | ||
| 
 | ||
| 	return hci_cmd_sync_submit(hdev, func, data, destroy);
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_run);
 | ||
| 
 | ||
| /* Run HCI command entry once:
 | ||
|  *
 | ||
|  * - Lookup if an entry already exist and only if it doesn't creates a new entry
 | ||
|  *   and run it.
 | ||
|  * - if on cmd_sync_work then run immediately otherwise queue
 | ||
|  */
 | ||
| int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
 | ||
| 			  void *data, hci_cmd_sync_work_destroy_t destroy)
 | ||
| {
 | ||
| 	if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return hci_cmd_sync_run(hdev, func, data, destroy);
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_run_once);
 | ||
| 
 | ||
| /* Lookup HCI command entry:
 | ||
|  *
 | ||
|  * - Return first entry that matches by function callback or data or
 | ||
|  *   destroy callback.
 | ||
|  */
 | ||
| struct hci_cmd_sync_work_entry *
 | ||
| hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
 | ||
| 			  void *data, hci_cmd_sync_work_destroy_t destroy)
 | ||
| {
 | ||
| 	struct hci_cmd_sync_work_entry *entry;
 | ||
| 
 | ||
| 	mutex_lock(&hdev->cmd_sync_work_lock);
 | ||
| 	entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy);
 | ||
| 	mutex_unlock(&hdev->cmd_sync_work_lock);
 | ||
| 
 | ||
| 	return entry;
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_lookup_entry);
 | ||
| 
 | ||
| /* Cancel HCI command entry */
 | ||
| void hci_cmd_sync_cancel_entry(struct hci_dev *hdev,
 | ||
| 			       struct hci_cmd_sync_work_entry *entry)
 | ||
| {
 | ||
| 	mutex_lock(&hdev->cmd_sync_work_lock);
 | ||
| 	_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
 | ||
| 	mutex_unlock(&hdev->cmd_sync_work_lock);
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_cancel_entry);
 | ||
| 
 | ||
| /* Dequeue one HCI command entry:
 | ||
|  *
 | ||
|  * - Lookup and cancel first entry that matches.
 | ||
|  */
 | ||
| bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev,
 | ||
| 			       hci_cmd_sync_work_func_t func,
 | ||
| 			       void *data, hci_cmd_sync_work_destroy_t destroy)
 | ||
| {
 | ||
| 	struct hci_cmd_sync_work_entry *entry;
 | ||
| 
 | ||
| 	entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy);
 | ||
| 	if (!entry)
 | ||
| 		return false;
 | ||
| 
 | ||
| 	hci_cmd_sync_cancel_entry(hdev, entry);
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_dequeue_once);
 | ||
| 
 | ||
| /* Dequeue HCI command entry:
 | ||
|  *
 | ||
|  * - Lookup and cancel any entry that matches by function callback or data or
 | ||
|  *   destroy callback.
 | ||
|  */
 | ||
| bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
 | ||
| 			  void *data, hci_cmd_sync_work_destroy_t destroy)
 | ||
| {
 | ||
| 	struct hci_cmd_sync_work_entry *entry;
 | ||
| 	bool ret = false;
 | ||
| 
 | ||
| 	mutex_lock(&hdev->cmd_sync_work_lock);
 | ||
| 	while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data,
 | ||
| 						   destroy))) {
 | ||
| 		_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
 | ||
| 		ret = true;
 | ||
| 	}
 | ||
| 	mutex_unlock(&hdev->cmd_sync_work_lock);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| EXPORT_SYMBOL(hci_cmd_sync_dequeue);
 | ||
| 
 | ||
| int hci_update_eir_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_write_eir cp;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	if (!hdev_is_powered(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (!lmp_ext_inq_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	eir_create(hdev, cp.data);
 | ||
| 
 | ||
| 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static u8 get_service_classes(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct bt_uuid *uuid;
 | ||
| 	u8 val = 0;
 | ||
| 
 | ||
| 	list_for_each_entry(uuid, &hdev->uuids, list)
 | ||
| 		val |= uuid->svc_hint;
 | ||
| 
 | ||
| 	return val;
 | ||
| }
 | ||
| 
 | ||
| int hci_update_class_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 cod[3];
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	if (!hdev_is_powered(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	cod[0] = hdev->minor_class;
 | ||
| 	cod[1] = hdev->major_class;
 | ||
| 	cod[2] = get_service_classes(hdev);
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 | ||
| 		cod[1] |= 0x20;
 | ||
| 
 | ||
| 	if (memcmp(cod, hdev->dev_class, 3) == 0)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
 | ||
| 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
 | ||
| {
 | ||
| 	/* If there is no connection we are OK to advertise. */
 | ||
| 	if (hci_conn_num(hdev, LE_LINK) == 0)
 | ||
| 		return true;
 | ||
| 
 | ||
| 	/* Check le_states if there is any connection in peripheral role. */
 | ||
| 	if (hdev->conn_hash.le_num_peripheral > 0) {
 | ||
| 		/* Peripheral connection state and non connectable mode
 | ||
| 		 * bit 20.
 | ||
| 		 */
 | ||
| 		if (!connectable && !(hdev->le_states[2] & 0x10))
 | ||
| 			return false;
 | ||
| 
 | ||
| 		/* Peripheral connection state and connectable mode bit 38
 | ||
| 		 * and scannable bit 21.
 | ||
| 		 */
 | ||
| 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
 | ||
| 				    !(hdev->le_states[2] & 0x20)))
 | ||
| 			return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Check le_states if there is any connection in central role. */
 | ||
| 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
 | ||
| 		/* Central connection state and non connectable mode bit 18. */
 | ||
| 		if (!connectable && !(hdev->le_states[2] & 0x02))
 | ||
| 			return false;
 | ||
| 
 | ||
| 		/* Central connection state and connectable mode bit 35 and
 | ||
| 		 * scannable 19.
 | ||
| 		 */
 | ||
| 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
 | ||
| 				    !(hdev->le_states[2] & 0x08)))
 | ||
| 			return false;
 | ||
| 	}
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 | ||
| {
 | ||
| 	/* If privacy is not enabled don't use RPA */
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/* If basic privacy mode is enabled use RPA */
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 | ||
| 		return true;
 | ||
| 
 | ||
| 	/* If limited privacy mode is enabled don't use RPA if we're
 | ||
| 	 * both discoverable and bondable.
 | ||
| 	 */
 | ||
| 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
 | ||
| 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
 | ||
| 		return false;
 | ||
| 
 | ||
| 	/* We're neither bondable nor discoverable in the limited
 | ||
| 	 * privacy mode, therefore use RPA.
 | ||
| 	 */
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
 | ||
| {
 | ||
| 	/* If a random_addr has been set we're advertising or initiating an LE
 | ||
| 	 * connection we can't go ahead and change the random address at this
 | ||
| 	 * time. This is because the eventual initiator address used for the
 | ||
| 	 * subsequently created connection will be undefined (some
 | ||
| 	 * controllers use the new address and others the one we had
 | ||
| 	 * when the operation started).
 | ||
| 	 *
 | ||
| 	 * In this kind of scenario skip the update and let the random
 | ||
| 	 * address be updated at the next cycle.
 | ||
| 	 */
 | ||
| 	if (bacmp(&hdev->random_addr, BDADDR_ANY) &&
 | ||
| 	    (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
 | ||
| 	    hci_lookup_le_connect(hdev))) {
 | ||
| 		bt_dev_dbg(hdev, "Deferring random address update");
 | ||
| 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
 | ||
| 				     6, rpa, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
 | ||
| 				   bool rpa, u8 *own_addr_type)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* If privacy is enabled use a resolvable private address. If
 | ||
| 	 * current RPA has expired or there is something else than
 | ||
| 	 * the current RPA in use, then generate a new one.
 | ||
| 	 */
 | ||
| 	if (rpa) {
 | ||
| 		/* If Controller supports LL Privacy use own address type is
 | ||
| 		 * 0x03
 | ||
| 		 */
 | ||
| 		if (ll_privacy_capable(hdev))
 | ||
| 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
 | ||
| 		else
 | ||
| 			*own_addr_type = ADDR_LE_DEV_RANDOM;
 | ||
| 
 | ||
| 		/* Check if RPA is valid */
 | ||
| 		if (rpa_valid(hdev))
 | ||
| 			return 0;
 | ||
| 
 | ||
| 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
 | ||
| 		if (err < 0) {
 | ||
| 			bt_dev_err(hdev, "failed to generate new RPA");
 | ||
| 			return err;
 | ||
| 		}
 | ||
| 
 | ||
| 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* In case of required privacy without resolvable private address,
 | ||
| 	 * use an non-resolvable private address. This is useful for active
 | ||
| 	 * scanning and non-connectable advertising.
 | ||
| 	 */
 | ||
| 	if (require_privacy) {
 | ||
| 		bdaddr_t nrpa;
 | ||
| 
 | ||
| 		while (true) {
 | ||
| 			/* The non-resolvable private address is generated
 | ||
| 			 * from random six bytes with the two most significant
 | ||
| 			 * bits cleared.
 | ||
| 			 */
 | ||
| 			get_random_bytes(&nrpa, 6);
 | ||
| 			nrpa.b[5] &= 0x3f;
 | ||
| 
 | ||
| 			/* The non-resolvable private address shall not be
 | ||
| 			 * equal to the public address.
 | ||
| 			 */
 | ||
| 			if (bacmp(&hdev->bdaddr, &nrpa))
 | ||
| 				break;
 | ||
| 		}
 | ||
| 
 | ||
| 		*own_addr_type = ADDR_LE_DEV_RANDOM;
 | ||
| 
 | ||
| 		return hci_set_random_addr_sync(hdev, &nrpa);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If forcing static address is in use or there is no public
 | ||
| 	 * address use the static address as random address (but skip
 | ||
| 	 * the HCI command if the current random address is already the
 | ||
| 	 * static one.
 | ||
| 	 *
 | ||
| 	 * In case BR/EDR has been disabled on a dual-mode controller
 | ||
| 	 * and a static address has been configured, then use that
 | ||
| 	 * address instead of the public BR/EDR address.
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
 | ||
| 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
 | ||
| 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
 | ||
| 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
 | ||
| 		*own_addr_type = ADDR_LE_DEV_RANDOM;
 | ||
| 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
 | ||
| 			return hci_set_random_addr_sync(hdev,
 | ||
| 							&hdev->static_addr);
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Neither privacy nor static address is being used so use a
 | ||
| 	 * public address.
 | ||
| 	 */
 | ||
| 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_ext_adv_enable *cp;
 | ||
| 	struct hci_cp_ext_adv_set *set;
 | ||
| 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
 | ||
| 	u8 size;
 | ||
| 	struct adv_info *adv = NULL;
 | ||
| 
 | ||
| 	/* If request specifies an instance that doesn't exist, fail */
 | ||
| 	if (instance > 0) {
 | ||
| 		adv = hci_find_adv_instance(hdev, instance);
 | ||
| 		if (!adv)
 | ||
| 			return -EINVAL;
 | ||
| 
 | ||
| 		/* If not enabled there is nothing to do */
 | ||
| 		if (!adv->enabled)
 | ||
| 			return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	memset(data, 0, sizeof(data));
 | ||
| 
 | ||
| 	cp = (void *)data;
 | ||
| 	set = (void *)cp->data;
 | ||
| 
 | ||
| 	/* Instance 0x00 indicates all advertising instances will be disabled */
 | ||
| 	cp->num_of_sets = !!instance;
 | ||
| 	cp->enable = 0x00;
 | ||
| 
 | ||
| 	set->handle = adv ? adv->handle : instance;
 | ||
| 
 | ||
| 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
 | ||
| 				     size, data, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
 | ||
| 					    bdaddr_t *random_addr)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_adv_set_rand_addr cp;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!instance) {
 | ||
| 		/* Instance 0x00 doesn't have an adv_info, instead it uses
 | ||
| 		 * hdev->random_addr to track its address so whenever it needs
 | ||
| 		 * to be updated this also set the random address since
 | ||
| 		 * hdev->random_addr is shared with scan state machine.
 | ||
| 		 */
 | ||
| 		err = hci_set_random_addr_sync(hdev, random_addr);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	cp.handle = instance;
 | ||
| 	bacpy(&cp.bdaddr, random_addr);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_ext_adv_params cp;
 | ||
| 	bool connectable;
 | ||
| 	u32 flags;
 | ||
| 	bdaddr_t random_addr;
 | ||
| 	u8 own_addr_type;
 | ||
| 	int err;
 | ||
| 	struct adv_info *adv;
 | ||
| 	bool secondary_adv;
 | ||
| 
 | ||
| 	if (instance > 0) {
 | ||
| 		adv = hci_find_adv_instance(hdev, instance);
 | ||
| 		if (!adv)
 | ||
| 			return -EINVAL;
 | ||
| 	} else {
 | ||
| 		adv = NULL;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Updating parameters of an active instance will return a
 | ||
| 	 * Command Disallowed error, so we must first disable the
 | ||
| 	 * instance if it is active.
 | ||
| 	 */
 | ||
| 	if (adv && !adv->pending) {
 | ||
| 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	flags = hci_adv_instance_flags(hdev, instance);
 | ||
| 
 | ||
| 	/* If the "connectable" instance flag was not set, then choose between
 | ||
| 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
 | ||
| 	 */
 | ||
| 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
 | ||
| 		      mgmt_get_connectable(hdev);
 | ||
| 
 | ||
| 	if (!is_advertising_allowed(hdev, connectable))
 | ||
| 		return -EPERM;
 | ||
| 
 | ||
| 	/* Set require_privacy to true only when non-connectable
 | ||
| 	 * advertising is used. In that case it is fine to use a
 | ||
| 	 * non-resolvable private address.
 | ||
| 	 */
 | ||
| 	err = hci_get_random_address(hdev, !connectable,
 | ||
| 				     adv_use_rpa(hdev, flags), adv,
 | ||
| 				     &own_addr_type, &random_addr);
 | ||
| 	if (err < 0)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	if (adv) {
 | ||
| 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
 | ||
| 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
 | ||
| 		cp.tx_power = adv->tx_power;
 | ||
| 	} else {
 | ||
| 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
 | ||
| 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
 | ||
| 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
 | ||
| 	}
 | ||
| 
 | ||
| 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
 | ||
| 
 | ||
| 	if (connectable) {
 | ||
| 		if (secondary_adv)
 | ||
| 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
 | ||
| 		else
 | ||
| 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
 | ||
| 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
 | ||
| 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
 | ||
| 		if (secondary_adv)
 | ||
| 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
 | ||
| 		else
 | ||
| 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
 | ||
| 	} else {
 | ||
| 		if (secondary_adv)
 | ||
| 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
 | ||
| 		else
 | ||
| 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
 | ||
| 	 * contains the peer’s Identity Address and the Peer_Address_Type
 | ||
| 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
 | ||
| 	 * These parameters are used to locate the corresponding local IRK in
 | ||
| 	 * the resolving list; this IRK is used to generate their own address
 | ||
| 	 * used in the advertisement.
 | ||
| 	 */
 | ||
| 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
 | ||
| 		hci_copy_identity_address(hdev, &cp.peer_addr,
 | ||
| 					  &cp.peer_addr_type);
 | ||
| 
 | ||
| 	cp.own_addr_type = own_addr_type;
 | ||
| 	cp.channel_map = hdev->le_adv_channel_map;
 | ||
| 	cp.handle = adv ? adv->handle : instance;
 | ||
| 
 | ||
| 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
 | ||
| 		cp.primary_phy = HCI_ADV_PHY_1M;
 | ||
| 		cp.secondary_phy = HCI_ADV_PHY_2M;
 | ||
| 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
 | ||
| 		cp.primary_phy = HCI_ADV_PHY_CODED;
 | ||
| 		cp.secondary_phy = HCI_ADV_PHY_CODED;
 | ||
| 	} else {
 | ||
| 		/* In all other cases use 1M */
 | ||
| 		cp.primary_phy = HCI_ADV_PHY_1M;
 | ||
| 		cp.secondary_phy = HCI_ADV_PHY_1M;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
 | ||
| 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
 | ||
| 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
 | ||
| 	    bacmp(&random_addr, BDADDR_ANY)) {
 | ||
| 		/* Check if random address need to be updated */
 | ||
| 		if (adv) {
 | ||
| 			if (!bacmp(&random_addr, &adv->random_addr))
 | ||
| 				return 0;
 | ||
| 		} else {
 | ||
| 			if (!bacmp(&random_addr, &hdev->random_addr))
 | ||
| 				return 0;
 | ||
| 		}
 | ||
| 
 | ||
| 		return hci_set_adv_set_random_addr_sync(hdev, instance,
 | ||
| 							&random_addr);
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length,
 | ||
| 		    HCI_MAX_EXT_AD_LENGTH);
 | ||
| 	u8 len;
 | ||
| 	struct adv_info *adv = NULL;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (instance) {
 | ||
| 		adv = hci_find_adv_instance(hdev, instance);
 | ||
| 		if (!adv || !adv->scan_rsp_changed)
 | ||
| 			return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	len = eir_create_scan_rsp(hdev, instance, pdu->data);
 | ||
| 
 | ||
| 	pdu->handle = adv ? adv->handle : instance;
 | ||
| 	pdu->length = len;
 | ||
| 	pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
 | ||
| 	pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG;
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
 | ||
| 				    struct_size(pdu, data, len), pdu,
 | ||
| 				    HCI_CMD_TIMEOUT);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	if (adv) {
 | ||
| 		adv->scan_rsp_changed = false;
 | ||
| 	} else {
 | ||
| 		memcpy(hdev->scan_rsp_data, pdu->data, len);
 | ||
| 		hdev->scan_rsp_data_len = len;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_scan_rsp_data cp;
 | ||
| 	u8 len;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	len = eir_create_scan_rsp(hdev, instance, cp.data);
 | ||
| 
 | ||
| 	if (hdev->scan_rsp_data_len == len &&
 | ||
| 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
 | ||
| 	hdev->scan_rsp_data_len = len;
 | ||
| 
 | ||
| 	cp.length = len;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
 | ||
| 
 | ||
| 	return __hci_set_scan_rsp_data_sync(hdev, instance);
 | ||
| }
 | ||
| 
 | ||
| int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_ext_adv_enable *cp;
 | ||
| 	struct hci_cp_ext_adv_set *set;
 | ||
| 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
 | ||
| 	struct adv_info *adv;
 | ||
| 
 | ||
| 	if (instance > 0) {
 | ||
| 		adv = hci_find_adv_instance(hdev, instance);
 | ||
| 		if (!adv)
 | ||
| 			return -EINVAL;
 | ||
| 		/* If already enabled there is nothing to do */
 | ||
| 		if (adv->enabled)
 | ||
| 			return 0;
 | ||
| 	} else {
 | ||
| 		adv = NULL;
 | ||
| 	}
 | ||
| 
 | ||
| 	cp = (void *)data;
 | ||
| 	set = (void *)cp->data;
 | ||
| 
 | ||
| 	memset(cp, 0, sizeof(*cp));
 | ||
| 
 | ||
| 	cp->enable = 0x01;
 | ||
| 	cp->num_of_sets = 0x01;
 | ||
| 
 | ||
| 	memset(set, 0, sizeof(*set));
 | ||
| 
 | ||
| 	set->handle = adv ? adv->handle : instance;
 | ||
| 
 | ||
| 	/* Set duration per instance since controller is responsible for
 | ||
| 	 * scheduling it.
 | ||
| 	 */
 | ||
| 	if (adv && adv->timeout) {
 | ||
| 		u16 duration = adv->timeout * MSEC_PER_SEC;
 | ||
| 
 | ||
| 		/* Time = N * 10 ms */
 | ||
| 		set->duration = cpu_to_le16(duration / 10);
 | ||
| 	}
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
 | ||
| 				     sizeof(*cp) +
 | ||
| 				     sizeof(*set) * cp->num_of_sets,
 | ||
| 				     data, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	return hci_enable_ext_advertising_sync(hdev, instance);
 | ||
| }
 | ||
| 
 | ||
| int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_per_adv_enable cp;
 | ||
| 	struct adv_info *adv = NULL;
 | ||
| 
 | ||
| 	/* If periodic advertising already disabled there is nothing to do. */
 | ||
| 	adv = hci_find_adv_instance(hdev, instance);
 | ||
| 	if (!adv || !adv->periodic || !adv->enabled)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	cp.enable = 0x00;
 | ||
| 	cp.handle = instance;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
 | ||
| 				       u16 min_interval, u16 max_interval)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_per_adv_params cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	if (!min_interval)
 | ||
| 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
 | ||
| 
 | ||
| 	if (!max_interval)
 | ||
| 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
 | ||
| 
 | ||
| 	cp.handle = instance;
 | ||
| 	cp.min_interval = cpu_to_le16(min_interval);
 | ||
| 	cp.max_interval = cpu_to_le16(max_interval);
 | ||
| 	cp.periodic_properties = 0x0000;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length,
 | ||
| 		    HCI_MAX_PER_AD_LENGTH);
 | ||
| 	u8 len;
 | ||
| 	struct adv_info *adv = NULL;
 | ||
| 
 | ||
| 	if (instance) {
 | ||
| 		adv = hci_find_adv_instance(hdev, instance);
 | ||
| 		if (!adv || !adv->periodic)
 | ||
| 			return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	len = eir_create_per_adv_data(hdev, instance, pdu->data);
 | ||
| 
 | ||
| 	pdu->length = len;
 | ||
| 	pdu->handle = adv ? adv->handle : instance;
 | ||
| 	pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
 | ||
| 				     struct_size(pdu, data, len), pdu,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_per_adv_enable cp;
 | ||
| 	struct adv_info *adv = NULL;
 | ||
| 
 | ||
| 	/* If periodic advertising already enabled there is nothing to do. */
 | ||
| 	adv = hci_find_adv_instance(hdev, instance);
 | ||
| 	if (adv && adv->periodic && adv->enabled)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	cp.enable = 0x01;
 | ||
| 	cp.handle = instance;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Checks if periodic advertising data contains a Basic Announcement and if it
 | ||
|  * does generates a Broadcast ID and add Broadcast Announcement.
 | ||
|  */
 | ||
| static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
 | ||
| {
 | ||
| 	u8 bid[3];
 | ||
| 	u8 ad[4 + 3];
 | ||
| 
 | ||
| 	/* Skip if NULL adv as instance 0x00 is used for general purpose
 | ||
| 	 * advertising so it cannot used for the likes of Broadcast Announcement
 | ||
| 	 * as it can be overwritten at any point.
 | ||
| 	 */
 | ||
| 	if (!adv)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Check if PA data doesn't contains a Basic Audio Announcement then
 | ||
| 	 * there is nothing to do.
 | ||
| 	 */
 | ||
| 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
 | ||
| 				  0x1851, NULL))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Check if advertising data already has a Broadcast Announcement since
 | ||
| 	 * the process may want to control the Broadcast ID directly and in that
 | ||
| 	 * case the kernel shall no interfere.
