forked from mirrors/linux
		
	 e7073830cc
			
		
	
	
		e7073830cc
		
	
	
	
	
		
			
			Cross-merge networking fixes after downstream PR. No conflicts. Adjacent changes: drivers/net/ethernet/hisilicon/hns3/hns3pf/hclge_main.c35d92abfba("net: hns3: fix kernel crash when devlink reload during initialization")2a1a1a7b5f("net: hns3: add command queue trace for hns3") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
		
			
				
	
	
		
			317 lines
		
	
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * xfrm6_input.c: based on net/ipv4/xfrm4_input.c
 | |
|  *
 | |
|  * Authors:
 | |
|  *	Mitsuru KANDA @USAGI
 | |
|  *	Kazunori MIYAZAWA @USAGI
 | |
|  *	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
 | |
|  *	YOSHIFUJI Hideaki @USAGI
 | |
|  *		IPv6 support
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/netfilter.h>
 | |
| #include <linux/netfilter_ipv6.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/xfrm.h>
 | |
| #include <net/protocol.h>
 | |
| #include <net/gro.h>
 | |
| 
 | |
| int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi,
 | |
| 		  struct ip6_tnl *t)
 | |
| {
 | |
| 	XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6 = t;
 | |
| 	XFRM_SPI_SKB_CB(skb)->family = AF_INET6;
 | |
| 	XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct ipv6hdr, daddr);
 | |
| 	return xfrm_input(skb, nexthdr, spi, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(xfrm6_rcv_spi);
 | |
| 
 | |
| static int xfrm6_transport_finish2(struct net *net, struct sock *sk,
 | |
| 				   struct sk_buff *skb)
 | |
| {
 | |
| 	if (xfrm_trans_queue(skb, ip6_rcv_finish)) {
 | |
| 		kfree_skb(skb);
 | |
| 		return NET_RX_DROP;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int xfrm6_transport_finish(struct sk_buff *skb, int async)
 | |
| {
 | |
| 	struct xfrm_offload *xo = xfrm_offload(skb);
 | |
| 	int nhlen = -skb_network_offset(skb);
 | |
| 
 | |
| 	skb_network_header(skb)[IP6CB(skb)->nhoff] =
 | |
| 		XFRM_MODE_SKB_CB(skb)->protocol;
 | |
| 
 | |
| #ifndef CONFIG_NETFILTER
 | |
| 	if (!async)
 | |
| 		return 1;
 | |
| #endif
 | |
| 
 | |
| 	__skb_push(skb, nhlen);
 | |
| 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
 | |
| 	skb_postpush_rcsum(skb, skb_network_header(skb), nhlen);
 | |
| 
 | |
| 	if (xo && (xo->flags & XFRM_GRO)) {
 | |
| 		/* The full l2 header needs to be preserved so that re-injecting the packet at l2
 | |
| 		 * works correctly in the presence of vlan tags.
 | |
| 		 */
 | |
| 		skb_mac_header_rebuild_full(skb, xo->orig_mac_len);
 | |
| 		skb_reset_network_header(skb);
 | |
| 		skb_reset_transport_header(skb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING,
 | |
| 		dev_net(skb->dev), NULL, skb, skb->dev, NULL,
 | |
| 		xfrm6_transport_finish2);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb, bool pull)
 | |
| {
 | |
| 	struct udp_sock *up = udp_sk(sk);
 | |
| 	struct udphdr *uh;
 | |
| 	struct ipv6hdr *ip6h;
 | |
| 	int len;
 | |
| 	int ip6hlen = sizeof(struct ipv6hdr);
 | |
| 	__u8 *udpdata;
 | |
| 	__be32 *udpdata32;
 | |
| 	u16 encap_type;
 | |
| 
 | |
| 	encap_type = READ_ONCE(up->encap_type);
 | |
| 	/* if this is not encapsulated socket, then just return now */
 | |
| 	if (!encap_type)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* If this is a paged skb, make sure we pull up
