forked from mirrors/linux
		
	 6beb6835c1
			
		
	
	
		6beb6835c1
		
	
	
	
	
		
			
			This patch replaces the manual Netlink attribute iteration in
output_userspace() with nla_for_each_nested(), which ensures that only
well-formed attributes are processed.
Fixes: ccb1352e76 ("net: Add Open vSwitch kernel components.")
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Acked-by: Ilya Maximets <i.maximets@ovn.org>
Acked-by: Aaron Conole <aconole@redhat.com>
Link: https://patch.msgid.link/0bd65949df61591d9171c0dc13e42cea8941da10.1746541734.git.echaudro@redhat.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
		
	
			
		
			
				
	
	
		
			1724 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1724 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (c) 2007-2017 Nicira, Inc.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/openvswitch.h>
 | |
| #include <linux/sctp.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/udp.h>
 | |
| #include <linux/in6.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/if_vlan.h>
 | |
| 
 | |
| #include <net/dst.h>
 | |
| #include <net/gso.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/ip6_fib.h>
 | |
| #include <net/checksum.h>
 | |
| #include <net/dsfield.h>
 | |
| #include <net/mpls.h>
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_PSAMPLE)
 | |
| #include <net/psample.h>
 | |
| #endif
 | |
| 
 | |
| #include <net/sctp/checksum.h>
 | |
| 
 | |
| #include "datapath.h"
 | |
| #include "drop.h"
 | |
| #include "flow.h"
 | |
| #include "conntrack.h"
 | |
| #include "vport.h"
 | |
| #include "flow_netlink.h"
 | |
| #include "openvswitch_trace.h"
 | |
| 
 | |
| struct deferred_action {
 | |
| 	struct sk_buff *skb;
 | |
| 	const struct nlattr *actions;
 | |
| 	int actions_len;
 | |
| 
 | |
| 	/* Store pkt_key clone when creating deferred action. */
 | |
| 	struct sw_flow_key pkt_key;
 | |
| };
 | |
| 
 | |
| #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
 | |
| struct ovs_frag_data {
 | |
| 	unsigned long dst;
 | |
| 	struct vport *vport;
 | |
| 	struct ovs_skb_cb cb;
 | |
| 	__be16 inner_protocol;
 | |
| 	u16 network_offset;	/* valid only for MPLS */
 | |
| 	u16 vlan_tci;
 | |
| 	__be16 vlan_proto;
 | |
| 	unsigned int l2_len;
 | |
| 	u8 mac_proto;
 | |
| 	u8 l2_data[MAX_L2_LEN];
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
 | |
| 
 | |
| #define DEFERRED_ACTION_FIFO_SIZE 10
 | |
| #define OVS_RECURSION_LIMIT 5
 | |
| #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
 | |
| struct action_fifo {
 | |
| 	int head;
 | |
| 	int tail;
 | |
| 	/* Deferred action fifo queue storage. */
 | |
| 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
 | |
| };
 | |
| 
 | |
| struct action_flow_keys {
 | |
| 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
 | |
| };
 | |
| 
 | |
| static struct action_fifo __percpu *action_fifos;
 | |
| static struct action_flow_keys __percpu *flow_keys;
 | |
| static DEFINE_PER_CPU(int, exec_actions_level);
 | |
| 
 | |
| /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
 | |
|  * space. Return NULL if out of key spaces.
 | |
|  */
 | |
| static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
 | |
| {
 | |
| 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
 | |
| 	int level = this_cpu_read(exec_actions_level);
 | |
| 	struct sw_flow_key *key = NULL;
 | |
| 
 | |
| 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
 | |
| 		key = &keys->key[level - 1];
 | |
| 		*key = *key_;
 | |
| 	}
 | |
| 
 | |
| 	return key;
 | |
| }
 | |
| 
 | |
| static void action_fifo_init(struct action_fifo *fifo)
 | |
| {
 | |
| 	fifo->head = 0;
 | |
| 	fifo->tail = 0;
 | |
| }
 | |
| 
 | |
| static bool action_fifo_is_empty(const struct action_fifo *fifo)
 | |
| {
 | |
| 	return (fifo->head == fifo->tail);
 | |
| }
 | |
| 
 | |
| static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 | |
| {
 | |
| 	if (action_fifo_is_empty(fifo))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &fifo->fifo[fifo->tail++];
 | |
| }
 | |
| 
 | |
| static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 | |
| {
 | |
| 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &fifo->fifo[fifo->head++];
 | |
| }
 | |
| 
 | |
| /* Return true if fifo is not full */
 | |
| static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 | |
| 				    const struct sw_flow_key *key,
 | |
| 				    const struct nlattr *actions,
 | |
| 				    const int actions_len)
 | |
| {
 | |
| 	struct action_fifo *fifo;
 | |
| 	struct deferred_action *da;
 | |
| 
 | |
| 	fifo = this_cpu_ptr(action_fifos);
 | |
| 	da = action_fifo_put(fifo);
 | |
| 	if (da) {
 | |
| 		da->skb = skb;
 | |
| 		da->actions = actions;
 | |
| 		da->actions_len = actions_len;
 | |
| 		da->pkt_key = *key;
 | |
| 	}
 | |
| 
 | |
| 	return da;
 | |
| }
 | |
| 
 | |
| static void invalidate_flow_key(struct sw_flow_key *key)
 | |
| {
 | |
| 	key->mac_proto |= SW_FLOW_KEY_INVALID;
 | |
| }
 | |
| 
 | |
| static bool is_flow_key_valid(const struct sw_flow_key *key)
 | |
| {
 | |
| 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 | |
| }
 | |
| 
 | |
| static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 | |
| 			 struct sw_flow_key *key,
 | |
| 			 u32 recirc_id,
 | |
| 			 const struct nlattr *actions, int len,
 | |
| 			 bool last, bool clone_flow_key);
 | |
| 
 | |
| static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
 | |
| 			      struct sw_flow_key *key,
 | |
| 			      const struct nlattr *attr, int len);
 | |
| 
 | |
| static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 | |
| 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!mac_len)
 | |
| 		key->mac_proto = MAC_PROTO_NONE;
 | |
| 
 | |
| 	invalidate_flow_key(key);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 | |
| 		    const __be16 ethertype)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
 | |
| 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (ethertype == htons(ETH_P_TEB))
 | |
| 		key->mac_proto = MAC_PROTO_ETHERNET;
 | |
| 
 | |
| 	invalidate_flow_key(key);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 | |
| 		    const __be32 *mpls_lse, const __be32 *mask)
 | |
| {
 | |
| 	struct mpls_shim_hdr *stack;
 | |
| 	__be32 lse;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	stack = mpls_hdr(skb);
 | |
| 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 | |
| 	err = skb_mpls_update_lse(skb, lse);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	flow_key->mpls.lse[0] = lse;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_vlan_pop(skb);
 | |
| 	if (skb_vlan_tag_present(skb)) {
 | |
| 		invalidate_flow_key(key);
 | |
| 	} else {
 | |
| 		key->eth.vlan.tci = 0;
 | |
| 		key->eth.vlan.tpid = 0;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 | |
| 		     const struct ovs_action_push_vlan *vlan)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (skb_vlan_tag_present(skb)) {
 | |
| 		invalidate_flow_key(key);
 | |
| 	} else {
 | |
| 		key->eth.vlan.tci = vlan->vlan_tci;
 | |
| 		key->eth.vlan.tpid = vlan->vlan_tpid;
 | |
| 	}
 | |
| 	err = skb_vlan_push(skb, vlan->vlan_tpid,
 | |
| 			    ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
 | |
| 	skb_reset_mac_len(skb);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* 'src' is already properly masked. */
 | |
| static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 | |
| {
 | |
| 	u16 *dst = (u16 *)dst_;
 | |
| 	const u16 *src = (const u16 *)src_;
 | |
| 	const u16 *mask = (const u16 *)mask_;
 | |
| 
 | |
| 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
 | |
| 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
 | |
| 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
 | |
| }
 | |
| 
 | |
| static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 | |
| 			const struct ovs_key_ethernet *key,
 | |
| 			const struct ovs_key_ethernet *mask)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_ensure_writable(skb, ETH_HLEN);
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 | |
| 
 | |
| 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 | |
| 			       mask->eth_src);
 | |
| 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 | |
| 			       mask->eth_dst);
 | |
| 
 | |
| 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 | |
| 
 | |
| 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 | |
| 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* pop_eth does not support VLAN packets as this action is never called
 | |
|  * for them.