 | ||
| 	 */
 | ||
| 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
 | ||
| 				 NULL))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Generate Broadcast ID */
 | ||
| 	get_random_bytes(bid, sizeof(bid));
 | ||
| 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
 | ||
| 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
 | ||
| 
 | ||
| 	return hci_update_adv_data_sync(hdev, adv->instance);
 | ||
| }
 | ||
| 
 | ||
| int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
 | ||
| 			   u8 *data, u32 flags, u16 min_interval,
 | ||
| 			   u16 max_interval, u16 sync_interval)
 | ||
| {
 | ||
| 	struct adv_info *adv = NULL;
 | ||
| 	int err;
 | ||
| 	bool added = false;
 | ||
| 
 | ||
| 	hci_disable_per_advertising_sync(hdev, instance);
 | ||
| 
 | ||
| 	if (instance) {
 | ||
| 		adv = hci_find_adv_instance(hdev, instance);
 | ||
| 		/* Create an instance if that could not be found */
 | ||
| 		if (!adv) {
 | ||
| 			adv = hci_add_per_instance(hdev, instance, flags,
 | ||
| 						   data_len, data,
 | ||
| 						   sync_interval,
 | ||
| 						   sync_interval);
 | ||
| 			if (IS_ERR(adv))
 | ||
| 				return PTR_ERR(adv);
 | ||
| 			adv->pending = false;
 | ||
| 			added = true;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Start advertising */
 | ||
| 	err = hci_start_ext_adv_sync(hdev, instance);
 | ||
| 	if (err < 0)
 | ||
| 		goto fail;
 | ||
| 
 | ||
| 	err = hci_adv_bcast_annoucement(hdev, adv);
 | ||
| 	if (err < 0)
 | ||
| 		goto fail;
 | ||
| 
 | ||
| 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
 | ||
| 					  max_interval);
 | ||
| 	if (err < 0)
 | ||
| 		goto fail;
 | ||
| 
 | ||
| 	err = hci_set_per_adv_data_sync(hdev, instance);
 | ||
| 	if (err < 0)
 | ||
| 		goto fail;
 | ||
| 
 | ||
| 	err = hci_enable_per_advertising_sync(hdev, instance);
 | ||
| 	if (err < 0)
 | ||
| 		goto fail;
 | ||
| 
 | ||
| 	return 0;
 | ||
| 
 | ||
| fail:
 | ||
| 	if (added)
 | ||
| 		hci_remove_adv_instance(hdev, instance);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		return hci_start_ext_adv_sync(hdev, instance);
 | ||
| 
 | ||
| 	err = hci_update_adv_data_sync(hdev, instance);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	err = hci_update_scan_rsp_data_sync(hdev, instance);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	return hci_enable_advertising_sync(hdev);
 | ||
| }
 | ||
| 
 | ||
| int hci_enable_advertising_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct adv_info *adv_instance;
 | ||
| 	struct hci_cp_le_set_adv_param cp;
 | ||
| 	u8 own_addr_type, enable = 0x01;
 | ||
| 	bool connectable;
 | ||
| 	u16 adv_min_interval, adv_max_interval;
 | ||
| 	u32 flags;
 | ||
| 	u8 status;
 | ||
| 
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		return hci_enable_ext_advertising_sync(hdev,
 | ||
| 						       hdev->cur_adv_instance);
 | ||
| 
 | ||
| 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
 | ||
| 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
 | ||
| 
 | ||
| 	/* If the "connectable" instance flag was not set, then choose between
 | ||
| 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
 | ||
| 	 */
 | ||
| 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
 | ||
| 		      mgmt_get_connectable(hdev);
 | ||
| 
 | ||
| 	if (!is_advertising_allowed(hdev, connectable))
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	status = hci_disable_advertising_sync(hdev);
 | ||
| 	if (status)
 | ||
| 		return status;
 | ||
| 
 | ||
| 	/* Clear the HCI_LE_ADV bit temporarily so that the
 | ||
| 	 * hci_update_random_address knows that it's safe to go ahead
 | ||
| 	 * and write a new random address. The flag will be set back on
 | ||
| 	 * as soon as the SET_ADV_ENABLE HCI command completes.
 | ||
| 	 */
 | ||
| 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
 | ||
| 
 | ||
| 	/* Set require_privacy to true only when non-connectable
 | ||
| 	 * advertising is used. In that case it is fine to use a
 | ||
| 	 * non-resolvable private address.
 | ||
| 	 */
 | ||
| 	status = hci_update_random_address_sync(hdev, !connectable,
 | ||
| 						adv_use_rpa(hdev, flags),
 | ||
| 						&own_addr_type);
 | ||
| 	if (status)
 | ||
| 		return status;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	if (adv_instance) {
 | ||
| 		adv_min_interval = adv_instance->min_interval;
 | ||
| 		adv_max_interval = adv_instance->max_interval;
 | ||
| 	} else {
 | ||
| 		adv_min_interval = hdev->le_adv_min_interval;
 | ||
| 		adv_max_interval = hdev->le_adv_max_interval;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (connectable) {
 | ||
| 		cp.type = LE_ADV_IND;
 | ||
| 	} else {
 | ||
| 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
 | ||
| 			cp.type = LE_ADV_SCAN_IND;
 | ||
| 		else
 | ||
| 			cp.type = LE_ADV_NONCONN_IND;
 | ||
| 
 | ||
| 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
 | ||
| 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
 | ||
| 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
 | ||
| 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	cp.min_interval = cpu_to_le16(adv_min_interval);
 | ||
| 	cp.max_interval = cpu_to_le16(adv_max_interval);
 | ||
| 	cp.own_address_type = own_addr_type;
 | ||
| 	cp.channel_map = hdev->le_adv_channel_map;
 | ||
| 
 | ||
| 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
 | ||
| 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| 	if (status)
 | ||
| 		return status;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
 | ||
| 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int enable_advertising_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	return hci_enable_advertising_sync(hdev);
 | ||
| }
 | ||
| 
 | ||
| int hci_enable_advertising(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
 | ||
| 	    list_empty(&hdev->adv_instances))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
 | ||
| }
 | ||
| 
 | ||
| int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
 | ||
| 				     struct sock *sk)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!ext_adv_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* If request specifies an instance that doesn't exist, fail */
 | ||
| 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
 | ||
| 					sizeof(instance), &instance, 0,
 | ||
| 					HCI_CMD_TIMEOUT, sk);
 | ||
| }
 | ||
| 
 | ||
| int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
 | ||
| {
 | ||
| 	struct hci_cp_le_term_big cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.handle = handle;
 | ||
| 	cp.reason = reason;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length,
 | ||
| 		    HCI_MAX_EXT_AD_LENGTH);
 | ||
| 	u8 len;
 | ||
| 	struct adv_info *adv = NULL;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (instance) {
 | ||
| 		adv = hci_find_adv_instance(hdev, instance);
 | ||
| 		if (!adv || !adv->adv_data_changed)
 | ||
| 			return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	len = eir_create_adv_data(hdev, instance, pdu->data);
 | ||
| 
 | ||
| 	pdu->length = len;
 | ||
| 	pdu->handle = adv ? adv->handle : instance;
 | ||
| 	pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
 | ||
| 	pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG;
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
 | ||
| 				    struct_size(pdu, data, len), pdu,
 | ||
| 				    HCI_CMD_TIMEOUT);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* Update data if the command succeed */
 | ||
| 	if (adv) {
 | ||
| 		adv->adv_data_changed = false;
 | ||
| 	} else {
 | ||
| 		memcpy(hdev->adv_data, pdu->data, len);
 | ||
| 		hdev->adv_data_len = len;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_adv_data cp;
 | ||
| 	u8 len;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	len = eir_create_adv_data(hdev, instance, cp.data);
 | ||
| 
 | ||
| 	/* There's nothing to do if the data hasn't changed */
 | ||
| 	if (hdev->adv_data_len == len &&
 | ||
| 	    memcmp(cp.data, hdev->adv_data, len) == 0)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
 | ||
| 	hdev->adv_data_len = len;
 | ||
| 
 | ||
| 	cp.length = len;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		return hci_set_ext_adv_data_sync(hdev, instance);
 | ||
| 
 | ||
| 	return hci_set_adv_data_sync(hdev, instance);
 | ||
| }
 | ||
| 
 | ||
| int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
 | ||
| 				   bool force)
 | ||
| {
 | ||
| 	struct adv_info *adv = NULL;
 | ||
| 	u16 timeout;
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
 | ||
| 		return -EPERM;
 | ||
| 
 | ||
| 	if (hdev->adv_instance_timeout)
 | ||
| 		return -EBUSY;
 | ||
| 
 | ||
| 	adv = hci_find_adv_instance(hdev, instance);
 | ||
| 	if (!adv)
 | ||
| 		return -ENOENT;
 | ||
| 
 | ||
| 	/* A zero timeout means unlimited advertising. As long as there is
 | ||
| 	 * only one instance, duration should be ignored. We still set a timeout
 | ||
| 	 * in case further instances are being added later on.
 | ||
| 	 *
 | ||
| 	 * If the remaining lifetime of the instance is more than the duration
 | ||
| 	 * then the timeout corresponds to the duration, otherwise it will be
 | ||
| 	 * reduced to the remaining instance lifetime.
 | ||
| 	 */
 | ||
| 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
 | ||
| 		timeout = adv->duration;
 | ||
| 	else
 | ||
| 		timeout = adv->remaining_time;
 | ||
| 
 | ||
| 	/* The remaining time is being reduced unless the instance is being
 | ||
| 	 * advertised without time limit.
 | ||
| 	 */
 | ||
| 	if (adv->timeout)
 | ||
| 		adv->remaining_time = adv->remaining_time - timeout;
 | ||
| 
 | ||
| 	/* Only use work for scheduling instances with legacy advertising */
 | ||
| 	if (!ext_adv_capable(hdev)) {
 | ||
| 		hdev->adv_instance_timeout = timeout;
 | ||
| 		queue_delayed_work(hdev->req_workqueue,
 | ||
| 				   &hdev->adv_instance_expire,
 | ||
| 				   secs_to_jiffies(timeout));
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If we're just re-scheduling the same instance again then do not
 | ||
| 	 * execute any HCI commands. This happens when a single instance is
 | ||
| 	 * being advertised.
 | ||
| 	 */
 | ||
| 	if (!force && hdev->cur_adv_instance == instance &&
 | ||
| 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hdev->cur_adv_instance = instance;
 | ||
| 
 | ||
| 	return hci_start_adv_sync(hdev, instance);
 | ||
| }
 | ||
| 
 | ||
| static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!ext_adv_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Disable instance 0x00 to disable all instances */
 | ||
| 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
 | ||
| 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
 | ||
| }
 | ||
| 
 | ||
| static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
 | ||
| {
 | ||
| 	struct adv_info *adv, *n;
 | ||
| 	int err = 0;
 | ||
| 
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		/* Remove all existing sets */
 | ||
| 		err = hci_clear_adv_sets_sync(hdev, sk);
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* This is safe as long as there is no command send while the lock is
 | ||
| 	 * held.
 | ||
| 	 */
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	/* Cleanup non-ext instances */
 | ||
| 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
 | ||
| 		u8 instance = adv->instance;
 | ||
| 		int err;
 | ||
| 
 | ||
| 		if (!(force || adv->timeout))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		err = hci_remove_adv_instance(hdev, instance);
 | ||
| 		if (!err)
 | ||
| 			mgmt_advertising_removed(sk, hdev, instance);
 | ||
| 	}
 | ||
| 
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
 | ||
| 			       struct sock *sk)
 | ||
| {
 | ||
| 	int err = 0;
 | ||
| 
 | ||
| 	/* If we use extended advertising, instance has to be removed first. */
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* This is safe as long as there is no command send while the lock is
 | ||
| 	 * held.
 | ||
| 	 */
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	err = hci_remove_adv_instance(hdev, instance);
 | ||
| 	if (!err)
 | ||
| 		mgmt_advertising_removed(sk, hdev, instance);
 | ||
| 
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| /* For a single instance:
 | ||
|  * - force == true: The instance will be removed even when its remaining
 | ||
|  *   lifetime is not zero.
 | ||
|  * - force == false: the instance will be deactivated but kept stored unless
 | ||
|  *   the remaining lifetime is zero.
 | ||
|  *
 | ||
|  * For instance == 0x00:
 | ||
|  * - force == true: All instances will be removed regardless of their timeout
 | ||
|  *   setting.
 | ||
|  * - force == false: Only instances that have a timeout will be removed.
 | ||
|  */
 | ||
| int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
 | ||
| 				u8 instance, bool force)
 | ||
| {
 | ||
| 	struct adv_info *next = NULL;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* Cancel any timeout concerning the removed instance(s). */
 | ||
| 	if (!instance || hdev->cur_adv_instance == instance)
 | ||
| 		cancel_adv_timeout(hdev);
 | ||
| 
 | ||
| 	/* Get the next instance to advertise BEFORE we remove
 | ||
| 	 * the current one. This can be the same instance again
 | ||
| 	 * if there is only one instance.
 | ||
| 	 */
 | ||
| 	if (hdev->cur_adv_instance == instance)
 | ||
| 		next = hci_get_next_instance(hdev, instance);
 | ||
| 
 | ||
| 	if (!instance) {
 | ||
| 		err = hci_clear_adv_sync(hdev, sk, force);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	} else {
 | ||
| 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
 | ||
| 
 | ||
| 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
 | ||
| 			/* Don't advertise a removed instance. */
 | ||
| 			if (next && next->instance == instance)
 | ||
| 				next = NULL;
 | ||
| 
 | ||
| 			err = hci_remove_adv_sync(hdev, instance, sk);
 | ||
| 			if (err)
 | ||
| 				return err;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (next && !ext_adv_capable(hdev))
 | ||
| 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
 | ||
| {
 | ||
| 	struct hci_cp_read_rssi cp;
 | ||
| 
 | ||
| 	cp.handle = handle;
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
 | ||
| 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
 | ||
| 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
 | ||
| {
 | ||
| 	struct hci_cp_read_tx_power cp;
 | ||
| 
 | ||
| 	cp.handle = handle;
 | ||
| 	cp.type = type;
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
 | ||
| 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_disable_advertising_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 enable = 0x00;
 | ||
| 	int err = 0;
 | ||
| 
 | ||
| 	/* If controller is not advertising we are done. */
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		return err;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
 | ||
| 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
 | ||
| 					   u8 filter_dup)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_ext_scan_enable cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.enable = val;
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_MESH))
 | ||
| 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
 | ||
| 	else
 | ||
| 		cp.filter_dup = filter_dup;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
 | ||
| 				       u8 filter_dup)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_scan_enable cp;
 | ||
| 
 | ||
| 	if (use_ext_scan(hdev))
 | ||
| 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.enable = val;
 | ||
| 
 | ||
| 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
 | ||
| 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
 | ||
| 	else
 | ||
| 		cp.filter_dup = filter_dup;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
 | ||
| {
 | ||
| 	if (!ll_privacy_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* If controller is not/already resolving we are done. */
 | ||
| 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
 | ||
| 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_scan_disable_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* If controller is not scanning we are done. */
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (hdev->scanning_paused) {
 | ||
| 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
 | ||
| 	if (err) {
 | ||
| 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
 | ||
| 		return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static bool scan_use_rpa(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 | ||
| }
 | ||
| 
 | ||
| static void hci_start_interleave_scan(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
 | ||
| 	queue_delayed_work(hdev->req_workqueue,
 | ||
| 			   &hdev->interleave_scan, 0);
 | ||
| }
 | ||
| 
 | ||
| static void cancel_interleave_scan(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	bt_dev_dbg(hdev, "cancelling interleave scan");
 | ||
| 
 | ||
| 	cancel_delayed_work_sync(&hdev->interleave_scan);
 | ||
| 
 | ||
| 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
 | ||
| }
 | ||
| 
 | ||
| /* Return true if interleave_scan wasn't started until exiting this function,
 | ||
|  * otherwise, return false
 | ||
|  */
 | ||
| static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	/* Do interleaved scan only if all of the following are true:
 | ||
| 	 * - There is at least one ADV monitor
 | ||
| 	 * - At least one pending LE connection or one device to be scanned for
 | ||
| 	 * - Monitor offloading is not supported
 | ||
| 	 * If so, we should alternate between allowlist scan and one without
 | ||
| 	 * any filters to save power.
 | ||
| 	 */
 | ||
| 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
 | ||
| 				!(list_empty(&hdev->pend_le_conns) &&
 | ||
| 				  list_empty(&hdev->pend_le_reports)) &&
 | ||
| 				hci_get_adv_monitor_offload_ext(hdev) ==
 | ||
| 				    HCI_ADV_MONITOR_EXT_NONE;
 | ||
| 	bool is_interleaving = is_interleave_scanning(hdev);
 | ||
| 
 | ||
| 	if (use_interleaving && !is_interleaving) {
 | ||
| 		hci_start_interleave_scan(hdev);
 | ||
| 		bt_dev_dbg(hdev, "starting interleave scan");
 | ||
| 		return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!use_interleaving && is_interleaving)
 | ||
| 		cancel_interleave_scan(hdev);
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| /* Removes connection to resolve list if needed.*/
 | ||
| static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
 | ||
| 					bdaddr_t *bdaddr, u8 bdaddr_type)
 | ||
| {
 | ||
| 	struct hci_cp_le_del_from_resolv_list cp;
 | ||
| 	struct bdaddr_list_with_irk *entry;
 | ||
| 
 | ||
| 	if (!ll_privacy_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Check if the IRK has been programmed */
 | ||
| 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
 | ||
| 						bdaddr_type);
 | ||
| 	if (!entry)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	cp.bdaddr_type = bdaddr_type;
 | ||
| 	bacpy(&cp.bdaddr, bdaddr);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
 | ||
| 				       bdaddr_t *bdaddr, u8 bdaddr_type)
 | ||
| {
 | ||
| 	struct hci_cp_le_del_from_accept_list cp;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* Check if device is on accept list before removing it */
 | ||
| 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	cp.bdaddr_type = bdaddr_type;
 | ||
| 	bacpy(&cp.bdaddr, bdaddr);
 | ||
| 
 | ||
| 	/* Ignore errors when removing from resolving list as that is likely
 | ||
| 	 * that the device was never added.
 | ||
| 	 */
 | ||
| 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
 | ||
| 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| 	if (err) {
 | ||
| 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
 | ||
| 		return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
 | ||
| 		   cp.bdaddr_type);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| struct conn_params {
 | ||
| 	bdaddr_t addr;
 | ||
| 	u8 addr_type;
 | ||
| 	hci_conn_flags_t flags;
 | ||
| 	u8 privacy_mode;
 | ||
| };
 | ||
| 
 | ||
| /* Adds connection to resolve list if needed.
 | ||
|  * Setting params to NULL programs local hdev->irk
 | ||
|  */
 | ||
| static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
 | ||
| 					struct conn_params *params)
 | ||
| {
 | ||
| 	struct hci_cp_le_add_to_resolv_list cp;
 | ||
| 	struct smp_irk *irk;
 | ||
| 	struct bdaddr_list_with_irk *entry;
 | ||
| 	struct hci_conn_params *p;
 | ||
| 
 | ||
| 	if (!ll_privacy_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Attempt to program local identity address, type and irk if params is
 | ||
| 	 * NULL.
 | ||
| 	 */
 | ||
| 	if (!params) {
 | ||
| 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 | ||
| 			return 0;
 | ||
| 
 | ||
| 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
 | ||
| 		memcpy(cp.peer_irk, hdev->irk, 16);
 | ||
| 		goto done;
 | ||
| 	} else if (!(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
 | ||
| 	if (!irk)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Check if the IK has _not_ been programmed yet. */
 | ||
| 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
 | ||
| 						¶ms->addr,
 | ||
| 						params->addr_type);
 | ||
| 	if (entry)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	cp.bdaddr_type = params->addr_type;
 | ||
| 	bacpy(&cp.bdaddr, ¶ms->addr);
 | ||
| 	memcpy(cp.peer_irk, irk->val, 16);
 | ||
| 
 | ||
| 	/* Default privacy mode is always Network */
 | ||
| 	params->privacy_mode = HCI_NETWORK_PRIVACY;
 | ||
| 
 | ||
| 	rcu_read_lock();
 | ||
| 	p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
 | ||
| 				      ¶ms->addr, params->addr_type);
 | ||
| 	if (!p)
 | ||
| 		p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
 | ||
| 					      ¶ms->addr, params->addr_type);
 | ||
| 	if (p)
 | ||
| 		WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
 | ||
| 	rcu_read_unlock();
 | ||
| 
 | ||
| done:
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
 | ||
| 		memcpy(cp.local_irk, hdev->irk, 16);
 | ||
| 	else
 | ||
| 		memset(cp.local_irk, 0, 16);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Set Device Privacy Mode. */
 | ||
| static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
 | ||
| 					struct conn_params *params)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_privacy_mode cp;
 | ||
| 	struct smp_irk *irk;
 | ||
| 
 | ||
| 	if (!ll_privacy_capable(hdev) ||
 | ||
| 	    !(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* If device privacy mode has already been set there is nothing to do */
 | ||
| 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
 | ||
| 	 * indicates that LL Privacy has been enabled and
 | ||
| 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
 | ||
| 	 */
 | ||
| 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
 | ||
| 	if (!irk)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.bdaddr_type = irk->addr_type;
 | ||
| 	bacpy(&cp.bdaddr, &irk->bdaddr);
 | ||
| 	cp.mode = HCI_DEVICE_PRIVACY;
 | ||
| 
 | ||
| 	/* Note: params->privacy_mode is not updated since it is a copy */
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
 | ||
|  * this attempts to program the device in the resolving list as well and
 | ||
|  * properly set the privacy mode.
 | ||
|  */
 | ||
| static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
 | ||
| 				       struct conn_params *params,
 | ||
| 				       u8 *num_entries)
 | ||
| {
 | ||
| 	struct hci_cp_le_add_to_accept_list cp;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* During suspend, only wakeable devices can be in acceptlist */
 | ||
| 	if (hdev->suspended &&
 | ||
| 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) {
 | ||
| 		hci_le_del_accept_list_sync(hdev, ¶ms->addr,
 | ||
| 					    params->addr_type);
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Select filter policy to accept all advertising */
 | ||
| 	if (*num_entries >= hdev->le_accept_list_size)
 | ||
| 		return -ENOSPC;
 | ||
| 
 | ||
| 	/* Attempt to program the device in the resolving list first to avoid
 | ||
| 	 * having to rollback in case it fails since the resolving list is
 | ||
| 	 * dynamic it can probably be smaller than the accept list.
 | ||
| 	 */
 | ||
| 	err = hci_le_add_resolve_list_sync(hdev, params);
 | ||
| 	if (err) {
 | ||
| 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
 | ||
| 		return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Set Privacy Mode */
 | ||
| 	err = hci_le_set_privacy_mode_sync(hdev, params);
 | ||
| 	if (err) {
 | ||
| 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
 | ||
| 		return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Check if already in accept list */
 | ||
| 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr,
 | ||
| 				   params->addr_type))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	*num_entries += 1;
 | ||
| 	cp.bdaddr_type = params->addr_type;
 | ||
| 	bacpy(&cp.bdaddr, ¶ms->addr);
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
 | ||
| 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| 	if (err) {
 | ||
| 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
 | ||
| 		/* Rollback the device from the resolving list */
 | ||
| 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
 | ||
| 		return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
 | ||
| 		   cp.bdaddr_type);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* This function disables/pause all advertising instances */
 | ||
| static int hci_pause_advertising_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 	int old_state;
 | ||
| 
 | ||
| 	/* If already been paused there is nothing to do. */
 | ||
| 	if (hdev->advertising_paused)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "Pausing directed advertising");
 | ||
| 
 | ||
| 	/* Stop directed advertising */
 | ||
| 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
 | ||
| 	if (old_state) {
 | ||
| 		/* When discoverable timeout triggers, then just make sure
 | ||
| 		 * the limited discoverable flag is cleared. Even in the case
 | ||
| 		 * of a timeout triggered from general discoverable, it is
 | ||
| 		 * safe to unconditionally clear the flag.
 | ||
| 		 */
 | ||
| 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 | ||
| 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
 | ||
| 		hdev->discov_timeout = 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "Pausing advertising instances");
 | ||
| 
 | ||
| 	/* Call to disable any advertisements active on the controller.
 | ||
| 	 * This will succeed even if no advertisements are configured.
 | ||
| 	 */
 | ||
| 	err = hci_disable_advertising_sync(hdev);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* If we are using software rotation, pause the loop */
 | ||
| 	if (!ext_adv_capable(hdev))
 | ||
| 		cancel_adv_timeout(hdev);
 | ||
| 
 | ||
| 	hdev->advertising_paused = true;
 | ||
| 	hdev->advertising_old_state = old_state;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* This function enables all user advertising instances */
 | ||
| static int hci_resume_advertising_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct adv_info *adv, *tmp;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* If advertising has not been paused there is nothing  to do. */
 | ||
| 	if (!hdev->advertising_paused)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Resume directed advertising */
 | ||
| 	hdev->advertising_paused = false;
 | ||
| 	if (hdev->advertising_old_state) {
 | ||
| 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
 | ||
| 		hdev->advertising_old_state = 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "Resuming advertising instances");
 | ||
| 
 | ||
| 	if (ext_adv_capable(hdev)) {
 | ||
| 		/* Call for each tracked instance to be re-enabled */
 | ||
| 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
 | ||
| 			err = hci_enable_ext_advertising_sync(hdev,
 | ||
| 							      adv->instance);
 | ||
| 			if (!err)
 | ||
| 				continue;
 | ||
| 
 | ||
| 			/* If the instance cannot be resumed remove it */
 | ||
| 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
 | ||
| 							 NULL);
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		/* Schedule for most recent instance to be restarted and begin
 | ||
| 		 * the software rotation loop
 | ||
| 		 */
 | ||
| 		err = hci_schedule_adv_instance_sync(hdev,
 | ||
| 						     hdev->cur_adv_instance,
 | ||
| 						     true);
 | ||
| 	}
 | ||
| 
 | ||
| 	hdev->advertising_paused = false;
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static int hci_pause_addr_resolution(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!ll_privacy_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Cannot disable addr resolution if scanning is enabled or
 | ||
| 	 * when initiating an LE connection.
