forked from mirrors/linux
		
	 3ed51857a5
			
		
	
	
		3ed51857a5
		
	
	
	
	
		
			
			Syzbot reports a null-ptr-deref in btrfs_search_slot().
The reproducer is using rescue=ibadroots, and the extent tree root is
corrupted thus the extent tree is NULL.
When scrub tries to search the extent tree to gather the needed extent
info, btrfs_search_slot() doesn't check if the target root is NULL or
not, resulting the null-ptr-deref.
Add sanity check for btrfs root before using it in btrfs_search_slot().
Reported-by: syzbot+3030e17bd57a73d39bd7@syzkaller.appspotmail.com
Fixes: 42437a6386 ("btrfs: introduce mount option rescue=ignorebadroots")
Link: https://syzkaller.appspot.com/bug?extid=3030e17bd57a73d39bd7
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Tested-by: syzbot+3030e17bd57a73d39bd7@syzkaller.appspotmail.com
Signed-off-by: Lizhi Xu <lizhi.xu@windriver.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
		
	
			
		
			
				
	
	
		
			5155 lines
		
	
	
	
		
			135 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5155 lines
		
	
	
	
		
			135 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/error-injection.h>
 | |
| #include "messages.h"
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "print-tree.h"
 | |
| #include "locking.h"
 | |
| #include "volumes.h"
 | |
| #include "qgroup.h"
 | |
| #include "tree-mod-log.h"
 | |
| #include "tree-checker.h"
 | |
| #include "fs.h"
 | |
| #include "accessors.h"
 | |
| #include "extent-tree.h"
 | |
| #include "relocation.h"
 | |
| #include "file-item.h"
 | |
| 
 | |
| static struct kmem_cache *btrfs_path_cachep;
 | |
| 
 | |
| static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
 | |
| 		      *root, struct btrfs_path *path, int level);
 | |
| static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
 | |
| 		      int data_size, int extend);
 | |
| static int push_node_left(struct btrfs_trans_handle *trans,
 | |
| 			  struct extent_buffer *dst,
 | |
| 			  struct extent_buffer *src, int empty);
 | |
| static int balance_node_right(struct btrfs_trans_handle *trans,
 | |
| 			      struct extent_buffer *dst_buf,
 | |
| 			      struct extent_buffer *src_buf);
 | |
| 
 | |
| static const struct btrfs_csums {
 | |
| 	u16		size;
 | |
| 	const char	name[10];
 | |
| 	const char	driver[12];
 | |
| } btrfs_csums[] = {
 | |
| 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
 | |
| 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
 | |
| 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
 | |
| 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
 | |
| 				     .driver = "blake2b-256" },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The leaf data grows from end-to-front in the node.  this returns the address
 | |
|  * of the start of the last item, which is the stop of the leaf data stack.
 | |
|  */
 | |
| static unsigned int leaf_data_end(const struct extent_buffer *leaf)
 | |
| {
 | |
| 	u32 nr = btrfs_header_nritems(leaf);
 | |
| 
 | |
| 	if (nr == 0)
 | |
| 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
 | |
| 	return btrfs_item_offset(leaf, nr - 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move data in a @leaf (using memmove, safe for overlapping ranges).
 | |
|  *
 | |
|  * @leaf:	leaf that we're doing a memmove on
 | |
|  * @dst_offset:	item data offset we're moving to
 | |
|  * @src_offset:	item data offset were' moving from
 | |
|  * @len:	length of the data we're moving
 | |
|  *
 | |
|  * Wrapper around memmove_extent_buffer() that takes into account the header on
 | |
|  * the leaf.  The btrfs_item offset's start directly after the header, so we
 | |
|  * have to adjust any offsets to account for the header in the leaf.  This
 | |
|  * handles that math to simplify the callers.
 | |
|  */
 | |
| static inline void memmove_leaf_data(const struct extent_buffer *leaf,
 | |
| 				     unsigned long dst_offset,
 | |
| 				     unsigned long src_offset,
 | |
| 				     unsigned long len)
 | |
| {
 | |
| 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
 | |
| 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy item data from @src into @dst at the given @offset.
 | |
|  *
 | |
|  * @dst:	destination leaf that we're copying into
 | |
|  * @src:	source leaf that we're copying from
 | |
|  * @dst_offset:	item data offset we're copying to
 | |
|  * @src_offset:	item data offset were' copying from
 | |
|  * @len:	length of the data we're copying
 | |
|  *
 | |
|  * Wrapper around copy_extent_buffer() that takes into account the header on
 | |
|  * the leaf.  The btrfs_item offset's start directly after the header, so we
 | |
|  * have to adjust any offsets to account for the header in the leaf.  This
 | |
|  * handles that math to simplify the callers.
 | |
|  */
 | |
| static inline void copy_leaf_data(const struct extent_buffer *dst,
 | |
| 				  const struct extent_buffer *src,
 | |
| 				  unsigned long dst_offset,
 | |
| 				  unsigned long src_offset, unsigned long len)
 | |
| {
 | |
| 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 | |
| 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move items in a @leaf (using memmove).
 | |
|  *
 | |
|  * @dst:	destination leaf for the items
 | |
|  * @dst_item:	the item nr we're copying into
 | |
|  * @src_item:	the item nr we're copying from
 | |
|  * @nr_items:	the number of items to copy
 | |
|  *
 | |
|  * Wrapper around memmove_extent_buffer() that does the math to get the
 | |
|  * appropriate offsets into the leaf from the item numbers.
 | |
|  */
 | |
| static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 | |
| 				      int dst_item, int src_item, int nr_items)
 | |
| {
 | |
| 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 | |
| 			      btrfs_item_nr_offset(leaf, src_item),
 | |
| 			      nr_items * sizeof(struct btrfs_item));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy items from @src into @dst at the given @offset.
 | |
|  *
 | |
|  * @dst:	destination leaf for the items
 | |
|  * @src:	source leaf for the items
 | |
|  * @dst_item:	the item nr we're copying into
 | |
|  * @src_item:	the item nr we're copying from
 | |
|  * @nr_items:	the number of items to copy
 | |
|  *
 | |
|  * Wrapper around copy_extent_buffer() that does the math to get the
 | |
|  * appropriate offsets into the leaf from the item numbers.
 | |
|  */
 | |
| static inline void copy_leaf_items(const struct extent_buffer *dst,
 | |
| 				   const struct extent_buffer *src,
 | |
| 				   int dst_item, int src_item, int nr_items)
 | |
| {
 | |
| 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 | |
| 			      btrfs_item_nr_offset(src, src_item),
 | |
| 			      nr_items * sizeof(struct btrfs_item));
 | |
| }
 | |
| 
 | |
| /* This exists for btrfs-progs usages. */
 | |
| u16 btrfs_csum_type_size(u16 type)
 | |
| {
 | |
| 	return btrfs_csums[type].size;
 | |
| }
 | |
| 
 | |
| int btrfs_super_csum_size(const struct btrfs_super_block *s)
 | |
| {
 | |
| 	u16 t = btrfs_super_csum_type(s);
 | |
| 	/*
 | |
| 	 * csum type is validated at mount time
 | |
| 	 */
 | |
| 	return btrfs_csum_type_size(t);
 | |
| }
 | |
| 
 | |
| const char *btrfs_super_csum_name(u16 csum_type)
 | |
| {
 | |
| 	/* csum type is validated at mount time */
 | |
| 	return btrfs_csums[csum_type].name;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return driver name if defined, otherwise the name that's also a valid driver
 | |
|  * name
 | |
|  */
 | |
| const char *btrfs_super_csum_driver(u16 csum_type)
 | |
| {
 | |
| 	/* csum type is validated at mount time */
 | |
| 	return btrfs_csums[csum_type].driver[0] ?
 | |
| 		btrfs_csums[csum_type].driver :
 | |
| 		btrfs_csums[csum_type].name;
 | |
| }
 | |
| 
 | |
| size_t __attribute_const__ btrfs_get_num_csums(void)
 | |
| {
 | |
| 	return ARRAY_SIZE(btrfs_csums);
 | |
| }
 | |
| 
 | |
| struct btrfs_path *btrfs_alloc_path(void)
 | |
| {
 | |
| 	might_sleep();
 | |
| 
 | |
| 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 | |
| }
 | |
| 
 | |
| /* this also releases the path */
 | |
| void btrfs_free_path(struct btrfs_path *p)
 | |
| {
 | |
| 	if (!p)
 | |
| 		return;
 | |
| 	btrfs_release_path(p);
 | |
| 	kmem_cache_free(btrfs_path_cachep, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * path release drops references on the extent buffers in the path
 | |
|  * and it drops any locks held by this path
 | |
|  *
 | |
|  * It is safe to call this on paths that no locks or extent buffers held.
 | |
|  */
 | |
| noinline void btrfs_release_path(struct btrfs_path *p)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 | |
| 		p->slots[i] = 0;
 | |
| 		if (!p->nodes[i])
 | |
| 			continue;
 | |
| 		if (p->locks[i]) {
 | |
| 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 | |
| 			p->locks[i] = 0;
 | |
| 		}
 | |
| 		free_extent_buffer(p->nodes[i]);
 | |
| 		p->nodes[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want the transaction abort to print stack trace only for errors where the
 | |
|  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 | |
|  * caused by external factors.
 | |
|  */
 | |
| bool __cold abort_should_print_stack(int error)
 | |
| {
 | |
| 	switch (error) {
 | |
| 	case -EIO:
 | |
| 	case -EROFS:
 | |
| 	case -ENOMEM:
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * safely gets a reference on the root node of a tree.  A lock
 | |
|  * is not taken, so a concurrent writer may put a different node
 | |
|  * at the root of the tree.  See btrfs_lock_root_node for the
 | |
|  * looping required.
 | |
|  *
 | |
|  * The extent buffer returned by this has a reference taken, so
 | |
|  * it won't disappear.  It may stop being the root of the tree
 | |
|  * at any time because there are no locks held.
 | |
|  */
 | |
| struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	while (1) {
 | |
| 		rcu_read_lock();
 | |
| 		eb = rcu_dereference(root->node);
 | |
| 
 | |
| 		/*
 | |
| 		 * RCU really hurts here, we could free up the root node because
 | |
| 		 * it was COWed but we may not get the new root node yet so do
 | |
| 		 * the inc_not_zero dance and if it doesn't work then
 | |
| 		 * synchronize_rcu and try again.
 | |
| 		 */
 | |
| 		if (atomic_inc_not_zero(&eb->refs)) {
 | |
| 			rcu_read_unlock();
 | |
| 			break;
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 		synchronize_rcu();
 | |
| 	}
 | |
| 	return eb;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 | |
|  * just get put onto a simple dirty list.  Transaction walks this list to make
 | |
|  * sure they get properly updated on disk.
 | |
|  */
 | |
| static void add_root_to_dirty_list(struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 
 | |
| 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 | |
| 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&fs_info->trans_lock);
 | |
| 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 | |
| 		/* Want the extent tree to be the last on the list */
 | |
| 		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
 | |
| 			list_move_tail(&root->dirty_list,
 | |
| 				       &fs_info->dirty_cowonly_roots);
 | |
| 		else
 | |
| 			list_move(&root->dirty_list,
 | |
| 				  &fs_info->dirty_cowonly_roots);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->trans_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * used by snapshot creation to make a copy of a root for a tree with
 | |
|  * a given objectid.  The buffer with the new root node is returned in
 | |
|  * cow_ret, and this func returns zero on success or a negative error code.
 | |
|  */
 | |
| int btrfs_copy_root(struct btrfs_trans_handle *trans,
 | |
| 		      struct btrfs_root *root,
 | |
| 		      struct extent_buffer *buf,
 | |
| 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_buffer *cow;
 | |
| 	int ret = 0;
 | |
| 	int level;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	u64 reloc_src_root = 0;
 | |
| 
 | |
| 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 | |
| 		trans->transid != fs_info->running_transaction->transid);
 | |
| 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 | |
| 		trans->transid != btrfs_get_root_last_trans(root));
 | |
| 
 | |
| 	level = btrfs_header_level(buf);
 | |
| 	if (level == 0)
 | |
| 		btrfs_item_key(buf, &disk_key, 0);
 | |
| 	else
 | |
| 		btrfs_node_key(buf, &disk_key, 0);
 | |
| 
 | |
| 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 | |
| 		reloc_src_root = btrfs_header_owner(buf);
 | |
| 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 | |
| 				     &disk_key, level, buf->start, 0,
 | |
| 				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
 | |
| 	if (IS_ERR(cow))
 | |
| 		return PTR_ERR(cow);
 | |
| 
 | |
| 	copy_extent_buffer_full(cow, buf);
 | |
| 	btrfs_set_header_bytenr(cow, cow->start);
 | |
| 	btrfs_set_header_generation(cow, trans->transid);
 | |
| 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 | |
| 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 | |
| 				     BTRFS_HEADER_FLAG_RELOC);
 | |
| 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 | |
| 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 | |
| 	else
 | |
| 		btrfs_set_header_owner(cow, new_root_objectid);
 | |
| 
 | |
| 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 | |
| 
 | |
| 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 | |
| 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 | |
| 		ret = btrfs_inc_ref(trans, root, cow, 1);
 | |
| 	else
 | |
| 		ret = btrfs_inc_ref(trans, root, cow, 0);
 | |
| 	if (ret) {
 | |
| 		btrfs_tree_unlock(cow);
 | |
| 		free_extent_buffer(cow);
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(trans, cow);
 | |
| 	*cow_ret = cow;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check if the tree block can be shared by multiple trees
 | |
|  */
 | |
| bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root,
 | |
| 			       struct extent_buffer *buf)
 | |
| {
 | |
| 	const u64 buf_gen = btrfs_header_generation(buf);
 | |
| 
 | |
| 	/*
 | |
| 	 * Tree blocks not in shareable trees and tree roots are never shared.
 | |
| 	 * If a block was allocated after the last snapshot and the block was
 | |
| 	 * not allocated by tree relocation, we know the block is not shared.
 | |
| 	 */
 | |
| 
 | |
| 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 | |
| 		return false;
 | |
| 
 | |
| 	if (buf == root->node)
 | |
| 		return false;
 | |
| 
 | |
| 	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
 | |
| 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
 | |
| 		return false;
 | |
| 
 | |
| 	if (buf != root->commit_root)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * An extent buffer that used to be the commit root may still be shared
 | |
| 	 * because the tree height may have increased and it became a child of a
 | |
| 	 * higher level root. This can happen when snapshotting a subvolume
 | |
| 	 * created in the current transaction.
 | |
| 	 */
 | |
| 	if (buf_gen == trans->transid)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *root,
 | |
| 				       struct extent_buffer *buf,
 | |
| 				       struct extent_buffer *cow,
 | |
| 				       int *last_ref)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 refs;
 | |
| 	u64 owner;
 | |
| 	u64 flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Backrefs update rules:
 | |
| 	 *
 | |
| 	 * Always use full backrefs for extent pointers in tree block
 | |
| 	 * allocated by tree relocation.
 | |
| 	 *
 | |
| 	 * If a shared tree block is no longer referenced by its owner
 | |
| 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 | |
| 	 * use full backrefs for extent pointers in tree block.
 | |
| 	 *
 | |
| 	 * If a tree block is been relocating
 | |
| 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 | |
| 	 * use full backrefs for extent pointers in tree block.
 | |
| 	 * The reason for this is some operations (such as drop tree)
 | |
| 	 * are only allowed for blocks use full backrefs.
 | |
| 	 */
 | |
| 
 | |
| 	if (btrfs_block_can_be_shared(trans, root, buf)) {
 | |
| 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 | |