 | |
|  */
 | |
| static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_eth_pop(skb);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* safe right before invalidate_flow_key */
 | |
| 	key->mac_proto = MAC_PROTO_NONE;
 | |
| 	invalidate_flow_key(key);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 | |
| 		    const struct ovs_action_push_eth *ethh)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
 | |
| 			   ethh->addresses.eth_src);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* safe right before invalidate_flow_key */
 | |
| 	key->mac_proto = MAC_PROTO_ETHERNET;
 | |
| 	invalidate_flow_key(key);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int push_nsh(struct sk_buff *skb,
 | |
| 				       struct sw_flow_key *key,
 | |
| 				       const struct nlattr *a)
 | |
| {
 | |
| 	u8 buffer[NSH_HDR_MAX_LEN];
 | |
| 	struct nshhdr *nh = (struct nshhdr *)buffer;
 | |
| 	int err;
 | |
| 
 | |
| 	err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = nsh_push(skb, nh);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* safe right before invalidate_flow_key */
 | |
| 	key->mac_proto = MAC_PROTO_NONE;
 | |
| 	invalidate_flow_key(key);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = nsh_pop(skb);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* safe right before invalidate_flow_key */
 | |
| 	if (skb->protocol == htons(ETH_P_TEB))
 | |
| 		key->mac_proto = MAC_PROTO_ETHERNET;
 | |
| 	else
 | |
| 		key->mac_proto = MAC_PROTO_NONE;
 | |
| 	invalidate_flow_key(key);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 | |
| 				  __be32 addr, __be32 new_addr)
 | |
| {
 | |
| 	int transport_len = skb->len - skb_transport_offset(skb);
 | |
| 
 | |
| 	if (nh->frag_off & htons(IP_OFFSET))
 | |
| 		return;
 | |
| 
 | |
| 	if (nh->protocol == IPPROTO_TCP) {
 | |
| 		if (likely(transport_len >= sizeof(struct tcphdr)))
 | |
| 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 | |
| 						 addr, new_addr, true);
 | |
| 	} else if (nh->protocol == IPPROTO_UDP) {
 | |
| 		if (likely(transport_len >= sizeof(struct udphdr))) {
 | |
| 			struct udphdr *uh = udp_hdr(skb);
 | |
| 
 | |
| 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 				inet_proto_csum_replace4(&uh->check, skb,
 | |
| 							 addr, new_addr, true);
 | |
| 				if (!uh->check)
 | |
| 					uh->check = CSUM_MANGLED_0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 | |
| 			__be32 *addr, __be32 new_addr)
 | |
| {
 | |
| 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
 | |
| 	csum_replace4(&nh->check, *addr, new_addr);
 | |
| 	skb_clear_hash(skb);
 | |
| 	ovs_ct_clear(skb, NULL);
 | |
| 	*addr = new_addr;
 | |
| }
 | |
| 
 | |
| static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 | |
| 				 __be32 addr[4], const __be32 new_addr[4])
 | |
| {
 | |
| 	int transport_len = skb->len - skb_transport_offset(skb);
 | |
| 
 | |
| 	if (l4_proto == NEXTHDR_TCP) {
 | |
| 		if (likely(transport_len >= sizeof(struct tcphdr)))
 | |
| 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 | |
| 						  addr, new_addr, true);
 | |
| 	} else if (l4_proto == NEXTHDR_UDP) {
 | |
| 		if (likely(transport_len >= sizeof(struct udphdr))) {
 | |
| 			struct udphdr *uh = udp_hdr(skb);
 | |
| 
 | |
| 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 				inet_proto_csum_replace16(&uh->check, skb,
 | |
| 							  addr, new_addr, true);
 | |
| 				if (!uh->check)
 | |
| 					uh->check = CSUM_MANGLED_0;
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (l4_proto == NEXTHDR_ICMP) {
 | |
| 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
 | |
| 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 | |
| 						  skb, addr, new_addr, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 | |
| 			   const __be32 mask[4], __be32 masked[4])
 | |
| {
 | |
| 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 | |
| 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 | |
| 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 | |
| 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 | |
| }
 | |
| 
 | |
| static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 | |
| 			  __be32 addr[4], const __be32 new_addr[4],
 | |
| 			  bool recalculate_csum)
 | |
| {
 | |
| 	if (recalculate_csum)
 | |
| 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 | |
| 
 | |
| 	skb_clear_hash(skb);
 | |
| 	ovs_ct_clear(skb, NULL);
 | |
| 	memcpy(addr, new_addr, sizeof(__be32[4]));
 | |
| }
 | |
| 
 | |
| static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
 | |
| {
 | |
| 	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
 | |
| 
 | |
| 	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
 | |
| 
 | |
| 	if (skb->ip_summed == CHECKSUM_COMPLETE)
 | |
| 		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
 | |
| 			     (__force __wsum)(ipv6_tclass << 12));
 | |
| 
 | |
| 	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
 | |
| }
 | |
| 
 | |
| static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
 | |
| {
 | |
| 	u32 ofl;
 | |
| 
 | |
| 	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
 | |
| 	fl = OVS_MASKED(ofl, fl, mask);
 | |
| 
 | |
| 	/* Bits 21-24 are always unmasked, so this retains their values. */
 | |
| 	nh->flow_lbl[0] = (u8)(fl >> 16);
 | |
| 	nh->flow_lbl[1] = (u8)(fl >> 8);
 | |
| 	nh->flow_lbl[2] = (u8)fl;
 | |
| 
 | |
| 	if (skb->ip_summed == CHECKSUM_COMPLETE)
 | |
| 		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
 | |
| }
 | |
| 
 | |
| static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
 | |
| {
 | |
| 	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
 | |
| 
 | |
| 	if (skb->ip_summed == CHECKSUM_COMPLETE)
 | |
| 		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
 | |
| 			     (__force __wsum)(new_ttl << 8));
 | |
| 	nh->hop_limit = new_ttl;
 | |
| }
 | |
| 
 | |
| static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 | |
| 		       u8 mask)
 | |
| {
 | |
| 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 | |
| 
 | |
| 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 | |
| 	nh->ttl = new_ttl;
 | |
| }
 | |
| 
 | |
| static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 | |
| 		    const struct ovs_key_ipv4 *key,
 | |
| 		    const struct ovs_key_ipv4 *mask)
 | |
| {
 | |
| 	struct iphdr *nh;
 | |
| 	__be32 new_addr;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 | |
| 				  sizeof(struct iphdr));
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	nh = ip_hdr(skb);
 | |
| 
 | |
| 	/* Setting an IP addresses is typically only a side effect of
 | |
| 	 * matching on them in the current userspace implementation, so it
 | |
| 	 * makes sense to check if the value actually changed.