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
 | ||
| 	    hci_lookup_le_connect(hdev)) {
 | ||
| 		bt_dev_err(hdev, "Command not allowed when scan/LE connect");
 | ||
| 		return -EPERM;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Cannot disable addr resolution if advertising is enabled. */
 | ||
| 	err = hci_pause_advertising_sync(hdev);
 | ||
| 	if (err) {
 | ||
| 		bt_dev_err(hdev, "Pause advertising failed: %d", err);
 | ||
| 		return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
 | ||
| 	if (err)
 | ||
| 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
 | ||
| 			   err);
 | ||
| 
 | ||
| 	/* Return if address resolution is disabled and RPA is not used. */
 | ||
| 	if (!err && scan_use_rpa(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hci_resume_advertising_sync(hdev);
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
 | ||
| 					     bool extended, struct sock *sk)
 | ||
| {
 | ||
| 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
 | ||
| 					HCI_OP_READ_LOCAL_OOB_DATA;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
 | ||
| }
 | ||
| 
 | ||
| static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
 | ||
| {
 | ||
| 	struct hci_conn_params *params;
 | ||
| 	struct conn_params *p;
 | ||
| 	size_t i;
 | ||
| 
 | ||
| 	rcu_read_lock();
 | ||
| 
 | ||
| 	i = 0;
 | ||
| 	list_for_each_entry_rcu(params, list, action)
 | ||
| 		++i;
 | ||
| 	*n = i;
 | ||
| 
 | ||
| 	rcu_read_unlock();
 | ||
| 
 | ||
| 	p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
 | ||
| 	if (!p)
 | ||
| 		return NULL;
 | ||
| 
 | ||
| 	rcu_read_lock();
 | ||
| 
 | ||
| 	i = 0;
 | ||
| 	list_for_each_entry_rcu(params, list, action) {
 | ||
| 		/* Racing adds are handled in next scan update */
 | ||
| 		if (i >= *n)
 | ||
| 			break;
 | ||
| 
 | ||
| 		/* No hdev->lock, but: addr, addr_type are immutable.
 | ||
| 		 * privacy_mode is only written by us or in
 | ||
| 		 * hci_cc_le_set_privacy_mode that we wait for.
 | ||
| 		 * We should be idempotent so MGMT updating flags
 | ||
| 		 * while we are processing is OK.
 | ||
| 		 */
 | ||
| 		bacpy(&p[i].addr, ¶ms->addr);
 | ||
| 		p[i].addr_type = params->addr_type;
 | ||
| 		p[i].flags = READ_ONCE(params->flags);
 | ||
| 		p[i].privacy_mode = READ_ONCE(params->privacy_mode);
 | ||
| 		++i;
 | ||
| 	}
 | ||
| 
 | ||
| 	rcu_read_unlock();
 | ||
| 
 | ||
| 	*n = i;
 | ||
| 	return p;
 | ||
| }
 | ||
| 
 | ||
| /* Clear LE Accept List */
 | ||
| static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->commands[26] & 0x80))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Device must not be scanning when updating the accept list.
 | ||
|  *
 | ||
|  * Update is done using the following sequence:
 | ||
|  *
 | ||
|  * ll_privacy_capable((Disable Advertising) -> Disable Resolving List) ->
 | ||
|  * Remove Devices From Accept List ->
 | ||
|  * (has IRK && ll_privacy_capable(Remove Devices From Resolving List))->
 | ||
|  * Add Devices to Accept List ->
 | ||
|  * (has IRK && ll_privacy_capable(Remove Devices From Resolving List)) ->
 | ||
|  * ll_privacy_capable(Enable Resolving List -> (Enable Advertising)) ->
 | ||
|  * Enable Scanning
 | ||
|  *
 | ||
|  * In case of failure advertising shall be restored to its original state and
 | ||
|  * return would disable accept list since either accept or resolving list could
 | ||
|  * not be programmed.
 | ||
|  *
 | ||
|  */
 | ||
| static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct conn_params *params;
 | ||
| 	struct bdaddr_list *b, *t;
 | ||
| 	u8 num_entries = 0;
 | ||
| 	bool pend_conn, pend_report;
 | ||
| 	u8 filter_policy;
 | ||
| 	size_t i, n;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* Pause advertising if resolving list can be used as controllers
 | ||
| 	 * cannot accept resolving list modifications while advertising.
 | ||
| 	 */
 | ||
| 	if (ll_privacy_capable(hdev)) {
 | ||
| 		err = hci_pause_advertising_sync(hdev);
 | ||
| 		if (err) {
 | ||
| 			bt_dev_err(hdev, "pause advertising failed: %d", err);
 | ||
| 			return 0x00;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Disable address resolution while reprogramming accept list since
 | ||
| 	 * devices that do have an IRK will be programmed in the resolving list
 | ||
| 	 * when LL Privacy is enabled.
 | ||
| 	 */
 | ||
| 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
 | ||
| 	if (err) {
 | ||
| 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Force address filtering if PA Sync is in progress */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
 | ||
| 		struct hci_conn *conn;
 | ||
| 
 | ||
| 		conn = hci_conn_hash_lookup_create_pa_sync(hdev);
 | ||
| 		if (conn) {
 | ||
| 			struct conn_params pa;
 | ||
| 
 | ||
| 			memset(&pa, 0, sizeof(pa));
 | ||
| 
 | ||
| 			bacpy(&pa.addr, &conn->dst);
 | ||
| 			pa.addr_type = conn->dst_type;
 | ||
| 
 | ||
| 			/* Clear first since there could be addresses left
 | ||
| 			 * behind.
 | ||
| 			 */
 | ||
| 			hci_le_clear_accept_list_sync(hdev);
 | ||
| 
 | ||
| 			num_entries = 1;
 | ||
| 			err = hci_le_add_accept_list_sync(hdev, &pa,
 | ||
| 							  &num_entries);
 | ||
| 			goto done;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Go through the current accept list programmed into the
 | ||
| 	 * controller one by one and check if that address is connected or is
 | ||
| 	 * still in the list of pending connections or list of devices to
 | ||
| 	 * report. If not present in either list, then remove it from
 | ||
| 	 * the controller.
 | ||
| 	 */
 | ||
| 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
 | ||
| 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		/* Pointers not dereferenced, no locks needed */
 | ||
| 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
 | ||
| 						      &b->bdaddr,
 | ||
| 						      b->bdaddr_type);
 | ||
| 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
 | ||
| 							&b->bdaddr,
 | ||
| 							b->bdaddr_type);
 | ||
| 
 | ||
| 		/* If the device is not likely to connect or report,
 | ||
| 		 * remove it from the acceptlist.
 | ||
| 		 */
 | ||
| 		if (!pend_conn && !pend_report) {
 | ||
| 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
 | ||
| 						    b->bdaddr_type);
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		num_entries++;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Since all no longer valid accept list entries have been
 | ||
| 	 * removed, walk through the list of pending connections
 | ||
| 	 * and ensure that any new device gets programmed into
 | ||
| 	 * the controller.
 | ||
| 	 *
 | ||
| 	 * If the list of the devices is larger than the list of
 | ||
| 	 * available accept list entries in the controller, then
 | ||
| 	 * just abort and return filer policy value to not use the
 | ||
| 	 * accept list.
 | ||
| 	 *
 | ||
| 	 * The list and params may be mutated while we wait for events,
 | ||
| 	 * so make a copy and iterate it.
 | ||
| 	 */
 | ||
| 
 | ||
| 	params = conn_params_copy(&hdev->pend_le_conns, &n);
 | ||
| 	if (!params) {
 | ||
| 		err = -ENOMEM;
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		err = hci_le_add_accept_list_sync(hdev, ¶ms[i],
 | ||
| 						  &num_entries);
 | ||
| 		if (err) {
 | ||
| 			kvfree(params);
 | ||
| 			goto done;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	kvfree(params);
 | ||
| 
 | ||
| 	/* After adding all new pending connections, walk through
 | ||
| 	 * the list of pending reports and also add these to the
 | ||
| 	 * accept list if there is still space. Abort if space runs out.
 | ||
| 	 */
 | ||
| 
 | ||
| 	params = conn_params_copy(&hdev->pend_le_reports, &n);
 | ||
| 	if (!params) {
 | ||
| 		err = -ENOMEM;
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	for (i = 0; i < n; ++i) {
 | ||
| 		err = hci_le_add_accept_list_sync(hdev, ¶ms[i],
 | ||
| 						  &num_entries);
 | ||
| 		if (err) {
 | ||
| 			kvfree(params);
 | ||
| 			goto done;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	kvfree(params);
 | ||
| 
 | ||
| 	/* Use the allowlist unless the following conditions are all true:
 | ||
| 	 * - We are not currently suspending
 | ||
| 	 * - There are 1 or more ADV monitors registered and it's not offloaded
 | ||
| 	 * - Interleaved scanning is not currently using the allowlist
 | ||
| 	 */
 | ||
| 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
 | ||
| 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
 | ||
| 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
 | ||
| 		err = -EINVAL;
 | ||
| 
 | ||
| done:
 | ||
| 	filter_policy = err ? 0x00 : 0x01;
 | ||
| 
 | ||
| 	/* Enable address resolution when LL Privacy is enabled. */
 | ||
| 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
 | ||
| 	if (err)
 | ||
| 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
 | ||
| 
 | ||
| 	/* Resume advertising if it was paused */
 | ||
| 	if (ll_privacy_capable(hdev))
 | ||
| 		hci_resume_advertising_sync(hdev);
 | ||
| 
 | ||
| 	/* Select filter policy to use accept list */
 | ||
| 	return filter_policy;
 | ||
| }
 | ||
| 
 | ||
| static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp,
 | ||
| 				   u8 type, u16 interval, u16 window)
 | ||
| {
 | ||
| 	cp->type = type;
 | ||
| 	cp->interval = cpu_to_le16(interval);
 | ||
| 	cp->window = cpu_to_le16(window);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
 | ||
| 					  u16 interval, u16 window,
 | ||
| 					  u8 own_addr_type, u8 filter_policy)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_ext_scan_params *cp;
 | ||
| 	struct hci_cp_le_scan_phy_params *phy;
 | ||
| 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
 | ||
| 	u8 num_phy = 0x00;
 | ||
| 
 | ||
| 	cp = (void *)data;
 | ||
| 	phy = (void *)cp->data;
 | ||
| 
 | ||
| 	memset(data, 0, sizeof(data));
 | ||
| 
 | ||
| 	cp->own_addr_type = own_addr_type;
 | ||
| 	cp->filter_policy = filter_policy;
 | ||
| 
 | ||
| 	/* Check if PA Sync is in progress then select the PHY based on the
 | ||
| 	 * hci_conn.iso_qos.
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
 | ||
| 		struct hci_cp_le_add_to_accept_list *sent;
 | ||
| 
 | ||
| 		sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST);
 | ||
| 		if (sent) {
 | ||
| 			struct hci_conn *conn;
 | ||
| 
 | ||
| 			conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK,
 | ||
| 						       &sent->bdaddr);
 | ||
| 			if (conn) {
 | ||
| 				struct bt_iso_qos *qos = &conn->iso_qos;
 | ||
| 
 | ||
| 				if (qos->bcast.in.phy & BT_ISO_PHY_1M ||
 | ||
| 				    qos->bcast.in.phy & BT_ISO_PHY_2M) {
 | ||
| 					cp->scanning_phys |= LE_SCAN_PHY_1M;
 | ||
| 					hci_le_scan_phy_params(phy, type,
 | ||
| 							       interval,
 | ||
| 							       window);
 | ||
| 					num_phy++;
 | ||
| 					phy++;
 | ||
| 				}
 | ||
| 
 | ||
| 				if (qos->bcast.in.phy & BT_ISO_PHY_CODED) {
 | ||
| 					cp->scanning_phys |= LE_SCAN_PHY_CODED;
 | ||
| 					hci_le_scan_phy_params(phy, type,
 | ||
| 							       interval * 3,
 | ||
| 							       window * 3);
 | ||
| 					num_phy++;
 | ||
| 					phy++;
 | ||
| 				}
 | ||
| 
 | ||
| 				if (num_phy)
 | ||
| 					goto done;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (scan_1m(hdev) || scan_2m(hdev)) {
 | ||
| 		cp->scanning_phys |= LE_SCAN_PHY_1M;
 | ||
| 		hci_le_scan_phy_params(phy, type, interval, window);
 | ||
| 		num_phy++;
 | ||
| 		phy++;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (scan_coded(hdev)) {
 | ||
| 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
 | ||
| 		hci_le_scan_phy_params(phy, type, interval * 3, window * 3);
 | ||
| 		num_phy++;
 | ||
| 		phy++;
 | ||
| 	}
 | ||
| 
 | ||
| done:
 | ||
| 	if (!num_phy)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
 | ||
| 				     sizeof(*cp) + sizeof(*phy) * num_phy,
 | ||
| 				     data, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
 | ||
| 				      u16 interval, u16 window,
 | ||
| 				      u8 own_addr_type, u8 filter_policy)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_scan_param cp;
 | ||
| 
 | ||
| 	if (use_ext_scan(hdev))
 | ||
| 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
 | ||
| 						      window, own_addr_type,
 | ||
| 						      filter_policy);
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.type = type;
 | ||
| 	cp.interval = cpu_to_le16(interval);
 | ||
| 	cp.window = cpu_to_le16(window);
 | ||
| 	cp.own_address_type = own_addr_type;
 | ||
| 	cp.filter_policy = filter_policy;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
 | ||
| 			       u16 window, u8 own_addr_type, u8 filter_policy,
 | ||
| 			       u8 filter_dup)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (hdev->scanning_paused) {
 | ||
| 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
 | ||
| 					 own_addr_type, filter_policy);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
 | ||
| }
 | ||
| 
 | ||
| static int hci_passive_scan_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 own_addr_type;
 | ||
| 	u8 filter_policy;
 | ||
| 	u16 window, interval;
 | ||
| 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (hdev->scanning_paused) {
 | ||
| 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = hci_scan_disable_sync(hdev);
 | ||
| 	if (err) {
 | ||
| 		bt_dev_err(hdev, "disable scanning failed: %d", err);
 | ||
| 		return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Set require_privacy to false since no SCAN_REQ are send
 | ||
| 	 * during passive scanning. Not using an non-resolvable address
 | ||
| 	 * here is important so that peer devices using direct
 | ||
| 	 * advertising with our address will be correctly reported
 | ||
| 	 * by the controller.
 | ||
| 	 */
 | ||
| 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
 | ||
| 					   &own_addr_type))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (hdev->enable_advmon_interleave_scan &&
 | ||
| 	    hci_update_interleaved_scan_sync(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
 | ||
| 
 | ||
| 	/* Adding or removing entries from the accept list must
 | ||
| 	 * happen before enabling scanning. The controller does
 | ||
| 	 * not allow accept list modification while scanning.
 | ||
| 	 */
 | ||
| 	filter_policy = hci_update_accept_list_sync(hdev);
 | ||
| 
 | ||
| 	/* If suspended and filter_policy set to 0x00 (no acceptlist) then
 | ||
| 	 * passive scanning cannot be started since that would require the host
 | ||
| 	 * to be woken up to process the reports.
 | ||
| 	 */
 | ||
| 	if (hdev->suspended && !filter_policy) {
 | ||
| 		/* Check if accept list is empty then there is no need to scan
 | ||
| 		 * while suspended.
 | ||
| 		 */
 | ||
| 		if (list_empty(&hdev->le_accept_list))
 | ||
| 			return 0;
 | ||
| 
 | ||
| 		/* If there are devices is the accept_list that means some
 | ||
| 		 * devices could not be programmed which in non-suspended case
 | ||
| 		 * means filter_policy needs to be set to 0x00 so the host needs
 | ||
| 		 * to filter, but since this is treating suspended case we
 | ||
| 		 * can ignore device needing host to filter to allow devices in
 | ||
| 		 * the acceptlist to be able to wakeup the system.
 | ||
| 		 */
 | ||
| 		filter_policy = 0x01;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* When the controller is using random resolvable addresses and
 | ||
| 	 * with that having LE privacy enabled, then controllers with
 | ||
| 	 * Extended Scanner Filter Policies support can now enable support
 | ||
| 	 * for handling directed advertising.
 | ||
| 	 *
 | ||
| 	 * So instead of using filter polices 0x00 (no acceptlist)
 | ||
| 	 * and 0x01 (acceptlist enabled) use the new filter policies
 | ||
| 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 | ||
| 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 | ||
| 		filter_policy |= 0x02;
 | ||
| 
 | ||
| 	if (hdev->suspended) {
 | ||
| 		window = hdev->le_scan_window_suspend;
 | ||
| 		interval = hdev->le_scan_int_suspend;
 | ||
| 	} else if (hci_is_le_conn_scanning(hdev)) {
 | ||
| 		window = hdev->le_scan_window_connect;
 | ||
| 		interval = hdev->le_scan_int_connect;
 | ||
| 	} else if (hci_is_adv_monitoring(hdev)) {
 | ||
| 		window = hdev->le_scan_window_adv_monitor;
 | ||
| 		interval = hdev->le_scan_int_adv_monitor;
 | ||
| 
 | ||
| 		/* Disable duplicates filter when scanning for advertisement
 | ||
| 		 * monitor for the following reasons.
 | ||
| 		 *
 | ||
| 		 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
 | ||
| 		 * controllers ignore RSSI_Sampling_Period when the duplicates
 | ||
| 		 * filter is enabled.
 | ||
| 		 *
 | ||
| 		 * For SW pattern filtering, when we're not doing interleaved
 | ||
| 		 * scanning, it is necessary to disable duplicates filter,
 | ||
| 		 * otherwise hosts can only receive one advertisement and it's
 | ||
| 		 * impossible to know if a peer is still in range.
 | ||
| 		 */
 | ||
| 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
 | ||
| 	} else {
 | ||
| 		window = hdev->le_scan_window;
 | ||
| 		interval = hdev->le_scan_interval;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Disable all filtering for Mesh */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
 | ||
| 		filter_policy = 0;
 | ||
| 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
 | ||
| 	}
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
 | ||
| 
 | ||
| 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
 | ||
| 				   own_addr_type, filter_policy, filter_dups);
 | ||
| }
 | ||
| 
 | ||
| /* This function controls the passive scanning based on hdev->pend_le_conns
 | ||
|  * list. If there are pending LE connection we start the background scanning,
 | ||
|  * otherwise we stop it in the following sequence:
 | ||
|  *
 | ||
|  * If there are devices to scan:
 | ||
|  *
 | ||
|  * Disable Scanning -> Update Accept List ->
 | ||
|  * ll_privacy_capable((Disable Advertising) -> Disable Resolving List ->
 | ||
|  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
 | ||
|  * Enable Scanning
 | ||
|  *
 | ||
|  * Otherwise:
 | ||
|  *
 | ||
|  * Disable Scanning
 | ||
|  */
 | ||
| int hci_update_passive_scan_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!test_bit(HCI_UP, &hdev->flags) ||
 | ||
| 	    test_bit(HCI_INIT, &hdev->flags) ||
 | ||
| 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 | ||
| 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 | ||
| 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 | ||
| 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* No point in doing scanning if LE support hasn't been enabled */
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* If discovery is active don't interfere with it */
 | ||
| 	if (hdev->discovery.state != DISCOVERY_STOPPED)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Reset RSSI and UUID filters when starting background scanning
 | ||
| 	 * since these filters are meant for service discovery only.
 | ||
| 	 *
 | ||
| 	 * The Start Discovery and Start Service Discovery operations
 | ||
| 	 * ensure to set proper values for RSSI threshold and UUID
 | ||
| 	 * filter list. So it is safe to just reset them here.
 | ||
| 	 */
 | ||
| 	hci_discovery_filter_clear(hdev);
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "ADV monitoring is %s",
 | ||
| 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
 | ||
| 	    list_empty(&hdev->pend_le_conns) &&
 | ||
| 	    list_empty(&hdev->pend_le_reports) &&
 | ||
| 	    !hci_is_adv_monitoring(hdev) &&
 | ||
| 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
 | ||
| 		/* If there is no pending LE connections or devices
 | ||
| 		 * to be scanned for or no ADV monitors, we should stop the
 | ||
| 		 * background scanning.
 | ||
| 		 */
 | ||
| 
 | ||
| 		bt_dev_dbg(hdev, "stopping background scanning");
 | ||
| 
 | ||
| 		err = hci_scan_disable_sync(hdev);
 | ||
| 		if (err)
 | ||
| 			bt_dev_err(hdev, "stop background scanning failed: %d",
 | ||
| 				   err);
 | ||
| 	} else {
 | ||
| 		/* If there is at least one pending LE connection, we should
 | ||
| 		 * keep the background scan running.
 | ||
| 		 */
 | ||
| 
 | ||
| 		/* If controller is connecting, we should not start scanning
 | ||
| 		 * since some controllers are not able to scan and connect at
 | ||
| 		 * the same time.
 | ||
| 		 */
 | ||
| 		if (hci_lookup_le_connect(hdev))
 | ||
| 			return 0;
 | ||
| 
 | ||
| 		bt_dev_dbg(hdev, "start background scanning");
 | ||
| 
 | ||
| 		err = hci_passive_scan_sync(hdev);
 | ||
| 		if (err)
 | ||
| 			bt_dev_err(hdev, "start background scanning failed: %d",
 | ||
| 				   err);
 | ||
| 	}
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static int update_scan_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	return hci_update_scan_sync(hdev);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_scan(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
 | ||
| }
 | ||
| 
 | ||
| static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	return hci_update_passive_scan_sync(hdev);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_passive_scan(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	/* Only queue if it would have any effect */
 | ||
| 	if (!test_bit(HCI_UP, &hdev->flags) ||
 | ||
| 	    test_bit(HCI_INIT, &hdev->flags) ||
 | ||
| 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 | ||
| 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 | ||
| 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 | ||
| 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL,
 | ||
| 				       NULL);
 | ||
| }
 | ||
| 
 | ||
| int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
 | ||
| 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
 | ||
| 
 | ||
| 	if (!err) {
 | ||
| 		if (val) {
 | ||
| 			hdev->features[1][0] |= LMP_HOST_SC;
 | ||
| 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
 | ||
| 		} else {
 | ||
| 			hdev->features[1][0] &= ~LMP_HOST_SC;
 | ||
| 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
 | ||
| 	    lmp_host_ssp_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
 | ||
| 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
 | ||
| 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
 | ||
| 	}
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
 | ||
| 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	return hci_write_sc_support_sync(hdev, 0x01);
 | ||
| }
 | ||
| 
 | ||
| int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
 | ||
| {
 | ||
| 	struct hci_cp_write_le_host_supported cp;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
 | ||
| 	    !lmp_bredr_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Check first if we already have the right host state
 | ||
| 	 * (host features set)
 | ||
| 	 */
 | ||
| 	if (le == lmp_host_le_capable(hdev) &&
 | ||
| 	    simul == lmp_host_le_br_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	cp.le = le;
 | ||
| 	cp.simul = simul;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_powered_update_adv_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct adv_info *adv, *tmp;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* If RPA Resolution has not been enable yet it means the
 | ||
| 	 * resolving list is empty and we should attempt to program the
 | ||
| 	 * local IRK in order to support using own_addr_type
 | ||
| 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
 | ||
| 	 */
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
 | ||
| 		hci_le_add_resolve_list_sync(hdev, NULL);
 | ||
| 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Make sure the controller has a good default for
 | ||
| 	 * advertising data. This also applies to the case
 | ||
| 	 * where BR/EDR was toggled during the AUTO_OFF phase.