| 					       btrfs_header_level(buf), 1,
 | |
| 					       &refs, &flags, NULL);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		if (unlikely(refs == 0)) {
 | |
| 			btrfs_crit(fs_info,
 | |
| 		"found 0 references for tree block at bytenr %llu level %d root %llu",
 | |
| 				   buf->start, btrfs_header_level(buf),
 | |
| 				   btrfs_root_id(root));
 | |
| 			ret = -EUCLEAN;
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	} else {
 | |
| 		refs = 1;
 | |
| 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 | |
| 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 | |
| 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 | |
| 		else
 | |
| 			flags = 0;
 | |
| 	}
 | |
| 
 | |
| 	owner = btrfs_header_owner(buf);
 | |
| 	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
 | |
| 		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
 | |
| 		btrfs_crit(fs_info,
 | |
| "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
 | |
| 			   buf->start, btrfs_header_level(buf),
 | |
| 			   btrfs_root_id(root), refs, flags);
 | |
| 		ret = -EUCLEAN;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (refs > 1) {
 | |
| 		if ((owner == btrfs_root_id(root) ||
 | |
| 		     btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
 | |
| 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 | |
| 			ret = btrfs_inc_ref(trans, root, buf, 1);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 | |
| 				ret = btrfs_dec_ref(trans, root, buf, 0);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 				ret = btrfs_inc_ref(trans, root, cow, 1);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 			}
 | |
| 			ret = btrfs_set_disk_extent_flags(trans, buf,
 | |
| 						  BTRFS_BLOCK_FLAG_FULL_BACKREF);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		} else {
 | |
| 
 | |
| 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 | |
| 				ret = btrfs_inc_ref(trans, root, cow, 1);
 | |
| 			else
 | |
| 				ret = btrfs_inc_ref(trans, root, cow, 0);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 | |
| 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 | |
| 				ret = btrfs_inc_ref(trans, root, cow, 1);
 | |
| 			else
 | |
| 				ret = btrfs_inc_ref(trans, root, cow, 0);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			ret = btrfs_dec_ref(trans, root, buf, 1);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 		btrfs_clear_buffer_dirty(trans, buf);
 | |
| 		*last_ref = 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * does the dirty work in cow of a single block.  The parent block (if
 | |
|  * supplied) is updated to point to the new cow copy.  The new buffer is marked
 | |
|  * dirty and returned locked.  If you modify the block it needs to be marked
 | |
|  * dirty again.
 | |
|  *
 | |
|  * search_start -- an allocation hint for the new block
 | |
|  *
 | |
|  * empty_size -- a hint that you plan on doing more cow.  This is the size in
 | |
|  * bytes the allocator should try to find free next to the block it returns.
 | |
|  * This is just a hint and may be ignored by the allocator.
 | |
|  */
 | |
| int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root,
 | |
| 			  struct extent_buffer *buf,
 | |
| 			  struct extent_buffer *parent, int parent_slot,
 | |
| 			  struct extent_buffer **cow_ret,
 | |
| 			  u64 search_start, u64 empty_size,
 | |
| 			  enum btrfs_lock_nesting nest)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct extent_buffer *cow;
 | |
| 	int level, ret;
 | |
| 	int last_ref = 0;
 | |
| 	int unlock_orig = 0;
 | |
| 	u64 parent_start = 0;
 | |
| 	u64 reloc_src_root = 0;
 | |
| 
 | |
| 	if (*cow_ret == buf)
 | |
| 		unlock_orig = 1;
 | |
| 
 | |
| 	btrfs_assert_tree_write_locked(buf);
 | |
| 
 | |
| 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 | |
| 		trans->transid != fs_info->running_transaction->transid);
 | |
| 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 | |
| 		trans->transid != btrfs_get_root_last_trans(root));
 | |
| 
 | |
| 	level = btrfs_header_level(buf);
 | |
| 
 | |
| 	if (level == 0)
 | |
| 		btrfs_item_key(buf, &disk_key, 0);
 | |
| 	else
 | |
| 		btrfs_node_key(buf, &disk_key, 0);
 | |
| 
 | |
| 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
 | |
| 		if (parent)
 | |
| 			parent_start = parent->start;
 | |
| 		reloc_src_root = btrfs_header_owner(buf);
 | |
| 	}
 | |
| 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 | |
| 				     btrfs_root_id(root), &disk_key, level,
 | |
| 				     search_start, empty_size, reloc_src_root, nest);
 | |
| 	if (IS_ERR(cow))
 | |
| 		return PTR_ERR(cow);
 | |
| 
 | |
| 	/* cow is set to blocking by btrfs_init_new_buffer */
 | |
| 
 | |
| 	copy_extent_buffer_full(cow, buf);
 | |
| 	btrfs_set_header_bytenr(cow, cow->start);
 | |
| 	btrfs_set_header_generation(cow, trans->transid);
 | |
| 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 | |
| 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 | |
| 				     BTRFS_HEADER_FLAG_RELOC);
 | |
| 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 | |
| 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 | |
| 	else
 | |
| 		btrfs_set_header_owner(cow, btrfs_root_id(root));
 | |
| 
 | |
| 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 | |
| 
 | |
| 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto error_unlock_cow;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 | |
| 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto error_unlock_cow;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (buf == root->node) {
 | |
| 		WARN_ON(parent && parent != buf);
 | |
| 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
 | |
| 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 | |
| 			parent_start = buf->start;
 | |
| 
 | |
| 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto error_unlock_cow;
 | |
| 		}
 | |
| 		atomic_inc(&cow->refs);
 | |
| 		rcu_assign_pointer(root->node, cow);
 | |
| 
 | |
| 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 | |
| 					    parent_start, last_ref);
 | |
| 		free_extent_buffer(buf);
 | |
| 		add_root_to_dirty_list(root);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto error_unlock_cow;
 | |
| 		}
 | |
| 	} else {
 | |
| 		WARN_ON(trans->transid != btrfs_header_generation(parent));
 | |
| 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
 | |
| 						    BTRFS_MOD_LOG_KEY_REPLACE);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto error_unlock_cow;
 | |
| 		}
 | |
| 		btrfs_set_node_blockptr(parent, parent_slot,
 | |
| 					cow->start);
 | |
| 		btrfs_set_node_ptr_generation(parent, parent_slot,
 | |
| 					      trans->transid);
 | |
| 		btrfs_mark_buffer_dirty(trans, parent);
 | |
| 		if (last_ref) {
 | |
| 			ret = btrfs_tree_mod_log_free_eb(buf);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				goto error_unlock_cow;
 | |
| 			}
 | |
| 		}
 | |
| 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 | |
| 					    parent_start, last_ref);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto error_unlock_cow;
 | |
| 		}
 | |
| 	}
 | |
| 	if (unlock_orig)
 | |
| 		btrfs_tree_unlock(buf);
 | |
| 	free_extent_buffer_stale(buf);
 | |
| 	btrfs_mark_buffer_dirty(trans, cow);
 | |
| 	*cow_ret = cow;
 | |
| 	return 0;
 | |
| 
 | |
| error_unlock_cow:
 | |
| 	btrfs_tree_unlock(cow);
 | |
| 	free_extent_buffer(cow);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int should_cow_block(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct extent_buffer *buf)
 | |
| {
 | |
| 	if (btrfs_is_testing(root->fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Ensure we can see the FORCE_COW bit */
 | |
| 	smp_mb__before_atomic();
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not need to cow a block if
 | |
| 	 * 1) this block is not created or changed in this transaction;
 | |
| 	 * 2) this block does not belong to TREE_RELOC tree;
 | |
| 	 * 3) the root is not forced COW.
 | |
| 	 *
 | |
| 	 * What is forced COW:
 | |
| 	 *    when we create snapshot during committing the transaction,
 | |
| 	 *    after we've finished copying src root, we must COW the shared
 | |
| 	 *    block to ensure the metadata consistency.
 | |
| 	 */
 | |
| 	if (btrfs_header_generation(buf) == trans->transid &&
 | |
| 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 | |
| 	    !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
 | |
| 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 | |
| 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * COWs a single block, see btrfs_force_cow_block() for the real work.
 | |
|  * This version of it has extra checks so that a block isn't COWed more than
 | |
|  * once per transaction, as long as it hasn't been written yet
 | |
|  */
 | |
| int btrfs_cow_block(struct btrfs_trans_handle *trans,
 | |
| 		    struct btrfs_root *root, struct extent_buffer *buf,
 | |
| 		    struct extent_buffer *parent, int parent_slot,
 | |
| 		    struct extent_buffer **cow_ret,
 | |
| 		    enum btrfs_lock_nesting nest)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 search_start;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
 | |
| 		btrfs_abort_transaction(trans, -EUCLEAN);
 | |
| 		btrfs_crit(fs_info,
 | |
| 		   "attempt to COW block %llu on root %llu that is being deleted",
 | |
| 			   buf->start, btrfs_root_id(root));
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * COWing must happen through a running transaction, which always
 | |
| 	 * matches the current fs generation (it's a transaction with a state
 | |
| 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
 | |
| 	 * into error state to prevent the commit of any transaction.
 | |
| 	 */
 | |
| 	if (unlikely(trans->transaction != fs_info->running_transaction ||
 | |
| 		     trans->transid != fs_info->generation)) {
 | |
| 		btrfs_abort_transaction(trans, -EUCLEAN);
 | |
| 		btrfs_crit(fs_info,
 | |
| "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
 | |
| 			   buf->start, btrfs_root_id(root), trans->transid,
 | |
| 			   fs_info->running_transaction->transid,
 | |
| 			   fs_info->generation);
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	if (!should_cow_block(trans, root, buf)) {
 | |
| 		*cow_ret = buf;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	search_start = round_down(buf->start, SZ_1G);
 | |
| 
 | |
| 	/*
 | |
| 	 * Before CoWing this block for later modification, check if it's
 | |
| 	 * the subtree root and do the delayed subtree trace if needed.
 | |
| 	 *
 | |
| 	 * Also We don't care about the error, as it's handled internally.
 | |
| 	 */
 | |
| 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 | |
| 	ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
 | |
| 				    cow_ret, search_start, 0, nest);
 | |
| 
 | |
| 	trace_btrfs_cow_block(root, buf, *cow_ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 | |
| 
 | |
| /*
 | |
|  * same as comp_keys only with two btrfs_key's
 | |
|  */
 | |
| int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 | |
| {
 | |
| 	if (k1->objectid > k2->objectid)
 | |
| 		return 1;
 | |
| 	if (k1->objectid < k2->objectid)
 | |
| 		return -1;
 | |
| 	if (k1->type > k2->type)
 | |
| 		return 1;
 | |
| 	if (k1->type < k2->type)
 | |
| 		return -1;
 | |
| 	if (k1->offset > k2->offset)
 | |
| 		return 1;
 | |
| 	if (k1->offset < k2->offset)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search for a key in the given extent_buffer.
 | |
|  *
 | |
|  * The lower boundary for the search is specified by the slot number @first_slot.
 | |
|  * Use a value of 0 to search over the whole extent buffer. Works for both
 | |
|  * leaves and nodes.
 | |
|  *
 | |
|  * The slot in the extent buffer is returned via @slot. If the key exists in the
 | |
|  * extent buffer, then @slot will point to the slot where the key is, otherwise
 | |
|  * it points to the slot where you would insert the key.
 | |
|  *
 | |
|  * Slot may point to the total number of items (i.e. one position beyond the last
 | |
|  * key) if the key is bigger than the last key in the extent buffer.
 | |
|  */
 | |
| int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
 | |
| 		     const struct btrfs_key *key, int *slot)
 | |
| {
 | |
| 	unsigned long p;
 | |
| 	int item_size;
 | |
| 	/*
 | |
| 	 * Use unsigned types for the low and high slots, so that we get a more
 | |
| 	 * efficient division in the search loop below.
 | |
| 	 */
 | |
| 	u32 low = first_slot;
 | |
| 	u32 high = btrfs_header_nritems(eb);
 | |
| 	int ret;
 | |
| 	const int key_size = sizeof(struct btrfs_disk_key);
 | |
| 
 | |
| 	if (unlikely(low > high)) {
 | |
| 		btrfs_err(eb->fs_info,
 | |
| 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
 | |
| 			  __func__, low, high, eb->start,
 | |
| 			  btrfs_header_owner(eb), btrfs_header_level(eb));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_header_level(eb) == 0) {
 | |
| 		p = offsetof(struct btrfs_leaf, items);
 | |
| 		item_size = sizeof(struct btrfs_item);
 | |
| 	} else {
 | |
| 		p = offsetof(struct btrfs_node, ptrs);
 | |
| 		item_size = sizeof(struct btrfs_key_ptr);
 | |
| 	}
 | |
| 
 | |
| 	while (low < high) {
 | |
| 		const int unit_size = eb->folio_size;
 | |
| 		unsigned long oil;
 | |
| 		unsigned long offset;
 | |
| 		struct btrfs_disk_key *tmp;
 | |
| 		struct btrfs_disk_key unaligned;
 | |
| 		int mid;
 | |
| 
 | |
| 		mid = (low + high) / 2;
 | |
| 		offset = p + mid * item_size;
 | |
| 		oil = get_eb_offset_in_folio(eb, offset);
 | |
| 
 | |
| 		if (oil + key_size <= unit_size) {
 | |
| 			const unsigned long idx = get_eb_folio_index(eb, offset);
 | |
| 			char *kaddr = folio_address(eb->folios[idx]);
 | |
| 
 | |
| 			oil = get_eb_offset_in_folio(eb, offset);
 | |
| 			tmp = (struct btrfs_disk_key *)(kaddr + oil);
 | |
| 		} else {
 | |
| 			read_extent_buffer(eb, &unaligned, offset, key_size);
 | |
| 			tmp = &unaligned;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_comp_keys(tmp, key);
 | |
| 
 | |
| 		if (ret < 0)
 | |
| 			low = mid + 1;
 | |
| 		else if (ret > 0)
 | |
| 			high = mid;
 | |
| 		else {
 | |
| 			*slot = mid;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	*slot = low;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void root_add_used_bytes(struct btrfs_root *root)
 | |
| {
 | |
| 	spin_lock(&root->accounting_lock);
 | |
| 	btrfs_set_root_used(&root->root_item,
 | |
| 		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
 | |
| 	spin_unlock(&root->accounting_lock);
 | |
| }
 | |
| 
 | |
| static void root_sub_used_bytes(struct btrfs_root *root)
 | |
| {
 | |
| 	spin_lock(&root->accounting_lock);
 | |
| 	btrfs_set_root_used(&root->root_item,
 | |
| 		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
 | |
| 	spin_unlock(&root->accounting_lock);
 | |
| }
 | |
| 
 | |
| /* given a node and slot number, this reads the blocks it points to.  The
 | |
|  * extent buffer is returned with a reference taken (but unlocked).
 | |
|  */
 | |
| struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 | |
| 					   int slot)
 | |
| {
 | |
| 	int level = btrfs_header_level(parent);
 | |
| 	struct btrfs_tree_parent_check check = { 0 };
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	ASSERT(level);
 | |
| 
 | |
| 	check.level = level - 1;
 | |
| 	check.transid = btrfs_node_ptr_generation(parent, slot);
 | |
| 	check.owner_root = btrfs_header_owner(parent);
 | |
| 	check.has_first_key = true;
 | |
| 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 | |
| 
 | |
| 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 | |
| 			     &check);
 | |
| 	if (IS_ERR(eb))
 | |
| 		return eb;
 | |
| 	if (!extent_buffer_uptodate(eb)) {
 | |
| 		free_extent_buffer(eb);
 | |
| 		return ERR_PTR(-EIO);
 | |
| 	}
 | |
| 
 | |
| 	return eb;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * node level balancing, used to make sure nodes are in proper order for
 | |
|  * item deletion.  We balance from the top down, so we have to make sure
 | |
|  * that a deletion won't leave an node completely empty later on.
 | |
|  */
 | |