 | |
| 	 * whatever data we need to look at. */
 | |
| 	len = skb->len - sizeof(struct udphdr);
 | |
| 	if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Now we can get the pointers */
 | |
| 	uh = udp_hdr(skb);
 | |
| 	udpdata = (__u8 *)uh + sizeof(struct udphdr);
 | |
| 	udpdata32 = (__be32 *)udpdata;
 | |
| 
 | |
| 	switch (encap_type) {
 | |
| 	default:
 | |
| 	case UDP_ENCAP_ESPINUDP:
 | |
| 		/* Check if this is a keepalive packet.  If so, eat it. */
 | |
| 		if (len == 1 && udpdata[0] == 0xff) {
 | |
| 			return -EINVAL;
 | |
| 		} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
 | |
| 			/* ESP Packet without Non-ESP header */
 | |
| 			len = sizeof(struct udphdr);
 | |
| 		} else
 | |
| 			/* Must be an IKE packet.. pass it through */
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* At this point we are sure that this is an ESPinUDP packet,
 | |
| 	 * so we need to remove 'len' bytes from the packet (the UDP
 | |
| 	 * header and optional ESP marker bytes) and then modify the
 | |
| 	 * protocol to ESP, and then call into the transform receiver.
 | |
| 	 */
 | |
| 	if (skb_unclone(skb, GFP_ATOMIC))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Now we can update and verify the packet length... */
 | |
| 	ip6h = ipv6_hdr(skb);
 | |
| 	ip6h->payload_len = htons(ntohs(ip6h->payload_len) - len);
 | |
| 	if (skb->len < ip6hlen + len) {
 | |
| 		/* packet is too small!?! */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* pull the data buffer up to the ESP header and set the
 | |
| 	 * transport header to point to ESP.  Keep UDP on the stack
 | |
| 	 * for later.
 | |
| 	 */
 | |
| 	if (pull) {
 | |
| 		__skb_pull(skb, len);
 | |
| 		skb_reset_transport_header(skb);
 | |
| 	} else {
 | |
| 		skb_set_transport_header(skb, len);
 | |
| 	}
 | |
| 
 | |
| 	/* process ESP */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* If it's a keepalive packet, then just eat it.
 | |
|  * If it's an encapsulated packet, then pass it to the
 | |
|  * IPsec xfrm input.
 | |
|  * Returns 0 if skb passed to xfrm or was dropped.
 | |
|  * Returns >0 if skb should be passed to UDP.
 | |
|  * Returns <0 if skb should be resubmitted (-ret is protocol)
 | |
|  */
 | |
| int xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (skb->protocol == htons(ETH_P_IP))
 | |
| 		return xfrm4_udp_encap_rcv(sk, skb);
 | |
| 
 | |
| 	ret = __xfrm6_udp_encap_rcv(sk, skb, true);
 | |
| 	if (!ret)
 | |
| 		return xfrm6_rcv_encap(skb, IPPROTO_ESP, 0,
 | |
| 				       udp_sk(sk)->encap_type);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		kfree_skb(skb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct sk_buff *xfrm6_gro_udp_encap_rcv(struct sock *sk, struct list_head *head,
 | |
| 					struct sk_buff *skb)
 | |
| {
 | |
| 	int offset = skb_gro_offset(skb);
 | |
| 	const struct net_offload *ops;
 | |
| 	struct sk_buff *pp = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (skb->protocol == htons(ETH_P_IP))
 | |
| 		return xfrm4_gro_udp_encap_rcv(sk, head, skb);
 | |
| 
 | |
| 	offset = offset - sizeof(struct udphdr);
 | |
| 
 | |
| 	if (!pskb_pull(skb, offset))
 | |
| 		return NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ops = rcu_dereference(inet6_offloads[IPPROTO_ESP]);
 | |