 | |
| 	 */
 | |
| 	if (mask->ipv4_src) {
 | |
| 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 | |
| 
 | |
| 		if (unlikely(new_addr != nh->saddr)) {
 | |
| 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
 | |
| 			flow_key->ipv4.addr.src = new_addr;
 | |
| 		}
 | |
| 	}
 | |
| 	if (mask->ipv4_dst) {
 | |
| 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 | |
| 
 | |
| 		if (unlikely(new_addr != nh->daddr)) {
 | |
| 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
 | |
| 			flow_key->ipv4.addr.dst = new_addr;
 | |
| 		}
 | |
| 	}
 | |
| 	if (mask->ipv4_tos) {
 | |
| 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 | |
| 		flow_key->ip.tos = nh->tos;
 | |
| 	}
 | |
| 	if (mask->ipv4_ttl) {
 | |
| 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 | |
| 		flow_key->ip.ttl = nh->ttl;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 | |
| {
 | |
| 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 | |
| }
 | |
| 
 | |
| static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 | |
| 		    const struct ovs_key_ipv6 *key,
 | |
| 		    const struct ovs_key_ipv6 *mask)
 | |
| {
 | |
| 	struct ipv6hdr *nh;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 | |
| 				  sizeof(struct ipv6hdr));
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	nh = ipv6_hdr(skb);
 | |
| 
 | |
| 	/* Setting an IP addresses is typically only a side effect of
 | |
| 	 * matching on them in the current userspace implementation, so it
 | |
| 	 * makes sense to check if the value actually changed.
 | |
| 	 */
 | |
| 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 | |
| 		__be32 *saddr = (__be32 *)&nh->saddr;
 | |
| 		__be32 masked[4];
 | |
| 
 | |
| 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 | |
| 
 | |
| 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 | |
| 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 | |
| 				      true);
 | |
| 			memcpy(&flow_key->ipv6.addr.src, masked,
 | |
| 			       sizeof(flow_key->ipv6.addr.src));
 | |
| 		}
 | |
| 	}
 | |
| 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 | |
| 		unsigned int offset = 0;
 | |
| 		int flags = IP6_FH_F_SKIP_RH;
 | |
| 		bool recalc_csum = true;
 | |
| 		__be32 *daddr = (__be32 *)&nh->daddr;
 | |
| 		__be32 masked[4];
 | |
| 
 | |
| 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 | |
| 
 | |
| 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 | |
| 			if (ipv6_ext_hdr(nh->nexthdr))
 | |
| 				recalc_csum = (ipv6_find_hdr(skb, &offset,
 | |
| 							     NEXTHDR_ROUTING,
 | |
| 							     NULL, &flags)
 | |
| 					       != NEXTHDR_ROUTING);
 | |
| 
 | |
| 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 | |
| 				      recalc_csum);
 | |
| 			memcpy(&flow_key->ipv6.addr.dst, masked,
 | |
| 			       sizeof(flow_key->ipv6.addr.dst));
 | |
| 		}
 | |
| 	}
 | |
| 	if (mask->ipv6_tclass) {
 | |
| 		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
 | |
| 		flow_key->ip.tos = ipv6_get_dsfield(nh);
 | |
| 	}
 | |
| 	if (mask->ipv6_label) {
 | |
| 		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
 | |
| 			    ntohl(mask->ipv6_label));
 | |
| 		flow_key->ipv6.label =
 | |
| 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 | |
| 	}
 | |
| 	if (mask->ipv6_hlimit) {
 | |
| 		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
 | |
| 		flow_key->ip.ttl = nh->hop_limit;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
 | |
| 		   const struct nlattr *a)
 | |
| {
 | |
| 	struct nshhdr *nh;
 | |
| 	size_t length;
 | |
| 	int err;
 | |
| 	u8 flags;
 | |
| 	u8 ttl;
 | |
| 	int i;
 | |
| 
 | |
| 	struct ovs_key_nsh key;
 | |
| 	struct ovs_key_nsh mask;
 | |
| 
 | |
| 	err = nsh_key_from_nlattr(a, &key, &mask);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Make sure the NSH base header is there */
 | |
| 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	nh = nsh_hdr(skb);
 | |
| 	length = nsh_hdr_len(nh);
 | |
| 
 | |
| 	/* Make sure the whole NSH header is there */
 | |
| 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 | |
| 				       length);
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	nh = nsh_hdr(skb);
 | |
| 	skb_postpull_rcsum(skb, nh, length);
 | |
| 	flags = nsh_get_flags(nh);
 | |
| 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
 | |
| 	flow_key->nsh.base.flags = flags;
 | |
| 	ttl = nsh_get_ttl(nh);
 | |
| 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
 | |
| 	flow_key->nsh.base.ttl = ttl;
 | |
| 	nsh_set_flags_and_ttl(nh, flags, ttl);
 | |
| 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
 | |
| 				  mask.base.path_hdr);
 | |
| 	flow_key->nsh.base.path_hdr = nh->path_hdr;
 | |
| 	switch (nh->mdtype) {
 | |
| 	case NSH_M_TYPE1:
 | |
| 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
 | |
| 			nh->md1.context[i] =
 | |
| 			    OVS_MASKED(nh->md1.context[i], key.context[i],
 | |
| 				       mask.context[i]);
 | |
| 		}
 | |
| 		memcpy(flow_key->nsh.context, nh->md1.context,
 | |
| 		       sizeof(nh->md1.context));
 | |
| 		break;
 | |
| 	case NSH_M_TYPE2:
 | |
| 		memset(flow_key->nsh.context, 0,
 | |