| static noinline int balance_level(struct btrfs_trans_handle *trans,
 | |
| 			 struct btrfs_root *root,
 | |
| 			 struct btrfs_path *path, int level)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_buffer *right = NULL;
 | |
| 	struct extent_buffer *mid;
 | |
| 	struct extent_buffer *left = NULL;
 | |
| 	struct extent_buffer *parent = NULL;
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 	int pslot;
 | |
| 	int orig_slot = path->slots[level];
 | |
| 	u64 orig_ptr;
 | |
| 
 | |
| 	ASSERT(level > 0);
 | |
| 
 | |
| 	mid = path->nodes[level];
 | |
| 
 | |
| 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 | |
| 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 | |
| 
 | |
| 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 | |
| 
 | |
| 	if (level < BTRFS_MAX_LEVEL - 1) {
 | |
| 		parent = path->nodes[level + 1];
 | |
| 		pslot = path->slots[level + 1];
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * deal with the case where there is only one pointer in the root
 | |
| 	 * by promoting the node below to a root
 | |
| 	 */
 | |
| 	if (!parent) {
 | |
| 		struct extent_buffer *child;
 | |
| 
 | |
| 		if (btrfs_header_nritems(mid) != 1)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* promote the child to a root */
 | |
| 		child = btrfs_read_node_slot(mid, 0);
 | |
| 		if (IS_ERR(child)) {
 | |
| 			ret = PTR_ERR(child);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_tree_lock(child);
 | |
| 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
 | |
| 				      BTRFS_NESTING_COW);
 | |
| 		if (ret) {
 | |
| 			btrfs_tree_unlock(child);
 | |
| 			free_extent_buffer(child);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_tree_unlock(child);
 | |
| 			free_extent_buffer(child);
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		rcu_assign_pointer(root->node, child);
 | |
| 
 | |
| 		add_root_to_dirty_list(root);
 | |
| 		btrfs_tree_unlock(child);
 | |
| 
 | |
| 		path->locks[level] = 0;
 | |
| 		path->nodes[level] = NULL;
 | |
| 		btrfs_clear_buffer_dirty(trans, mid);
 | |
| 		btrfs_tree_unlock(mid);
 | |
| 		/* once for the path */
 | |
| 		free_extent_buffer(mid);
 | |
| 
 | |
| 		root_sub_used_bytes(root);
 | |
| 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
 | |
| 		/* once for the root ptr */
 | |
| 		free_extent_buffer_stale(mid);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (btrfs_header_nritems(mid) >
 | |
| 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pslot) {
 | |
| 		left = btrfs_read_node_slot(parent, pslot - 1);
 | |
| 		if (IS_ERR(left)) {
 | |
| 			ret = PTR_ERR(left);
 | |
| 			left = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
 | |
| 		wret = btrfs_cow_block(trans, root, left,
 | |
| 				       parent, pslot - 1, &left,
 | |
| 				       BTRFS_NESTING_LEFT_COW);
 | |
| 		if (wret) {
 | |
| 			ret = wret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pslot + 1 < btrfs_header_nritems(parent)) {
 | |
| 		right = btrfs_read_node_slot(parent, pslot + 1);
 | |
| 		if (IS_ERR(right)) {
 | |
| 			ret = PTR_ERR(right);
 | |
| 			right = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
 | |
| 		wret = btrfs_cow_block(trans, root, right,
 | |
| 				       parent, pslot + 1, &right,
 | |
| 				       BTRFS_NESTING_RIGHT_COW);
 | |
| 		if (wret) {
 | |
| 			ret = wret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* first, try to make some room in the middle buffer */
 | |
| 	if (left) {
 | |
| 		orig_slot += btrfs_header_nritems(left);
 | |
| 		wret = push_node_left(trans, left, mid, 1);
 | |
| 		if (wret < 0)
 | |
| 			ret = wret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * then try to empty the right most buffer into the middle
 | |
| 	 */
 | |
| 	if (right) {
 | |
| 		wret = push_node_left(trans, mid, right, 1);
 | |
| 		if (wret < 0 && wret != -ENOSPC)
 | |
| 			ret = wret;
 | |
| 		if (btrfs_header_nritems(right) == 0) {
 | |
| 			btrfs_clear_buffer_dirty(trans, right);
 | |
| 			btrfs_tree_unlock(right);
 | |
| 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
 | |
| 			if (ret < 0) {
 | |
| 				free_extent_buffer_stale(right);
 | |
| 				right = NULL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			root_sub_used_bytes(root);
 | |
| 			ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
 | |
| 						    right, 0, 1);
 | |
| 			free_extent_buffer_stale(right);
 | |
| 			right = NULL;
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} else {
 | |
| 			struct btrfs_disk_key right_key;
 | |
| 			btrfs_node_key(right, &right_key, 0);
 | |
| 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
 | |
| 					BTRFS_MOD_LOG_KEY_REPLACE);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			btrfs_set_node_key(parent, &right_key, pslot + 1);
 | |
| 			btrfs_mark_buffer_dirty(trans, parent);
 | |
| 		}
 | |
| 	}
 | |
| 	if (btrfs_header_nritems(mid) == 1) {
 | |
| 		/*
 | |
| 		 * we're not allowed to leave a node with one item in the
 | |
| 		 * tree during a delete.  A deletion from lower in the tree
 | |
| 		 * could try to delete the only pointer in this node.
 | |
| 		 * So, pull some keys from the left.
 | |
| 		 * There has to be a left pointer at this point because
 | |
| 		 * otherwise we would have pulled some pointers from the
 | |
| 		 * right
 | |
| 		 */
 | |
| 		if (unlikely(!left)) {
 | |
| 			btrfs_crit(fs_info,
 | |
| "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
 | |
| 				   parent->start, btrfs_header_level(parent),
 | |
| 				   mid->start, btrfs_root_id(root));
 | |
| 			ret = -EUCLEAN;
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		wret = balance_node_right(trans, mid, left);
 | |
| 		if (wret < 0) {
 | |
| 			ret = wret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (wret == 1) {
 | |
| 			wret = push_node_left(trans, left, mid, 1);
 | |
| 			if (wret < 0)
 | |
| 				ret = wret;
 | |
| 		}
 | |
| 		BUG_ON(wret == 1);
 | |
| 	}
 | |
| 	if (btrfs_header_nritems(mid) == 0) {
 | |
| 		btrfs_clear_buffer_dirty(trans, mid);
 | |
| 		btrfs_tree_unlock(mid);
 | |
| 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
 | |
| 		if (ret < 0) {
 | |
| 			free_extent_buffer_stale(mid);
 | |
| 			mid = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		root_sub_used_bytes(root);
 | |
| 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
 | |
| 		free_extent_buffer_stale(mid);
 | |
| 		mid = NULL;
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* update the parent key to reflect our changes */
 | |
| 		struct btrfs_disk_key mid_key;
 | |
| 		btrfs_node_key(mid, &mid_key, 0);
 | |
| 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
 | |
| 						    BTRFS_MOD_LOG_KEY_REPLACE);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		btrfs_set_node_key(parent, &mid_key, pslot);
 | |
| 		btrfs_mark_buffer_dirty(trans, parent);
 | |
| 	}
 | |
| 
 | |
| 	/* update the path */
 | |
| 	if (left) {
 | |
| 		if (btrfs_header_nritems(left) > orig_slot) {
 | |
| 			atomic_inc(&left->refs);
 | |
| 			/* left was locked after cow */
 | |
| 			path->nodes[level] = left;
 | |
| 			path->slots[level + 1] -= 1;
 | |
| 			path->slots[level] = orig_slot;
 | |
| 			if (mid) {
 | |
| 				btrfs_tree_unlock(mid);
 | |
| 				free_extent_buffer(mid);
 | |
| 			}
 | |
| 		} else {
 | |
| 			orig_slot -= btrfs_header_nritems(left);
 | |
| 			path->slots[level] = orig_slot;
 | |
| 		}
 | |
| 	}
 | |
| 	/* double check we haven't messed things up */
 | |
| 	if (orig_ptr !=
 | |
| 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
 | |
| 		BUG();
 | |
| out:
 | |
| 	if (right) {
 | |
| 		btrfs_tree_unlock(right);
 | |
| 		free_extent_buffer(right);
 | |
| 	}
 | |
| 	if (left) {
 | |
| 		if (path->nodes[level] != left)
 | |
| 			btrfs_tree_unlock(left);
 | |
| 		free_extent_buffer(left);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Node balancing for insertion.  Here we only split or push nodes around
 | |
|  * when they are completely full.  This is also done top down, so we
 | |
|  * have to be pessimistic.
 | |
|  */
 | |
| static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
 | |
| 					  struct btrfs_root *root,
 | |
| 					  struct btrfs_path *path, int level)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_buffer *right = NULL;
 | |
| 	struct extent_buffer *mid;
 | |
| 	struct extent_buffer *left = NULL;
 | |
| 	struct extent_buffer *parent = NULL;
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 	int pslot;
 | |
| 	int orig_slot = path->slots[level];
 | |
| 
 | |
| 	if (level == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	mid = path->nodes[level];
 | |
| 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 | |
| 
 | |
| 	if (level < BTRFS_MAX_LEVEL - 1) {
 | |
| 		parent = path->nodes[level + 1];
 | |
| 		pslot = path->slots[level + 1];
 | |
| 	}
 | |
| 
 | |
| 	if (!parent)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* first, try to make some room in the middle buffer */
 | |
| 	if (pslot) {
 | |
| 		u32 left_nr;
 | |
| 
 | |
| 		left = btrfs_read_node_slot(parent, pslot - 1);
 | |
| 		if (IS_ERR(left))
 | |
| 			return PTR_ERR(left);
 | |
| 
 | |
| 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
 | |
| 
 | |
| 		left_nr = btrfs_header_nritems(left);
 | |
| 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
 | |
| 			wret = 1;
 | |
| 		} else {
 | |
| 			ret = btrfs_cow_block(trans, root, left, parent,
 | |
| 					      pslot - 1, &left,
 | |
| 					      BTRFS_NESTING_LEFT_COW);
 | |
| 			if (ret)
 | |
| 				wret = 1;
 | |
| 			else {
 | |
| 				wret = push_node_left(trans, left, mid, 0);
 | |
| 			}
 | |
| 		}
 | |
| 		if (wret < 0)
 | |
| 			ret = wret;
 | |
| 		if (wret == 0) {
 | |
| 			struct btrfs_disk_key disk_key;
 | |
| 			orig_slot += left_nr;
 | |
| 			btrfs_node_key(mid, &disk_key, 0);
 | |
| 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
 | |
| 					BTRFS_MOD_LOG_KEY_REPLACE);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_tree_unlock(left);
 | |
| 				free_extent_buffer(left);
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				return ret;
 | |
| 			}
 | |
| 			btrfs_set_node_key(parent, &disk_key, pslot);
 | |
| 			btrfs_mark_buffer_dirty(trans, parent);
 | |
| 			if (btrfs_header_nritems(left) > orig_slot) {
 | |
| 				path->nodes[level] = left;
 | |
| 				path->slots[level + 1] -= 1;
 | |
| 				path->slots[level] = orig_slot;
 | |
| 				btrfs_tree_unlock(mid);
 | |
| 				free_extent_buffer(mid);
 | |
| 			} else {
 | |
| 				orig_slot -=
 | |
| 					btrfs_header_nritems(left);
 | |
| 				path->slots[level] = orig_slot;
 | |
| 				btrfs_tree_unlock(left);
 | |
| 				free_extent_buffer(left);
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 		btrfs_tree_unlock(left);
 | |
| 		free_extent_buffer(left);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * then try to empty the right most buffer into the middle
 | |
| 	 */
 | |
| 	if (pslot + 1 < btrfs_header_nritems(parent)) {
 | |
| 		u32 right_nr;
 | |
| 
 | |
| 		right = btrfs_read_node_slot(parent, pslot + 1);
 | |
| 		if (IS_ERR(right))
 | |
| 			return PTR_ERR(right);
 | |
| 
 | |
| 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
 | |
| 
 | |
| 		right_nr = btrfs_header_nritems(right);
 | |
| 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
 | |
| 			wret = 1;
 | |
| 		} else {
 | |
| 			ret = btrfs_cow_block(trans, root, right,
 | |
| 					      parent, pslot + 1,
 | |
| 					      &right, BTRFS_NESTING_RIGHT_COW);
 | |
| 			if (ret)
 | |
| 				wret = 1;
 | |
| 			else {
 | |
| 				wret = balance_node_right(trans, right, mid);
 | |
| 			}
 | |
| 		}
 | |
| 		if (wret < 0)
 | |
| 			ret = wret;
 | |
| 		if (wret == 0) {
 | |
| 			struct btrfs_disk_key disk_key;
 | |
| 
 | |
| 			btrfs_node_key(right, &disk_key, 0);
 | |
| 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
 | |
| 					BTRFS_MOD_LOG_KEY_REPLACE);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_tree_unlock(right);
 | |
| 				free_extent_buffer(right);
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				return ret;
 | |
| 			}
 | |
| 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
 | |
| 			btrfs_mark_buffer_dirty(trans, parent);
 | |
| 
 | |
| 			if (btrfs_header_nritems(mid) <= orig_slot) {
 | |
| 				path->nodes[level] = right;
 | |
| 				path->slots[level + 1] += 1;
 | |
| 				path->slots[level] = orig_slot -
 | |
| 					btrfs_header_nritems(mid);
 | |
| 				btrfs_tree_unlock(mid);
 | |
| 				free_extent_buffer(mid);
 | |
| 			} else {
 | |
| 				btrfs_tree_unlock(right);
 | |
| 				free_extent_buffer(right);
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 		btrfs_tree_unlock(right);
 | |
| 		free_extent_buffer(right);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * readahead one full node of leaves, finding things that are close
 | |
|  * to the block in 'slot', and triggering ra on them.
 | |
|  */
 | |
| static void reada_for_search(struct btrfs_fs_info *fs_info,
 | |
| 			     struct btrfs_path *path,
 | |
| 			     int level, int slot, u64 objectid)
 | |
| {
 | |
| 	struct extent_buffer *node;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	u32 nritems;
 | |
| 	u64 search;
 | |
| 	u64 target;
 | |
| 	u64 nread = 0;
 | |
| 	u64 nread_max;
 | |
| 	u32 nr;
 | |
| 	u32 blocksize;
 | |
| 	u32 nscan = 0;
 | |
| 
 | |
| 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
 | |
| 		return;
 | |
| 
 | |
| 	if (!path->nodes[level])
 | |
| 		return;
 | |
| 
 | |
| 	node = path->nodes[level];
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the time between visiting leaves is much shorter than the time
 | |
| 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
 | |
| 	 * much IO at once (possibly random).
 | |
| 	 */
 | |
| 	if (path->reada == READA_FORWARD_ALWAYS) {
 | |
| 		if (level > 1)
 | |
| 			nread_max = node->fs_info->nodesize;
 | |
| 		else
 | |
| 			nread_max = SZ_128K;
 | |
| 	} else {
 | |
| 		nread_max = SZ_64K;
 | |
| 	}
 | |
| 
 | |
| 	search = btrfs_node_blockptr(node, slot);
 | |
| 	blocksize = fs_info->nodesize;
 | |
| 	if (path->reada != READA_FORWARD_ALWAYS) {
 | |
| 		struct extent_buffer *eb;
 | |
| 
 | |
| 		eb = find_extent_buffer(fs_info, search);
 | |
| 		if (eb) {
 | |
| 			free_extent_buffer(eb);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	target = search;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(node);
 | |
| 	nr = slot;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (path->reada == READA_BACK) {
 | |
| 			if (nr == 0)
 | |
| 				break;
 | |
| 			nr--;
 | |
| 		} else if (path->reada == READA_FORWARD ||
 | |
| 			   path->reada == READA_FORWARD_ALWAYS) {
 | |
| 			nr++;
 | |
| 			if (nr >= nritems)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (path->reada == READA_BACK && objectid) {
 | |
| 			btrfs_node_key(node, &disk_key, nr);
 | |
| 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
 | |
| 				break;
 | |
| 		}
 | |
| 		search = btrfs_node_blockptr(node, nr);
 | |
| 		if (path->reada == READA_FORWARD_ALWAYS ||
 | |
| 		    (search <= target && target - search <= 65536) ||
 | |
| 		    (search > target && search - target <= 65536)) {
 | |
| 			btrfs_readahead_node_child(node, nr);
 | |
| 			nread += blocksize;
 | |
| 		}
 | |
| 		nscan++;
 | |
| 		if (nread > nread_max || nscan > 32)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline void reada_for_balance(struct btrfs_path *path, int level)
 | |
| {
 | |
| 	struct extent_buffer *parent;
 | |
| 	int slot;
 | |
| 	int nritems;
 | |
| 
 | |
| 	parent = path->nodes[level + 1];
 | |
| 	if (!parent)
 | |
| 		return;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(parent);
 | |
| 	slot = path->slots[level + 1];
 | |
| 
 | |
| 	if (slot > 0)
 | |
| 		btrfs_readahead_node_child(parent, slot - 1);
 | |
| 	if (slot + 1 < nritems)
 | |
| 		btrfs_readahead_node_child(parent, slot + 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * when we walk down the tree, it is usually safe to unlock the higher layers
 | |
|  * in the tree.  The exceptions are when our path goes through slot 0, because
 | |