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
 | ||
| 	    list_empty(&hdev->adv_instances)) {
 | ||
| 		if (ext_adv_capable(hdev)) {
 | ||
| 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
 | ||
| 			if (!err)
 | ||
| 				hci_update_scan_rsp_data_sync(hdev, 0x00);
 | ||
| 		} else {
 | ||
| 			err = hci_update_adv_data_sync(hdev, 0x00);
 | ||
| 			if (!err)
 | ||
| 				hci_update_scan_rsp_data_sync(hdev, 0x00);
 | ||
| 		}
 | ||
| 
 | ||
| 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
 | ||
| 			hci_enable_advertising_sync(hdev);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Call for each tracked instance to be scheduled */
 | ||
| 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
 | ||
| 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_write_auth_enable_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 link_sec;
 | ||
| 
 | ||
| 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
 | ||
| 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
 | ||
| 				     sizeof(link_sec), &link_sec,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
 | ||
| {
 | ||
| 	struct hci_cp_write_page_scan_activity cp;
 | ||
| 	u8 type;
 | ||
| 	int err = 0;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	if (enable) {
 | ||
| 		type = PAGE_SCAN_TYPE_INTERLACED;
 | ||
| 
 | ||
| 		/* 160 msec page scan interval */
 | ||
| 		cp.interval = cpu_to_le16(0x0100);
 | ||
| 	} else {
 | ||
| 		type = hdev->def_page_scan_type;
 | ||
| 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
 | ||
| 	}
 | ||
| 
 | ||
| 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
 | ||
| 
 | ||
| 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
 | ||
| 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
 | ||
| 		err = __hci_cmd_sync_status(hdev,
 | ||
| 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 | ||
| 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (hdev->page_scan_type != type)
 | ||
| 		err = __hci_cmd_sync_status(hdev,
 | ||
| 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
 | ||
| 					    sizeof(type), &type,
 | ||
| 					    HCI_CMD_TIMEOUT);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static bool disconnected_accept_list_entries(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct bdaddr_list *b;
 | ||
| 
 | ||
| 	list_for_each_entry(b, &hdev->accept_list, list) {
 | ||
| 		struct hci_conn *conn;
 | ||
| 
 | ||
| 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
 | ||
| 		if (!conn)
 | ||
| 			return true;
 | ||
| 
 | ||
| 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
 | ||
| 			return true;
 | ||
| 	}
 | ||
| 
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
 | ||
| 					    sizeof(val), &val,
 | ||
| 					    HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_scan_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 scan;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (!hdev_is_powered(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (mgmt_powering_down(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (hdev->scanning_paused)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
 | ||
| 	    disconnected_accept_list_entries(hdev))
 | ||
| 		scan = SCAN_PAGE;
 | ||
| 	else
 | ||
| 		scan = SCAN_DISABLED;
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 | ||
| 		scan |= SCAN_INQUIRY;
 | ||
| 
 | ||
| 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
 | ||
| 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return hci_write_scan_enable_sync(hdev, scan);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_name_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_write_local_name cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
 | ||
| 					    sizeof(cp), &cp,
 | ||
| 					    HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* This function perform powered update HCI command sequence after the HCI init
 | ||
|  * sequence which end up resetting all states, the sequence is as follows:
 | ||
|  *
 | ||
|  * HCI_SSP_ENABLED(Enable SSP)
 | ||
|  * HCI_LE_ENABLED(Enable LE)
 | ||
|  * HCI_LE_ENABLED(ll_privacy_capable(Add local IRK to Resolving List) ->
 | ||
|  * Update adv data)
 | ||
|  * Enable Authentication
 | ||
|  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
 | ||
|  * Set Name -> Set EIR)
 | ||
|  * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
 | ||
|  */
 | ||
| int hci_powered_update_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* Register the available SMP channels (BR/EDR and LE) only when
 | ||
| 	 * successfully powering on the controller. This late
 | ||
| 	 * registration is required so that LE SMP can clearly decide if
 | ||
| 	 * the public address or static address is used.
 | ||
| 	 */
 | ||
| 	smp_register(hdev);
 | ||
| 
 | ||
| 	err = hci_write_ssp_mode_sync(hdev, 0x01);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	err = hci_powered_update_adv_sync(hdev);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	err = hci_write_auth_enable_sync(hdev);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	if (lmp_bredr_capable(hdev)) {
 | ||
| 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
 | ||
| 			hci_write_fast_connectable_sync(hdev, true);
 | ||
| 		else
 | ||
| 			hci_write_fast_connectable_sync(hdev, false);
 | ||
| 		hci_update_scan_sync(hdev);
 | ||
| 		hci_update_class_sync(hdev);
 | ||
| 		hci_update_name_sync(hdev);
 | ||
| 		hci_update_eir_sync(hdev);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If forcing static address is in use or there is no public
 | ||
| 	 * address use the static address as random address (but skip
 | ||
| 	 * the HCI command if the current random address is already the
 | ||
| 	 * static one.
 | ||
| 	 *
 | ||
| 	 * In case BR/EDR has been disabled on a dual-mode controller
 | ||
| 	 * and a static address has been configured, then use that
 | ||
| 	 * address instead of the public BR/EDR address.
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
 | ||
| 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 | ||
| 	    !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
 | ||
| 		if (bacmp(&hdev->static_addr, BDADDR_ANY))
 | ||
| 			return hci_set_random_addr_sync(hdev,
 | ||
| 							&hdev->static_addr);
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
 | ||
|  *				       (BD_ADDR) for a HCI device from
 | ||
|  *				       a firmware node property.
 | ||
|  * @hdev:	The HCI device
 | ||
|  *
 | ||
|  * Search the firmware node for 'local-bd-address'.
 | ||
|  *
 | ||
|  * All-zero BD addresses are rejected, because those could be properties
 | ||
|  * that exist in the firmware tables, but were not updated by the firmware. For
 | ||
|  * example, the DTS could define 'local-bd-address', with zero BD addresses.
 | ||
|  */
 | ||
| static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
 | ||
| 	bdaddr_t ba;
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
 | ||
| 					    (u8 *)&ba, sizeof(ba));
 | ||
| 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks))
 | ||
| 		baswap(&hdev->public_addr, &ba);
 | ||
| 	else
 | ||
| 		bacpy(&hdev->public_addr, &ba);
 | ||
| }
 | ||
| 
 | ||
| struct hci_init_stage {
 | ||
| 	int (*func)(struct hci_dev *hdev);
 | ||
| };
 | ||
| 
 | ||
| /* Run init stage NULL terminated function table */
 | ||
| static int hci_init_stage_sync(struct hci_dev *hdev,
 | ||
| 			       const struct hci_init_stage *stage)
 | ||
| {
 | ||
| 	size_t i;
 | ||
| 
 | ||
| 	for (i = 0; stage[i].func; i++) {
 | ||
| 		int err;
 | ||
| 
 | ||
| 		err = stage[i].func(hdev);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Read Local Version */
 | ||
| static int hci_read_local_version_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read BD Address */
 | ||
| static int hci_read_bd_addr_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| #define HCI_INIT(_func) \
 | ||
| { \
 | ||
| 	.func = _func, \
 | ||
| }
 | ||
| 
 | ||
| static const struct hci_init_stage hci_init0[] = {
 | ||
| 	/* HCI_OP_READ_LOCAL_VERSION */
 | ||
| 	HCI_INIT(hci_read_local_version_sync),
 | ||
| 	/* HCI_OP_READ_BD_ADDR */
 | ||
| 	HCI_INIT(hci_read_bd_addr_sync),
 | ||
| 	{}
 | ||
| };
 | ||
| 
 | ||
| int hci_reset_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	set_bit(HCI_RESET, &hdev->flags);
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
 | ||
| 				    HCI_CMD_TIMEOUT);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_init0_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	/* Reset */
 | ||
| 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
 | ||
| 		err = hci_reset_sync(hdev);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	return hci_init_stage_sync(hdev, hci_init0);
 | ||
| }
 | ||
| 
 | ||
| static int hci_unconf_init_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	err = hci_init0_sync(hdev);
 | ||
| 	if (err < 0)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_SETUP))
 | ||
| 		hci_debugfs_create_basic(hdev);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Read Local Supported Features. */
 | ||
| static int hci_read_local_features_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* BR Controller init stage 1 command sequence */
 | ||
| static const struct hci_init_stage br_init1[] = {
 | ||
| 	/* HCI_OP_READ_LOCAL_FEATURES */
 | ||
| 	HCI_INIT(hci_read_local_features_sync),
 | ||
| 	/* HCI_OP_READ_LOCAL_VERSION */
 | ||
| 	HCI_INIT(hci_read_local_version_sync),
 | ||
| 	/* HCI_OP_READ_BD_ADDR */
 | ||
| 	HCI_INIT(hci_read_bd_addr_sync),
 | ||
| 	{}
 | ||
| };
 | ||
| 
 | ||
| /* Read Local Commands */
 | ||
| static int hci_read_local_cmds_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	/* All Bluetooth 1.2 and later controllers should support the
 | ||
| 	 * HCI command for reading the local supported commands.
 | ||
| 	 *
 | ||
| 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 | ||
| 	 * but do not have support for this command. If that is the case,
 | ||
| 	 * the driver can quirk the behavior and skip reading the local
 | ||
| 	 * supported commands.
 | ||
| 	 */
 | ||
| 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 | ||
| 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 | ||
| 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
 | ||
| 					     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_init1_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	/* Reset */
 | ||
| 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
 | ||
| 		err = hci_reset_sync(hdev);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	return hci_init_stage_sync(hdev, br_init1);
 | ||
| }
 | ||
| 
 | ||
| /* Read Buffer Size (ACL mtu, max pkt, etc.) */
 | ||
| static int hci_read_buffer_size_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read Class of Device */
 | ||
| static int hci_read_dev_class_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read Local Name */
 | ||
| static int hci_read_local_name_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read Voice Setting */
 | ||
| static int hci_read_voice_setting_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!read_voice_setting_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read Number of Supported IAC */
 | ||
| static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read Current IAC LAP */
 | ||
| static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
 | ||
| 				     u8 cond_type, bdaddr_t *bdaddr,
 | ||
| 				     u8 auto_accept)
 | ||
| {
 | ||
| 	struct hci_cp_set_event_filter cp;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.flt_type = flt_type;
 | ||
| 
 | ||
| 	if (flt_type != HCI_FLT_CLEAR_ALL) {
 | ||
| 		cp.cond_type = cond_type;
 | ||
| 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
 | ||
| 		cp.addr_conn_flt.auto_accept = auto_accept;
 | ||
| 	}
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
 | ||
| 				     flt_type == HCI_FLT_CLEAR_ALL ?
 | ||
| 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_clear_event_filter_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* In theory the state machine should not reach here unless
 | ||
| 	 * a hci_set_event_filter_sync() call succeeds, but we do
 | ||
| 	 * the check both for parity and as a future reminder.
 | ||
| 	 */
 | ||
| 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
 | ||
| 					 BDADDR_ANY, 0x00);
 | ||
| }
 | ||
| 
 | ||
| /* Connection accept timeout ~20 secs */
 | ||
| static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	__le16 param = cpu_to_le16(0x7d00);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
 | ||
| 				     sizeof(param), ¶m, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Enable SCO flow control if supported */
 | ||
| static int hci_write_sync_flowctl_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_write_sync_flowctl cp;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* Check if the controller supports SCO and HCI_OP_WRITE_SYNC_FLOWCTL */
 | ||
| 	if (!lmp_sco_capable(hdev) || !(hdev->commands[10] & BIT(4)) ||
 | ||
| 	    !test_bit(HCI_QUIRK_SYNC_FLOWCTL_SUPPORTED, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.enable = 0x01;
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SYNC_FLOWCTL,
 | ||
| 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| 	if (!err)
 | ||
| 		hci_dev_set_flag(hdev, HCI_SCO_FLOWCTL);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| /* BR Controller init stage 2 command sequence */
 | ||
| static const struct hci_init_stage br_init2[] = {
 | ||
| 	/* HCI_OP_READ_BUFFER_SIZE */
 | ||
| 	HCI_INIT(hci_read_buffer_size_sync),
 | ||
| 	/* HCI_OP_READ_CLASS_OF_DEV */
 | ||
| 	HCI_INIT(hci_read_dev_class_sync),
 | ||
| 	/* HCI_OP_READ_LOCAL_NAME */
 | ||
| 	HCI_INIT(hci_read_local_name_sync),
 | ||
| 	/* HCI_OP_READ_VOICE_SETTING */
 | ||
| 	HCI_INIT(hci_read_voice_setting_sync),
 | ||
| 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
 | ||
| 	HCI_INIT(hci_read_num_supported_iac_sync),
 | ||
| 	/* HCI_OP_READ_CURRENT_IAC_LAP */
 | ||
| 	HCI_INIT(hci_read_current_iac_lap_sync),
 | ||
| 	/* HCI_OP_SET_EVENT_FLT */
 | ||
| 	HCI_INIT(hci_clear_event_filter_sync),
 | ||
| 	/* HCI_OP_WRITE_CA_TIMEOUT */
 | ||
| 	HCI_INIT(hci_write_ca_timeout_sync),
 | ||
| 	/* HCI_OP_WRITE_SYNC_FLOWCTL */
 | ||
| 	HCI_INIT(hci_write_sync_flowctl_sync),
 | ||
| 	{}
 | ||
| };
 | ||
| 
 | ||
| static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 mode = 0x01;
 | ||
| 
 | ||
| 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* When SSP is available, then the host features page
 | ||
| 	 * should also be available as well. However some
 | ||
| 	 * controllers list the max_page as 0 as long as SSP
 | ||
| 	 * has not been enabled. To achieve proper debugging
 | ||
| 	 * output, force the minimum max_page to 1 at least.
 | ||
| 	 */
 | ||
| 	hdev->max_page = 0x01;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
 | ||
| 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_write_eir_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_write_eir cp;
 | ||
| 
 | ||
| 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(hdev->eir, 0, sizeof(hdev->eir));
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 mode;
 | ||
| 
 | ||
| 	if (!lmp_inq_rssi_capable(hdev) &&
 | ||
| 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* If Extended Inquiry Result events are supported, then
 | ||
| 	 * they are clearly preferred over Inquiry Result with RSSI
 | ||
| 	 * events.
 | ||
| 	 */
 | ||
| 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
 | ||
| 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!lmp_inq_tx_pwr_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
 | ||
| {
 | ||
| 	struct hci_cp_read_local_ext_features cp;
 | ||
| 
 | ||
| 	if (!lmp_ext_feat_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.page = page;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return hci_read_local_ext_features_sync(hdev, 0x01);
 | ||
| }
 | ||
| 
 | ||
| /* HCI Controller init stage 2 command sequence */
 | ||
| static const struct hci_init_stage hci_init2[] = {
 | ||
| 	/* HCI_OP_READ_LOCAL_COMMANDS */
 | ||
| 	HCI_INIT(hci_read_local_cmds_sync),
 | ||
| 	/* HCI_OP_WRITE_SSP_MODE */
 | ||
| 	HCI_INIT(hci_write_ssp_mode_1_sync),
 | ||
| 	/* HCI_OP_WRITE_EIR */
 | ||
| 	HCI_INIT(hci_write_eir_sync),
 | ||
| 	/* HCI_OP_WRITE_INQUIRY_MODE */
 | ||
| 	HCI_INIT(hci_write_inquiry_mode_sync),
 | ||
| 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
 | ||
| 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
 | ||
| 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
 | ||
| 	HCI_INIT(hci_read_local_ext_features_1_sync),
 | ||
| 	/* HCI_OP_WRITE_AUTH_ENABLE */
 | ||
| 	HCI_INIT(hci_write_auth_enable_sync),
 | ||
| 	{}
 | ||
| };
 | ||
| 
 | ||
| /* Read LE Buffer Size */
 | ||
| static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	/* Use Read LE Buffer Size V2 if supported */
 | ||
| 	if (iso_capable(hdev) && hdev->commands[41] & 0x20)
 | ||
| 		return __hci_cmd_sync_status(hdev,
 | ||
| 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
 | ||
| 					     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read LE Local Supported Features */
 | ||
| static int hci_le_read_local_features_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read LE Supported States */
 | ||
| static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* LE Controller init stage 2 command sequence */
 | ||
| static const struct hci_init_stage le_init2[] = {
 | ||
| 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
 | ||
| 	HCI_INIT(hci_le_read_local_features_sync),
 | ||
| 	/* HCI_OP_LE_READ_BUFFER_SIZE */
 | ||
| 	HCI_INIT(hci_le_read_buffer_size_sync),
 | ||
| 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
 | ||
| 	HCI_INIT(hci_le_read_supported_states_sync),
 | ||
| 	{}
 | ||
| };
 | ||
| 
 | ||
| static int hci_init2_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	err = hci_init_stage_sync(hdev, hci_init2);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	if (lmp_bredr_capable(hdev)) {
 | ||
| 		err = hci_init_stage_sync(hdev, br_init2);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	} else {
 | ||
| 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (lmp_le_capable(hdev)) {
 | ||
| 		err = hci_init_stage_sync(hdev, le_init2);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 		/* LE-only controllers have LE implicitly enabled */
 | ||
| 		if (!lmp_bredr_capable(hdev))
 | ||
| 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_event_mask_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	/* The second byte is 0xff instead of 0x9f (two reserved bits
 | ||
| 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 | ||
| 	 * command otherwise.
 | ||
| 	 */
 | ||
| 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 | ||
| 
 | ||
| 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 | ||
| 	 * any event mask for pre 1.2 devices.
 | ||
| 	 */
 | ||
| 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (lmp_bredr_capable(hdev)) {
 | ||
| 		events[4] |= 0x01; /* Flow Specification Complete */
 | ||
| 
 | ||
| 		/* Don't set Disconnect Complete and mode change when
 | ||
| 		 * suspended as that would wakeup the host when disconnecting
 | ||
| 		 * due to suspend.
 | ||
| 		 */
 | ||
| 		if (hdev->suspended) {
 | ||
| 			events[0] &= 0xef;
 | ||
| 			events[2] &= 0xf7;
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		/* Use a different default for LE-only devices */
 | ||
| 		memset(events, 0, sizeof(events));
 | ||
| 		events[1] |= 0x20; /* Command Complete */
 | ||
| 		events[1] |= 0x40; /* Command Status */
 | ||
| 		events[1] |= 0x80; /* Hardware Error */
 | ||
| 
 | ||
| 		/* If the controller supports the Disconnect command, enable
 | ||
| 		 * the corresponding event. In addition enable packet flow
 | ||
| 		 * control related events.
 | ||
| 		 */
 | ||
| 		if (hdev->commands[0] & 0x20) {
 | ||
| 			/* Don't set Disconnect Complete when suspended as that
 | ||
| 			 * would wakeup the host when disconnecting due to
 | ||
| 			 * suspend.
 | ||
| 			 */
 | ||
| 			if (!hdev->suspended)
 | ||
| 				events[0] |= 0x10; /* Disconnection Complete */
 | ||
| 			events[2] |= 0x04; /* Number of Completed Packets */
 | ||
| 			events[3] |= 0x02; /* Data Buffer Overflow */
 | ||
| 		}
 | ||
| 
 | ||
| 		/* If the controller supports the Read Remote Version
 | ||
| 		 * Information command, enable the corresponding event.
 | ||
| 		 */
 | ||
| 		if (hdev->commands[2] & 0x80)
 | ||
| 			events[1] |= 0x08; /* Read Remote Version Information
 | ||
| 					    * Complete
 | ||
| 					    */
 | ||
| 
 | ||
| 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 | ||
| 			events[0] |= 0x80; /* Encryption Change */
 | ||
| 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (lmp_inq_rssi_capable(hdev) ||
 | ||
| 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 | ||
| 		events[4] |= 0x02; /* Inquiry Result with RSSI */
 | ||
| 
 | ||
| 	if (lmp_ext_feat_capable(hdev))
 | ||
| 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 | ||
| 
 | ||
| 	if (lmp_esco_capable(hdev)) {
 | ||
| 		events[5] |= 0x08; /* Synchronous Connection Complete */
 | ||
| 		events[5] |= 0x10; /* Synchronous Connection Changed */
 | ||
| 	}
 | ||
| 
 | ||
| 	if (lmp_sniffsubr_capable(hdev))
 | ||
| 		events[5] |= 0x20; /* Sniff Subrating */
 | ||
| 
 | ||
| 	if (lmp_pause_enc_capable(hdev))
 | ||
| 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 | ||
| 
 | ||
| 	if (lmp_ext_inq_capable(hdev))
 | ||
| 		events[5] |= 0x40; /* Extended Inquiry Result */
 | ||
| 
 | ||
| 	if (lmp_no_flush_capable(hdev))
 | ||
| 		events[7] |= 0x01; /* Enhanced Flush Complete */
 | ||
| 
 | ||
| 	if (lmp_lsto_capable(hdev))
 | ||
| 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 | ||
| 
 | ||
| 	if (lmp_ssp_capable(hdev)) {
 | ||
| 		events[6] |= 0x01;	/* IO Capability Request */
 | ||
| 		events[6] |= 0x02;	/* IO Capability Response */
 | ||
| 		events[6] |= 0x04;	/* User Confirmation Request */
 | ||
| 		events[6] |= 0x08;	/* User Passkey Request */
 | ||
| 		events[6] |= 0x10;	/* Remote OOB Data Request */
 | ||
| 		events[6] |= 0x20;	/* Simple Pairing Complete */
 | ||
| 		events[7] |= 0x04;	/* User Passkey Notification */
 | ||
| 		events[7] |= 0x08;	/* Keypress Notification */
 | ||
| 		events[7] |= 0x10;	/* Remote Host Supported
 | ||
| 					 * Features Notification
 | ||
| 					 */
 | ||
| 	}
 | ||
| 
 | ||
| 	if (lmp_le_capable(hdev))
 | ||
| 		events[7] |= 0x20;	/* LE Meta-Event */
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
 | ||
| 				     sizeof(events), events, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_read_stored_link_key cp;
 | ||
| 
 | ||
| 	if (!(hdev->commands[6] & 0x20) ||
 | ||
| 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	bacpy(&cp.bdaddr, BDADDR_ANY);
 | ||
| 	cp.read_all = 0x01;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_setup_link_policy_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_write_def_link_policy cp;
 | ||
| 	u16 link_policy = 0;
 | ||
| 
 | ||
| 	if (!(hdev->commands[5] & 0x10))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	if (lmp_rswitch_capable(hdev))
 | ||
| 		link_policy |= HCI_LP_RSWITCH;
 | ||
| 	if (lmp_hold_capable(hdev))
 | ||
| 		link_policy |= HCI_LP_HOLD;
 | ||
| 	if (lmp_sniff_capable(hdev))
 | ||
| 		link_policy |= HCI_LP_SNIFF;
 | ||
| 	if (lmp_park_capable(hdev))
 | ||
| 		link_policy |= HCI_LP_PARK;
 | ||
| 
 | ||
| 	cp.policy = cpu_to_le16(link_policy);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->commands[8] & 0x01))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->commands[18] & 0x04) ||
 | ||
| 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
 | ||
| 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 | ||
| 	 * support the Read Page Scan Type command. Check support for
 | ||
| 	 * this command in the bit mask of supported commands.