| 		       sizeof(flow_key->nsh.context));
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	skb_postpush_rcsum(skb, nh, length);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Must follow skb_ensure_writable() since that can move the skb data. */
 | |
| static void set_tp_port(struct sk_buff *skb, __be16 *port,
 | |
| 			__be16 new_port, __sum16 *check)
 | |
| {
 | |
| 	ovs_ct_clear(skb, NULL);
 | |
| 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
 | |
| 	*port = new_port;
 | |
| }
 | |
| 
 | |
| static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 | |
| 		   const struct ovs_key_udp *key,
 | |
| 		   const struct ovs_key_udp *mask)
 | |
| {
 | |
| 	struct udphdr *uh;
 | |
| 	__be16 src, dst;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 | |
| 				  sizeof(struct udphdr));
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	uh = udp_hdr(skb);
 | |
| 	/* Either of the masks is non-zero, so do not bother checking them. */
 | |
| 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 | |
| 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 | |
| 
 | |
| 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 | |
| 		if (likely(src != uh->source)) {
 | |
| 			set_tp_port(skb, &uh->source, src, &uh->check);
 | |
| 			flow_key->tp.src = src;
 | |
| 		}
 | |
| 		if (likely(dst != uh->dest)) {
 | |
| 			set_tp_port(skb, &uh->dest, dst, &uh->check);
 | |
| 			flow_key->tp.dst = dst;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(!uh->check))
 | |
| 			uh->check = CSUM_MANGLED_0;
 | |
| 	} else {
 | |
| 		uh->source = src;
 | |
| 		uh->dest = dst;
 | |
| 		flow_key->tp.src = src;
 | |
| 		flow_key->tp.dst = dst;
 | |
| 		ovs_ct_clear(skb, NULL);
 | |
| 	}
 | |
| 
 | |
| 	skb_clear_hash(skb);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 | |
| 		   const struct ovs_key_tcp *key,
 | |
| 		   const struct ovs_key_tcp *mask)
 | |
| {
 | |
| 	struct tcphdr *th;
 | |
| 	__be16 src, dst;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 | |
| 				  sizeof(struct tcphdr));
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	th = tcp_hdr(skb);
 | |
| 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 | |
| 	if (likely(src != th->source)) {
 | |
| 		set_tp_port(skb, &th->source, src, &th->check);
 | |
| 		flow_key->tp.src = src;
 | |
| 	}
 | |
| 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 | |
| 	if (likely(dst != th->dest)) {
 | |
| 		set_tp_port(skb, &th->dest, dst, &th->check);
 | |
| 		flow_key->tp.dst = dst;
 | |
| 	}
 | |
| 	skb_clear_hash(skb);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 | |
| 		    const struct ovs_key_sctp *key,
 | |
| 		    const struct ovs_key_sctp *mask)
 | |
| {
 | |
| 	unsigned int sctphoff = skb_transport_offset(skb);
 | |
| 	struct sctphdr *sh;
 | |
| 	__le32 old_correct_csum, new_csum, old_csum;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 | |
| 	if (unlikely(err))
 | |
| 		return err;
 | |
| 
 | |
| 	sh = sctp_hdr(skb);
 | |
| 	old_csum = sh->checksum;
 | |
| 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 | |
| 
 | |
| 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 | |
| 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 | |
| 
 | |
| 	new_csum = sctp_compute_cksum(skb, sctphoff);
 | |
| 
 | |
| 	/* Carry any checksum errors through. */
 | |
| 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 | |
| 
 | |
| 	skb_clear_hash(skb);
 | |
| 	ovs_ct_clear(skb, NULL);
 | |
| 
 | |
| 	flow_key->tp.src = sh->source;
 | |
| 	flow_key->tp.dst = sh->dest;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ovs_vport_output(struct net *net, struct sock *sk,
 | |
| 			    struct sk_buff *skb)
 | |
| {
 | |
| 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 | |
| 	struct vport *vport = data->vport;
 | |
| 
 | |
| 	if (skb_cow_head(skb, data->l2_len) < 0) {
 | |
| 		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	__skb_dst_copy(skb, data->dst);
 | |
| 	*OVS_CB(skb) = data->cb;
 | |
| 	skb->inner_protocol = data->inner_protocol;
 | |
| 	if (data->vlan_tci & VLAN_CFI_MASK)
 | |
| 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
 | |
| 	else
 | |
| 		__vlan_hwaccel_clear_tag(skb);
 | |
| 
 | |
| 	/* Reconstruct the MAC header.  */
 | |
| 	skb_push(skb, data->l2_len);
 | |
| 	memcpy(skb->data, &data->l2_data, data->l2_len);
 | |
| 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
 | |
| 	skb_reset_mac_header(skb);
 | |
| 
 | |
| 	if (eth_p_mpls(skb->protocol)) {
 | |
| 		skb->inner_network_header = skb->network_header;
 | |
| 		skb_set_network_header(skb, data->network_offset);
 | |
| 		skb_reset_mac_len(skb);
 | |
| 	}
 | |
| 
 | |
| 	ovs_vport_send(vport, skb, data->mac_proto);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| ovs_dst_get_mtu(const struct dst_entry *dst)
 | |
| {
 | |
| 	return dst->dev->mtu;
 | |
| }
 | |
| 
 | |
| static struct dst_ops ovs_dst_ops = {
 | |
| 	.family = AF_UNSPEC,
 | |
| 	.mtu = ovs_dst_get_mtu,
 | |
| };
 | |
| 
 | |
| /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 | |
|  * ovs_vport_output(), which is called once per fragmented packet.