|  * operations on the tree might require changing key pointers higher up in the
 | |
|  * tree.
 | |
|  *
 | |
|  * callers might also have set path->keep_locks, which tells this code to keep
 | |
|  * the lock if the path points to the last slot in the block.  This is part of
 | |
|  * walking through the tree, and selecting the next slot in the higher block.
 | |
|  *
 | |
|  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 | |
|  * if lowest_unlock is 1, level 0 won't be unlocked
 | |
|  */
 | |
| static noinline void unlock_up(struct btrfs_path *path, int level,
 | |
| 			       int lowest_unlock, int min_write_lock_level,
 | |
| 			       int *write_lock_level)
 | |
| {
 | |
| 	int i;
 | |
| 	int skip_level = level;
 | |
| 	bool check_skip = true;
 | |
| 
 | |
| 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
 | |
| 		if (!path->nodes[i])
 | |
| 			break;
 | |
| 		if (!path->locks[i])
 | |
| 			break;
 | |
| 
 | |
| 		if (check_skip) {
 | |
| 			if (path->slots[i] == 0) {
 | |
| 				skip_level = i + 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (path->keep_locks) {
 | |
| 				u32 nritems;
 | |
| 
 | |
| 				nritems = btrfs_header_nritems(path->nodes[i]);
 | |
| 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
 | |
| 					skip_level = i + 1;
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (i >= lowest_unlock && i > skip_level) {
 | |
| 			check_skip = false;
 | |
| 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
 | |
| 			path->locks[i] = 0;
 | |
| 			if (write_lock_level &&
 | |
| 			    i > min_write_lock_level &&
 | |
| 			    i <= *write_lock_level) {
 | |
| 				*write_lock_level = i - 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for btrfs_search_slot() and other functions that do a search
 | |
|  * on a btree. The goal is to find a tree block in the cache (the radix tree at
 | |
|  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
 | |
|  * its pages from disk.
 | |
|  *
 | |
|  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
 | |
|  * whole btree search, starting again from the current root node.
 | |
|  */
 | |
| static int
 | |
| read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
 | |
| 		      struct extent_buffer **eb_ret, int slot,
 | |
| 		      const struct btrfs_key *key)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_tree_parent_check check = { 0 };
 | |
| 	u64 blocknr;
 | |
| 	struct extent_buffer *tmp = NULL;
 | |
| 	int ret = 0;
 | |
| 	int parent_level;
 | |
| 	int err;
 | |
| 	bool read_tmp = false;
 | |
| 	bool tmp_locked = false;
 | |
| 	bool path_released = false;
 | |
| 
 | |
| 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
 | |
| 	parent_level = btrfs_header_level(*eb_ret);
 | |
| 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
 | |
| 	check.has_first_key = true;
 | |
| 	check.level = parent_level - 1;
 | |
| 	check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
 | |
| 	check.owner_root = btrfs_root_id(root);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need to read an extent buffer from disk and we are holding locks
 | |
| 	 * on upper level nodes, we unlock all the upper nodes before reading the
 | |
| 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
 | |
| 	 * restart the search. We don't release the lock on the current level
 | |
| 	 * because we need to walk this node to figure out which blocks to read.
 | |
| 	 */
 | |
| 	tmp = find_extent_buffer(fs_info, blocknr);
 | |
| 	if (tmp) {
 | |
| 		if (p->reada == READA_FORWARD_ALWAYS)
 | |
| 			reada_for_search(fs_info, p, parent_level, slot, key->objectid);
 | |
| 
 | |
| 		/* first we do an atomic uptodate check */
 | |
| 		if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) {
 | |
| 			/*
 | |
| 			 * Do extra check for first_key, eb can be stale due to
 | |
| 			 * being cached, read from scrub, or have multiple
 | |
| 			 * parents (shared tree blocks).
 | |
| 			 */
 | |
| 			if (btrfs_verify_level_key(tmp, &check)) {
 | |
| 				ret = -EUCLEAN;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			*eb_ret = tmp;
 | |
| 			tmp = NULL;
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (p->nowait) {
 | |
| 			ret = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (!p->skip_locking) {
 | |
| 			btrfs_unlock_up_safe(p, parent_level + 1);
 | |
| 			tmp_locked = true;
 | |
| 			btrfs_tree_read_lock(tmp);
 | |
| 			btrfs_release_path(p);
 | |
| 			ret = -EAGAIN;
 | |
| 			path_released = true;
 | |
| 		}
 | |
| 
 | |
| 		/* Now we're allowed to do a blocking uptodate check. */
 | |
| 		err = btrfs_read_extent_buffer(tmp, &check);
 | |
| 		if (err) {
 | |
| 			ret = err;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (ret == 0) {
 | |
| 			ASSERT(!tmp_locked);
 | |
| 			*eb_ret = tmp;
 | |
| 			tmp = NULL;
 | |
| 		}
 | |
| 		goto out;
 | |
| 	} else if (p->nowait) {
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!p->skip_locking) {
 | |
| 		btrfs_unlock_up_safe(p, parent_level + 1);
 | |
| 		ret = -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	if (p->reada != READA_NONE)
 | |
| 		reada_for_search(fs_info, p, parent_level, slot, key->objectid);
 | |
| 
 | |
| 	tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
 | |
| 	if (IS_ERR(tmp)) {
 | |
| 		ret = PTR_ERR(tmp);
 | |
| 		tmp = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	read_tmp = true;
 | |
| 
 | |
| 	if (!p->skip_locking) {
 | |
| 		ASSERT(ret == -EAGAIN);
 | |
| 		tmp_locked = true;
 | |
| 		btrfs_tree_read_lock(tmp);
 | |
| 		btrfs_release_path(p);
 | |
| 		path_released = true;
 | |
| 	}
 | |
| 
 | |
| 	/* Now we're allowed to do a blocking uptodate check. */
 | |
| 	err = btrfs_read_extent_buffer(tmp, &check);
 | |
| 	if (err) {
 | |
| 		ret = err;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the read above didn't mark this buffer up to date,
 | |
| 	 * it will never end up being up to date.  Set ret to EIO now
 | |
| 	 * and give up so that our caller doesn't loop forever
 | |
| 	 * on our EAGAINs.
 | |
| 	 */
 | |
| 	if (!extent_buffer_uptodate(tmp)) {
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0) {
 | |
| 		ASSERT(!tmp_locked);
 | |
| 		*eb_ret = tmp;
 | |
| 		tmp = NULL;
 | |
| 	}
 | |
| out:
 | |
| 	if (tmp) {
 | |
| 		if (tmp_locked)
 | |
| 			btrfs_tree_read_unlock(tmp);
 | |
| 		if (read_tmp && ret && ret != -EAGAIN)
 | |
| 			free_extent_buffer_stale(tmp);
 | |
| 		else
 | |
| 			free_extent_buffer(tmp);
 | |
| 	}
 | |
| 	if (ret && !path_released)
 | |
| 		btrfs_release_path(p);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function for btrfs_search_slot.  This does all of the checks
 | |
|  * for node-level blocks and does any balancing required based on
 | |
|  * the ins_len.
 | |
|  *
 | |
|  * If no extra work was required, zero is returned.  If we had to
 | |
|  * drop the path, -EAGAIN is returned and btrfs_search_slot must
 | |
|  * start over
 | |
|  */
 | |
| static int
 | |
| setup_nodes_for_search(struct btrfs_trans_handle *trans,
 | |
| 		       struct btrfs_root *root, struct btrfs_path *p,
 | |
| 		       struct extent_buffer *b, int level, int ins_len,
 | |
| 		       int *write_lock_level)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
 | |
| 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
 | |
| 
 | |
| 		if (*write_lock_level < level + 1) {
 | |
| 			*write_lock_level = level + 1;
 | |
| 			btrfs_release_path(p);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 
 | |
| 		reada_for_balance(p, level);
 | |
| 		ret = split_node(trans, root, p, level);
 | |
| 
 | |
| 		b = p->nodes[level];
 | |
| 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
 | |
| 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
 | |
| 
 | |
| 		if (*write_lock_level < level + 1) {
 | |
| 			*write_lock_level = level + 1;
 | |
| 			btrfs_release_path(p);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 
 | |
| 		reada_for_balance(p, level);
 | |
| 		ret = balance_level(trans, root, p, level);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		b = p->nodes[level];
 | |
| 		if (!b) {
 | |
| 			btrfs_release_path(p);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 		BUG_ON(btrfs_header_nritems(b) == 1);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
 | |
| 		u64 iobjectid, u64 ioff, u8 key_type,
 | |
| 		struct btrfs_key *found_key)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	ASSERT(path);
 | |
| 	ASSERT(found_key);
 | |
| 
 | |
| 	key.type = key_type;
 | |
| 	key.objectid = iobjectid;
 | |
| 	key.offset = ioff;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	eb = path->nodes[0];
 | |
| 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
 | |
| 		ret = btrfs_next_leaf(fs_root, path);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		eb = path->nodes[0];
 | |
| 	}
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
 | |
| 	if (found_key->type != key.type ||
 | |
| 			found_key->objectid != key.objectid)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
 | |
| 							struct btrfs_path *p,
 | |
| 							int write_lock_level)
 | |
| {
 | |
| 	struct extent_buffer *b;
 | |
| 	int root_lock = 0;
 | |
| 	int level = 0;
 | |
| 
 | |
| 	if (p->search_commit_root) {
 | |
| 		b = root->commit_root;
 | |
| 		atomic_inc(&b->refs);
 | |
| 		level = btrfs_header_level(b);
 | |
| 		/*
 | |
| 		 * Ensure that all callers have set skip_locking when
 | |
| 		 * p->search_commit_root = 1.
 | |
| 		 */
 | |
| 		ASSERT(p->skip_locking == 1);
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (p->skip_locking) {
 | |
| 		b = btrfs_root_node(root);
 | |
| 		level = btrfs_header_level(b);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* We try very hard to do read locks on the root */
 | |
| 	root_lock = BTRFS_READ_LOCK;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the level is set to maximum, we can skip trying to get the read
 | |
| 	 * lock.
 | |
| 	 */
 | |
| 	if (write_lock_level < BTRFS_MAX_LEVEL) {
 | |
| 		/*
 | |
| 		 * We don't know the level of the root node until we actually
 | |
| 		 * have it read locked
 | |
| 		 */
 | |
| 		if (p->nowait) {
 | |
| 			b = btrfs_try_read_lock_root_node(root);
 | |
| 			if (IS_ERR(b))
 | |
| 				return b;
 | |
| 		} else {
 | |
| 			b = btrfs_read_lock_root_node(root);
 | |
| 		}
 | |
| 		level = btrfs_header_level(b);
 | |
| 		if (level > write_lock_level)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* Whoops, must trade for write lock */
 | |
| 		btrfs_tree_read_unlock(b);
 | |
| 		free_extent_buffer(b);
 | |
| 	}
 | |
| 
 | |
| 	b = btrfs_lock_root_node(root);
 | |
| 	root_lock = BTRFS_WRITE_LOCK;
 | |
| 
 | |
| 	/* The level might have changed, check again */
 | |
| 	level = btrfs_header_level(b);
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * The root may have failed to write out at some point, and thus is no
 | |
| 	 * longer valid, return an error in this case.
 | |
| 	 */
 | |
| 	if (!extent_buffer_uptodate(b)) {
 | |
| 		if (root_lock)
 | |
| 			btrfs_tree_unlock_rw(b, root_lock);
 | |
| 		free_extent_buffer(b);
 | |
| 		return ERR_PTR(-EIO);
 | |
| 	}
 | |
| 
 | |
| 	p->nodes[level] = b;
 | |
| 	if (!p->skip_locking)
 | |
| 		p->locks[level] = root_lock;
 | |
| 	/*
 | |
| 	 * Callers are responsible for dropping b's references.
 | |
| 	 */
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replace the extent buffer at the lowest level of the path with a cloned
 | |
|  * version. The purpose is to be able to use it safely, after releasing the
 | |
|  * commit root semaphore, even if relocation is happening in parallel, the
 | |
|  * transaction used for relocation is committed and the extent buffer is
 | |
|  * reallocated in the next transaction.
 | |
|  *
 | |
|  * This is used in a context where the caller does not prevent transaction
 | |
|  * commits from happening, either by holding a transaction handle or holding
 | |
|  * some lock, while it's doing searches through a commit root.
 | |
|  * At the moment it's only used for send operations.
 | |
|  */
 | |
| static int finish_need_commit_sem_search(struct btrfs_path *path)
 | |
| {
 | |
| 	const int i = path->lowest_level;
 | |
| 	const int slot = path->slots[i];
 | |
| 	struct extent_buffer *lowest = path->nodes[i];
 | |
| 	struct extent_buffer *clone;
 | |
| 
 | |
| 	ASSERT(path->need_commit_sem);
 | |
| 
 | |
| 	if (!lowest)
 | |
| 		return 0;
 | |
| 
 | |
| 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
 | |
| 
 | |
| 	clone = btrfs_clone_extent_buffer(lowest);
 | |
| 	if (!clone)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	path->nodes[i] = clone;
 | |
| 	path->slots[i] = slot;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int search_for_key_slot(struct extent_buffer *eb,
 | |
| 				      int search_low_slot,
 | |
| 				      const struct btrfs_key *key,
 | |
| 				      int prev_cmp,
 | |
| 				      int *slot)
 | |
| {
 | |
| 	/*
 | |
| 	 * If a previous call to btrfs_bin_search() on a parent node returned an
 | |
| 	 * exact match (prev_cmp == 0), we can safely assume the target key will
 | |
| 	 * always be at slot 0 on lower levels, since each key pointer
 | |
| 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
 | |
| 	 * subtree it points to. Thus we can skip searching lower levels.
 | |
| 	 */
 | |
| 	if (prev_cmp == 0) {
 | |
| 		*slot = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return btrfs_bin_search(eb, search_low_slot, key, slot);
 | |
| }
 | |
| 
 | |
| static int search_leaf(struct btrfs_trans_handle *trans,
 | |
| 		       struct btrfs_root *root,
 | |
| 		       const struct btrfs_key *key,
 | |
| 		       struct btrfs_path *path,
 | |
| 		       int ins_len,
 | |
| 		       int prev_cmp)
 | |
| {
 | |
| 	struct extent_buffer *leaf = path->nodes[0];
 | |
| 	int leaf_free_space = -1;
 | |
| 	int search_low_slot = 0;
 | |
| 	int ret;
 | |
| 	bool do_bin_search = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are doing an insertion, the leaf has enough free space and the
 | |
| 	 * destination slot for the key is not slot 0, then we can unlock our
 | |
| 	 * write lock on the parent, and any other upper nodes, before doing the
 | |
| 	 * binary search on the leaf (with search_for_key_slot()), allowing other
 | |
| 	 * tasks to lock the parent and any other upper nodes.
 | |
| 	 */
 | |
| 	if (ins_len > 0) {
 | |
| 		/*
 | |
| 		 * Cache the leaf free space, since we will need it later and it
 | |
| 		 * will not change until then.
 | |
| 		 */
 | |
| 		leaf_free_space = btrfs_leaf_free_space(leaf);
 | |
| 
 | |
| 		/*
 | |
| 		 * !path->locks[1] means we have a single node tree, the leaf is
 | |
| 		 * the root of the tree.
 | |
| 		 */
 | |
| 		if (path->locks[1] && leaf_free_space >= ins_len) {
 | |
| 			struct btrfs_disk_key first_key;
 | |
| 
 | |
| 			ASSERT(btrfs_header_nritems(leaf) > 0);
 | |
| 			btrfs_item_key(leaf, &first_key, 0);
 | |
| 
 | |
| 			/*
 | |
| 			 * Doing the extra comparison with the first key is cheap,
 | |
| 			 * taking into account that the first key is very likely
 | |
| 			 * already in a cache line because it immediately follows
 | |
| 			 * the extent buffer's header and we have recently accessed
 | |
| 			 * the header's level field.
 | |
| 			 */
 | |
| 			ret = btrfs_comp_keys(&first_key, key);
 | |
| 			if (ret < 0) {
 | |
| 				/*
 | |
| 				 * The first key is smaller than the key we want
 | |
| 				 * to insert, so we are safe to unlock all upper
 | |
| 				 * nodes and we have to do the binary search.
 | |
| 				 *
 | |
| 				 * We do use btrfs_unlock_up_safe() and not
 | |
| 				 * unlock_up() because the later does not unlock
 | |
| 				 * nodes with a slot of 0 - we can safely unlock
 | |
| 				 * any node even if its slot is 0 since in this
 | |
| 				 * case the key does not end up at slot 0 of the
 | |
| 				 * leaf and there's no need to split the leaf.
 | |
| 				 */
 | |
| 				btrfs_unlock_up_safe(path, 1);
 | |
| 				search_low_slot = 1;
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * The first key is >= then the key we want to
 | |