 | ||
| 	 */
 | ||
| 	if (!(hdev->commands[13] & 0x01) ||
 | ||
| 	    test_bit(HCI_QUIRK_BROKEN_READ_PAGE_SCAN_TYPE, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read features beyond page 1 if available */
 | ||
| static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 page;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!lmp_ext_feat_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
 | ||
| 	     page++) {
 | ||
| 		err = hci_read_local_ext_features_sync(hdev, page);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* HCI Controller init stage 3 command sequence */
 | ||
| static const struct hci_init_stage hci_init3[] = {
 | ||
| 	/* HCI_OP_SET_EVENT_MASK */
 | ||
| 	HCI_INIT(hci_set_event_mask_sync),
 | ||
| 	/* HCI_OP_READ_STORED_LINK_KEY */
 | ||
| 	HCI_INIT(hci_read_stored_link_key_sync),
 | ||
| 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
 | ||
| 	HCI_INIT(hci_setup_link_policy_sync),
 | ||
| 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
 | ||
| 	HCI_INIT(hci_read_page_scan_activity_sync),
 | ||
| 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
 | ||
| 	HCI_INIT(hci_read_def_err_data_reporting_sync),
 | ||
| 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
 | ||
| 	HCI_INIT(hci_read_page_scan_type_sync),
 | ||
| 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
 | ||
| 	HCI_INIT(hci_read_local_ext_features_all_sync),
 | ||
| 	{}
 | ||
| };
 | ||
| 
 | ||
| static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 events[8];
 | ||
| 
 | ||
| 	if (!lmp_le_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(events, 0, sizeof(events));
 | ||
| 
 | ||
| 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 | ||
| 		events[0] |= 0x10;	/* LE Long Term Key Request */
 | ||
| 
 | ||
| 	/* If controller supports the Connection Parameters Request
 | ||
| 	 * Link Layer Procedure, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 | ||
| 		/* LE Remote Connection Parameter Request */
 | ||
| 		events[0] |= 0x20;
 | ||
| 
 | ||
| 	/* If the controller supports the Data Length Extension
 | ||
| 	 * feature, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 | ||
| 		events[0] |= 0x40;	/* LE Data Length Change */
 | ||
| 
 | ||
| 	/* If the controller supports LL Privacy feature or LE Extended Adv,
 | ||
| 	 * enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (use_enhanced_conn_complete(hdev))
 | ||
| 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
 | ||
| 
 | ||
| 	/* Mark Device Privacy if Privacy Mode is supported */
 | ||
| 	if (privacy_mode_capable(hdev))
 | ||
| 		hdev->conn_flags |= HCI_CONN_FLAG_DEVICE_PRIVACY;
 | ||
| 
 | ||
| 	/* Mark Address Resolution if LL Privacy is supported */
 | ||
| 	if (ll_privacy_capable(hdev))
 | ||
| 		hdev->conn_flags |= HCI_CONN_FLAG_ADDRESS_RESOLUTION;
 | ||
| 
 | ||
| 	/* If the controller supports Extended Scanner Filter
 | ||
| 	 * Policies, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 | ||
| 		events[1] |= 0x04;	/* LE Direct Advertising Report */
 | ||
| 
 | ||
| 	/* If the controller supports Channel Selection Algorithm #2
 | ||
| 	 * feature, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
 | ||
| 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
 | ||
| 
 | ||
| 	/* If the controller supports the LE Set Scan Enable command,
 | ||
| 	 * enable the corresponding advertising report event.
 | ||
| 	 */
 | ||
| 	if (hdev->commands[26] & 0x08)
 | ||
| 		events[0] |= 0x02;	/* LE Advertising Report */
 | ||
| 
 | ||
| 	/* If the controller supports the LE Create Connection
 | ||
| 	 * command, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->commands[26] & 0x10)
 | ||
| 		events[0] |= 0x01;	/* LE Connection Complete */
 | ||
| 
 | ||
| 	/* If the controller supports the LE Connection Update
 | ||
| 	 * command, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->commands[27] & 0x04)
 | ||
| 		events[0] |= 0x04;	/* LE Connection Update Complete */
 | ||
| 
 | ||
| 	/* If the controller supports the LE Read Remote Used Features
 | ||
| 	 * command, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->commands[27] & 0x20)
 | ||
| 		/* LE Read Remote Used Features Complete */
 | ||
| 		events[0] |= 0x08;
 | ||
| 
 | ||
| 	/* If the controller supports the LE Read Local P-256
 | ||
| 	 * Public Key command, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->commands[34] & 0x02)
 | ||
| 		/* LE Read Local P-256 Public Key Complete */
 | ||
| 		events[0] |= 0x80;
 | ||
| 
 | ||
| 	/* If the controller supports the LE Generate DHKey
 | ||
| 	 * command, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->commands[34] & 0x04)
 | ||
| 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
 | ||
| 
 | ||
| 	/* If the controller supports the LE Set Default PHY or
 | ||
| 	 * LE Set PHY commands, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (hdev->commands[35] & (0x20 | 0x40))
 | ||
| 		events[1] |= 0x08;        /* LE PHY Update Complete */
 | ||
| 
 | ||
| 	/* If the controller supports LE Set Extended Scan Parameters
 | ||
| 	 * and LE Set Extended Scan Enable commands, enable the
 | ||
| 	 * corresponding event.
 | ||
| 	 */
 | ||
| 	if (use_ext_scan(hdev))
 | ||
| 		events[1] |= 0x10;	/* LE Extended Advertising Report */
 | ||
| 
 | ||
| 	/* If the controller supports the LE Extended Advertising
 | ||
| 	 * command, enable the corresponding event.
 | ||
| 	 */
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
 | ||
| 
 | ||
| 	if (cis_capable(hdev)) {
 | ||
| 		events[3] |= 0x01;	/* LE CIS Established */
 | ||
| 		if (cis_peripheral_capable(hdev))
 | ||
| 			events[3] |= 0x02; /* LE CIS Request */
 | ||
| 	}
 | ||
| 
 | ||
| 	if (bis_capable(hdev)) {
 | ||
| 		events[1] |= 0x20;	/* LE PA Report */
 | ||
| 		events[1] |= 0x40;	/* LE PA Sync Established */
 | ||
| 		events[3] |= 0x04;	/* LE Create BIG Complete */
 | ||
| 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
 | ||
| 		events[3] |= 0x10;	/* LE BIG Sync Established */
 | ||
| 		events[3] |= 0x20;	/* LE BIG Sync Loss */
 | ||
| 		events[4] |= 0x02;	/* LE BIG Info Advertising Report */
 | ||
| 	}
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
 | ||
| 				     sizeof(events), events, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read LE Advertising Channel TX Power */
 | ||
| static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
 | ||
| 		/* HCI TS spec forbids mixing of legacy and extended
 | ||
| 		 * advertising commands wherein READ_ADV_TX_POWER is
 | ||
| 		 * also included. So do not call it if extended adv
 | ||
| 		 * is supported otherwise controller will return
 | ||
| 		 * COMMAND_DISALLOWED for extended commands.
 | ||
| 		 */
 | ||
| 		return __hci_cmd_sync_status(hdev,
 | ||
| 					       HCI_OP_LE_READ_ADV_TX_POWER,
 | ||
| 					       0, NULL, HCI_CMD_TIMEOUT);
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Read LE Min/Max Tx Power*/
 | ||
| static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->commands[38] & 0x80) ||
 | ||
| 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read LE Accept List Size */
 | ||
| static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->commands[26] & 0x40))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read LE Resolving List Size */
 | ||
| static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->commands[34] & 0x40))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Clear LE Resolving List */
 | ||
| static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->commands[34] & 0x20))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Set RPA timeout */
 | ||
| static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
 | ||
| 
 | ||
| 	if (!(hdev->commands[35] & 0x04) ||
 | ||
| 	    test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
 | ||
| 				     sizeof(timeout), &timeout,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read LE Maximum Data Length */
 | ||
| static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read LE Suggested Default Data Length */
 | ||
| static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read LE Number of Supported Advertising Sets */
 | ||
| static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!ext_adv_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev,
 | ||
| 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Write LE Host Supported */
 | ||
| static int hci_set_le_support_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_write_le_host_supported cp;
 | ||
| 
 | ||
| 	/* LE-only devices do not support explicit enablement */
 | ||
| 	if (!lmp_bredr_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 | ||
| 		cp.le = 0x01;
 | ||
| 		cp.simul = 0x00;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (cp.le == lmp_host_le_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* LE Set Host Feature */
 | ||
| static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_host_feature cp;
 | ||
| 
 | ||
| 	if (!cis_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	/* Connected Isochronous Channels (Host Support) */
 | ||
| 	cp.bit_number = 32;
 | ||
| 	cp.bit_value = 1;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* LE Controller init stage 3 command sequence */
 | ||
| static const struct hci_init_stage le_init3[] = {
 | ||
| 	/* HCI_OP_LE_SET_EVENT_MASK */
 | ||
| 	HCI_INIT(hci_le_set_event_mask_sync),
 | ||
| 	/* HCI_OP_LE_READ_ADV_TX_POWER */
 | ||
| 	HCI_INIT(hci_le_read_adv_tx_power_sync),
 | ||
| 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
 | ||
| 	HCI_INIT(hci_le_read_tx_power_sync),
 | ||
| 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
 | ||
| 	HCI_INIT(hci_le_read_accept_list_size_sync),
 | ||
| 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
 | ||
| 	HCI_INIT(hci_le_clear_accept_list_sync),
 | ||
| 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
 | ||
| 	HCI_INIT(hci_le_read_resolv_list_size_sync),
 | ||
| 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
 | ||
| 	HCI_INIT(hci_le_clear_resolv_list_sync),
 | ||
| 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
 | ||
| 	HCI_INIT(hci_le_set_rpa_timeout_sync),
 | ||
| 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
 | ||
| 	HCI_INIT(hci_le_read_max_data_len_sync),
 | ||
| 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
 | ||
| 	HCI_INIT(hci_le_read_def_data_len_sync),
 | ||
| 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
 | ||
| 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
 | ||
| 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
 | ||
| 	HCI_INIT(hci_set_le_support_sync),
 | ||
| 	/* HCI_OP_LE_SET_HOST_FEATURE */
 | ||
| 	HCI_INIT(hci_le_set_host_feature_sync),
 | ||
| 	{}
 | ||
| };
 | ||
| 
 | ||
| static int hci_init3_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	err = hci_init_stage_sync(hdev, hci_init3);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	if (lmp_le_capable(hdev))
 | ||
| 		return hci_init_stage_sync(hdev, le_init3);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_delete_stored_link_key cp;
 | ||
| 
 | ||
| 	/* Some Broadcom based Bluetooth controllers do not support the
 | ||
| 	 * Delete Stored Link Key command. They are clearly indicating its
 | ||
| 	 * absence in the bit mask of supported commands.
 | ||
| 	 *
 | ||
| 	 * Check the supported commands and only if the command is marked
 | ||
| 	 * as supported send it. If not supported assume that the controller
 | ||
| 	 * does not have actual support for stored link keys which makes this
 | ||
| 	 * command redundant anyway.
 | ||
| 	 *
 | ||
| 	 * Some controllers indicate that they support handling deleting
 | ||
| 	 * stored link keys, but they don't. The quirk lets a driver
 | ||
| 	 * just disable this command.
 | ||
| 	 */
 | ||
| 	if (!(hdev->commands[6] & 0x80) ||
 | ||
| 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	bacpy(&cp.bdaddr, BDADDR_ANY);
 | ||
| 	cp.delete_all = 0x01;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 | ||
| 	bool changed = false;
 | ||
| 
 | ||
| 	/* Set event mask page 2 if the HCI command for it is supported */
 | ||
| 	if (!(hdev->commands[22] & 0x04))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* If Connectionless Peripheral Broadcast central role is supported
 | ||
| 	 * enable all necessary events for it.
 | ||
| 	 */
 | ||
| 	if (lmp_cpb_central_capable(hdev)) {
 | ||
| 		events[1] |= 0x40;	/* Triggered Clock Capture */
 | ||
| 		events[1] |= 0x80;	/* Synchronization Train Complete */
 | ||
| 		events[2] |= 0x08;	/* Truncated Page Complete */
 | ||
| 		events[2] |= 0x20;	/* CPB Channel Map Change */
 | ||
| 		changed = true;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If Connectionless Peripheral Broadcast peripheral role is supported
 | ||
| 	 * enable all necessary events for it.
 | ||
| 	 */
 | ||
| 	if (lmp_cpb_peripheral_capable(hdev)) {
 | ||
| 		events[2] |= 0x01;	/* Synchronization Train Received */
 | ||
| 		events[2] |= 0x02;	/* CPB Receive */
 | ||
| 		events[2] |= 0x04;	/* CPB Timeout */
 | ||
| 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
 | ||
| 		changed = true;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Enable Authenticated Payload Timeout Expired event if supported */
 | ||
| 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
 | ||
| 		events[2] |= 0x80;
 | ||
| 		changed = true;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Some Broadcom based controllers indicate support for Set Event
 | ||
| 	 * Mask Page 2 command, but then actually do not support it. Since
 | ||
| 	 * the default value is all bits set to zero, the command is only
 | ||
| 	 * required if the event mask has to be changed. In case no change
 | ||
| 	 * to the event mask is needed, skip this command.
 | ||
| 	 */
 | ||
| 	if (!changed)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
 | ||
| 				     sizeof(events), events, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Read local codec list if the HCI command is supported */
 | ||
| static int hci_read_local_codecs_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (hdev->commands[45] & 0x04)
 | ||
| 		hci_read_supported_codecs_v2(hdev);
 | ||
| 	else if (hdev->commands[29] & 0x20)
 | ||
| 		hci_read_supported_codecs(hdev);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Read local pairing options if the HCI command is supported */
 | ||
| static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!(hdev->commands[41] & 0x08))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Get MWS transport configuration if the HCI command is supported */
 | ||
| static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!mws_transport_config_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Check for Synchronization Train support */
 | ||
| static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!lmp_sync_train_capable(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Enable Secure Connections if supported and configured */
 | ||
| static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	u8 support = 0x01;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
 | ||
| 	    !bredr_sc_enabled(hdev))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
 | ||
| 				     sizeof(support), &support,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Set erroneous data reporting if supported to the wideband speech
 | ||
|  * setting value
 | ||
|  */
 | ||
| static int hci_set_err_data_report_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_write_def_err_data_reporting cp;
 | ||
| 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
 | ||
| 
 | ||
| 	if (!(hdev->commands[18] & 0x08) ||
 | ||
| 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
 | ||
| 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (enabled == hdev->err_data_reporting)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
 | ||
| 				ERR_DATA_REPORTING_DISABLED;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
 | ||
| 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static const struct hci_init_stage hci_init4[] = {
 | ||
| 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
 | ||
| 	HCI_INIT(hci_delete_stored_link_key_sync),
 | ||
| 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
 | ||
| 	HCI_INIT(hci_set_event_mask_page_2_sync),
 | ||
| 	/* HCI_OP_READ_LOCAL_CODECS */
 | ||
| 	HCI_INIT(hci_read_local_codecs_sync),
 | ||
| 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
 | ||
| 	HCI_INIT(hci_read_local_pairing_opts_sync),
 | ||
| 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
 | ||
| 	HCI_INIT(hci_get_mws_transport_config_sync),
 | ||
| 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
 | ||
| 	HCI_INIT(hci_read_sync_train_params_sync),
 | ||
| 	/* HCI_OP_WRITE_SC_SUPPORT */
 | ||
| 	HCI_INIT(hci_write_sc_support_1_sync),
 | ||
| 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
 | ||
| 	HCI_INIT(hci_set_err_data_report_sync),
 | ||
| 	{}
 | ||
| };
 | ||
| 
 | ||
| /* Set Suggested Default Data Length to maximum if supported */
 | ||
| static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_le_write_def_data_len cp;
 | ||
| 
 | ||
| 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
 | ||
| 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| /* Set Default PHY parameters if command is supported, enables all supported
 | ||
|  * PHYs according to the LE Features bits.
 | ||
|  */
 | ||
| static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_default_phy cp;
 | ||
| 
 | ||
| 	if (!(hdev->commands[35] & 0x20)) {
 | ||
| 		/* If the command is not supported it means only 1M PHY is
 | ||
| 		 * supported.
 | ||
| 		 */
 | ||
| 		hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
 | ||
| 		hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.all_phys = 0x00;
 | ||
| 	cp.tx_phys = HCI_LE_SET_PHY_1M;
 | ||
| 	cp.rx_phys = HCI_LE_SET_PHY_1M;
 | ||
| 
 | ||
| 	/* Enables 2M PHY if supported */
 | ||
| 	if (le_2m_capable(hdev)) {
 | ||
| 		cp.tx_phys |= HCI_LE_SET_PHY_2M;
 | ||
| 		cp.rx_phys |= HCI_LE_SET_PHY_2M;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Enables Coded PHY if supported */
 | ||
| 	if (le_coded_capable(hdev)) {
 | ||
| 		cp.tx_phys |= HCI_LE_SET_PHY_CODED;
 | ||
| 		cp.rx_phys |= HCI_LE_SET_PHY_CODED;
 | ||
| 	}
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static const struct hci_init_stage le_init4[] = {
 | ||
| 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
 | ||
| 	HCI_INIT(hci_le_set_write_def_data_len_sync),
 | ||
| 	/* HCI_OP_LE_SET_DEFAULT_PHY */
 | ||
| 	HCI_INIT(hci_le_set_default_phy_sync),
 | ||
| 	{}
 | ||
| };
 | ||
| 
 | ||
| static int hci_init4_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	err = hci_init_stage_sync(hdev, hci_init4);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	if (lmp_le_capable(hdev))
 | ||
| 		return hci_init_stage_sync(hdev, le_init4);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_init_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	err = hci_init1_sync(hdev);
 | ||
| 	if (err < 0)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_SETUP))
 | ||
| 		hci_debugfs_create_basic(hdev);
 | ||
| 
 | ||
| 	err = hci_init2_sync(hdev);
 | ||
| 	if (err < 0)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	err = hci_init3_sync(hdev);
 | ||
| 	if (err < 0)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	err = hci_init4_sync(hdev);
 | ||
| 	if (err < 0)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* This function is only called when the controller is actually in
 | ||
| 	 * configured state. When the controller is marked as unconfigured,
 | ||
| 	 * this initialization procedure is not run.
 | ||
| 	 *
 | ||
| 	 * It means that it is possible that a controller runs through its
 | ||
| 	 * setup phase and then discovers missing settings. If that is the
 | ||
| 	 * case, then this function will not be called. It then will only
 | ||
| 	 * be called during the config phase.
 | ||
| 	 *
 | ||
| 	 * So only when in setup phase or config phase, create the debugfs
 | ||
| 	 * entries and register the SMP channels.
 | ||
| 	 */
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 | ||
| 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hci_debugfs_create_common(hdev);
 | ||
| 
 | ||
| 	if (lmp_bredr_capable(hdev))
 | ||
| 		hci_debugfs_create_bredr(hdev);
 | ||
| 
 | ||
| 	if (lmp_le_capable(hdev))
 | ||
| 		hci_debugfs_create_le(hdev);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
 | ||
| 
 | ||
| static const struct {
 | ||
| 	unsigned long quirk;
 | ||
| 	const char *desc;
 | ||
| } hci_broken_table[] = {
 | ||
| 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
 | ||
| 			 "HCI Read Local Supported Commands not supported"),
 | ||
| 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
 | ||
| 			 "HCI Delete Stored Link Key command is advertised, "
 | ||
| 			 "but not supported."),
 | ||
| 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
 | ||
| 			 "HCI Read Default Erroneous Data Reporting command is "
 | ||
| 			 "advertised, but not supported."),
 | ||
| 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
 | ||
| 			 "HCI Read Transmit Power Level command is advertised, "
 | ||
| 			 "but not supported."),
 | ||
| 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
 | ||
| 			 "HCI Set Event Filter command not supported."),
 | ||
| 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
 | ||
| 			 "HCI Enhanced Setup Synchronous Connection command is "
 | ||
| 			 "advertised, but not supported."),
 | ||
| 	HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
 | ||
| 			 "HCI LE Set Random Private Address Timeout command is "
 | ||
| 			 "advertised, but not supported."),
 | ||
| 	HCI_QUIRK_BROKEN(EXT_CREATE_CONN,
 | ||
| 			 "HCI LE Extended Create Connection command is "
 | ||
| 			 "advertised, but not supported."),
 | ||
| 	HCI_QUIRK_BROKEN(WRITE_AUTH_PAYLOAD_TIMEOUT,
 | ||
| 			 "HCI WRITE AUTH PAYLOAD TIMEOUT command leads "
 | ||
| 			 "to unexpected SMP errors when pairing "
 | ||
| 			 "and will not be used."),
 | ||
| 	HCI_QUIRK_BROKEN(LE_CODED,
 | ||
| 			 "HCI LE Coded PHY feature bit is set, "
 | ||
| 			 "but its usage is not supported.")
 | ||
| };
 | ||
| 
 | ||
| /* This function handles hdev setup stage:
 | ||
|  *
 | ||
|  * Calls hdev->setup
 | ||
|  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
 | ||
|  */
 | ||
| static int hci_dev_setup_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int ret = 0;
 | ||
| 	bool invalid_bdaddr;
 | ||
| 	size_t i;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 | ||
| 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
 | ||
| 
 | ||
| 	if (hdev->setup)
 | ||
| 		ret = hdev->setup(hdev);
 | ||
| 
 | ||
| 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
 | ||
| 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
 | ||
| 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* The transport driver can set the quirk to mark the
 | ||
| 	 * BD_ADDR invalid before creating the HCI device or in
 | ||
| 	 * its setup callback.
 | ||
| 	 */
 | ||
| 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
 | ||
| 			 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
 | ||
| 	if (!ret) {
 | ||
| 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
 | ||
| 		    !bacmp(&hdev->public_addr, BDADDR_ANY))
 | ||
| 			hci_dev_get_bd_addr_from_property(hdev);
 | ||
| 
 | ||
| 		if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
 | ||
| 		    hdev->set_bdaddr) {
 | ||
| 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
 | ||
| 			if (!ret)
 | ||
| 				invalid_bdaddr = false;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* The transport driver can set these quirks before
 | ||
| 	 * creating the HCI device or in its setup callback.
 | ||
| 	 *
 | ||
| 	 * For the invalid BD_ADDR quirk it is possible that
 | ||
| 	 * it becomes a valid address if the bootloader does
 | ||
| 	 * provide it (see above).
 | ||
| 	 *
 | ||
| 	 * In case any of them is set, the controller has to
 | ||
| 	 * start up as unconfigured.
 | ||
| 	 */
 | ||
| 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
 | ||
| 	    invalid_bdaddr)
 | ||
| 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
 | ||
| 
 | ||
| 	/* For an unconfigured controller it is required to
 | ||
| 	 * read at least the version information provided by
 | ||
| 	 * the Read Local Version Information command.
 | ||
| 	 *
 | ||
| 	 * If the set_bdaddr driver callback is provided, then
 | ||
| 	 * also the original Bluetooth public device address
 | ||
| 	 * will be read using the Read BD Address command.