 | |
|  */
 | |
| static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 | |
| 			 u16 orig_network_offset, u8 mac_proto)
 | |
| {
 | |
| 	unsigned int hlen = skb_network_offset(skb);
 | |
| 	struct ovs_frag_data *data;
 | |
| 
 | |
| 	data = this_cpu_ptr(&ovs_frag_data_storage);
 | |
| 	data->dst = skb->_skb_refdst;
 | |
| 	data->vport = vport;
 | |
| 	data->cb = *OVS_CB(skb);
 | |
| 	data->inner_protocol = skb->inner_protocol;
 | |
| 	data->network_offset = orig_network_offset;
 | |
| 	if (skb_vlan_tag_present(skb))
 | |
| 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
 | |
| 	else
 | |
| 		data->vlan_tci = 0;
 | |
| 	data->vlan_proto = skb->vlan_proto;
 | |
| 	data->mac_proto = mac_proto;
 | |
| 	data->l2_len = hlen;
 | |
| 	memcpy(&data->l2_data, skb->data, hlen);
 | |
| 
 | |
| 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 | |
| 	skb_pull(skb, hlen);
 | |
| }
 | |
| 
 | |
| static void ovs_fragment(struct net *net, struct vport *vport,
 | |
| 			 struct sk_buff *skb, u16 mru,
 | |
| 			 struct sw_flow_key *key)
 | |
| {
 | |
| 	enum ovs_drop_reason reason;
 | |
| 	u16 orig_network_offset = 0;
 | |
| 
 | |
| 	if (eth_p_mpls(skb->protocol)) {
 | |
| 		orig_network_offset = skb_network_offset(skb);
 | |
| 		skb->network_header = skb->inner_network_header;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_network_offset(skb) > MAX_L2_LEN) {
 | |
| 		OVS_NLERR(1, "L2 header too long to fragment");
 | |
| 		reason = OVS_DROP_FRAG_L2_TOO_LONG;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (key->eth.type == htons(ETH_P_IP)) {
 | |
| 		struct rtable ovs_rt = { 0 };
 | |
| 		unsigned long orig_dst;
 | |
| 
 | |
| 		prepare_frag(vport, skb, orig_network_offset,
 | |
| 			     ovs_key_mac_proto(key));
 | |
| 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
 | |
| 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 | |
| 		ovs_rt.dst.dev = vport->dev;
 | |
| 
 | |
| 		orig_dst = skb->_skb_refdst;
 | |
| 		skb_dst_set_noref(skb, &ovs_rt.dst);
 | |
| 		IPCB(skb)->frag_max_size = mru;
 | |
| 
 | |
| 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 | |
| 		refdst_drop(orig_dst);
 | |
| 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 | |
| 		unsigned long orig_dst;
 | |
| 		struct rt6_info ovs_rt;
 | |
| 
 | |
| 		prepare_frag(vport, skb, orig_network_offset,
 | |
| 			     ovs_key_mac_proto(key));
 | |
| 		memset(&ovs_rt, 0, sizeof(ovs_rt));
 | |
| 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
 | |
| 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 | |
| 		ovs_rt.dst.dev = vport->dev;
 | |
| 
 | |
| 		orig_dst = skb->_skb_refdst;
 | |
| 		skb_dst_set_noref(skb, &ovs_rt.dst);
 | |
| 		IP6CB(skb)->frag_max_size = mru;
 | |
| 
 | |
| 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
 | |
| 		refdst_drop(orig_dst);
 | |
| 	} else {
 | |
| 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 | |
| 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
 | |
| 			  vport->dev->mtu);
 | |
| 		reason = OVS_DROP_FRAG_INVALID_PROTO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| err:
 | |
| 	ovs_kfree_skb_reason(skb, reason);
 | |
| }
 | |
| 
 | |
| static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 | |
| 		      struct sw_flow_key *key)
 | |
| {
 | |
| 	struct vport *vport = ovs_vport_rcu(dp, out_port);
 | |
| 
 | |
| 	if (likely(vport &&
 | |
| 		   netif_running(vport->dev) &&
 | |
| 		   netif_carrier_ok(vport->dev))) {
 | |
| 		u16 mru = OVS_CB(skb)->mru;
 | |
| 		u32 cutlen = OVS_CB(skb)->cutlen;
 | |
| 
 | |
| 		if (unlikely(cutlen > 0)) {
 | |
| 			if (skb->len - cutlen > ovs_mac_header_len(key))
 | |
| 				pskb_trim(skb, skb->len - cutlen);
 | |
| 			else
 | |
| 				pskb_trim(skb, ovs_mac_header_len(key));
 | |
| 		}
 | |
| 
 | |
| 		if (likely(!mru ||
 | |
| 		           (skb->len <= mru + vport->dev->hard_header_len))) {
 | |
| 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 | |
| 		} else if (mru <= vport->dev->mtu) {
 | |
| 			struct net *net = read_pnet(&dp->net);
 | |
| 
 | |
| 			ovs_fragment(net, vport, skb, mru, key);
 | |
| 		} else {
 | |
| 			kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
 | |
| 		}
 | |
| 	} else {
 | |
| 		kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 | |
| 			    struct sw_flow_key *key, const struct nlattr *attr,
 | |
| 			    const struct nlattr *actions, int actions_len,
 | |
| 			    uint32_t cutlen)
 | |
| {
 | |
| 	struct dp_upcall_info upcall;
 | |
| 	const struct nlattr *a;
 | |
| 	int rem;
 | |
| 
 | |
| 	memset(&upcall, 0, sizeof(upcall));
 | |
| 	upcall.cmd = OVS_PACKET_CMD_ACTION;
 | |
| 	upcall.mru = OVS_CB(skb)->mru;
 | |
| 
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		switch (nla_type(a)) {
 | |
| 		case OVS_USERSPACE_ATTR_USERDATA:
 | |
| 			upcall.userdata = a;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_USERSPACE_ATTR_PID:
 | |
| 			if (dp->user_features &
 | |
| 			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
 | |
| 				upcall.portid =
 | |
| 				  ovs_dp_get_upcall_portid(dp,
 | |
| 							   smp_processor_id());
 | |
| 			else
 | |
| 				upcall.portid = nla_get_u32(a);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 | |
| 			/* Get out tunnel info. */
 | |
| 			struct vport *vport;
 | |
| 
 | |
| 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
 | |
| 			if (vport) {
 | |
| 				int err;
 | |
| 
 | |
| 				err = dev_fill_metadata_dst(vport->dev, skb);
 | |
| 				if (!err)
 | |
| 					upcall.egress_tun_info = skb_tunnel_info(skb);
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_USERSPACE_ATTR_ACTIONS: {
 | |
| 			/* Include actions. */
 | |
| 			upcall.actions = actions;
 | |
| 			upcall.actions_len = actions_len;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		} /* End of switch. */
 | |
| 	}
 | |
| 
 | |
| 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
 | |
| }
 | |
| 
 | |
| static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
 | |
| 				     struct sw_flow_key *key,
 | |
| 				     const struct nlattr *attr)
 | |
| {
 | |
| 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
 | |
| 	struct nlattr *actions = nla_data(attr);
 | |
| 
 | |
| 	if (nla_len(actions))
 | |
| 		return clone_execute(dp, skb, key, 0, nla_data(actions),
 | |
| 				     nla_len(actions), true, false);
 | |
| 
 | |
| 	ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* When 'last' is true, sample() should always consume the 'skb'.
 | |
|  * Otherwise, sample() should keep 'skb' intact regardless what
 | |
|  * actions are executed within sample().
 | |
|  */
 | |
| static int sample(struct datapath *dp, struct sk_buff *skb,
 | |
| 		  struct sw_flow_key *key, const struct nlattr *attr,
 | |
| 		  bool last)
 | |
| {
 | |
| 	struct nlattr *actions;
 | |
| 	struct nlattr *sample_arg;
 | |
| 	int rem = nla_len(attr);
 | |
| 	const struct sample_arg *arg;
 | |
| 	u32 init_probability;
 | |
| 	bool clone_flow_key;
 | |
| 	int err;
 | |
| 
 | |
| 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
 | |
| 	sample_arg = nla_data(attr);
 | |
| 	arg = nla_data(sample_arg);
 | |
| 	actions = nla_next(sample_arg, &rem);
 | |
| 	init_probability = OVS_CB(skb)->probability;
 | |
| 
 | |
| 	if ((arg->probability != U32_MAX) &&
 | |
| 	    (!arg->probability || get_random_u32() > arg->probability)) {
 | |
| 		if (last)
 | |
| 			ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	OVS_CB(skb)->probability = arg->probability;
 | |
| 
 | |
| 	clone_flow_key = !arg->exec;
 | |
| 	err = clone_execute(dp, skb, key, 0, actions, rem, last,
 | |
| 			    clone_flow_key);
 | |
| 
 | |
| 	if (!last)
 | |
| 		OVS_CB(skb)->probability = init_probability;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* When 'last' is true, clone() should always consume the 'skb'.
 | |
|  * Otherwise, clone() should keep 'skb' intact regardless what
 | |
|  * actions are executed within clone().