| 				 * insert, so we can skip the binary search as
 | |
| 				 * the target key will be at slot 0.
 | |
| 				 *
 | |
| 				 * We can not unlock upper nodes when the key is
 | |
| 				 * less than the first key, because we will need
 | |
| 				 * to update the key at slot 0 of the parent node
 | |
| 				 * and possibly of other upper nodes too.
 | |
| 				 * If the key matches the first key, then we can
 | |
| 				 * unlock all the upper nodes, using
 | |
| 				 * btrfs_unlock_up_safe() instead of unlock_up()
 | |
| 				 * as stated above.
 | |
| 				 */
 | |
| 				if (ret == 0)
 | |
| 					btrfs_unlock_up_safe(path, 1);
 | |
| 				/*
 | |
| 				 * ret is already 0 or 1, matching the result of
 | |
| 				 * a btrfs_bin_search() call, so there is no need
 | |
| 				 * to adjust it.
 | |
| 				 */
 | |
| 				do_bin_search = false;
 | |
| 				path->slots[0] = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (do_bin_search) {
 | |
| 		ret = search_for_key_slot(leaf, search_low_slot, key,
 | |
| 					  prev_cmp, &path->slots[0]);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (ins_len > 0) {
 | |
| 		/*
 | |
| 		 * Item key already exists. In this case, if we are allowed to
 | |
| 		 * insert the item (for example, in dir_item case, item key
 | |
| 		 * collision is allowed), it will be merged with the original
 | |
| 		 * item. Only the item size grows, no new btrfs item will be
 | |
| 		 * added. If search_for_extension is not set, ins_len already
 | |
| 		 * accounts the size btrfs_item, deduct it here so leaf space
 | |
| 		 * check will be correct.
 | |
| 		 */
 | |
| 		if (ret == 0 && !path->search_for_extension) {
 | |
| 			ASSERT(ins_len >= sizeof(struct btrfs_item));
 | |
| 			ins_len -= sizeof(struct btrfs_item);
 | |
| 		}
 | |
| 
 | |
| 		ASSERT(leaf_free_space >= 0);
 | |
| 
 | |
| 		if (leaf_free_space < ins_len) {
 | |
| 			int err;
 | |
| 
 | |
| 			err = split_leaf(trans, root, key, path, ins_len,
 | |
| 					 (ret == 0));
 | |
| 			ASSERT(err <= 0);
 | |
| 			if (WARN_ON(err > 0))
 | |
| 				err = -EUCLEAN;
 | |
| 			if (err)
 | |
| 				ret = err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look for a key in a tree and perform necessary modifications to preserve
 | |
|  * tree invariants.
 | |
|  *
 | |
|  * @trans:	Handle of transaction, used when modifying the tree
 | |
|  * @p:		Holds all btree nodes along the search path
 | |
|  * @root:	The root node of the tree
 | |
|  * @key:	The key we are looking for
 | |
|  * @ins_len:	Indicates purpose of search:
 | |
|  *              >0  for inserts it's size of item inserted (*)
 | |
|  *              <0  for deletions
 | |
|  *               0  for plain searches, not modifying the tree
 | |
|  *
 | |
|  *              (*) If size of item inserted doesn't include
 | |
|  *              sizeof(struct btrfs_item), then p->search_for_extension must
 | |
|  *              be set.
 | |
|  * @cow:	boolean should CoW operations be performed. Must always be 1
 | |
|  *		when modifying the tree.
 | |
|  *
 | |
|  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 | |
|  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 | |
|  *
 | |
|  * If @key is found, 0 is returned and you can find the item in the leaf level
 | |
|  * of the path (level 0)
 | |
|  *
 | |
|  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 | |
|  * points to the slot where it should be inserted
 | |
|  *
 | |
|  * If an error is encountered while searching the tree a negative error number
 | |
|  * is returned
 | |
|  */
 | |
| int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		      const struct btrfs_key *key, struct btrfs_path *p,
 | |
| 		      int ins_len, int cow)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct extent_buffer *b;
 | |
| 	int slot;
 | |
| 	int ret;
 | |
| 	int err;
 | |
| 	int level;
 | |
| 	int lowest_unlock = 1;
 | |
| 	/* everything at write_lock_level or lower must be write locked */
 | |
| 	int write_lock_level = 0;
 | |
| 	u8 lowest_level = 0;
 | |
| 	int min_write_lock_level;
 | |
| 	int prev_cmp;
 | |
| 
 | |
| 	if (!root)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	fs_info = root->fs_info;
 | |
| 	might_sleep();
 | |
| 
 | |
| 	lowest_level = p->lowest_level;
 | |
| 	WARN_ON(lowest_level && ins_len > 0);
 | |
| 	WARN_ON(p->nodes[0] != NULL);
 | |
| 	BUG_ON(!cow && ins_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * For now only allow nowait for read only operations.  There's no
 | |
| 	 * strict reason why we can't, we just only need it for reads so it's
 | |
| 	 * only implemented for reads.
 | |
| 	 */
 | |
| 	ASSERT(!p->nowait || !cow);
 | |
| 
 | |
| 	if (ins_len < 0) {
 | |
| 		lowest_unlock = 2;
 | |
| 
 | |
| 		/* when we are removing items, we might have to go up to level
 | |
| 		 * two as we update tree pointers  Make sure we keep write
 | |
| 		 * for those levels as well
 | |
| 		 */
 | |
| 		write_lock_level = 2;
 | |
| 	} else if (ins_len > 0) {
 | |
| 		/*
 | |
| 		 * for inserting items, make sure we have a write lock on
 | |
| 		 * level 1 so we can update keys
 | |
| 		 */
 | |
| 		write_lock_level = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!cow)
 | |
| 		write_lock_level = -1;
 | |
| 
 | |
| 	if (cow && (p->keep_locks || p->lowest_level))
 | |
| 		write_lock_level = BTRFS_MAX_LEVEL;
 | |
| 
 | |
| 	min_write_lock_level = write_lock_level;
 | |
| 
 | |
| 	if (p->need_commit_sem) {
 | |
| 		ASSERT(p->search_commit_root);
 | |
| 		if (p->nowait) {
 | |
| 			if (!down_read_trylock(&fs_info->commit_root_sem))
 | |
| 				return -EAGAIN;
 | |
| 		} else {
 | |
| 			down_read(&fs_info->commit_root_sem);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	prev_cmp = -1;
 | |
| 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
 | |
| 	if (IS_ERR(b)) {
 | |
| 		ret = PTR_ERR(b);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	while (b) {
 | |
| 		int dec = 0;
 | |
| 
 | |
| 		level = btrfs_header_level(b);
 | |
| 
 | |
| 		if (cow) {
 | |
| 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
 | |
| 
 | |
| 			/*
 | |
| 			 * if we don't really need to cow this block
 | |
| 			 * then we don't want to set the path blocking,
 | |
| 			 * so we test it here
 | |
| 			 */
 | |
| 			if (!should_cow_block(trans, root, b))
 | |
| 				goto cow_done;
 | |
| 
 | |
| 			/*
 | |
| 			 * must have write locks on this node and the
 | |
| 			 * parent
 | |
| 			 */
 | |
| 			if (level > write_lock_level ||
 | |
| 			    (level + 1 > write_lock_level &&
 | |
| 			    level + 1 < BTRFS_MAX_LEVEL &&
 | |
| 			    p->nodes[level + 1])) {
 | |
| 				write_lock_level = level + 1;
 | |
| 				btrfs_release_path(p);
 | |
| 				goto again;
 | |
| 			}
 | |
| 
 | |
| 			if (last_level)
 | |
| 				err = btrfs_cow_block(trans, root, b, NULL, 0,
 | |
| 						      &b,
 | |
| 						      BTRFS_NESTING_COW);
 | |
| 			else
 | |
| 				err = btrfs_cow_block(trans, root, b,
 | |
| 						      p->nodes[level + 1],
 | |
| 						      p->slots[level + 1], &b,
 | |
| 						      BTRFS_NESTING_COW);
 | |
| 			if (err) {
 | |
| 				ret = err;
 | |
| 				goto done;
 | |
| 			}
 | |
| 		}
 | |
| cow_done:
 | |
| 		p->nodes[level] = b;
 | |
| 
 | |
| 		/*
 | |
| 		 * we have a lock on b and as long as we aren't changing
 | |
| 		 * the tree, there is no way to for the items in b to change.
 | |
| 		 * It is safe to drop the lock on our parent before we
 | |
| 		 * go through the expensive btree search on b.
 | |
| 		 *
 | |
| 		 * If we're inserting or deleting (ins_len != 0), then we might
 | |
| 		 * be changing slot zero, which may require changing the parent.
 | |
| 		 * So, we can't drop the lock until after we know which slot
 | |
| 		 * we're operating on.
 | |
| 		 */
 | |
| 		if (!ins_len && !p->keep_locks) {
 | |
| 			int u = level + 1;
 | |
| 
 | |
| 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
 | |
| 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
 | |
| 				p->locks[u] = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (level == 0) {
 | |
| 			if (ins_len > 0)
 | |
| 				ASSERT(write_lock_level >= 1);
 | |
| 
 | |
| 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
 | |
| 			if (!p->search_for_split)
 | |
| 				unlock_up(p, level, lowest_unlock,
 | |
| 					  min_write_lock_level, NULL);
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
 | |
| 		if (ret < 0)
 | |
| 			goto done;
 | |
| 		prev_cmp = ret;
 | |
| 
 | |
| 		if (ret && slot > 0) {
 | |
| 			dec = 1;
 | |
| 			slot--;
 | |
| 		}
 | |
| 		p->slots[level] = slot;
 | |
| 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
 | |
| 					     &write_lock_level);
 | |
| 		if (err == -EAGAIN)
 | |
| 			goto again;
 | |
| 		if (err) {
 | |
| 			ret = err;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		b = p->nodes[level];
 | |
| 		slot = p->slots[level];
 | |
| 
 | |
| 		/*
 | |
| 		 * Slot 0 is special, if we change the key we have to update
 | |
| 		 * the parent pointer which means we must have a write lock on
 | |
| 		 * the parent
 | |
| 		 */
 | |
| 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
 | |
| 			write_lock_level = level + 1;
 | |
| 			btrfs_release_path(p);
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
 | |
| 			  &write_lock_level);
 | |
| 
 | |
| 		if (level == lowest_level) {
 | |
| 			if (dec)
 | |
| 				p->slots[level]++;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		err = read_block_for_search(root, p, &b, slot, key);
 | |
| 		if (err == -EAGAIN && !p->nowait)
 | |
| 			goto again;
 | |
| 		if (err) {
 | |
| 			ret = err;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		if (!p->skip_locking) {
 | |
| 			level = btrfs_header_level(b);
 | |
| 
 | |
| 			btrfs_maybe_reset_lockdep_class(root, b);
 | |
| 
 | |
| 			if (level <= write_lock_level) {
 | |
| 				btrfs_tree_lock(b);
 | |
| 				p->locks[level] = BTRFS_WRITE_LOCK;
 | |
| 			} else {
 | |
| 				if (p->nowait) {
 | |
| 					if (!btrfs_try_tree_read_lock(b)) {
 | |
| 						free_extent_buffer(b);
 | |
| 						ret = -EAGAIN;
 | |
| 						goto done;
 | |
| 					}
 | |
| 				} else {
 | |
| 					btrfs_tree_read_lock(b);
 | |
| 				}
 | |
| 				p->locks[level] = BTRFS_READ_LOCK;
 | |
| 			}
 | |
| 			p->nodes[level] = b;
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 1;
 | |
| done:
 | |
| 	if (ret < 0 && !p->skip_release_on_error)
 | |
| 		btrfs_release_path(p);
 | |
| 
 | |
| 	if (p->need_commit_sem) {
 | |
| 		int ret2;
 | |
| 
 | |
| 		ret2 = finish_need_commit_sem_search(p);
 | |
| 		up_read(&fs_info->commit_root_sem);
 | |
| 		if (ret2)
 | |
| 			ret = ret2;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
 | |
| 
 | |
| /*
 | |
|  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 | |
|  * current state of the tree together with the operations recorded in the tree
 | |
|  * modification log to search for the key in a previous version of this tree, as
 | |
|  * denoted by the time_seq parameter.
 | |
|  *
 | |
|  * Naturally, there is no support for insert, delete or cow operations.
 | |
|  *
 | |
|  * The resulting path and return value will be set up as if we called
 | |
|  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 | |
|  */
 | |
| int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
 | |
| 			  struct btrfs_path *p, u64 time_seq)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_buffer *b;
 | |
| 	int slot;
 | |
| 	int ret;
 | |
| 	int err;
 | |
| 	int level;
 | |
| 	int lowest_unlock = 1;
 | |
| 	u8 lowest_level = 0;
 | |
| 
 | |
| 	lowest_level = p->lowest_level;
 | |
| 	WARN_ON(p->nodes[0] != NULL);
 | |
| 	ASSERT(!p->nowait);
 | |
| 
 | |
| 	if (p->search_commit_root) {
 | |
| 		BUG_ON(time_seq);
 | |
| 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	b = btrfs_get_old_root(root, time_seq);
 | |
| 	if (!b) {
 | |
| 		ret = -EIO;
 | |
| 		goto done;
 | |
| 	}
 | |
| 	level = btrfs_header_level(b);
 | |
| 	p->locks[level] = BTRFS_READ_LOCK;
 | |
| 
 | |
| 	while (b) {
 | |
| 		int dec = 0;
 | |
| 
 | |
| 		level = btrfs_header_level(b);
 | |
| 		p->nodes[level] = b;
 | |
| 
 | |
| 		/*
 | |
| 		 * we have a lock on b and as long as we aren't changing
 | |
| 		 * the tree, there is no way to for the items in b to change.
 | |
| 		 * It is safe to drop the lock on our parent before we
 | |
| 		 * go through the expensive btree search on b.
 | |
| 		 */
 | |
| 		btrfs_unlock_up_safe(p, level + 1);
 | |
| 
 | |
| 		ret = btrfs_bin_search(b, 0, key, &slot);
 | |
| 		if (ret < 0)
 | |
| 			goto done;
 | |
| 
 | |
| 		if (level == 0) {
 | |
| 			p->slots[level] = slot;
 | |
| 			unlock_up(p, level, lowest_unlock, 0, NULL);
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		if (ret && slot > 0) {
 | |
| 			dec = 1;
 | |
| 			slot--;
 | |
| 		}
 | |
| 		p->slots[level] = slot;
 | |
| 		unlock_up(p, level, lowest_unlock, 0, NULL);
 | |
| 
 | |
| 		if (level == lowest_level) {
 | |
| 			if (dec)
 | |
| 				p->slots[level]++;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		err = read_block_for_search(root, p, &b, slot, key);
 | |
| 		if (err == -EAGAIN && !p->nowait)
 | |
| 			goto again;
 | |
| 		if (err) {
 | |
| 			ret = err;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		level = btrfs_header_level(b);
 | |
| 		btrfs_tree_read_lock(b);
 | |
| 		b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
 | |
| 		if (!b) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		p->locks[level] = BTRFS_READ_LOCK;
 | |
| 		p->nodes[level] = b;
 | |
| 	}
 | |
| 	ret = 1;
 | |
| done:
 | |
| 	if (ret < 0)
 | |
| 		btrfs_release_path(p);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search the tree again to find a leaf with smaller keys.
 | |
|  * Returns 0 if it found something.
 | |
|  * Returns 1 if there are no smaller keys.
 | |
|  * Returns < 0 on error.
 | |
|  *
 | |
|  * This may release the path, and so you may lose any locks held at the
 | |
|  * time you call it.
 | |
|  */
 | |
| static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key orig_key;
 | |
| 	struct btrfs_disk_key found_key;
 | |
| 	int ret;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
 | |
| 	orig_key = key;
 | |
| 
 | |
| 	if (key.offset > 0) {
 | |
| 		key.offset--;
 | |
| 	} else if (key.type > 0) {
 | |
| 		key.type--;
 | |
| 		key.offset = (u64)-1;
 | |
| 	} else if (key.objectid > 0) {
 | |
| 		key.objectid--;
 | |
| 		key.type = (u8)-1;
 | |
| 		key.offset = (u64)-1;
 | |
| 	} else {
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret <= 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
 | |
| 	 * before releasing the path and calling btrfs_search_slot(), we now may
 | |
| 	 * be in a slot pointing to the same original key - this can happen if
 | |
| 	 * after we released the path, one of more items were moved from a
 | |
| 	 * sibling leaf into the front of the leaf we had due to an insertion
 | |
| 	 * (see push_leaf_right()).
 | |
| 	 * If we hit this case and our slot is > 0 and just decrement the slot
 | |
| 	 * so that the caller does not process the same key again, which may or
 | |
| 	 * may not break the caller, depending on its logic.
 | |
| 	 */
 | |
| 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
 | |
| 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
 | |
| 		ret = btrfs_comp_keys(&found_key, &orig_key);
 | |
| 		if (ret == 0) {
 | |
| 			if (path->slots[0] > 0) {
 | |
| 				path->slots[0]--;
 | |
| 				return 0;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * At slot 0, same key as before, it means orig_key is
 | |
| 			 * the lowest, leftmost, key in the tree. We're done.
 | |
| 			 */
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_item_key(path->nodes[0], &found_key, 0);
 | |
| 	ret = btrfs_comp_keys(&found_key, &key);
 | |
| 	/*
 | |
| 	 * We might have had an item with the previous key in the tree right
 | |
| 	 * before we released our path. And after we released our path, that
 | |
| 	 * item might have been pushed to the first slot (0) of the leaf we
 | |
| 	 * were holding due to a tree balance. Alternatively, an item with the
 | |