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 | ||
| 		return hci_unconf_init_sync(hdev);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /* This function handles hdev init stage:
 | ||
|  *
 | ||
|  * Calls hci_dev_setup_sync to perform setup stage
 | ||
|  * Calls hci_init_sync to perform HCI command init sequence
 | ||
|  */
 | ||
| static int hci_dev_init_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	atomic_set(&hdev->cmd_cnt, 1);
 | ||
| 	set_bit(HCI_INIT, &hdev->flags);
 | ||
| 
 | ||
| 	ret = hci_dev_setup_sync(hdev);
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
 | ||
| 		/* If public address change is configured, ensure that
 | ||
| 		 * the address gets programmed. If the driver does not
 | ||
| 		 * support changing the public address, fail the power
 | ||
| 		 * on procedure.
 | ||
| 		 */
 | ||
| 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
 | ||
| 		    hdev->set_bdaddr)
 | ||
| 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
 | ||
| 		else
 | ||
| 			ret = -EADDRNOTAVAIL;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!ret) {
 | ||
| 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 | ||
| 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 | ||
| 			ret = hci_init_sync(hdev);
 | ||
| 			if (!ret && hdev->post_init)
 | ||
| 				ret = hdev->post_init(hdev);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If the HCI Reset command is clearing all diagnostic settings,
 | ||
| 	 * then they need to be reprogrammed after the init procedure
 | ||
| 	 * completed.
 | ||
| 	 */
 | ||
| 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 | ||
| 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 | ||
| 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
 | ||
| 		ret = hdev->set_diag(hdev, true);
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 | ||
| 		msft_do_open(hdev);
 | ||
| 		aosp_do_open(hdev);
 | ||
| 	}
 | ||
| 
 | ||
| 	clear_bit(HCI_INIT, &hdev->flags);
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| int hci_dev_open_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
 | ||
| 		ret = -ENODEV;
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 | ||
| 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
 | ||
| 		/* Check for rfkill but allow the HCI setup stage to
 | ||
| 		 * proceed (which in itself doesn't cause any RF activity).
 | ||
| 		 */
 | ||
| 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
 | ||
| 			ret = -ERFKILL;
 | ||
| 			goto done;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Check for valid public address or a configured static
 | ||
| 		 * random address, but let the HCI setup proceed to
 | ||
| 		 * be able to determine if there is a public address
 | ||
| 		 * or not.
 | ||
| 		 *
 | ||
| 		 * In case of user channel usage, it is not important
 | ||
| 		 * if a public address or static random address is
 | ||
| 		 * available.
 | ||
| 		 */
 | ||
| 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 | ||
| 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 | ||
| 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
 | ||
| 			ret = -EADDRNOTAVAIL;
 | ||
| 			goto done;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if (test_bit(HCI_UP, &hdev->flags)) {
 | ||
| 		ret = -EALREADY;
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (hdev->open(hdev)) {
 | ||
| 		ret = -EIO;
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	hci_devcd_reset(hdev);
 | ||
| 
 | ||
| 	set_bit(HCI_RUNNING, &hdev->flags);
 | ||
| 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
 | ||
| 
 | ||
| 	ret = hci_dev_init_sync(hdev);
 | ||
| 	if (!ret) {
 | ||
| 		hci_dev_hold(hdev);
 | ||
| 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
 | ||
| 		hci_adv_instances_set_rpa_expired(hdev, true);
 | ||
| 		set_bit(HCI_UP, &hdev->flags);
 | ||
| 		hci_sock_dev_event(hdev, HCI_DEV_UP);
 | ||
| 		hci_leds_update_powered(hdev, true);
 | ||
| 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 | ||
| 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
 | ||
| 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 | ||
| 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 | ||
| 		    hci_dev_test_flag(hdev, HCI_MGMT)) {
 | ||
| 			ret = hci_powered_update_sync(hdev);
 | ||
| 			mgmt_power_on(hdev, ret);
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		/* Init failed, cleanup */
 | ||
| 		flush_work(&hdev->tx_work);
 | ||
| 
 | ||
| 		/* Since hci_rx_work() is possible to awake new cmd_work
 | ||
| 		 * it should be flushed first to avoid unexpected call of
 | ||
| 		 * hci_cmd_work()
 | ||
| 		 */
 | ||
| 		flush_work(&hdev->rx_work);
 | ||
| 		flush_work(&hdev->cmd_work);
 | ||
| 
 | ||
| 		skb_queue_purge(&hdev->cmd_q);
 | ||
| 		skb_queue_purge(&hdev->rx_q);
 | ||
| 
 | ||
| 		if (hdev->flush)
 | ||
| 			hdev->flush(hdev);
 | ||
| 
 | ||
| 		if (hdev->sent_cmd) {
 | ||
| 			cancel_delayed_work_sync(&hdev->cmd_timer);
 | ||
| 			kfree_skb(hdev->sent_cmd);
 | ||
| 			hdev->sent_cmd = NULL;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (hdev->req_skb) {
 | ||
| 			kfree_skb(hdev->req_skb);
 | ||
| 			hdev->req_skb = NULL;
 | ||
| 		}
 | ||
| 
 | ||
| 		clear_bit(HCI_RUNNING, &hdev->flags);
 | ||
| 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
 | ||
| 
 | ||
| 		hdev->close(hdev);
 | ||
| 		hdev->flags &= BIT(HCI_RAW);
 | ||
| 	}
 | ||
| 
 | ||
| done:
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /* This function requires the caller holds hdev->lock */
 | ||
| static void hci_pend_le_actions_clear(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_conn_params *p;
 | ||
| 
 | ||
| 	list_for_each_entry(p, &hdev->le_conn_params, list) {
 | ||
| 		hci_pend_le_list_del_init(p);
 | ||
| 		if (p->conn) {
 | ||
| 			hci_conn_drop(p->conn);
 | ||
| 			hci_conn_put(p->conn);
 | ||
| 			p->conn = NULL;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	BT_DBG("All LE pending actions cleared");
 | ||
| }
 | ||
| 
 | ||
| static int hci_dev_shutdown(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err = 0;
 | ||
| 	/* Similar to how we first do setup and then set the exclusive access
 | ||
| 	 * bit for userspace, we must first unset userchannel and then clean up.
 | ||
| 	 * Otherwise, the kernel can't properly use the hci channel to clean up
 | ||
| 	 * the controller (some shutdown routines require sending additional
 | ||
| 	 * commands to the controller for example).
 | ||
| 	 */
 | ||
| 	bool was_userchannel =
 | ||
| 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
 | ||
| 	    test_bit(HCI_UP, &hdev->flags)) {
 | ||
| 		/* Execute vendor specific shutdown routine */
 | ||
| 		if (hdev->shutdown)
 | ||
| 			err = hdev->shutdown(hdev);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (was_userchannel)
 | ||
| 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| int hci_dev_close_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	bool auto_off;
 | ||
| 	int err = 0;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
 | ||
| 		disable_delayed_work(&hdev->power_off);
 | ||
| 		disable_delayed_work(&hdev->ncmd_timer);
 | ||
| 		disable_delayed_work(&hdev->le_scan_disable);
 | ||
| 	} else {
 | ||
| 		cancel_delayed_work(&hdev->power_off);
 | ||
| 		cancel_delayed_work(&hdev->ncmd_timer);
 | ||
| 		cancel_delayed_work(&hdev->le_scan_disable);
 | ||
| 	}
 | ||
| 
 | ||
| 	hci_cmd_sync_cancel_sync(hdev, ENODEV);
 | ||
| 
 | ||
| 	cancel_interleave_scan(hdev);
 | ||
| 
 | ||
| 	if (hdev->adv_instance_timeout) {
 | ||
| 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
 | ||
| 		hdev->adv_instance_timeout = 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = hci_dev_shutdown(hdev);
 | ||
| 
 | ||
| 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
 | ||
| 		cancel_delayed_work_sync(&hdev->cmd_timer);
 | ||
| 		return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	hci_leds_update_powered(hdev, false);
 | ||
| 
 | ||
| 	/* Flush RX and TX works */
 | ||
| 	flush_work(&hdev->tx_work);
 | ||
| 	flush_work(&hdev->rx_work);
 | ||
| 
 | ||
| 	if (hdev->discov_timeout > 0) {
 | ||
| 		hdev->discov_timeout = 0;
 | ||
| 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
 | ||
| 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
 | ||
| 		cancel_delayed_work(&hdev->service_cache);
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
 | ||
| 		struct adv_info *adv_instance;
 | ||
| 
 | ||
| 		cancel_delayed_work_sync(&hdev->rpa_expired);
 | ||
| 
 | ||
| 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
 | ||
| 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Avoid potential lockdep warnings from the *_flush() calls by
 | ||
| 	 * ensuring the workqueue is empty up front.
 | ||
| 	 */
 | ||
| 	drain_workqueue(hdev->workqueue);
 | ||
| 
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
 | ||
| 
 | ||
| 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
 | ||
| 
 | ||
| 	if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 | ||
| 	    hci_dev_test_flag(hdev, HCI_MGMT))
 | ||
| 		__mgmt_power_off(hdev);
 | ||
| 
 | ||
| 	hci_inquiry_cache_flush(hdev);
 | ||
| 	hci_pend_le_actions_clear(hdev);
 | ||
| 	hci_conn_hash_flush(hdev);
 | ||
| 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
 | ||
| 	smp_unregister(hdev);
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| 
 | ||
| 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 | ||
| 		aosp_do_close(hdev);
 | ||
| 		msft_do_close(hdev);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (hdev->flush)
 | ||
| 		hdev->flush(hdev);
 | ||
| 
 | ||
| 	/* Reset device */
 | ||
| 	skb_queue_purge(&hdev->cmd_q);
 | ||
| 	atomic_set(&hdev->cmd_cnt, 1);
 | ||
| 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
 | ||
| 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 | ||
| 		set_bit(HCI_INIT, &hdev->flags);
 | ||
| 		hci_reset_sync(hdev);
 | ||
| 		clear_bit(HCI_INIT, &hdev->flags);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* flush cmd  work */
 | ||
| 	flush_work(&hdev->cmd_work);
 | ||
| 
 | ||
| 	/* Drop queues */
 | ||
| 	skb_queue_purge(&hdev->rx_q);
 | ||
| 	skb_queue_purge(&hdev->cmd_q);
 | ||
| 	skb_queue_purge(&hdev->raw_q);
 | ||
| 
 | ||
| 	/* Drop last sent command */
 | ||
| 	if (hdev->sent_cmd) {
 | ||
| 		cancel_delayed_work_sync(&hdev->cmd_timer);
 | ||
| 		kfree_skb(hdev->sent_cmd);
 | ||
| 		hdev->sent_cmd = NULL;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Drop last request */
 | ||
| 	if (hdev->req_skb) {
 | ||
| 		kfree_skb(hdev->req_skb);
 | ||
| 		hdev->req_skb = NULL;
 | ||
| 	}
 | ||
| 
 | ||
| 	clear_bit(HCI_RUNNING, &hdev->flags);
 | ||
| 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
 | ||
| 
 | ||
| 	/* After this point our queues are empty and no tasks are scheduled. */
 | ||
| 	hdev->close(hdev);
 | ||
| 
 | ||
| 	/* Clear flags */
 | ||
| 	hdev->flags &= BIT(HCI_RAW);
 | ||
| 	hci_dev_clear_volatile_flags(hdev);
 | ||
| 
 | ||
| 	memset(hdev->eir, 0, sizeof(hdev->eir));
 | ||
| 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
 | ||
| 	bacpy(&hdev->random_addr, BDADDR_ANY);
 | ||
| 	hci_codec_list_clear(&hdev->local_codecs);
 | ||
| 
 | ||
| 	hci_dev_put(hdev);
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| /* This function perform power on HCI command sequence as follows:
 | ||
|  *
 | ||
|  * If controller is already up (HCI_UP) performs hci_powered_update_sync
 | ||
|  * sequence otherwise run hci_dev_open_sync which will follow with
 | ||
|  * hci_powered_update_sync after the init sequence is completed.
 | ||
|  */
 | ||
| static int hci_power_on_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (test_bit(HCI_UP, &hdev->flags) &&
 | ||
| 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 | ||
| 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 | ||
| 		cancel_delayed_work(&hdev->power_off);
 | ||
| 		return hci_powered_update_sync(hdev);
 | ||
| 	}
 | ||
| 
 | ||
| 	err = hci_dev_open_sync(hdev);
 | ||
| 	if (err < 0)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* During the HCI setup phase, a few error conditions are
 | ||
| 	 * ignored and they need to be checked now. If they are still
 | ||
| 	 * valid, it is important to return the device back off.
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 | ||
| 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 | ||
| 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 | ||
| 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
 | ||
| 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
 | ||
| 		hci_dev_close_sync(hdev);
 | ||
| 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
 | ||
| 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
 | ||
| 				   HCI_AUTO_OFF_TIMEOUT);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
 | ||
| 		/* For unconfigured devices, set the HCI_RAW flag
 | ||
| 		 * so that userspace can easily identify them.
 | ||
| 		 */
 | ||
| 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 | ||
| 			set_bit(HCI_RAW, &hdev->flags);
 | ||
| 
 | ||
| 		/* For fully configured devices, this will send
 | ||
| 		 * the Index Added event. For unconfigured devices,
 | ||
| 		 * it will send Unconfigued Index Added event.
 | ||
| 		 *
 | ||
| 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
 | ||
| 		 * and no event will be send.
 | ||
| 		 */
 | ||
| 		mgmt_index_added(hdev);
 | ||
| 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
 | ||
| 		/* When the controller is now configured, then it
 | ||
| 		 * is important to clear the HCI_RAW flag.
 | ||
| 		 */
 | ||
| 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
 | ||
| 			clear_bit(HCI_RAW, &hdev->flags);
 | ||
| 
 | ||
| 		/* Powering on the controller with HCI_CONFIG set only
 | ||
| 		 * happens with the transition from unconfigured to
 | ||
| 		 * configured. This will send the Index Added event.
 | ||
| 		 */
 | ||
| 		mgmt_index_added(hdev);
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
 | ||
| {
 | ||
| 	struct hci_cp_remote_name_req_cancel cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	bacpy(&cp.bdaddr, addr);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_stop_discovery_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct discovery_state *d = &hdev->discovery;
 | ||
| 	struct inquiry_entry *e;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
 | ||
| 
 | ||
| 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
 | ||
| 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
 | ||
| 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
 | ||
| 						    0, NULL, HCI_CMD_TIMEOUT);
 | ||
| 			if (err)
 | ||
| 				return err;
 | ||
| 		}
 | ||
| 
 | ||
| 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
 | ||
| 			cancel_delayed_work(&hdev->le_scan_disable);
 | ||
| 
 | ||
| 			err = hci_scan_disable_sync(hdev);
 | ||
| 			if (err)
 | ||
| 				return err;
 | ||
| 		}
 | ||
| 
 | ||
| 	} else {
 | ||
| 		err = hci_scan_disable_sync(hdev);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Resume advertising if it was paused */
 | ||
| 	if (ll_privacy_capable(hdev))
 | ||
| 		hci_resume_advertising_sync(hdev);
 | ||
| 
 | ||
| 	/* No further actions needed for LE-only discovery */
 | ||
| 	if (d->type == DISCOV_TYPE_LE)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
 | ||
| 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
 | ||
| 						     NAME_PENDING);
 | ||
| 		if (!e)
 | ||
| 			return 0;
 | ||
| 
 | ||
| 		/* Ignore cancel errors since it should interfere with stopping
 | ||
| 		 * of the discovery.
 | ||
| 		 */
 | ||
| 		hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
 | ||
| 			       u8 reason)
 | ||
| {
 | ||
| 	struct hci_cp_disconnect cp;
 | ||
| 
 | ||
| 	if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) {
 | ||
| 		/* This is a BIS connection, hci_conn_del will
 | ||
| 		 * do the necessary cleanup.
 | ||
| 		 */
 | ||
| 		hci_dev_lock(hdev);
 | ||
| 		hci_conn_failed(conn, reason);
 | ||
| 		hci_dev_unlock(hdev);
 | ||
| 
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.handle = cpu_to_le16(conn->handle);
 | ||
| 	cp.reason = reason;
 | ||
| 
 | ||
| 	/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
 | ||
| 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
 | ||
| 	 * used when suspending or powering off, where we don't want to wait
 | ||
| 	 * for the peer's response.
 | ||
| 	 */
 | ||
| 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
 | ||
| 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
 | ||
| 						sizeof(cp), &cp,
 | ||
| 						HCI_EV_DISCONN_COMPLETE,
 | ||
| 						HCI_CMD_TIMEOUT, NULL);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
 | ||
| 				      struct hci_conn *conn, u8 reason)
 | ||
| {
 | ||
| 	/* Return reason if scanning since the connection shall probably be
 | ||
| 	 * cleanup directly.
 | ||
| 	 */
 | ||
| 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
 | ||
| 		return reason;
 | ||
| 
 | ||
| 	if (conn->role == HCI_ROLE_SLAVE ||
 | ||
| 	    test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
 | ||
| 				     0, NULL, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
 | ||
| 				   u8 reason)
 | ||
| {
 | ||
| 	if (conn->type == LE_LINK)
 | ||
| 		return hci_le_connect_cancel_sync(hdev, conn, reason);
 | ||
| 
 | ||
| 	if (conn->type == ISO_LINK) {
 | ||
| 		/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
 | ||
| 		 * page 1857:
 | ||
| 		 *
 | ||
| 		 * If this command is issued for a CIS on the Central and the
 | ||
| 		 * CIS is successfully terminated before being established,
 | ||
| 		 * then an HCI_LE_CIS_Established event shall also be sent for
 | ||
| 		 * this CIS with the Status Operation Cancelled by Host (0x44).
 | ||
| 		 */
 | ||
| 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
 | ||
| 			return hci_disconnect_sync(hdev, conn, reason);
 | ||
| 
 | ||
| 		/* CIS with no Create CIS sent have nothing to cancel */
 | ||
| 		if (bacmp(&conn->dst, BDADDR_ANY))
 | ||
| 			return HCI_ERROR_LOCAL_HOST_TERM;
 | ||
| 
 | ||
| 		/* There is no way to cancel a BIS without terminating the BIG
 | ||
| 		 * which is done later on connection cleanup.
 | ||
| 		 */
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
 | ||
| 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
 | ||
| 	 * used when suspending or powering off, where we don't want to wait
 | ||
| 	 * for the peer's response.
 | ||
| 	 */
 | ||
| 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
 | ||
| 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
 | ||
| 						6, &conn->dst,
 | ||
| 						HCI_EV_CONN_COMPLETE,
 | ||
| 						HCI_CMD_TIMEOUT, NULL);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
 | ||
| 				     6, &conn->dst, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
 | ||
| 			       u8 reason)
 | ||
| {
 | ||
| 	struct hci_cp_reject_sync_conn_req cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	bacpy(&cp.bdaddr, &conn->dst);
 | ||
| 	cp.reason = reason;
 | ||
| 
 | ||
| 	/* SCO rejection has its own limited set of
 | ||
| 	 * allowed error values (0x0D-0x0F).
 | ||
| 	 */
 | ||
| 	if (reason < 0x0d || reason > 0x0f)
 | ||
| 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
 | ||
| 				  u8 reason)
 | ||
| {
 | ||
| 	struct hci_cp_le_reject_cis cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.handle = cpu_to_le16(conn->handle);
 | ||
| 	cp.reason = reason;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
 | ||
| 				u8 reason)
 | ||
| {
 | ||
| 	struct hci_cp_reject_conn_req cp;
 | ||
| 
 | ||
| 	if (conn->type == ISO_LINK)
 | ||
| 		return hci_le_reject_cis_sync(hdev, conn, reason);
 | ||
| 
 | ||
| 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
 | ||
| 		return hci_reject_sco_sync(hdev, conn, reason);
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	bacpy(&cp.bdaddr, &conn->dst);
 | ||
| 	cp.reason = reason;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
 | ||
| {
 | ||
| 	int err = 0;
 | ||
| 	u16 handle = conn->handle;
 | ||
| 	bool disconnect = false;
 | ||
| 	struct hci_conn *c;
 | ||
| 
 | ||
| 	switch (conn->state) {
 | ||
| 	case BT_CONNECTED:
 | ||
| 	case BT_CONFIG:
 | ||
| 		err = hci_disconnect_sync(hdev, conn, reason);
 | ||
| 		break;
 | ||
| 	case BT_CONNECT:
 | ||
| 		err = hci_connect_cancel_sync(hdev, conn, reason);
 | ||
| 		break;
 | ||
| 	case BT_CONNECT2:
 | ||
| 		err = hci_reject_conn_sync(hdev, conn, reason);
 | ||
| 		break;
 | ||
| 	case BT_OPEN:
 | ||
| 	case BT_BOUND:
 | ||
| 		break;
 | ||
| 	default:
 | ||
| 		disconnect = true;
 | ||
| 		break;
 | ||
| 	}
 | ||
| 
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	/* Check if the connection has been cleaned up concurrently */
 | ||
| 	c = hci_conn_hash_lookup_handle(hdev, handle);
 | ||
| 	if (!c || c != conn) {
 | ||
| 		err = 0;
 | ||
| 		goto unlock;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Cleanup hci_conn object if it cannot be cancelled as it
 | ||
| 	 * likelly means the controller and host stack are out of sync
 | ||
| 	 * or in case of LE it was still scanning so it can be cleanup
 | ||
| 	 * safely.
 | ||
| 	 */
 | ||
| 	if (disconnect) {
 | ||
| 		conn->state = BT_CLOSED;
 | ||
| 		hci_disconn_cfm(conn, reason);
 | ||
| 		hci_conn_del(conn);
 | ||
| 	} else {
 | ||
| 		hci_conn_failed(conn, reason);
 | ||
| 	}
 | ||
| 
 | ||
| unlock:
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
 | ||
| {
 | ||
| 	struct list_head *head = &hdev->conn_hash.list;
 | ||
| 	struct hci_conn *conn;
 | ||
| 
 | ||
| 	rcu_read_lock();
 | ||
| 	while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
 | ||
| 		/* Make sure the connection is not freed while unlocking */
 | ||
| 		conn = hci_conn_get(conn);
 | ||
| 		rcu_read_unlock();
 | ||
| 		/* Disregard possible errors since hci_conn_del shall have been
 | ||
| 		 * called even in case of errors had occurred since it would
 | ||
| 		 * then cause hci_conn_failed to be called which calls
 | ||
| 		 * hci_conn_del internally.