 | |
|  */
 | |
| static int clone(struct datapath *dp, struct sk_buff *skb,
 | |
| 		 struct sw_flow_key *key, const struct nlattr *attr,
 | |
| 		 bool last)
 | |
| {
 | |
| 	struct nlattr *actions;
 | |
| 	struct nlattr *clone_arg;
 | |
| 	int rem = nla_len(attr);
 | |
| 	bool dont_clone_flow_key;
 | |
| 
 | |
| 	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
 | |
| 	clone_arg = nla_data(attr);
 | |
| 	dont_clone_flow_key = nla_get_u32(clone_arg);
 | |
| 	actions = nla_next(clone_arg, &rem);
 | |
| 
 | |
| 	return clone_execute(dp, skb, key, 0, actions, rem, last,
 | |
| 			     !dont_clone_flow_key);
 | |
| }
 | |
| 
 | |
| static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
 | |
| 			 const struct nlattr *attr)
 | |
| {
 | |
| 	struct ovs_action_hash *hash_act = nla_data(attr);
 | |
| 	u32 hash = 0;
 | |
| 
 | |
| 	if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
 | |
| 		/* OVS_HASH_ALG_L4 hasing type. */
 | |
| 		hash = skb_get_hash(skb);
 | |
| 	} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
 | |
| 		/* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
 | |
| 		 * extend past an encapsulated header.
 | |
| 		 */
 | |
| 		hash = __skb_get_hash_symmetric(skb);
 | |
| 	}
 | |
| 
 | |
| 	hash = jhash_1word(hash, hash_act->hash_basis);
 | |
| 	if (!hash)
 | |
| 		hash = 0x1;
 | |
| 
 | |
| 	key->ovs_flow_hash = hash;
 | |
| }
 | |
| 
 | |
| static int execute_set_action(struct sk_buff *skb,
 | |
| 			      struct sw_flow_key *flow_key,
 | |
| 			      const struct nlattr *a)
 | |
| {
 | |
| 	/* Only tunnel set execution is supported without a mask. */
 | |
| 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
 | |
| 		struct ovs_tunnel_info *tun = nla_data(a);
 | |
| 
 | |
| 		skb_dst_drop(skb);
 | |
| 		dst_hold((struct dst_entry *)tun->tun_dst);
 | |
| 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /* Mask is at the midpoint of the data. */
 | |
| #define get_mask(a, type) ((const type)nla_data(a) + 1)
 | |
| 
 | |
| static int execute_masked_set_action(struct sk_buff *skb,
 | |
| 				     struct sw_flow_key *flow_key,
 | |
| 				     const struct nlattr *a)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	switch (nla_type(a)) {
 | |
| 	case OVS_KEY_ATTR_PRIORITY:
 | |
| 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
 | |
| 			       *get_mask(a, u32 *));
 | |
| 		flow_key->phy.priority = skb->priority;
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_SKB_MARK:
 | |
| 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
 | |
| 		flow_key->phy.skb_mark = skb->mark;
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_TUNNEL_INFO:
 | |
| 		/* Masked data not supported for tunnel. */
 | |
| 		err = -EINVAL;
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_ETHERNET:
 | |
| 		err = set_eth_addr(skb, flow_key, nla_data(a),
 | |
| 				   get_mask(a, struct ovs_key_ethernet *));
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_NSH:
 | |
| 		err = set_nsh(skb, flow_key, a);
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_IPV4:
 | |
| 		err = set_ipv4(skb, flow_key, nla_data(a),
 | |
| 			       get_mask(a, struct ovs_key_ipv4 *));
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_IPV6:
 | |
| 		err = set_ipv6(skb, flow_key, nla_data(a),
 | |
| 			       get_mask(a, struct ovs_key_ipv6 *));
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_TCP:
 | |
| 		err = set_tcp(skb, flow_key, nla_data(a),
 | |
| 			      get_mask(a, struct ovs_key_tcp *));
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_UDP:
 | |
| 		err = set_udp(skb, flow_key, nla_data(a),
 | |
| 			      get_mask(a, struct ovs_key_udp *));
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_SCTP:
 | |
| 		err = set_sctp(skb, flow_key, nla_data(a),
 | |
| 			       get_mask(a, struct ovs_key_sctp *));
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_MPLS:
 | |
| 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
 | |
| 								    __be32 *));
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_CT_STATE:
 | |
| 	case OVS_KEY_ATTR_CT_ZONE:
 | |
| 	case OVS_KEY_ATTR_CT_MARK:
 | |
| 	case OVS_KEY_ATTR_CT_LABELS:
 | |
| 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
 | |
| 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
 | |
| 		err = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
 | |
| 			  struct sw_flow_key *key,
 | |
| 			  const struct nlattr *a, bool last)
 | |
| {
 | |
| 	u32 recirc_id;
 | |
| 
 | |
| 	if (!is_flow_key_valid(key)) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = ovs_flow_key_update(skb, key);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	BUG_ON(!is_flow_key_valid(key));
 | |
| 
 | |
| 	recirc_id = nla_get_u32(a);
 | |
| 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
 | |
| }
 | |
| 
 | |
| static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
 | |
| 				 struct sw_flow_key *key,
 | |
| 				 const struct nlattr *attr, bool last)
 | |
| {
 | |
| 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
 | |
| 	const struct nlattr *actions, *cpl_arg;
 | |
| 	int len, max_len, rem = nla_len(attr);
 | |
| 	const struct check_pkt_len_arg *arg;
 | |
| 	bool clone_flow_key;
 | |
| 
 | |
| 	/* The first netlink attribute in 'attr' is always
 | |
| 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
 | |
| 	 */
 | |
| 	cpl_arg = nla_data(attr);
 | |
| 	arg = nla_data(cpl_arg);
 | |
| 
 | |
| 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
 | |
| 	max_len = arg->pkt_len;
 | |
| 
 | |
| 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
 | |
| 	    len <= max_len) {
 | |
| 		/* Second netlink attribute in 'attr' is always
 | |
| 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
 | |
| 		 */
 | |
| 		actions = nla_next(cpl_arg, &rem);
 | |