| 	 * previous key can exist as the only element of a leaf (big fat item).
 | |
| 	 * Therefore account for these 2 cases, so that our callers (like
 | |
| 	 * btrfs_previous_item) don't miss an existing item with a key matching
 | |
| 	 * the previous key we computed above.
 | |
| 	 */
 | |
| 	if (ret <= 0)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to use instead of search slot if no exact match is needed but
 | |
|  * instead the next or previous item should be returned.
 | |
|  * When find_higher is true, the next higher item is returned, the next lower
 | |
|  * otherwise.
 | |
|  * When return_any and find_higher are both true, and no higher item is found,
 | |
|  * return the next lower instead.
 | |
|  * When return_any is true and find_higher is false, and no lower item is found,
 | |
|  * return the next higher instead.
 | |
|  * It returns 0 if any item is found, 1 if none is found (tree empty), and
 | |
|  * < 0 on error
 | |
|  */
 | |
| int btrfs_search_slot_for_read(struct btrfs_root *root,
 | |
| 			       const struct btrfs_key *key,
 | |
| 			       struct btrfs_path *p, int find_higher,
 | |
| 			       int return_any)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct extent_buffer *leaf;
 | |
| 
 | |
| again:
 | |
| 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
 | |
| 	if (ret <= 0)
 | |
| 		return ret;
 | |
| 	/*
 | |
| 	 * a return value of 1 means the path is at the position where the
 | |
| 	 * item should be inserted. Normally this is the next bigger item,
 | |
| 	 * but in case the previous item is the last in a leaf, path points
 | |
| 	 * to the first free slot in the previous leaf, i.e. at an invalid
 | |
| 	 * item.
 | |
| 	 */
 | |
| 	leaf = p->nodes[0];
 | |
| 
 | |
| 	if (find_higher) {
 | |
| 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, p);
 | |
| 			if (ret <= 0)
 | |
| 				return ret;
 | |
| 			if (!return_any)
 | |
| 				return 1;
 | |
| 			/*
 | |
| 			 * no higher item found, return the next
 | |
| 			 * lower instead
 | |
| 			 */
 | |
| 			return_any = 0;
 | |
| 			find_higher = 0;
 | |
| 			btrfs_release_path(p);
 | |
| 			goto again;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (p->slots[0] == 0) {
 | |
| 			ret = btrfs_prev_leaf(root, p);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			if (!ret) {
 | |
| 				leaf = p->nodes[0];
 | |
| 				if (p->slots[0] == btrfs_header_nritems(leaf))
 | |
| 					p->slots[0]--;
 | |
| 				return 0;
 | |
| 			}
 | |
| 			if (!return_any)
 | |
| 				return 1;
 | |
| 			/*
 | |
| 			 * no lower item found, return the next
 | |
| 			 * higher instead
 | |
| 			 */
 | |
| 			return_any = 0;
 | |
| 			find_higher = 1;
 | |
| 			btrfs_release_path(p);
 | |
| 			goto again;
 | |
| 		} else {
 | |
| 			--p->slots[0];
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Execute search and call btrfs_previous_item to traverse backwards if the item
 | |
|  * was not found.
 | |
|  *
 | |
|  * Return 0 if found, 1 if not found and < 0 if error.
 | |
|  */
 | |
| int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
 | |
| 			   struct btrfs_path *path)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | |
| 	if (ret > 0)
 | |
| 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search for a valid slot for the given path.
 | |
|  *
 | |
|  * @root:	The root node of the tree.
 | |
|  * @key:	Will contain a valid item if found.
 | |
|  * @path:	The starting point to validate the slot.
 | |
|  *
 | |
|  * Return: 0  if the item is valid
 | |
|  *         1  if not found
 | |
|  *         <0 if error.
 | |
|  */
 | |
| int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
 | |
| 			      struct btrfs_path *path)
 | |
| {
 | |
| 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * adjust the pointers going up the tree, starting at level
 | |
|  * making sure the right key of each node is points to 'key'.
 | |
|  * This is used after shifting pointers to the left, so it stops
 | |
|  * fixing up pointers when a given leaf/node is not in slot 0 of the
 | |
|  * higher levels
 | |
|  *
 | |
|  */
 | |
| static void fixup_low_keys(struct btrfs_trans_handle *trans,
 | |
| 			   const struct btrfs_path *path,
 | |
| 			   const struct btrfs_disk_key *key, int level)
 | |
| {
 | |
| 	int i;
 | |
| 	struct extent_buffer *t;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
 | |
| 		int tslot = path->slots[i];
 | |
| 
 | |
| 		if (!path->nodes[i])
 | |
| 			break;
 | |
| 		t = path->nodes[i];
 | |
| 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
 | |
| 						    BTRFS_MOD_LOG_KEY_REPLACE);
 | |
| 		BUG_ON(ret < 0);
 | |
| 		btrfs_set_node_key(t, key, tslot);
 | |
| 		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
 | |
| 		if (tslot != 0)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update item key.
 | |
|  *
 | |
|  * This function isn't completely safe. It's the caller's responsibility
 | |
|  * that the new key won't break the order
 | |
|  */
 | |
| void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
 | |
| 			     const struct btrfs_path *path,
 | |
| 			     const struct btrfs_key *new_key)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int slot;
 | |
| 
 | |
| 	eb = path->nodes[0];
 | |
| 	slot = path->slots[0];
 | |
| 	if (slot > 0) {
 | |
| 		btrfs_item_key(eb, &disk_key, slot - 1);
 | |
| 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
 | |
| 			btrfs_print_leaf(eb);
 | |
| 			btrfs_crit(fs_info,
 | |
| 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
 | |
| 				   slot, btrfs_disk_key_objectid(&disk_key),
 | |
| 				   btrfs_disk_key_type(&disk_key),
 | |
| 				   btrfs_disk_key_offset(&disk_key),
 | |
| 				   new_key->objectid, new_key->type,
 | |
| 				   new_key->offset);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 	if (slot < btrfs_header_nritems(eb) - 1) {
 | |
| 		btrfs_item_key(eb, &disk_key, slot + 1);
 | |
| 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
 | |
| 			btrfs_print_leaf(eb);
 | |
| 			btrfs_crit(fs_info,
 | |
| 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
 | |
| 				   slot, btrfs_disk_key_objectid(&disk_key),
 | |
| 				   btrfs_disk_key_type(&disk_key),
 | |
| 				   btrfs_disk_key_offset(&disk_key),
 | |
| 				   new_key->objectid, new_key->type,
 | |
| 				   new_key->offset);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_cpu_key_to_disk(&disk_key, new_key);
 | |
| 	btrfs_set_item_key(eb, &disk_key, slot);
 | |
| 	btrfs_mark_buffer_dirty(trans, eb);
 | |
| 	if (slot == 0)
 | |
| 		fixup_low_keys(trans, path, &disk_key, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check key order of two sibling extent buffers.
 | |
|  *
 | |
|  * Return true if something is wrong.
 | |
|  * Return false if everything is fine.
 | |
|  *
 | |
|  * Tree-checker only works inside one tree block, thus the following
 | |
|  * corruption can not be detected by tree-checker:
 | |
|  *
 | |
|  * Leaf @left			| Leaf @right
 | |
|  * --------------------------------------------------------------
 | |
|  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
 | |
|  *
 | |
|  * Key f6 in leaf @left itself is valid, but not valid when the next
 | |
|  * key in leaf @right is 7.
 | |
|  * This can only be checked at tree block merge time.
 | |
|  * And since tree checker has ensured all key order in each tree block
 | |
|  * is correct, we only need to bother the last key of @left and the first
 | |
|  * key of @right.
 | |
|  */
 | |
| static bool check_sibling_keys(const struct extent_buffer *left,
 | |
| 			       const struct extent_buffer *right)
 | |
| {
 | |
| 	struct btrfs_key left_last;
 | |
| 	struct btrfs_key right_first;
 | |
| 	int level = btrfs_header_level(left);
 | |
| 	int nr_left = btrfs_header_nritems(left);
 | |
| 	int nr_right = btrfs_header_nritems(right);
 | |
| 
 | |
| 	/* No key to check in one of the tree blocks */
 | |
| 	if (!nr_left || !nr_right)
 | |
| 		return false;
 | |
| 
 | |
| 	if (level) {
 | |
| 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
 | |
| 		btrfs_node_key_to_cpu(right, &right_first, 0);
 | |
| 	} else {
 | |
| 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
 | |
| 		btrfs_item_key_to_cpu(right, &right_first, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
 | |
| 		btrfs_crit(left->fs_info, "left extent buffer:");
 | |
| 		btrfs_print_tree(left, false);
 | |
| 		btrfs_crit(left->fs_info, "right extent buffer:");
 | |
| 		btrfs_print_tree(right, false);
 | |
| 		btrfs_crit(left->fs_info,
 | |
| "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
 | |
| 			   left_last.objectid, left_last.type,
 | |
| 			   left_last.offset, right_first.objectid,
 | |
| 			   right_first.type, right_first.offset);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * try to push data from one node into the next node left in the
 | |
|  * tree.
 | |
|  *
 | |
|  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 | |
|  * error, and > 0 if there was no room in the left hand block.
 | |
|  */
 | |
| static int push_node_left(struct btrfs_trans_handle *trans,
 | |
| 			  struct extent_buffer *dst,
 | |
| 			  struct extent_buffer *src, int empty)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	int push_items = 0;
 | |
| 	int src_nritems;
 | |
| 	int dst_nritems;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	src_nritems = btrfs_header_nritems(src);
 | |
| 	dst_nritems = btrfs_header_nritems(dst);
 | |
| 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
 | |
| 	WARN_ON(btrfs_header_generation(src) != trans->transid);
 | |
| 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
 | |
| 
 | |
| 	if (!empty && src_nritems <= 8)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (push_items <= 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (empty) {
 | |
| 		push_items = min(src_nritems, push_items);
 | |
| 		if (push_items < src_nritems) {
 | |
| 			/* leave at least 8 pointers in the node if
 | |
| 			 * we aren't going to empty it
 | |
| 			 */
 | |
| 			if (src_nritems - push_items < 8) {
 | |
| 				if (push_items <= 8)
 | |
| 					return 1;
 | |
| 				push_items -= 8;
 | |
| 			}
 | |
| 		}
 | |
| 	} else
 | |
| 		push_items = min(src_nritems - 8, push_items);
 | |
| 
 | |
| 	/* dst is the left eb, src is the middle eb */
 | |
| 	if (check_sibling_keys(dst, src)) {
 | |
| 		ret = -EUCLEAN;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	copy_extent_buffer(dst, src,
 | |
| 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
 | |
| 			   btrfs_node_key_ptr_offset(src, 0),
 | |
| 			   push_items * sizeof(struct btrfs_key_ptr));
 | |
| 
 | |
| 	if (push_items < src_nritems) {
 | |
| 		/*
 | |
| 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
 | |
| 		 * don't need to do an explicit tree mod log operation for it.
 | |
| 		 */
 | |
| 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
 | |
| 				      btrfs_node_key_ptr_offset(src, push_items),
 | |
| 				      (src_nritems - push_items) *
 | |
| 				      sizeof(struct btrfs_key_ptr));
 | |
| 	}
 | |
| 	btrfs_set_header_nritems(src, src_nritems - push_items);
 | |
| 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
 | |
| 	btrfs_mark_buffer_dirty(trans, src);
 | |
| 	btrfs_mark_buffer_dirty(trans, dst);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * try to push data from one node into the next node right in the
 | |
|  * tree.
 | |
|  *
 | |
|  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 | |
|  * error, and > 0 if there was no room in the right hand block.
 | |
|  *
 | |
|  * this will  only push up to 1/2 the contents of the left node over
 | |
|  */
 | |
| static int balance_node_right(struct btrfs_trans_handle *trans,
 | |
| 			      struct extent_buffer *dst,
 | |
| 			      struct extent_buffer *src)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	int push_items = 0;
 | |
| 	int max_push;
 | |
| 	int src_nritems;
 | |
| 	int dst_nritems;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON(btrfs_header_generation(src) != trans->transid);
 | |
| 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
 | |
| 
 | |
| 	src_nritems = btrfs_header_nritems(src);
 | |
| 	dst_nritems = btrfs_header_nritems(dst);
 | |
| 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
 | |
| 	if (push_items <= 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (src_nritems < 4)
 | |
| 		return 1;
 | |
| 
 | |
| 	max_push = src_nritems / 2 + 1;
 | |
| 	/* don't try to empty the node */
 | |
| 	if (max_push >= src_nritems)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (max_push < push_items)
 | |
| 		push_items = max_push;
 | |
| 
 | |
| 	/* dst is the right eb, src is the middle eb */
 | |
| 	if (check_sibling_keys(src, dst)) {
 | |
| 		ret = -EUCLEAN;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
 | |
| 	 * need to do an explicit tree mod log operation for it.
 | |
| 	 */
 | |
| 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
 | |
| 				      btrfs_node_key_ptr_offset(dst, 0),
 | |
| 				      (dst_nritems) *
 | |
| 				      sizeof(struct btrfs_key_ptr));
 | |
| 
 | |
| 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
 | |
| 					 push_items);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	copy_extent_buffer(dst, src,
 | |
| 			   btrfs_node_key_ptr_offset(dst, 0),
 | |
| 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
 | |
| 			   push_items * sizeof(struct btrfs_key_ptr));
 | |
| 
 | |
| 	btrfs_set_header_nritems(src, src_nritems - push_items);
 | |
| 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(trans, src);
 | |
| 	btrfs_mark_buffer_dirty(trans, dst);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to insert a new root level in the tree.
 | |
|  * A new node is allocated, and a single item is inserted to
 | |
|  * point to the existing root
 | |
|  *
 | |
|  * returns zero on success or < 0 on failure.
 | |
|  */
 | |
| static noinline int insert_new_root(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root,
 | |
| 			   struct btrfs_path *path, int level)
 | |
| {
 | |
| 	u64 lower_gen;
 | |
| 	struct extent_buffer *lower;
 | |
| 	struct extent_buffer *c;
 | |
| 	struct extent_buffer *old;
 | |
| 	struct btrfs_disk_key lower_key;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(path->nodes[level]);
 | |
| 	BUG_ON(path->nodes[level-1] != root->node);
 | |
| 
 | |
| 	lower = path->nodes[level-1];
 | |
| 	if (level == 1)
 | |
| 		btrfs_item_key(lower, &lower_key, 0);
 | |
| 	else
 | |
| 		btrfs_node_key(lower, &lower_key, 0);
 | |
| 
 | |
| 	c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
 | |
| 				   &lower_key, level, root->node->start, 0,
 | |
| 				   0, BTRFS_NESTING_NEW_ROOT);
 | |
| 	if (IS_ERR(c))
 | |
| 		return PTR_ERR(c);
 | |
| 
 | |
| 	root_add_used_bytes(root);
 | |
| 
 | |
| 	btrfs_set_header_nritems(c, 1);
 | |
| 	btrfs_set_node_key(c, &lower_key, 0);
 | |
| 	btrfs_set_node_blockptr(c, 0, lower->start);
 | |
| 	lower_gen = btrfs_header_generation(lower);
 | |
| 	WARN_ON(lower_gen != trans->transid);
 | |
| 
 | |
| 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(trans, c);
 | |
| 
 | |
| 	old = root->node;
 | |
| 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
 | |
| 	if (ret < 0) {
 | |
| 		int ret2;
 | |
| 
 | |
| 		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
 | |
| 		if (ret2 < 0)
 | |
| 			btrfs_abort_transaction(trans, ret2);
 | |
| 		btrfs_tree_unlock(c);
 | |
| 		free_extent_buffer(c);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	rcu_assign_pointer(root->node, c);
 | |
| 
 | |
| 	/* the super has an extra ref to root->node */
 | |
| 	free_extent_buffer(old);
 | |
| 
 | |
| 	add_root_to_dirty_list(root);
 | |
| 	atomic_inc(&c->refs);
 | |
| 	path->nodes[level] = c;
 | |
| 	path->locks[level] = BTRFS_WRITE_LOCK;
 | |
| 	path->slots[level] = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * worker function to insert a single pointer in a node.
 | |
|  * the node should have enough room for the pointer already
 | |
|  *
 | |
|  * slot and level indicate where you want the key to go, and
 | |