 | ||
| 		 */
 | ||
| 		hci_abort_conn_sync(hdev, conn, reason);
 | ||
| 		hci_conn_put(conn);
 | ||
| 		rcu_read_lock();
 | ||
| 	}
 | ||
| 	rcu_read_unlock();
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* This function perform power off HCI command sequence as follows:
 | ||
|  *
 | ||
|  * Clear Advertising
 | ||
|  * Stop Discovery
 | ||
|  * Disconnect all connections
 | ||
|  * hci_dev_close_sync
 | ||
|  */
 | ||
| static int hci_power_off_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* If controller is already down there is nothing to do */
 | ||
| 	if (!test_bit(HCI_UP, &hdev->flags))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hci_dev_set_flag(hdev, HCI_POWERING_DOWN);
 | ||
| 
 | ||
| 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
 | ||
| 	    test_bit(HCI_PSCAN, &hdev->flags)) {
 | ||
| 		err = hci_write_scan_enable_sync(hdev, 0x00);
 | ||
| 		if (err)
 | ||
| 			goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = hci_clear_adv_sync(hdev, NULL, false);
 | ||
| 	if (err)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	err = hci_stop_discovery_sync(hdev);
 | ||
| 	if (err)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	/* Terminated due to Power Off */
 | ||
| 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
 | ||
| 	if (err)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	err = hci_dev_close_sync(hdev);
 | ||
| 
 | ||
| out:
 | ||
| 	hci_dev_clear_flag(hdev, HCI_POWERING_DOWN);
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
 | ||
| {
 | ||
| 	if (val)
 | ||
| 		return hci_power_on_sync(hdev);
 | ||
| 
 | ||
| 	return hci_power_off_sync(hdev);
 | ||
| }
 | ||
| 
 | ||
| static int hci_write_iac_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct hci_cp_write_current_iac_lap cp;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
 | ||
| 		/* Limited discoverable mode */
 | ||
| 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
 | ||
| 		cp.iac_lap[0] = 0x00;	/* LIAC */
 | ||
| 		cp.iac_lap[1] = 0x8b;
 | ||
| 		cp.iac_lap[2] = 0x9e;
 | ||
| 		cp.iac_lap[3] = 0x33;	/* GIAC */
 | ||
| 		cp.iac_lap[4] = 0x8b;
 | ||
| 		cp.iac_lap[5] = 0x9e;
 | ||
| 	} else {
 | ||
| 		/* General discoverable mode */
 | ||
| 		cp.num_iac = 1;
 | ||
| 		cp.iac_lap[0] = 0x33;	/* GIAC */
 | ||
| 		cp.iac_lap[1] = 0x8b;
 | ||
| 		cp.iac_lap[2] = 0x9e;
 | ||
| 	}
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
 | ||
| 				     (cp.num_iac * 3) + 1, &cp,
 | ||
| 				     HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_discoverable_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err = 0;
 | ||
| 
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 | ||
| 		err = hci_write_iac_sync(hdev);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 
 | ||
| 		err = hci_update_scan_sync(hdev);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 
 | ||
| 		err = hci_update_class_sync(hdev);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Advertising instances don't use the global discoverable setting, so
 | ||
| 	 * only update AD if advertising was enabled using Set Advertising.
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
 | ||
| 		err = hci_update_adv_data_sync(hdev, 0x00);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 
 | ||
| 		/* Discoverable mode affects the local advertising
 | ||
| 		 * address in limited privacy mode.
 | ||
| 		 */
 | ||
| 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
 | ||
| 			if (ext_adv_capable(hdev))
 | ||
| 				err = hci_start_ext_adv_sync(hdev, 0x00);
 | ||
| 			else
 | ||
| 				err = hci_enable_advertising_sync(hdev);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static int update_discoverable_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	return hci_update_discoverable_sync(hdev);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_discoverable(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	/* Only queue if it would have any effect */
 | ||
| 	if (hdev_is_powered(hdev) &&
 | ||
| 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
 | ||
| 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
 | ||
| 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 | ||
| 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
 | ||
| 					  NULL);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| int hci_update_connectable_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	err = hci_update_scan_sync(hdev);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* If BR/EDR is not enabled and we disable advertising as a
 | ||
| 	 * by-product of disabling connectable, we need to update the
 | ||
| 	 * advertising flags.
 | ||
| 	 */
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 | ||
| 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
 | ||
| 
 | ||
| 	/* Update the advertising parameters if necessary */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
 | ||
| 	    !list_empty(&hdev->adv_instances)) {
 | ||
| 		if (ext_adv_capable(hdev))
 | ||
| 			err = hci_start_ext_adv_sync(hdev,
 | ||
| 						     hdev->cur_adv_instance);
 | ||
| 		else
 | ||
| 			err = hci_enable_advertising_sync(hdev);
 | ||
| 
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	return hci_update_passive_scan_sync(hdev);
 | ||
| }
 | ||
| 
 | ||
| int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp)
 | ||
| {
 | ||
| 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
 | ||
| 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
 | ||
| 	struct hci_cp_inquiry cp;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	if (test_bit(HCI_INQUIRY, &hdev->flags))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 	hci_inquiry_cache_flush(hdev);
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	if (hdev->discovery.limited)
 | ||
| 		memcpy(&cp.lap, liac, sizeof(cp.lap));
 | ||
| 	else
 | ||
| 		memcpy(&cp.lap, giac, sizeof(cp.lap));
 | ||
| 
 | ||
| 	cp.length = length;
 | ||
| 	cp.num_rsp = num_rsp;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
 | ||
| {
 | ||
| 	u8 own_addr_type;
 | ||
| 	/* Accept list is not used for discovery */
 | ||
| 	u8 filter_policy = 0x00;
 | ||
| 	/* Default is to enable duplicates filter */
 | ||
| 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	/* If controller is scanning, it means the passive scanning is
 | ||
| 	 * running. Thus, we should temporarily stop it in order to set the
 | ||
| 	 * discovery scanning parameters.
 | ||
| 	 */
 | ||
| 	err = hci_scan_disable_sync(hdev);
 | ||
| 	if (err) {
 | ||
| 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
 | ||
| 		return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	cancel_interleave_scan(hdev);
 | ||
| 
 | ||
| 	/* Pause address resolution for active scan and stop advertising if
 | ||
| 	 * privacy is enabled.
 | ||
| 	 */
 | ||
| 	err = hci_pause_addr_resolution(hdev);
 | ||
| 	if (err)
 | ||
| 		goto failed;
 | ||
| 
 | ||
| 	/* All active scans will be done with either a resolvable private
 | ||
| 	 * address (when privacy feature has been enabled) or non-resolvable
 | ||
| 	 * private address.
 | ||
| 	 */
 | ||
| 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
 | ||
| 					     &own_addr_type);
 | ||
| 	if (err < 0)
 | ||
| 		own_addr_type = ADDR_LE_DEV_PUBLIC;
 | ||
| 
 | ||
| 	if (hci_is_adv_monitoring(hdev) ||
 | ||
| 	    (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
 | ||
| 	    hdev->discovery.result_filtering)) {
 | ||
| 		/* Duplicate filter should be disabled when some advertisement
 | ||
| 		 * monitor is activated, otherwise AdvMon can only receive one
 | ||
| 		 * advertisement for one peer(*) during active scanning, and
 | ||
| 		 * might report loss to these peers.
 | ||
| 		 *
 | ||
| 		 * If controller does strict duplicate filtering and the
 | ||
| 		 * discovery requires result filtering disables controller based
 | ||
| 		 * filtering since that can cause reports that would match the
 | ||
| 		 * host filter to not be reported.
 | ||
| 		 */
 | ||
| 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
 | ||
| 				  hdev->le_scan_window_discovery,
 | ||
| 				  own_addr_type, filter_policy, filter_dup);
 | ||
| 	if (!err)
 | ||
| 		return err;
 | ||
| 
 | ||
| failed:
 | ||
| 	/* Resume advertising if it was paused */
 | ||
| 	if (ll_privacy_capable(hdev))
 | ||
| 		hci_resume_advertising_sync(hdev);
 | ||
| 
 | ||
| 	/* Resume passive scanning */
 | ||
| 	hci_update_passive_scan_sync(hdev);
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "");
 | ||
| 
 | ||
| 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0);
 | ||
| }
 | ||
| 
 | ||
| int hci_start_discovery_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	unsigned long timeout;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
 | ||
| 
 | ||
| 	switch (hdev->discovery.type) {
 | ||
| 	case DISCOV_TYPE_BREDR:
 | ||
| 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0);
 | ||
| 	case DISCOV_TYPE_INTERLEAVED:
 | ||
| 		/* When running simultaneous discovery, the LE scanning time
 | ||
| 		 * should occupy the whole discovery time sine BR/EDR inquiry
 | ||
| 		 * and LE scanning are scheduled by the controller.
 | ||
| 		 *
 | ||
| 		 * For interleaving discovery in comparison, BR/EDR inquiry
 | ||
| 		 * and LE scanning are done sequentially with separate
 | ||
| 		 * timeouts.
 | ||
| 		 */
 | ||
| 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
 | ||
| 			     &hdev->quirks)) {
 | ||
| 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
 | ||
| 			/* During simultaneous discovery, we double LE scan
 | ||
| 			 * interval. We must leave some time for the controller
 | ||
| 			 * to do BR/EDR inquiry.
 | ||
| 			 */
 | ||
| 			err = hci_start_interleaved_discovery_sync(hdev);
 | ||
| 			break;
 | ||
| 		}
 | ||
| 
 | ||
| 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
 | ||
| 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
 | ||
| 		break;
 | ||
| 	case DISCOV_TYPE_LE:
 | ||
| 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
 | ||
| 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
 | ||
| 		break;
 | ||
| 	default:
 | ||
| 		return -EINVAL;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
 | ||
| 
 | ||
| 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
 | ||
| 			   timeout);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static void hci_suspend_monitor_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
 | ||
| 	case HCI_ADV_MONITOR_EXT_MSFT:
 | ||
| 		msft_suspend_sync(hdev);
 | ||
| 		break;
 | ||
| 	default:
 | ||
| 		return;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /* This function disables discovery and mark it as paused */
 | ||
| static int hci_pause_discovery_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int old_state = hdev->discovery.state;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* If discovery already stopped/stopping/paused there nothing to do */
 | ||
| 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
 | ||
| 	    hdev->discovery_paused)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
 | ||
| 	err = hci_stop_discovery_sync(hdev);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	hdev->discovery_paused = true;
 | ||
| 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int hci_update_event_filter_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	struct bdaddr_list_with_flags *b;
 | ||
| 	u8 scan = SCAN_DISABLED;
 | ||
| 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Some fake CSR controllers lock up after setting this type of
 | ||
| 	 * filter, so avoid sending the request altogether.
 | ||
| 	 */
 | ||
| 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Always clear event filter when starting */
 | ||
| 	hci_clear_event_filter_sync(hdev);
 | ||
| 
 | ||
| 	list_for_each_entry(b, &hdev->accept_list, list) {
 | ||
| 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
 | ||
| 
 | ||
| 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
 | ||
| 						 HCI_CONN_SETUP_ALLOW_BDADDR,
 | ||
| 						 &b->bdaddr,
 | ||
| 						 HCI_CONN_SETUP_AUTO_ON);
 | ||
| 		if (err)
 | ||
| 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
 | ||
| 				   &b->bdaddr);
 | ||
| 		else
 | ||
| 			scan = SCAN_PAGE;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (scan && !scanning)
 | ||
| 		hci_write_scan_enable_sync(hdev, scan);
 | ||
| 	else if (!scan && scanning)
 | ||
| 		hci_write_scan_enable_sync(hdev, scan);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* This function disables scan (BR and LE) and mark it as paused */
 | ||
| static int hci_pause_scan_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (hdev->scanning_paused)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Disable page scan if enabled */
 | ||
| 	if (test_bit(HCI_PSCAN, &hdev->flags))
 | ||
| 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
 | ||
| 
 | ||
| 	hci_scan_disable_sync(hdev);
 | ||
| 
 | ||
| 	hdev->scanning_paused = true;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* This function performs the HCI suspend procedures in the follow order:
 | ||
|  *
 | ||
|  * Pause discovery (active scanning/inquiry)
 | ||
|  * Pause Directed Advertising/Advertising
 | ||
|  * Pause Scanning (passive scanning in case discovery was not active)
 | ||
|  * Disconnect all connections
 | ||
|  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
 | ||
|  * otherwise:
 | ||
|  * Update event mask (only set events that are allowed to wake up the host)
 | ||
|  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
 | ||
|  * Update passive scanning (lower duty cycle)
 | ||
|  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
 | ||
|  */
 | ||
| int hci_suspend_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* If marked as suspended there nothing to do */
 | ||
| 	if (hdev->suspended)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Mark device as suspended */
 | ||
| 	hdev->suspended = true;
 | ||
| 
 | ||
| 	/* Pause discovery if not already stopped */
 | ||
| 	hci_pause_discovery_sync(hdev);
 | ||
| 
 | ||
| 	/* Pause other advertisements */
 | ||
| 	hci_pause_advertising_sync(hdev);
 | ||
| 
 | ||
| 	/* Suspend monitor filters */
 | ||
| 	hci_suspend_monitor_sync(hdev);
 | ||
| 
 | ||
| 	/* Prevent disconnects from causing scanning to be re-enabled */
 | ||
| 	hci_pause_scan_sync(hdev);
 | ||
| 
 | ||
| 	if (hci_conn_count(hdev)) {
 | ||
| 		/* Soft disconnect everything (power off) */
 | ||
| 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
 | ||
| 		if (err) {
 | ||
| 			/* Set state to BT_RUNNING so resume doesn't notify */
 | ||
| 			hdev->suspend_state = BT_RUNNING;
 | ||
| 			hci_resume_sync(hdev);
 | ||
| 			return err;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Update event mask so only the allowed event can wakeup the
 | ||
| 		 * host.
 | ||
| 		 */
 | ||
| 		hci_set_event_mask_sync(hdev);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Only configure accept list if disconnect succeeded and wake
 | ||
| 	 * isn't being prevented.
 | ||
| 	 */
 | ||
| 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
 | ||
| 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Unpause to take care of updating scanning params */
 | ||
| 	hdev->scanning_paused = false;
 | ||
| 
 | ||
| 	/* Enable event filter for paired devices */
 | ||
| 	hci_update_event_filter_sync(hdev);
 | ||
| 
 | ||
| 	/* Update LE passive scan if enabled */
 | ||
| 	hci_update_passive_scan_sync(hdev);
 | ||
| 
 | ||
| 	/* Pause scan changes again. */
 | ||
| 	hdev->scanning_paused = true;
 | ||
| 
 | ||
| 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* This function resumes discovery */
 | ||
| static int hci_resume_discovery_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	/* If discovery not paused there nothing to do */
 | ||
| 	if (!hdev->discovery_paused)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hdev->discovery_paused = false;
 | ||
| 
 | ||
| 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
 | ||
| 
 | ||
| 	err = hci_start_discovery_sync(hdev);
 | ||
| 
 | ||
| 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
 | ||
| 				DISCOVERY_FINDING);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static void hci_resume_monitor_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
 | ||
| 	case HCI_ADV_MONITOR_EXT_MSFT:
 | ||
| 		msft_resume_sync(hdev);
 | ||
| 		break;
 | ||
| 	default:
 | ||
| 		return;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /* This function resume scan and reset paused flag */
 | ||
| static int hci_resume_scan_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	if (!hdev->scanning_paused)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hdev->scanning_paused = false;
 | ||
| 
 | ||
| 	hci_update_scan_sync(hdev);
 | ||
| 
 | ||
| 	/* Reset passive scanning to normal */
 | ||
| 	hci_update_passive_scan_sync(hdev);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* This function performs the HCI suspend procedures in the follow order:
 | ||
|  *
 | ||
|  * Restore event mask
 | ||
|  * Clear event filter
 | ||
|  * Update passive scanning (normal duty cycle)
 | ||
|  * Resume Directed Advertising/Advertising
 | ||
|  * Resume discovery (active scanning/inquiry)
 | ||
|  */
 | ||
| int hci_resume_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	/* If not marked as suspended there nothing to do */
 | ||
| 	if (!hdev->suspended)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	hdev->suspended = false;
 | ||
| 
 | ||
| 	/* Restore event mask */
 | ||
| 	hci_set_event_mask_sync(hdev);
 | ||
| 
 | ||
| 	/* Clear any event filters and restore scan state */
 | ||
| 	hci_clear_event_filter_sync(hdev);
 | ||
| 
 | ||
| 	/* Resume scanning */
 | ||
| 	hci_resume_scan_sync(hdev);
 | ||
| 
 | ||
| 	/* Resume monitor filters */
 | ||
| 	hci_resume_monitor_sync(hdev);
 | ||
| 
 | ||
| 	/* Resume other advertisements */
 | ||
| 	hci_resume_advertising_sync(hdev);
 | ||
| 
 | ||
| 	/* Resume discovery */
 | ||
| 	hci_resume_discovery_sync(hdev);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static bool conn_use_rpa(struct hci_conn *conn)
 | ||
| {
 | ||
| 	struct hci_dev *hdev = conn->hdev;
 | ||
| 
 | ||
| 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
 | ||
| 						struct hci_conn *conn)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_ext_adv_params cp;
 | ||
| 	int err;
 | ||
| 	bdaddr_t random_addr;
 | ||
| 	u8 own_addr_type;
 | ||
| 
 | ||
| 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
 | ||
| 					     &own_addr_type);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* Set require_privacy to false so that the remote device has a
 | ||
| 	 * chance of identifying us.
 | ||
| 	 */
 | ||
| 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
 | ||
| 				     &own_addr_type, &random_addr);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
 | ||
| 	cp.channel_map = hdev->le_adv_channel_map;
 | ||
| 	cp.tx_power = HCI_TX_POWER_INVALID;
 | ||
| 	cp.primary_phy = HCI_ADV_PHY_1M;
 | ||
| 	cp.secondary_phy = HCI_ADV_PHY_1M;
 | ||
| 	cp.handle = 0x00; /* Use instance 0 for directed adv */
 | ||
| 	cp.own_addr_type = own_addr_type;
 | ||
| 	cp.peer_addr_type = conn->dst_type;
 | ||
| 	bacpy(&cp.peer_addr, &conn->dst);
 | ||
| 
 | ||
| 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
 | ||
| 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
 | ||
| 	 * does not supports advertising data when the advertising set already
 | ||
| 	 * contains some, the controller shall return erroc code 'Invalid
 | ||
| 	 * HCI Command Parameters(0x12).
 | ||
| 	 * So it is required to remove adv set for handle 0x00. since we use
 | ||
| 	 * instance 0 for directed adv.
 | ||
| 	 */
 | ||
| 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
 | ||
| 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| 	if (err)
 | ||
| 		return err;
 | ||
| 
 | ||
| 	/* Check if random address need to be updated */
 | ||
| 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
 | ||
| 	    bacmp(&random_addr, BDADDR_ANY) &&
 | ||
| 	    bacmp(&random_addr, &hdev->random_addr)) {
 | ||
| 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
 | ||
| 						       &random_addr);
 | ||
| 		if (err)
 | ||
| 			return err;
 | ||
| 	}
 | ||
| 
 | ||
| 	return hci_enable_ext_advertising_sync(hdev, 0x00);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
 | ||
| 					    struct hci_conn *conn)
 | ||
| {
 | ||
| 	struct hci_cp_le_set_adv_param cp;
 | ||
| 	u8 status;
 | ||
| 	u8 own_addr_type;
 | ||
| 	u8 enable;
 | ||
| 
 | ||
| 	if (ext_adv_capable(hdev))
 | ||
| 		return hci_le_ext_directed_advertising_sync(hdev, conn);
 | ||
| 
 | ||
| 	/* Clear the HCI_LE_ADV bit temporarily so that the
 | ||
| 	 * hci_update_random_address knows that it's safe to go ahead
 | ||
| 	 * and write a new random address. The flag will be set back on
 | ||
| 	 * as soon as the SET_ADV_ENABLE HCI command completes.
 | ||
| 	 */
 | ||
| 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
 | ||
| 
 | ||
| 	/* Set require_privacy to false so that the remote device has a
 | ||
| 	 * chance of identifying us.
 | ||
| 	 */
 | ||
| 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
 | ||
| 						&own_addr_type);
 | ||
| 	if (status)
 | ||
| 		return status;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	/* Some controllers might reject command if intervals are not
 | ||
| 	 * within range for undirected advertising.
 | ||
| 	 * BCM20702A0 is known to be affected by this.
 | ||
| 	 */
 | ||
| 	cp.min_interval = cpu_to_le16(0x0020);
 | ||
| 	cp.max_interval = cpu_to_le16(0x0020);
 | ||
| 
 | ||
| 	cp.type = LE_ADV_DIRECT_IND;
 | ||
| 	cp.own_address_type = own_addr_type;
 | ||
| 	cp.direct_addr_type = conn->dst_type;
 | ||
| 	bacpy(&cp.direct_addr, &conn->dst);
 | ||
| 	cp.channel_map = hdev->le_adv_channel_map;
 | ||
| 
 | ||
| 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
 | ||
| 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| 	if (status)
 | ||
| 		return status;
 | ||
| 
 | ||
| 	enable = 0x01;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
 | ||
| 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static void set_ext_conn_params(struct hci_conn *conn,
 | ||
| 				struct hci_cp_le_ext_conn_param *p)
 | ||
| {
 | ||
| 	struct hci_dev *hdev = conn->hdev;
 | ||
| 
 | ||
| 	memset(p, 0, sizeof(*p));
 | ||
| 
 | ||
| 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
 | ||
| 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
 | ||
| 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
 | ||
| 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
 | ||
| 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
 | ||
| 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
 | ||
| 	p->min_ce_len = cpu_to_le16(0x0000);
 | ||
| 	p->max_ce_len = cpu_to_le16(0x0000);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
 | ||
| 				       struct hci_conn *conn, u8 own_addr_type)
 | ||
| {
 | ||
| 	struct hci_cp_le_ext_create_conn *cp;
 | ||
| 	struct hci_cp_le_ext_conn_param *p;
 | ||
| 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
 | ||
| 	u32 plen;
 | ||
| 
 | ||
| 	cp = (void *)data;
 | ||
| 	p = (void *)cp->data;
 | ||
| 
 | ||
| 	memset(cp, 0, sizeof(*cp));
 | ||
| 
 | ||
| 	bacpy(&cp->peer_addr, &conn->dst);
 | ||
| 	cp->peer_addr_type = conn->dst_type;
 | ||
| 	cp->own_addr_type = own_addr_type;
 | ||
| 
 | ||
| 	plen = sizeof(*cp);
 | ||
| 
 | ||
| 	if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M ||
 | ||
| 			      conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) {
 | ||
| 		cp->phys |= LE_SCAN_PHY_1M;
 | ||
| 		set_ext_conn_params(conn, p);
 | ||
| 
 | ||
| 		p++;
 | ||
| 		plen += sizeof(*p);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M ||
 | ||
| 			      conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) {
 | ||
| 		cp->phys |= LE_SCAN_PHY_2M;
 | ||
| 		set_ext_conn_params(conn, p);
 | ||
| 
 | ||
| 		p++;
 | ||
| 		plen += sizeof(*p);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED ||
 | ||
| 				 conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) {
 | ||
| 		cp->phys |= LE_SCAN_PHY_CODED;
 | ||
| 		set_ext_conn_params(conn, p);
 | ||
| 
 | ||
| 		plen += sizeof(*p);
 | ||
| 	}
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
 | ||
| 					plen, data,
 | ||
| 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
 | ||
| 					conn->conn_timeout, NULL);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	struct hci_cp_le_create_conn cp;
 | ||
| 	struct hci_conn_params *params;
 | ||
| 	u8 own_addr_type;
 | ||
| 	int err;
 | ||
| 	struct hci_conn *conn = data;
 | ||
| 
 | ||
| 	if (!hci_conn_valid(hdev, conn))
 | ||
| 		return -ECANCELED;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "conn %p", conn);
 | ||
| 
 | ||
| 	clear_bit(HCI_CONN_SCANNING, &conn->flags);
 | ||
| 	conn->state = BT_CONNECT;
 | ||
| 
 | ||
| 	/* If requested to connect as peripheral use directed advertising */
 | ||
| 	if (conn->role == HCI_ROLE_SLAVE) {
 | ||
| 		/* If we're active scanning and simultaneous roles is not
 | ||
| 		 * enabled simply reject the attempt.