| 	if (!ops || !ops->callbacks.gro_receive)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = __xfrm6_udp_encap_rcv(sk, skb, false);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	skb_push(skb, offset);
 | |
| 	NAPI_GRO_CB(skb)->proto = IPPROTO_UDP;
 | |
| 
 | |
| 	pp = call_gro_receive(ops->callbacks.gro_receive, head, skb);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return pp;
 | |
| 
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	skb_push(skb, offset);
 | |
| 	NAPI_GRO_CB(skb)->same_flow = 0;
 | |
| 	NAPI_GRO_CB(skb)->flush = 1;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t)
 | |
| {
 | |
| 	return xfrm6_rcv_spi(skb, skb_network_header(skb)[IP6CB(skb)->nhoff],
 | |
| 			     0, t);
 | |
| }
 | |
| EXPORT_SYMBOL(xfrm6_rcv_tnl);
 | |
| 
 | |
| int xfrm6_rcv(struct sk_buff *skb)
 | |
| {
 | |
| 	return xfrm6_rcv_tnl(skb, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(xfrm6_rcv);
 | |
| int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr,
 | |
| 		     xfrm_address_t *saddr, u8 proto)
 | |
| {
 | |
| 	struct net *net = dev_net(skb->dev);
 | |
| 	struct xfrm_state *x = NULL;
 | |
| 	struct sec_path *sp;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	sp = secpath_set(skb);
 | |
| 	if (!sp) {
 | |
| 		XFRM_INC_STATS(net, LINUX_MIB_XFRMINERROR);
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	if (1 + sp->len == XFRM_MAX_DEPTH) {
 | |
| 		XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		xfrm_address_t *dst, *src;
 | |
| 
 | |
| 		switch (i) {
 | |
| 		case 0:
 | |
| 			dst = daddr;
 | |
| 			src = saddr;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			/* lookup state with wild-card source address */
 | |
| 			dst = daddr;
 | |
| 			src = (xfrm_address_t *)&in6addr_any;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* lookup state with wild-card addresses */
 | |
| 			dst = (xfrm_address_t *)&in6addr_any;
 | |
| 			src = (xfrm_address_t *)&in6addr_any;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		x = xfrm_state_lookup_byaddr(net, skb->mark, dst, src, proto, AF_INET6);
 | |
| 		if (!x)
 | |
| 			continue;
 | |
| 
 | |
| 		if (unlikely(x->dir && x->dir != XFRM_SA_DIR_IN)) {
 | |
| 			XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEDIRERROR);
 | |
| 			xfrm_state_put(x);
 | |
| 			x = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&x->lock);
 | |
| 
 | |
| 		if ((!i || (x->props.flags & XFRM_STATE_WILDRECV)) &&
 | |
| 		    likely(x->km.state == XFRM_STATE_VALID) &&
 | |
| 		    !xfrm_state_check_expire(x)) {
 | |
| 			spin_unlock(&x->lock);
 | |
| 			if (x->type->input(x, skb) > 0) {
 | |
| 				/* found a valid state */
 | |
| 				break;
 | |
| 			}
 | |
| 		} else
 | |
| 			spin_unlock(&x->lock);
 | |
| 
 | |
| 		xfrm_state_put(x);
 | |
| 		x = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!x) {
 | |
| 		XFRM_INC_STATS(net, LINUX_MIB_XFRMINNOSTATES);
 | |
| 		xfrm_audit_state_notfound_simple(skb, AF_INET6);
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	sp->xvec[sp->len++] = x;
 | |
| 
 | |
| 	spin_lock(&x->lock);
 | |
| 
 | |
| 	x->curlft.bytes += skb->len;
 | |
| 	x->curlft.packets++;
 | |
| 
 | |
| 	spin_unlock(&x->lock);
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| drop:
 | |
| 	return -1;
 | |
| }
 | |
| EXPORT_SYMBOL(xfrm6_input_addr);
 |