|  * blocknr is the block the key points to.
 | |
|  */
 | |
| static int insert_ptr(struct btrfs_trans_handle *trans,
 | |
| 		      const struct btrfs_path *path,
 | |
| 		      const struct btrfs_disk_key *key, u64 bytenr,
 | |
| 		      int slot, int level)
 | |
| {
 | |
| 	struct extent_buffer *lower;
 | |
| 	int nritems;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(!path->nodes[level]);
 | |
| 	btrfs_assert_tree_write_locked(path->nodes[level]);
 | |
| 	lower = path->nodes[level];
 | |
| 	nritems = btrfs_header_nritems(lower);
 | |
| 	BUG_ON(slot > nritems);
 | |
| 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
 | |
| 	if (slot != nritems) {
 | |
| 		if (level) {
 | |
| 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
 | |
| 					slot, nritems - slot);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 		memmove_extent_buffer(lower,
 | |
| 			      btrfs_node_key_ptr_offset(lower, slot + 1),
 | |
| 			      btrfs_node_key_ptr_offset(lower, slot),
 | |
| 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
 | |
| 	}
 | |
| 	if (level) {
 | |
| 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
 | |
| 						    BTRFS_MOD_LOG_KEY_ADD);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_set_node_key(lower, key, slot);
 | |
| 	btrfs_set_node_blockptr(lower, slot, bytenr);
 | |
| 	WARN_ON(trans->transid == 0);
 | |
| 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
 | |
| 	btrfs_set_header_nritems(lower, nritems + 1);
 | |
| 	btrfs_mark_buffer_dirty(trans, lower);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * split the node at the specified level in path in two.
 | |
|  * The path is corrected to point to the appropriate node after the split
 | |
|  *
 | |
|  * Before splitting this tries to make some room in the node by pushing
 | |
|  * left and right, if either one works, it returns right away.
 | |
|  *
 | |
|  * returns 0 on success and < 0 on failure
 | |
|  */
 | |
| static noinline int split_node(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root,
 | |
| 			       struct btrfs_path *path, int level)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_buffer *c;
 | |
| 	struct extent_buffer *split;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	int mid;
 | |
| 	int ret;
 | |
| 	u32 c_nritems;
 | |
| 
 | |
| 	c = path->nodes[level];
 | |
| 	WARN_ON(btrfs_header_generation(c) != trans->transid);
 | |
| 	if (c == root->node) {
 | |
| 		/*
 | |
| 		 * trying to split the root, lets make a new one
 | |
| 		 *
 | |
| 		 * tree mod log: We don't log_removal old root in
 | |
| 		 * insert_new_root, because that root buffer will be kept as a
 | |
| 		 * normal node. We are going to log removal of half of the
 | |
| 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
 | |
| 		 * holding a tree lock on the buffer, which is why we cannot
 | |
| 		 * race with other tree_mod_log users.
 | |
| 		 */
 | |
| 		ret = insert_new_root(trans, root, path, level + 1);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} else {
 | |
| 		ret = push_nodes_for_insert(trans, root, path, level);
 | |
| 		c = path->nodes[level];
 | |
| 		if (!ret && btrfs_header_nritems(c) <
 | |
| 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
 | |
| 			return 0;
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	c_nritems = btrfs_header_nritems(c);
 | |
| 	mid = (c_nritems + 1) / 2;
 | |
| 	btrfs_node_key(c, &disk_key, mid);
 | |
| 
 | |
| 	split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
 | |
| 				       &disk_key, level, c->start, 0,
 | |
| 				       0, BTRFS_NESTING_SPLIT);
 | |
| 	if (IS_ERR(split))
 | |
| 		return PTR_ERR(split);
 | |
| 
 | |
| 	root_add_used_bytes(root);
 | |
| 	ASSERT(btrfs_header_level(c) == level);
 | |
| 
 | |
| 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
 | |
| 	if (ret) {
 | |
| 		btrfs_tree_unlock(split);
 | |
| 		free_extent_buffer(split);
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	copy_extent_buffer(split, c,
 | |
| 			   btrfs_node_key_ptr_offset(split, 0),
 | |
| 			   btrfs_node_key_ptr_offset(c, mid),
 | |
| 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
 | |
| 	btrfs_set_header_nritems(split, c_nritems - mid);
 | |
| 	btrfs_set_header_nritems(c, mid);
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(trans, c);
 | |
| 	btrfs_mark_buffer_dirty(trans, split);
 | |
| 
 | |
| 	ret = insert_ptr(trans, path, &disk_key, split->start,
 | |
| 			 path->slots[level + 1] + 1, level + 1);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_tree_unlock(split);
 | |
| 		free_extent_buffer(split);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (path->slots[level] >= mid) {
 | |
| 		path->slots[level] -= mid;
 | |
| 		btrfs_tree_unlock(c);
 | |
| 		free_extent_buffer(c);
 | |
| 		path->nodes[level] = split;
 | |
| 		path->slots[level + 1] += 1;
 | |
| 	} else {
 | |
| 		btrfs_tree_unlock(split);
 | |
| 		free_extent_buffer(split);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * how many bytes are required to store the items in a leaf.  start
 | |
|  * and nr indicate which items in the leaf to check.  This totals up the
 | |
|  * space used both by the item structs and the item data
 | |
|  */
 | |
| static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
 | |
| {
 | |
| 	int data_len;
 | |
| 	int nritems = btrfs_header_nritems(l);
 | |
| 	int end = min(nritems, start + nr) - 1;
 | |
| 
 | |
| 	if (!nr)
 | |
| 		return 0;
 | |
| 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
 | |
| 	data_len = data_len - btrfs_item_offset(l, end);
 | |
| 	data_len += sizeof(struct btrfs_item) * nr;
 | |
| 	WARN_ON(data_len < 0);
 | |
| 	return data_len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The space between the end of the leaf items and
 | |
|  * the start of the leaf data.  IOW, how much room
 | |
|  * the leaf has left for both items and data
 | |
|  */
 | |
| int btrfs_leaf_free_space(const struct extent_buffer *leaf)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = leaf->fs_info;
 | |
| 	int nritems = btrfs_header_nritems(leaf);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_crit(fs_info,
 | |
| 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
 | |
| 			   ret,
 | |
| 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
 | |
| 			   leaf_space_used(leaf, 0, nritems), nritems);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * min slot controls the lowest index we're willing to push to the
 | |
|  * right.  We'll push up to and including min_slot, but no lower
 | |
|  */
 | |
| static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      int data_size, int empty,
 | |
| 				      struct extent_buffer *right,
 | |
| 				      int free_space, u32 left_nritems,
 | |
| 				      u32 min_slot)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = right->fs_info;
 | |
| 	struct extent_buffer *left = path->nodes[0];
 | |
| 	struct extent_buffer *upper = path->nodes[1];
 | |
| 	struct btrfs_map_token token;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	int slot;
 | |
| 	u32 i;
 | |
| 	int push_space = 0;
 | |
| 	int push_items = 0;
 | |
| 	u32 nr;
 | |
| 	u32 right_nritems;
 | |
| 	u32 data_end;
 | |
| 	u32 this_item_size;
 | |
| 
 | |
| 	if (empty)
 | |
| 		nr = 0;
 | |
| 	else
 | |
| 		nr = max_t(u32, 1, min_slot);
 | |
| 
 | |
| 	if (path->slots[0] >= left_nritems)
 | |
| 		push_space += data_size;
 | |
| 
 | |
| 	slot = path->slots[1];
 | |
| 	i = left_nritems - 1;
 | |
| 	while (i >= nr) {
 | |
| 		if (!empty && push_items > 0) {
 | |
| 			if (path->slots[0] > i)
 | |
| 				break;
 | |
| 			if (path->slots[0] == i) {
 | |
| 				int space = btrfs_leaf_free_space(left);
 | |
| 
 | |
| 				if (space + push_space * 2 > free_space)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (path->slots[0] == i)
 | |
| 			push_space += data_size;
 | |
| 
 | |
| 		this_item_size = btrfs_item_size(left, i);
 | |
| 		if (this_item_size + sizeof(struct btrfs_item) +
 | |
| 		    push_space > free_space)
 | |
| 			break;
 | |
| 
 | |
| 		push_items++;
 | |
| 		push_space += this_item_size + sizeof(struct btrfs_item);
 | |
| 		if (i == 0)
 | |
| 			break;
 | |
| 		i--;
 | |
| 	}
 | |
| 
 | |
| 	if (push_items == 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	WARN_ON(!empty && push_items == left_nritems);
 | |
| 
 | |
| 	/* push left to right */
 | |
| 	right_nritems = btrfs_header_nritems(right);
 | |
| 
 | |
| 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
 | |
| 	push_space -= leaf_data_end(left);
 | |
| 
 | |
| 	/* make room in the right data area */
 | |
| 	data_end = leaf_data_end(right);
 | |
| 	memmove_leaf_data(right, data_end - push_space, data_end,
 | |
| 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
 | |
| 
 | |
| 	/* copy from the left data area */
 | |
| 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
 | |
| 		       leaf_data_end(left), push_space);
 | |
| 
 | |
| 	memmove_leaf_items(right, push_items, 0, right_nritems);
 | |
| 
 | |
| 	/* copy the items from left to right */
 | |
| 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
 | |
| 
 | |
| 	/* update the item pointers */
 | |
| 	btrfs_init_map_token(&token, right);
 | |
| 	right_nritems += push_items;
 | |
| 	btrfs_set_header_nritems(right, right_nritems);
 | |
| 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
 | |
| 	for (i = 0; i < right_nritems; i++) {
 | |
| 		push_space -= btrfs_token_item_size(&token, i);
 | |
| 		btrfs_set_token_item_offset(&token, i, push_space);
 | |
| 	}
 | |
| 
 | |
| 	left_nritems -= push_items;
 | |
| 	btrfs_set_header_nritems(left, left_nritems);
 | |
| 
 | |
| 	if (left_nritems)
 | |
| 		btrfs_mark_buffer_dirty(trans, left);
 | |
| 	else
 | |
| 		btrfs_clear_buffer_dirty(trans, left);
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(trans, right);
 | |
| 
 | |
| 	btrfs_item_key(right, &disk_key, 0);
 | |
| 	btrfs_set_node_key(upper, &disk_key, slot + 1);
 | |
| 	btrfs_mark_buffer_dirty(trans, upper);
 | |
| 
 | |
| 	/* then fixup the leaf pointer in the path */
 | |
| 	if (path->slots[0] >= left_nritems) {
 | |
| 		path->slots[0] -= left_nritems;
 | |
| 		if (btrfs_header_nritems(path->nodes[0]) == 0)
 | |
| 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
 | |
| 		btrfs_tree_unlock(path->nodes[0]);
 | |
| 		free_extent_buffer(path->nodes[0]);
 | |
| 		path->nodes[0] = right;
 | |
| 		path->slots[1] += 1;
 | |
| 	} else {
 | |
| 		btrfs_tree_unlock(right);
 | |
| 		free_extent_buffer(right);
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| out_unlock:
 | |
| 	btrfs_tree_unlock(right);
 | |
| 	free_extent_buffer(right);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * push some data in the path leaf to the right, trying to free up at
 | |
|  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 | |
|  *
 | |
|  * returns 1 if the push failed because the other node didn't have enough
 | |
|  * room, 0 if everything worked out and < 0 if there were major errors.
 | |
|  *
 | |
|  * this will push starting from min_slot to the end of the leaf.  It won't
 | |
|  * push any slot lower than min_slot
 | |
|  */
 | |
| static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
 | |
| 			   *root, struct btrfs_path *path,
 | |
| 			   int min_data_size, int data_size,
 | |
| 			   int empty, u32 min_slot)
 | |
| {
 | |
| 	struct extent_buffer *left = path->nodes[0];
 | |
| 	struct extent_buffer *right;
 | |
| 	struct extent_buffer *upper;
 | |
| 	int slot;
 | |
| 	int free_space;
 | |
| 	u32 left_nritems;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!path->nodes[1])
 | |
| 		return 1;
 | |
| 
 | |
| 	slot = path->slots[1];
 | |
| 	upper = path->nodes[1];
 | |
| 	if (slot >= btrfs_header_nritems(upper) - 1)
 | |
| 		return 1;
 | |
| 
 | |
| 	btrfs_assert_tree_write_locked(path->nodes[1]);
 | |
| 
 | |
| 	right = btrfs_read_node_slot(upper, slot + 1);
 | |
| 	if (IS_ERR(right))
 | |
| 		return PTR_ERR(right);
 | |
| 
 | |
| 	btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
 | |
| 
 | |
| 	free_space = btrfs_leaf_free_space(right);
 | |
| 	if (free_space < data_size)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ret = btrfs_cow_block(trans, root, right, upper,
 | |
| 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	left_nritems = btrfs_header_nritems(left);
 | |
| 	if (left_nritems == 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (check_sibling_keys(left, right)) {
 | |
| 		ret = -EUCLEAN;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		btrfs_tree_unlock(right);
 | |
| 		free_extent_buffer(right);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	if (path->slots[0] == left_nritems && !empty) {
 | |
| 		/* Key greater than all keys in the leaf, right neighbor has
 | |
| 		 * enough room for it and we're not emptying our leaf to delete
 | |
| 		 * it, therefore use right neighbor to insert the new item and
 | |
| 		 * no need to touch/dirty our left leaf. */
 | |
| 		btrfs_tree_unlock(left);
 | |
| 		free_extent_buffer(left);
 | |
| 		path->nodes[0] = right;
 | |
| 		path->slots[0] = 0;
 | |
| 		path->slots[1]++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return __push_leaf_right(trans, path, min_data_size, empty, right,
 | |
| 				 free_space, left_nritems, min_slot);
 | |
| out_unlock:
 | |
| 	btrfs_tree_unlock(right);
 | |
| 	free_extent_buffer(right);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * push some data in the path leaf to the left, trying to free up at
 | |
|  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 | |
|  *
 | |
|  * max_slot can put a limit on how far into the leaf we'll push items.  The
 | |
|  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 | |
|  * items
 | |
|  */
 | |
| static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_path *path, int data_size,
 | |
| 				     int empty, struct extent_buffer *left,
 | |
| 				     int free_space, u32 right_nritems,
 | |
| 				     u32 max_slot)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = left->fs_info;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct extent_buffer *right = path->nodes[0];
 | |
| 	int i;
 | |
| 	int push_space = 0;
 | |
| 	int push_items = 0;
 | |
| 	u32 old_left_nritems;
 | |
| 	u32 nr;
 | |
| 	int ret = 0;
 | |
| 	u32 this_item_size;
 | |
| 	u32 old_left_item_size;
 | |
| 	struct btrfs_map_token token;
 | |
| 
 | |
| 	if (empty)
 | |
| 		nr = min(right_nritems, max_slot);
 | |
| 	else
 | |
| 		nr = min(right_nritems - 1, max_slot);
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		if (!empty && push_items > 0) {
 | |
| 			if (path->slots[0] < i)
 | |
| 				break;
 | |
| 			if (path->slots[0] == i) {
 | |
| 				int space = btrfs_leaf_free_space(right);
 | |
| 
 | |
| 				if (space + push_space * 2 > free_space)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (path->slots[0] == i)
 | |
| 			push_space += data_size;
 | |
| 
 | |
| 		this_item_size = btrfs_item_size(right, i);
 | |
| 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
 | |
| 		    free_space)
 | |
| 			break;
 | |
| 
 | |
| 		push_items++;
 | |
| 		push_space += this_item_size + sizeof(struct btrfs_item);
 | |
| 	}
 | |
| 
 | |
| 	if (push_items == 0) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
 | |
| 
 | |
| 	/* push data from right to left */
 | |
| 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
 | |
| 
 | |
| 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
 | |
| 		     btrfs_item_offset(right, push_items - 1);
 | |
| 
 | |
| 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
 | |
| 		       btrfs_item_offset(right, push_items - 1), push_space);
 | |
| 	old_left_nritems = btrfs_header_nritems(left);
 | |
| 	BUG_ON(old_left_nritems <= 0);
 | |
| 
 | |
| 	btrfs_init_map_token(&token, left);
 | |
| 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
 | |
| 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
 | |
| 		u32 ioff;
 | |
| 
 | |
| 		ioff = btrfs_token_item_offset(&token, i);
 | |
| 		btrfs_set_token_item_offset(&token, i,
 | |
| 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