 | ||
| 		 */
 | ||
| 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
 | ||
| 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
 | ||
| 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
 | ||
| 			hci_conn_del(conn);
 | ||
| 			return -EBUSY;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Pause advertising while doing directed advertising. */
 | ||
| 		hci_pause_advertising_sync(hdev);
 | ||
| 
 | ||
| 		err = hci_le_directed_advertising_sync(hdev, conn);
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Disable advertising if simultaneous roles is not in use. */
 | ||
| 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
 | ||
| 		hci_pause_advertising_sync(hdev);
 | ||
| 
 | ||
| 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
 | ||
| 	if (params) {
 | ||
| 		conn->le_conn_min_interval = params->conn_min_interval;
 | ||
| 		conn->le_conn_max_interval = params->conn_max_interval;
 | ||
| 		conn->le_conn_latency = params->conn_latency;
 | ||
| 		conn->le_supv_timeout = params->supervision_timeout;
 | ||
| 	} else {
 | ||
| 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
 | ||
| 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
 | ||
| 		conn->le_conn_latency = hdev->le_conn_latency;
 | ||
| 		conn->le_supv_timeout = hdev->le_supv_timeout;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* If controller is scanning, we stop it since some controllers are
 | ||
| 	 * not able to scan and connect at the same time. Also set the
 | ||
| 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
 | ||
| 	 * handler for scan disabling knows to set the correct discovery
 | ||
| 	 * state.
 | ||
| 	 */
 | ||
| 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
 | ||
| 		hci_scan_disable_sync(hdev);
 | ||
| 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Update random address, but set require_privacy to false so
 | ||
| 	 * that we never connect with an non-resolvable address.
 | ||
| 	 */
 | ||
| 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
 | ||
| 					     &own_addr_type);
 | ||
| 	if (err)
 | ||
| 		goto done;
 | ||
| 	/* Send command LE Extended Create Connection if supported */
 | ||
| 	if (use_ext_conn(hdev)) {
 | ||
| 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 
 | ||
| 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
 | ||
| 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
 | ||
| 
 | ||
| 	bacpy(&cp.peer_addr, &conn->dst);
 | ||
| 	cp.peer_addr_type = conn->dst_type;
 | ||
| 	cp.own_address_type = own_addr_type;
 | ||
| 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
 | ||
| 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
 | ||
| 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
 | ||
| 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
 | ||
| 	cp.min_ce_len = cpu_to_le16(0x0000);
 | ||
| 	cp.max_ce_len = cpu_to_le16(0x0000);
 | ||
| 
 | ||
| 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
 | ||
| 	 *
 | ||
| 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
 | ||
| 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
 | ||
| 	 * sent when a new connection has been created.
 | ||
| 	 */
 | ||
| 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
 | ||
| 				       sizeof(cp), &cp,
 | ||
| 				       use_enhanced_conn_complete(hdev) ?
 | ||
| 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
 | ||
| 				       HCI_EV_LE_CONN_COMPLETE,
 | ||
| 				       conn->conn_timeout, NULL);
 | ||
| 
 | ||
| done:
 | ||
| 	if (err == -ETIMEDOUT)
 | ||
| 		hci_le_connect_cancel_sync(hdev, conn, 0x00);
 | ||
| 
 | ||
| 	/* Re-enable advertising after the connection attempt is finished. */
 | ||
| 	hci_resume_advertising_sync(hdev);
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| int hci_le_create_cis_sync(struct hci_dev *hdev)
 | ||
| {
 | ||
| 	DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f);
 | ||
| 	size_t aux_num_cis = 0;
 | ||
| 	struct hci_conn *conn;
 | ||
| 	u8 cig = BT_ISO_QOS_CIG_UNSET;
 | ||
| 
 | ||
| 	/* The spec allows only one pending LE Create CIS command at a time. If
 | ||
| 	 * the command is pending now, don't do anything. We check for pending
 | ||
| 	 * connections after each CIS Established event.
 | ||
| 	 *
 | ||
| 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
 | ||
| 	 * page 2566:
 | ||
| 	 *
 | ||
| 	 * If the Host issues this command before all the
 | ||
| 	 * HCI_LE_CIS_Established events from the previous use of the
 | ||
| 	 * command have been generated, the Controller shall return the
 | ||
| 	 * error code Command Disallowed (0x0C).
 | ||
| 	 *
 | ||
| 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
 | ||
| 	 * page 2567:
 | ||
| 	 *
 | ||
| 	 * When the Controller receives the HCI_LE_Create_CIS command, the
 | ||
| 	 * Controller sends the HCI_Command_Status event to the Host. An
 | ||
| 	 * HCI_LE_CIS_Established event will be generated for each CIS when it
 | ||
| 	 * is established or if it is disconnected or considered lost before
 | ||
| 	 * being established; until all the events are generated, the command
 | ||
| 	 * remains pending.
 | ||
| 	 */
 | ||
| 
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	rcu_read_lock();
 | ||
| 
 | ||
| 	/* Wait until previous Create CIS has completed */
 | ||
| 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
 | ||
| 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
 | ||
| 			goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Find CIG with all CIS ready */
 | ||
| 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
 | ||
| 		struct hci_conn *link;
 | ||
| 
 | ||
| 		if (hci_conn_check_create_cis(conn))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		cig = conn->iso_qos.ucast.cig;
 | ||
| 
 | ||
| 		list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
 | ||
| 			if (hci_conn_check_create_cis(link) > 0 &&
 | ||
| 			    link->iso_qos.ucast.cig == cig &&
 | ||
| 			    link->state != BT_CONNECTED) {
 | ||
| 				cig = BT_ISO_QOS_CIG_UNSET;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		if (cig != BT_ISO_QOS_CIG_UNSET)
 | ||
| 			break;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (cig == BT_ISO_QOS_CIG_UNSET)
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
 | ||
| 		struct hci_cis *cis = &cmd->cis[aux_num_cis];
 | ||
| 
 | ||
| 		if (hci_conn_check_create_cis(conn) ||
 | ||
| 		    conn->iso_qos.ucast.cig != cig)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
 | ||
| 		cis->acl_handle = cpu_to_le16(conn->parent->handle);
 | ||
| 		cis->cis_handle = cpu_to_le16(conn->handle);
 | ||
| 		aux_num_cis++;
 | ||
| 
 | ||
| 		if (aux_num_cis >= cmd->num_cis)
 | ||
| 			break;
 | ||
| 	}
 | ||
| 	cmd->num_cis = aux_num_cis;
 | ||
| 
 | ||
| done:
 | ||
| 	rcu_read_unlock();
 | ||
| 
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| 
 | ||
| 	if (!aux_num_cis)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Wait for HCI_LE_CIS_Established */
 | ||
| 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
 | ||
| 					struct_size(cmd, cis, cmd->num_cis),
 | ||
| 					cmd, HCI_EVT_LE_CIS_ESTABLISHED,
 | ||
| 					conn->conn_timeout, NULL);
 | ||
| }
 | ||
| 
 | ||
| int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
 | ||
| {
 | ||
| 	struct hci_cp_le_remove_cig cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.cig_id = handle;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
 | ||
| 				     &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
 | ||
| {
 | ||
| 	struct hci_cp_le_big_term_sync cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.handle = handle;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
 | ||
| {
 | ||
| 	struct hci_cp_le_pa_term_sync cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.handle = cpu_to_le16(handle);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
 | ||
| 			   bool use_rpa, struct adv_info *adv_instance,
 | ||
| 			   u8 *own_addr_type, bdaddr_t *rand_addr)
 | ||
| {
 | ||
| 	int err;
 | ||
| 
 | ||
| 	bacpy(rand_addr, BDADDR_ANY);
 | ||
| 
 | ||
| 	/* If privacy is enabled use a resolvable private address. If
 | ||
| 	 * current RPA has expired then generate a new one.
 | ||
| 	 */
 | ||
| 	if (use_rpa) {
 | ||
| 		/* If Controller supports LL Privacy use own address type is
 | ||
| 		 * 0x03
 | ||
| 		 */
 | ||
| 		if (ll_privacy_capable(hdev))
 | ||
| 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
 | ||
| 		else
 | ||
| 			*own_addr_type = ADDR_LE_DEV_RANDOM;
 | ||
| 
 | ||
| 		if (adv_instance) {
 | ||
| 			if (adv_rpa_valid(adv_instance))
 | ||
| 				return 0;
 | ||
| 		} else {
 | ||
| 			if (rpa_valid(hdev))
 | ||
| 				return 0;
 | ||
| 		}
 | ||
| 
 | ||
| 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
 | ||
| 		if (err < 0) {
 | ||
| 			bt_dev_err(hdev, "failed to generate new RPA");
 | ||
| 			return err;
 | ||
| 		}
 | ||
| 
 | ||
| 		bacpy(rand_addr, &hdev->rpa);
 | ||
| 
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* In case of required privacy without resolvable private address,
 | ||
| 	 * use an non-resolvable private address. This is useful for
 | ||
| 	 * non-connectable advertising.
 | ||
| 	 */
 | ||
| 	if (require_privacy) {
 | ||
| 		bdaddr_t nrpa;
 | ||
| 
 | ||
| 		while (true) {
 | ||
| 			/* The non-resolvable private address is generated
 | ||
| 			 * from random six bytes with the two most significant
 | ||
| 			 * bits cleared.
 | ||
| 			 */
 | ||
| 			get_random_bytes(&nrpa, 6);
 | ||
| 			nrpa.b[5] &= 0x3f;
 | ||
| 
 | ||
| 			/* The non-resolvable private address shall not be
 | ||
| 			 * equal to the public address.
 | ||
| 			 */
 | ||
| 			if (bacmp(&hdev->bdaddr, &nrpa))
 | ||
| 				break;
 | ||
| 		}
 | ||
| 
 | ||
| 		*own_addr_type = ADDR_LE_DEV_RANDOM;
 | ||
| 		bacpy(rand_addr, &nrpa);
 | ||
| 
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* No privacy so use a public address. */
 | ||
| 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	u8 instance = PTR_UINT(data);
 | ||
| 
 | ||
| 	return hci_update_adv_data_sync(hdev, instance);
 | ||
| }
 | ||
| 
 | ||
| int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
 | ||
| {
 | ||
| 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
 | ||
| 				  UINT_PTR(instance), NULL);
 | ||
| }
 | ||
| 
 | ||
| static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	struct hci_conn *conn = data;
 | ||
| 	struct inquiry_entry *ie;
 | ||
| 	struct hci_cp_create_conn cp;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!hci_conn_valid(hdev, conn))
 | ||
| 		return -ECANCELED;
 | ||
| 
 | ||
| 	/* Many controllers disallow HCI Create Connection while it is doing
 | ||
| 	 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
 | ||
| 	 * Connection. This may cause the MGMT discovering state to become false
 | ||
| 	 * without user space's request but it is okay since the MGMT Discovery
 | ||
| 	 * APIs do not promise that discovery should be done forever. Instead,
 | ||
| 	 * the user space monitors the status of MGMT discovering and it may
 | ||
| 	 * request for discovery again when this flag becomes false.
 | ||
| 	 */
 | ||
| 	if (test_bit(HCI_INQUIRY, &hdev->flags)) {
 | ||
| 		err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0,
 | ||
| 					    NULL, HCI_CMD_TIMEOUT);
 | ||
| 		if (err)
 | ||
| 			bt_dev_warn(hdev, "Failed to cancel inquiry %d", err);
 | ||
| 	}
 | ||
| 
 | ||
| 	conn->state = BT_CONNECT;
 | ||
| 	conn->out = true;
 | ||
| 	conn->role = HCI_ROLE_MASTER;
 | ||
| 
 | ||
| 	conn->attempt++;
 | ||
| 
 | ||
| 	conn->link_policy = hdev->link_policy;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	bacpy(&cp.bdaddr, &conn->dst);
 | ||
| 	cp.pscan_rep_mode = 0x02;
 | ||
| 
 | ||
| 	ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
 | ||
| 	if (ie) {
 | ||
| 		if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
 | ||
| 			cp.pscan_rep_mode = ie->data.pscan_rep_mode;
 | ||
| 			cp.pscan_mode     = ie->data.pscan_mode;
 | ||
| 			cp.clock_offset   = ie->data.clock_offset |
 | ||
| 					    cpu_to_le16(0x8000);
 | ||
| 		}
 | ||
| 
 | ||
| 		memcpy(conn->dev_class, ie->data.dev_class, 3);
 | ||
| 	}
 | ||
| 
 | ||
| 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
 | ||
| 	if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
 | ||
| 		cp.role_switch = 0x01;
 | ||
| 	else
 | ||
| 		cp.role_switch = 0x00;
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN,
 | ||
| 					sizeof(cp), &cp,
 | ||
| 					HCI_EV_CONN_COMPLETE,
 | ||
| 					conn->conn_timeout, NULL);
 | ||
| }
 | ||
| 
 | ||
| int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn)
 | ||
| {
 | ||
| 	return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn,
 | ||
| 				       NULL);
 | ||
| }
 | ||
| 
 | ||
| static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err)
 | ||
| {
 | ||
| 	struct hci_conn *conn = data;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "err %d", err);
 | ||
| 
 | ||
| 	if (err == -ECANCELED)
 | ||
| 		return;
 | ||
| 
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	if (!hci_conn_valid(hdev, conn))
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	if (!err) {
 | ||
| 		hci_connect_le_scan_cleanup(conn, 0x00);
 | ||
| 		goto done;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Check if connection is still pending */
 | ||
| 	if (conn != hci_lookup_le_connect(hdev))
 | ||
| 		goto done;
 | ||
| 
 | ||
| 	/* Flush to make sure we send create conn cancel command if needed */
 | ||
| 	flush_delayed_work(&conn->le_conn_timeout);
 | ||
| 	hci_conn_failed(conn, bt_status(err));
 | ||
| 
 | ||
| done:
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| }
 | ||
| 
 | ||
| int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn)
 | ||
| {
 | ||
| 	return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn,
 | ||
| 				       create_le_conn_complete);
 | ||
| }
 | ||
| 
 | ||
| int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn)
 | ||
| {
 | ||
| 	if (conn->state != BT_OPEN)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	switch (conn->type) {
 | ||
| 	case ACL_LINK:
 | ||
| 		return !hci_cmd_sync_dequeue_once(hdev,
 | ||
| 						  hci_acl_create_conn_sync,
 | ||
| 						  conn, NULL);
 | ||
| 	case LE_LINK:
 | ||
| 		return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync,
 | ||
| 						  conn, create_le_conn_complete);
 | ||
| 	}
 | ||
| 
 | ||
| 	return -ENOENT;
 | ||
| }
 | ||
| 
 | ||
| int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn,
 | ||
| 			    struct hci_conn_params *params)
 | ||
| {
 | ||
| 	struct hci_cp_le_conn_update cp;
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.handle		= cpu_to_le16(conn->handle);
 | ||
| 	cp.conn_interval_min	= cpu_to_le16(params->conn_min_interval);
 | ||
| 	cp.conn_interval_max	= cpu_to_le16(params->conn_max_interval);
 | ||
| 	cp.conn_latency		= cpu_to_le16(params->conn_latency);
 | ||
| 	cp.supervision_timeout	= cpu_to_le16(params->supervision_timeout);
 | ||
| 	cp.min_ce_len		= cpu_to_le16(0x0000);
 | ||
| 	cp.max_ce_len		= cpu_to_le16(0x0000);
 | ||
| 
 | ||
| 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE,
 | ||
| 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
 | ||
| }
 | ||
| 
 | ||
| static void create_pa_complete(struct hci_dev *hdev, void *data, int err)
 | ||
| {
 | ||
| 	bt_dev_dbg(hdev, "err %d", err);
 | ||
| 
 | ||
| 	if (!err)
 | ||
| 		return;
 | ||
| 
 | ||
| 	hci_dev_clear_flag(hdev, HCI_PA_SYNC);
 | ||
| 
 | ||
| 	if (err == -ECANCELED)
 | ||
| 		return;
 | ||
| 
 | ||
| 	hci_dev_lock(hdev);
 | ||
| 
 | ||
| 	hci_update_passive_scan_sync(hdev);
 | ||
| 
 | ||
| 	hci_dev_unlock(hdev);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_pa_create_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	struct hci_cp_le_pa_create_sync cp;
 | ||
| 	struct hci_conn *conn = data;
 | ||
| 	struct bt_iso_qos *qos = &conn->iso_qos;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!hci_conn_valid(hdev, conn))
 | ||
| 		return -ECANCELED;
 | ||
| 
 | ||
| 	if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC))
 | ||
| 		return -EBUSY;
 | ||
| 
 | ||
| 	/* Mark HCI_CONN_CREATE_PA_SYNC so hci_update_passive_scan_sync can
 | ||
| 	 * program the address in the allow list so PA advertisements can be
 | ||
| 	 * received.
 | ||
| 	 */
 | ||
| 	set_bit(HCI_CONN_CREATE_PA_SYNC, &conn->flags);
 | ||
| 
 | ||
| 	hci_update_passive_scan_sync(hdev);
 | ||
| 
 | ||
| 	memset(&cp, 0, sizeof(cp));
 | ||
| 	cp.options = qos->bcast.options;
 | ||
| 	cp.sid = conn->sid;
 | ||
| 	cp.addr_type = conn->dst_type;
 | ||
| 	bacpy(&cp.addr, &conn->dst);
 | ||
| 	cp.skip = cpu_to_le16(qos->bcast.skip);
 | ||
| 	cp.sync_timeout = cpu_to_le16(qos->bcast.sync_timeout);
 | ||
| 	cp.sync_cte_type = qos->bcast.sync_cte_type;
 | ||
| 
 | ||
| 	/* The spec allows only one pending LE Periodic Advertising Create
 | ||
| 	 * Sync command at a time so we forcefully wait for PA Sync Established
 | ||
| 	 * event since cmd_work can only schedule one command at a time.
 | ||
| 	 *
 | ||
| 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
 | ||
| 	 * page 2493:
 | ||
| 	 *
 | ||
| 	 * If the Host issues this command when another HCI_LE_Periodic_
 | ||
| 	 * Advertising_Create_Sync command is pending, the Controller shall
 | ||
| 	 * return the error code Command Disallowed (0x0C).
 | ||
| 	 */
 | ||
| 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_PA_CREATE_SYNC,
 | ||
| 				       sizeof(cp), &cp,
 | ||
| 				       HCI_EV_LE_PA_SYNC_ESTABLISHED,
 | ||
| 				       conn->conn_timeout, NULL);
 | ||
| 	if (err == -ETIMEDOUT)
 | ||
| 		__hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC_CANCEL,
 | ||
| 				      0, NULL, HCI_CMD_TIMEOUT);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| int hci_connect_pa_sync(struct hci_dev *hdev, struct hci_conn *conn)
 | ||
| {
 | ||
| 	return hci_cmd_sync_queue_once(hdev, hci_le_pa_create_sync, conn,
 | ||
| 				       create_pa_complete);
 | ||
| }
 | ||
| 
 | ||
| static void create_big_complete(struct hci_dev *hdev, void *data, int err)
 | ||
| {
 | ||
| 	struct hci_conn *conn = data;
 | ||
| 
 | ||
| 	bt_dev_dbg(hdev, "err %d", err);
 | ||
| 
 | ||
| 	if (err == -ECANCELED)
 | ||
| 		return;
 | ||
| 
 | ||
| 	if (hci_conn_valid(hdev, conn))
 | ||
| 		clear_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags);
 | ||
| }
 | ||
| 
 | ||
| static int hci_le_big_create_sync(struct hci_dev *hdev, void *data)
 | ||
| {
 | ||
| 	DEFINE_FLEX(struct hci_cp_le_big_create_sync, cp, bis, num_bis, 0x11);
 | ||
| 	struct hci_conn *conn = data;
 | ||
| 	struct bt_iso_qos *qos = &conn->iso_qos;
 | ||
| 	int err;
 | ||
| 
 | ||
| 	if (!hci_conn_valid(hdev, conn))
 | ||
| 		return -ECANCELED;
 | ||
| 
 | ||
| 	set_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags);
 | ||
| 
 | ||
| 	memset(cp, 0, sizeof(*cp));
 | ||
| 	cp->handle = qos->bcast.big;
 | ||
| 	cp->sync_handle = cpu_to_le16(conn->sync_handle);
 | ||
| 	cp->encryption = qos->bcast.encryption;
 | ||
| 	memcpy(cp->bcode, qos->bcast.bcode, sizeof(cp->bcode));
 | ||
| 	cp->mse = qos->bcast.mse;
 | ||
| 	cp->timeout = cpu_to_le16(qos->bcast.timeout);
 | ||
| 	cp->num_bis = conn->num_bis;
 | ||
| 	memcpy(cp->bis, conn->bis, conn->num_bis);
 | ||
| 
 | ||
| 	/* The spec allows only one pending LE BIG Create Sync command at
 | ||
| 	 * a time, so we forcefully wait for BIG Sync Established event since
 | ||
| 	 * cmd_work can only schedule one command at a time.
 | ||
| 	 *
 | ||
| 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
 | ||
| 	 * page 2586:
 | ||
| 	 *
 | ||
| 	 * If the Host sends this command when the Controller is in the
 | ||
| 	 * process of synchronizing to any BIG, i.e. the HCI_LE_BIG_Sync_
 | ||
| 	 * Established event has not been generated, the Controller shall
 | ||
| 	 * return the error code Command Disallowed (0x0C).
 | ||
| 	 */
 | ||
| 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_BIG_CREATE_SYNC,
 | ||
| 				       struct_size(cp, bis, cp->num_bis), cp,
 | ||
| 				       HCI_EVT_LE_BIG_SYNC_ESTABLISHED,
 | ||
| 				       conn->conn_timeout, NULL);
 | ||
| 	if (err == -ETIMEDOUT)
 | ||
| 		hci_le_big_terminate_sync(hdev, cp->handle);
 | ||
| 
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| int hci_connect_big_sync(struct hci_dev *hdev, struct hci_conn *conn)
 | ||
| {
 | ||
| 	return hci_cmd_sync_queue_once(hdev, hci_le_big_create_sync, conn,
 | ||
| 				       create_big_complete);
 | ||
| }
 |