| 		clone_flow_key = !arg->exec_for_lesser_equal;
 | |
| 	} else {
 | |
| 		/* Third netlink attribute in 'attr' is always
 | |
| 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
 | |
| 		 */
 | |
| 		actions = nla_next(cpl_arg, &rem);
 | |
| 		actions = nla_next(actions, &rem);
 | |
| 		clone_flow_key = !arg->exec_for_greater;
 | |
| 	}
 | |
| 
 | |
| 	return clone_execute(dp, skb, key, 0, nla_data(actions),
 | |
| 			     nla_len(actions), last, clone_flow_key);
 | |
| }
 | |
| 
 | |
| static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (skb->protocol == htons(ETH_P_IPV6)) {
 | |
| 		struct ipv6hdr *nh;
 | |
| 
 | |
| 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
 | |
| 					  sizeof(*nh));
 | |
| 		if (unlikely(err))
 | |
| 			return err;
 | |
| 
 | |
| 		nh = ipv6_hdr(skb);
 | |
| 
 | |
| 		if (nh->hop_limit <= 1)
 | |
| 			return -EHOSTUNREACH;
 | |
| 
 | |
| 		key->ip.ttl = --nh->hop_limit;
 | |
| 	} else if (skb->protocol == htons(ETH_P_IP)) {
 | |
| 		struct iphdr *nh;
 | |
| 		u8 old_ttl;
 | |
| 
 | |
| 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
 | |
| 					  sizeof(*nh));
 | |
| 		if (unlikely(err))
 | |
| 			return err;
 | |
| 
 | |
| 		nh = ip_hdr(skb);
 | |
| 		if (nh->ttl <= 1)
 | |
| 			return -EHOSTUNREACH;
 | |
| 
 | |
| 		old_ttl = nh->ttl--;
 | |
| 		csum_replace2(&nh->check, htons(old_ttl << 8),
 | |
| 			      htons(nh->ttl << 8));
 | |
| 		key->ip.ttl = nh->ttl;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_PSAMPLE)
 | |
| static void execute_psample(struct datapath *dp, struct sk_buff *skb,
 | |
| 			    const struct nlattr *attr)
 | |
| {
 | |
| 	struct psample_group psample_group = {};
 | |
| 	struct psample_metadata md = {};
 | |
| 	const struct nlattr *a;
 | |
| 	u32 rate;
 | |
| 	int rem;
 | |
| 
 | |
| 	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
 | |
| 		switch (nla_type(a)) {
 | |
| 		case OVS_PSAMPLE_ATTR_GROUP:
 | |
| 			psample_group.group_num = nla_get_u32(a);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_PSAMPLE_ATTR_COOKIE:
 | |
| 			md.user_cookie = nla_data(a);
 | |
| 			md.user_cookie_len = nla_len(a);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	psample_group.net = ovs_dp_get_net(dp);
 | |
| 	md.in_ifindex = OVS_CB(skb)->input_vport->dev->ifindex;
 | |
| 	md.trunc_size = skb->len - OVS_CB(skb)->cutlen;
 | |
| 	md.rate_as_probability = 1;
 | |
| 
 | |
| 	rate = OVS_CB(skb)->probability ? OVS_CB(skb)->probability : U32_MAX;
 | |
| 
 | |
| 	psample_sample_packet(&psample_group, skb, rate, &md);
 | |
| }
 | |
| #else
 | |
| static void execute_psample(struct datapath *dp, struct sk_buff *skb,
 | |
| 			    const struct nlattr *attr)
 | |
| {}
 | |
| #endif
 | |
| 
 | |
| /* Execute a list of actions against 'skb'. */
 | |
| static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
 | |
| 			      struct sw_flow_key *key,
 | |
| 			      const struct nlattr *attr, int len)
 | |
| {
 | |
| 	const struct nlattr *a;
 | |
| 	int rem;
 | |
| 
 | |
| 	for (a = attr, rem = len; rem > 0;
 | |
| 	     a = nla_next(a, &rem)) {
 | |
| 		int err = 0;
 | |
| 
 | |
| 		if (trace_ovs_do_execute_action_enabled())
 | |
| 			trace_ovs_do_execute_action(dp, skb, key, a, rem);
 | |
| 
 | |
| 		/* Actions that rightfully have to consume the skb should do it
 | |
| 		 * and return directly.
 | |
| 		 */
 | |
| 		switch (nla_type(a)) {
 | |
| 		case OVS_ACTION_ATTR_OUTPUT: {
 | |
| 			int port = nla_get_u32(a);
 | |
| 			struct sk_buff *clone;
 | |
| 
 | |
| 			/* Every output action needs a separate clone
 | |
| 			 * of 'skb', In case the output action is the
 | |
| 			 * last action, cloning can be avoided.
 | |
| 			 */
 | |
| 			if (nla_is_last(a, rem)) {
 | |
| 				do_output(dp, skb, port, key);
 | |
| 				/* 'skb' has been used for output.
 | |
| 				 */
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			clone = skb_clone(skb, GFP_ATOMIC);
 | |
| 			if (clone)
 | |
| 				do_output(dp, clone, port, key);
 | |
| 			OVS_CB(skb)->cutlen = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_TRUNC: {
 | |
| 			struct ovs_action_trunc *trunc = nla_data(a);
 | |
| 
 | |
| 			if (skb->len > trunc->max_len)
 | |
| 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_USERSPACE:
 | |
| 			output_userspace(dp, skb, key, a, attr,
 | |
| 						     len, OVS_CB(skb)->cutlen);
 | |
| 			OVS_CB(skb)->cutlen = 0;
 | |
| 			if (nla_is_last(a, rem)) {
 | |
| 				consume_skb(skb);
 | |
| 				return 0;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_HASH:
 | |
| 			execute_hash(skb, key, a);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_PUSH_MPLS: {
 | |
| 			struct ovs_action_push_mpls *mpls = nla_data(a);
 | |
| 
 | |
| 			err = push_mpls(skb, key, mpls->mpls_lse,
 | |
| 					mpls->mpls_ethertype, skb->mac_len);
 | |
| 			break;
 | |
| 		}
 | |
| 		case OVS_ACTION_ATTR_ADD_MPLS: {
 | |
| 			struct ovs_action_add_mpls *mpls = nla_data(a);
 | |
| 			__u16 mac_len = 0;
 | |
| 
 | |
| 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
 | |
| 				mac_len = skb->mac_len;
 | |
| 
 | |
| 			err = push_mpls(skb, key, mpls->mpls_lse,
 | |
| 					mpls->mpls_ethertype, mac_len);
 | |
| 			break;
 | |
| 		}
 | |
| 		case OVS_ACTION_ATTR_POP_MPLS:
 | |
| 			err = pop_mpls(skb, key, nla_get_be16(a));
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_PUSH_VLAN:
 | |
| 			err = push_vlan(skb, key, nla_data(a));
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_POP_VLAN:
 | |
| 			err = pop_vlan(skb, key);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_RECIRC: {
 | |
| 			bool last = nla_is_last(a, rem);
 | |
| 
 | |
| 			err = execute_recirc(dp, skb, key, a, last);
 | |
| 			if (last) {
 | |
| 				/* If this is the last action, the skb has
 | |
| 				 * been consumed or freed.
 | |
| 				 * Return immediately.
 | |
| 				 */
 | |
| 				return err;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SET:
 | |
| 			err = execute_set_action(skb, key, nla_data(a));
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SET_MASKED:
 | |
| 		case OVS_ACTION_ATTR_SET_TO_MASKED:
 | |
| 			err = execute_masked_set_action(skb, key, nla_data(a));
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SAMPLE: {
 | |
| 			bool last = nla_is_last(a, rem);
 | |
| 
 | |
| 			err = sample(dp, skb, key, a, last);
 | |
| 			if (last)
 | |
| 				return err;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_CT:
 | |
| 			if (!is_flow_key_valid(key)) {
 | |
| 				err = ovs_flow_key_update(skb, key);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			}
 | |
| 
 | |
| 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
 | |
| 					     nla_data(a));
 | |
| 
 | |
| 			/* Hide stolen IP fragments from user space. */
 | |
| 			if (err)
 | |
| 				return err == -EINPROGRESS ? 0 : err;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_CT_CLEAR:
 | |
| 			err = ovs_ct_clear(skb, key);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_PUSH_ETH:
 | |
| 			err = push_eth(skb, key, nla_data(a));
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_POP_ETH:
 | |
| 			err = pop_eth(skb, key);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_PUSH_NSH:
 | |
| 			err = push_nsh(skb, key, nla_data(a));
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_POP_NSH:
 | |
| 			err = pop_nsh(skb, key);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_METER:
 | |
| 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
 | |
| 				ovs_kfree_skb_reason(skb, OVS_DROP_METER);
 | |
| 				return 0;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_CLONE: {
 | |
| 			bool last = nla_is_last(a, rem);
 | |
| 
 | |
| 			err = clone(dp, skb, key, a, last);
 | |
| 			if (last)
 | |
| 				return err;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
 | |
| 			bool last = nla_is_last(a, rem);
 | |
| 
 | |
| 			err = execute_check_pkt_len(dp, skb, key, a, last);
 | |
| 			if (last)
 | |
| 				return err;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_DEC_TTL:
 | |
| 			err = execute_dec_ttl(skb, key);
 | |
| 			if (err == -EHOSTUNREACH)
 | |
| 				return dec_ttl_exception_handler(dp, skb,
 | |
| 								 key, a);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_DROP: {
 | |
| 			enum ovs_drop_reason reason = nla_get_u32(a)
 | |
| 				? OVS_DROP_EXPLICIT_WITH_ERROR
 | |
| 				: OVS_DROP_EXPLICIT;
 | |
| 
 | |
| 			ovs_kfree_skb_reason(skb, reason);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_PSAMPLE:
 | |
| 			execute_psample(dp, skb, a);
 | |
| 			OVS_CB(skb)->cutlen = 0;
 | |
| 			if (nla_is_last(a, rem)) {
 | |
| 				consume_skb(skb);
 | |
| 				return 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(err)) {
 | |
| 			ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Execute the actions on the clone of the packet. The effect of the
 | |
|  * execution does not affect the original 'skb' nor the original 'key'.
 | |
|  *
 | |
|  * The execution may be deferred in case the actions can not be executed
 | |
|  * immediately.
 | |
|  */
 | |
| static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 | |
| 			 struct sw_flow_key *key, u32 recirc_id,
 | |
| 			 const struct nlattr *actions, int len,
 | |
| 			 bool last, bool clone_flow_key)
 | |
| {
 | |
| 	struct deferred_action *da;
 | |
| 	struct sw_flow_key *clone;
 | |
| 
 | |
| 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
 | |
| 	if (!skb) {
 | |
| 		/* Out of memory, skip this action.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* When clone_flow_key is false, the 'key' will not be change
 | |
| 	 * by the actions, then the 'key' can be used directly.
 | |
| 	 * Otherwise, try to clone key from the next recursion level of
 | |
| 	 * 'flow_keys'. If clone is successful, execute the actions
 | |
| 	 * without deferring.
 | |
| 	 */
 | |
| 	clone = clone_flow_key ? clone_key(key) : key;
 | |
| 	if (clone) {
 | |
| 		int err = 0;
 | |
| 
 | |
| 		if (actions) { /* Sample action */
 | |
| 			if (clone_flow_key)
 | |
| 				__this_cpu_inc(exec_actions_level);
 | |
| 
 | |
| 			err = do_execute_actions(dp, skb, clone,
 | |
| 						 actions, len);
 | |
| 
 | |
| 			if (clone_flow_key)
 | |
| 				__this_cpu_dec(exec_actions_level);
 | |
| 		} else { /* Recirc action */
 | |
| 			clone->recirc_id = recirc_id;
 | |
| 			ovs_dp_process_packet(skb, clone);
 | |
| 		}
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Out of 'flow_keys' space. Defer actions */
 | |
| 	da = add_deferred_actions(skb, key, actions, len);
 | |
| 	if (da) {
 | |
| 		if (!actions) { /* Recirc action */
 | |
| 			key = &da->pkt_key;
 | |
| 			key->recirc_id = recirc_id;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Out of per CPU action FIFO space. Drop the 'skb' and
 | |
| 		 * log an error.
 | |
| 		 */
 | |
| 		ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
 | |
| 
 | |
| 		if (net_ratelimit()) {
 | |
| 			if (actions) { /* Sample action */
 | |
| 				pr_warn("%s: deferred action limit reached, drop sample action\n",
 | |
| 					ovs_dp_name(dp));
 | |
| 			} else {  /* Recirc action */
 | |
| 				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
 | |
| 					ovs_dp_name(dp), recirc_id);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void process_deferred_actions(struct datapath *dp)
 | |
| {
 | |
| 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
 | |
| 
 | |
| 	/* Do not touch the FIFO in case there is no deferred actions. */
 | |
| 	if (action_fifo_is_empty(fifo))
 | |
| 		return;
 | |
| 
 | |
| 	/* Finishing executing all deferred actions. */
 | |
| 	do {
 | |
| 		struct deferred_action *da = action_fifo_get(fifo);
 | |
| 		struct sk_buff *skb = da->skb;
 | |
| 		struct sw_flow_key *key = &da->pkt_key;
 | |
| 		const struct nlattr *actions = da->actions;
 | |
| 		int actions_len = da->actions_len;
 | |
| 
 | |
| 		if (actions)
 | |
| 			do_execute_actions(dp, skb, key, actions, actions_len);
 | |
| 		else
 | |
| 			ovs_dp_process_packet(skb, key);
 | |
| 	} while (!action_fifo_is_empty(fifo));
 | |
| 
 | |
| 	/* Reset FIFO for the next packet.  */
 | |
| 	action_fifo_init(fifo);
 | |
| }
 | |
| 
 | |
| /* Execute a list of actions against 'skb'. */
 | |
| int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
 | |
| 			const struct sw_flow_actions *acts,
 | |
| 			struct sw_flow_key *key)
 | |
| {
 | |
| 	int err, level;
 | |
| 
 | |
| 	level = __this_cpu_inc_return(exec_actions_level);
 | |
| 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
 | |
| 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
 | |
| 				     ovs_dp_name(dp));
 | |
| 		ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
 | |
| 		err = -ENETDOWN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	OVS_CB(skb)->acts_origlen = acts->orig_len;
 | |
| 	err = do_execute_actions(dp, skb, key,
 | |
| 				 acts->actions, acts->actions_len);
 | |
| 
 | |
| 	if (level == 1)
 | |
| 		process_deferred_actions(dp);
 | |
| 
 | |
| out:
 | |
| 	__this_cpu_dec(exec_actions_level);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int action_fifos_init(void)
 | |
| {
 | |
| 	action_fifos = alloc_percpu(struct action_fifo);
 | |
| 	if (!action_fifos)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	flow_keys = alloc_percpu(struct action_flow_keys);
 | |
| 	if (!flow_keys) {
 | |
| 		free_percpu(action_fifos);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void action_fifos_exit(void)
 | |
| {
 | |
| 	free_percpu(action_fifos);
 | |
| 	free_percpu(flow_keys);
 | |
| }
 |