 | |
| 	}
 | |
| 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
 | |
| 
 | |
| 	/* fixup right node */
 | |
| 	if (push_items > right_nritems)
 | |
| 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
 | |
| 		       right_nritems);
 | |
| 
 | |
| 	if (push_items < right_nritems) {
 | |
| 		push_space = btrfs_item_offset(right, push_items - 1) -
 | |
| 						  leaf_data_end(right);
 | |
| 		memmove_leaf_data(right,
 | |
| 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
 | |
| 				  leaf_data_end(right), push_space);
 | |
| 
 | |
| 		memmove_leaf_items(right, 0, push_items,
 | |
| 				   btrfs_header_nritems(right) - push_items);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_init_map_token(&token, right);
 | |
| 	right_nritems -= push_items;
 | |
| 	btrfs_set_header_nritems(right, right_nritems);
 | |
| 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
 | |
| 	for (i = 0; i < right_nritems; i++) {
 | |
| 		push_space = push_space - btrfs_token_item_size(&token, i);
 | |
| 		btrfs_set_token_item_offset(&token, i, push_space);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(trans, left);
 | |
| 	if (right_nritems)
 | |
| 		btrfs_mark_buffer_dirty(trans, right);
 | |
| 	else
 | |
| 		btrfs_clear_buffer_dirty(trans, right);
 | |
| 
 | |
| 	btrfs_item_key(right, &disk_key, 0);
 | |
| 	fixup_low_keys(trans, path, &disk_key, 1);
 | |
| 
 | |
| 	/* then fixup the leaf pointer in the path */
 | |
| 	if (path->slots[0] < push_items) {
 | |
| 		path->slots[0] += old_left_nritems;
 | |
| 		btrfs_tree_unlock(path->nodes[0]);
 | |
| 		free_extent_buffer(path->nodes[0]);
 | |
| 		path->nodes[0] = left;
 | |
| 		path->slots[1] -= 1;
 | |
| 	} else {
 | |
| 		btrfs_tree_unlock(left);
 | |
| 		free_extent_buffer(left);
 | |
| 		path->slots[0] -= push_items;
 | |
| 	}
 | |
| 	BUG_ON(path->slots[0] < 0);
 | |
| 	return ret;
 | |
| out:
 | |
| 	btrfs_tree_unlock(left);
 | |
| 	free_extent_buffer(left);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * push some data in the path leaf to the left, trying to free up at
 | |
|  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 | |
|  *
 | |
|  * max_slot can put a limit on how far into the leaf we'll push items.  The
 | |
|  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 | |
|  * items
 | |
|  */
 | |
| static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
 | |
| 			  *root, struct btrfs_path *path, int min_data_size,
 | |
| 			  int data_size, int empty, u32 max_slot)
 | |
| {
 | |
| 	struct extent_buffer *right = path->nodes[0];
 | |
| 	struct extent_buffer *left;
 | |
| 	int slot;
 | |
| 	int free_space;
 | |
| 	u32 right_nritems;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	slot = path->slots[1];
 | |
| 	if (slot == 0)
 | |
| 		return 1;
 | |
| 	if (!path->nodes[1])
 | |
| 		return 1;
 | |
| 
 | |
| 	right_nritems = btrfs_header_nritems(right);
 | |
| 	if (right_nritems == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	btrfs_assert_tree_write_locked(path->nodes[1]);
 | |
| 
 | |
| 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
 | |
| 	if (IS_ERR(left))
 | |
| 		return PTR_ERR(left);
 | |
| 
 | |
| 	btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
 | |
| 
 | |
| 	free_space = btrfs_leaf_free_space(left);
 | |
| 	if (free_space < data_size) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_cow_block(trans, root, left,
 | |
| 			      path->nodes[1], slot - 1, &left,
 | |
| 			      BTRFS_NESTING_LEFT_COW);
 | |
| 	if (ret) {
 | |
| 		/* we hit -ENOSPC, but it isn't fatal here */
 | |
| 		if (ret == -ENOSPC)
 | |
| 			ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (check_sibling_keys(left, right)) {
 | |
| 		ret = -EUCLEAN;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	return __push_leaf_left(trans, path, min_data_size, empty, left,
 | |
| 				free_space, right_nritems, max_slot);
 | |
| out:
 | |
| 	btrfs_tree_unlock(left);
 | |
| 	free_extent_buffer(left);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * split the path's leaf in two, making sure there is at least data_size
 | |
|  * available for the resulting leaf level of the path.
 | |
|  */
 | |
| static noinline int copy_for_split(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   struct extent_buffer *l,
 | |
| 				   struct extent_buffer *right,
 | |
| 				   int slot, int mid, int nritems)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	int data_copy_size;
 | |
| 	int rt_data_off;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct btrfs_map_token token;
 | |
| 
 | |
| 	nritems = nritems - mid;
 | |
| 	btrfs_set_header_nritems(right, nritems);
 | |
| 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
 | |
| 
 | |
| 	copy_leaf_items(right, l, 0, mid, nritems);
 | |
| 
 | |
| 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
 | |
| 		       leaf_data_end(l), data_copy_size);
 | |
| 
 | |
| 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
 | |
| 
 | |
| 	btrfs_init_map_token(&token, right);
 | |
| 	for (i = 0; i < nritems; i++) {
 | |
| 		u32 ioff;
 | |
| 
 | |
| 		ioff = btrfs_token_item_offset(&token, i);
 | |
| 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_header_nritems(l, mid);
 | |
| 	btrfs_item_key(right, &disk_key, 0);
 | |
| 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(trans, right);
 | |
| 	btrfs_mark_buffer_dirty(trans, l);
 | |
| 	BUG_ON(path->slots[0] != slot);
 | |
| 
 | |
| 	if (mid <= slot) {
 | |
| 		btrfs_tree_unlock(path->nodes[0]);
 | |
| 		free_extent_buffer(path->nodes[0]);
 | |
| 		path->nodes[0] = right;
 | |
| 		path->slots[0] -= mid;
 | |
| 		path->slots[1] += 1;
 | |
| 	} else {
 | |
| 		btrfs_tree_unlock(right);
 | |
| 		free_extent_buffer(right);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(path->slots[0] < 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double splits happen when we need to insert a big item in the middle
 | |
|  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 | |
|  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 | |
|  *          A                 B                 C
 | |
|  *
 | |
|  * We avoid this by trying to push the items on either side of our target
 | |
|  * into the adjacent leaves.  If all goes well we can avoid the double split
 | |
|  * completely.
 | |
|  */
 | |
| static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
 | |
| 					  struct btrfs_root *root,
 | |
| 					  struct btrfs_path *path,
 | |
| 					  int data_size)
 | |
| {
 | |
| 	int ret;
 | |
| 	int progress = 0;
 | |
| 	int slot;
 | |
| 	u32 nritems;
 | |
| 	int space_needed = data_size;
 | |
| 
 | |
| 	slot = path->slots[0];
 | |
| 	if (slot < btrfs_header_nritems(path->nodes[0]))
 | |
| 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
 | |
| 
 | |
| 	/*
 | |
| 	 * try to push all the items after our slot into the
 | |
| 	 * right leaf
 | |
| 	 */
 | |
| 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		progress++;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 	/*
 | |
| 	 * our goal is to get our slot at the start or end of a leaf.  If
 | |
| 	 * we've done so we're done
 | |
| 	 */
 | |
| 	if (path->slots[0] == 0 || path->slots[0] == nritems)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* try to push all the items before our slot into the next leaf */
 | |
| 	slot = path->slots[0];
 | |
| 	space_needed = data_size;
 | |
| 	if (slot > 0)
 | |
| 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
 | |
| 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		progress++;
 | |
| 
 | |
| 	if (progress)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * split the path's leaf in two, making sure there is at least data_size
 | |
|  * available for the resulting leaf level of the path.
 | |
|  *
 | |
|  * returns 0 if all went well and < 0 on failure.
 | |
|  */
 | |
| static noinline int split_leaf(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root,
 | |
| 			       const struct btrfs_key *ins_key,
 | |
| 			       struct btrfs_path *path, int data_size,
 | |
| 			       int extend)
 | |
| {
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct extent_buffer *l;
 | |
| 	u32 nritems;
 | |
| 	int mid;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *right;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 	int split;
 | |
| 	int num_doubles = 0;
 | |
| 	int tried_avoid_double = 0;
 | |
| 
 | |
| 	l = path->nodes[0];
 | |
| 	slot = path->slots[0];
 | |
| 	if (extend && data_size + btrfs_item_size(l, slot) +
 | |
| 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	/* first try to make some room by pushing left and right */
 | |
| 	if (data_size && path->nodes[1]) {
 | |
| 		int space_needed = data_size;
 | |
| 
 | |
| 		if (slot < btrfs_header_nritems(l))
 | |
| 			space_needed -= btrfs_leaf_free_space(l);
 | |
| 
 | |
| 		wret = push_leaf_right(trans, root, path, space_needed,
 | |
| 				       space_needed, 0, 0);
 | |
| 		if (wret < 0)
 | |
| 			return wret;
 | |
| 		if (wret) {
 | |
| 			space_needed = data_size;
 | |
| 			if (slot > 0)
 | |
| 				space_needed -= btrfs_leaf_free_space(l);
 | |
| 			wret = push_leaf_left(trans, root, path, space_needed,
 | |
| 					      space_needed, 0, (u32)-1);
 | |
| 			if (wret < 0)
 | |
| 				return wret;
 | |
| 		}
 | |
| 		l = path->nodes[0];
 | |
| 
 | |
| 		/* did the pushes work? */
 | |
| 		if (btrfs_leaf_free_space(l) >= data_size)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!path->nodes[1]) {
 | |
| 		ret = insert_new_root(trans, root, path, 1);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| again:
 | |
| 	split = 1;
 | |
| 	l = path->nodes[0];
 | |
| 	slot = path->slots[0];
 | |
| 	nritems = btrfs_header_nritems(l);
 | |
| 	mid = (nritems + 1) / 2;
 | |
| 
 | |
| 	if (mid <= slot) {
 | |
| 		if (nritems == 1 ||
 | |
| 		    leaf_space_used(l, mid, nritems - mid) + data_size >
 | |
| 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
 | |
| 			if (slot >= nritems) {
 | |
| 				split = 0;
 | |
| 			} else {
 | |
| 				mid = slot;
 | |
| 				if (mid != nritems &&
 | |
| 				    leaf_space_used(l, mid, nritems - mid) +
 | |
| 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
 | |
| 					if (data_size && !tried_avoid_double)
 | |
| 						goto push_for_double;
 | |
| 					split = 2;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (leaf_space_used(l, 0, mid) + data_size >
 | |
| 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
 | |
| 			if (!extend && data_size && slot == 0) {
 | |
| 				split = 0;
 | |
| 			} else if ((extend || !data_size) && slot == 0) {
 | |
| 				mid = 1;
 | |
| 			} else {
 | |
| 				mid = slot;
 | |
| 				if (mid != nritems &&
 | |
| 				    leaf_space_used(l, mid, nritems - mid) +
 | |
| 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
 | |
| 					if (data_size && !tried_avoid_double)
 | |
| 						goto push_for_double;
 | |
| 					split = 2;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (split == 0)
 | |
| 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
 | |
| 	else
 | |
| 		btrfs_item_key(l, &disk_key, mid);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
 | |
| 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
 | |
| 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
 | |
| 	 * out.  In the future we could add a
 | |
| 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
 | |
| 	 * use BTRFS_NESTING_NEW_ROOT.
 | |
| 	 */
 | |
| 	right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
 | |
| 				       &disk_key, 0, l->start, 0, 0,
 | |
| 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
 | |
| 				       BTRFS_NESTING_SPLIT);
 | |
| 	if (IS_ERR(right))
 | |
| 		return PTR_ERR(right);
 | |
| 
 | |
| 	root_add_used_bytes(root);
 | |
| 
 | |
| 	if (split == 0) {
 | |
| 		if (mid <= slot) {
 | |
| 			btrfs_set_header_nritems(right, 0);
 | |
| 			ret = insert_ptr(trans, path, &disk_key,
 | |
| 					 right->start, path->slots[1] + 1, 1);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_tree_unlock(right);
 | |
| 				free_extent_buffer(right);
 | |
| 				return ret;
 | |
| 			}
 | |
| 			btrfs_tree_unlock(path->nodes[0]);
 | |
| 			free_extent_buffer(path->nodes[0]);
 | |
| 			path->nodes[0] = right;
 | |
| 			path->slots[0] = 0;
 | |
| 			path->slots[1] += 1;
 | |
| 		} else {
 | |
| 			btrfs_set_header_nritems(right, 0);
 | |
| 			ret = insert_ptr(trans, path, &disk_key,
 | |
| 					 right->start, path->slots[1], 1);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_tree_unlock(right);
 | |
| 				free_extent_buffer(right);
 | |
| 				return ret;
 | |
| 			}
 | |
| 			btrfs_tree_unlock(path->nodes[0]);
 | |
| 			free_extent_buffer(path->nodes[0]);
 | |
| 			path->nodes[0] = right;
 | |
| 			path->slots[0] = 0;
 | |
| 			if (path->slots[1] == 0)
 | |
| 				fixup_low_keys(trans, path, &disk_key, 1);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We create a new leaf 'right' for the required ins_len and
 | |
| 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
 | |
| 		 * the content of ins_len to 'right'.
 | |
| 		 */
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_tree_unlock(right);
 | |
| 		free_extent_buffer(right);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (split == 2) {
 | |
| 		BUG_ON(num_doubles != 0);
 | |
| 		num_doubles++;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| push_for_double:
 | |
| 	push_for_double_split(trans, root, path, data_size);
 | |
| 	tried_avoid_double = 1;
 | |
| 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
 | |
| 		return 0;
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
 | |
| 					 struct btrfs_root *root,
 | |
| 					 struct btrfs_path *path, int ins_len)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	u64 extent_len = 0;
 | |
| 	u32 item_size;
 | |
| 	int ret;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 
 | |
| 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
 | |
| 	       key.type != BTRFS_EXTENT_CSUM_KEY);
 | |
| 
 | |
| 	if (btrfs_leaf_free_space(leaf) >= ins_len)
 | |
| 		return 0;
 | |
| 
 | |
| 	item_size = btrfs_item_size(leaf, path->slots[0]);
 | |
| 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	path->keep_locks = 1;
 | |
| 	path->search_for_split = 1;
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 	path->search_for_split = 0;
 | |
| 	if (ret > 0)
 | |
| 		ret = -EAGAIN;
 | |
| 	if (ret < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	ret = -EAGAIN;
 | |
| 	leaf = path->nodes[0];
 | |
| 	/* if our item isn't there, return now */
 | |
| 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
 | |
| 		goto err;
 | |
| 
 | |
| 	/* the leaf has  changed, it now has room.  return now */
 | |
| 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	path->keep_locks = 0;
 | |
| 	btrfs_unlock_up_safe(path, 1);
 | |
| 	return 0;
 | |
| err:
 | |
| 	path->keep_locks = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int split_item(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_path *path,
 | |
| 			       const struct btrfs_key *new_key,
 | |
| 			       unsigned long split_offset)
 | |
| {
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int orig_slot, slot;
 | |
| 	char *buf;
 | |
| 	u32 nritems;
 | |
| 	u32 item_size;
 | |
| 	u32 orig_offset;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	/*
 | |
| 	 * Shouldn't happen because the caller must have previously called
 | |
| 	 * setup_leaf_for_split() to make room for the new item in the leaf.
 | |
| 	 */
 | |
| 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	orig_slot = path->slots[0];
 | |
| 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
 | |
| 	item_size = btrfs_item_size(leaf, path->slots[0]);
 | |
| 
 | |
| 	buf = kmalloc(item_size, GFP_NOFS);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
 | |
| 			    path->slots[0]), item_size);
 | |
| 
 | |
| 	slot = path->slots[0] + 1;
 | |
| 	nritems = btrfs_header_nritems(leaf);
 | |
| 	if (slot != nritems) {
 | |
| 		/* shift the items */
 | |
| 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_cpu_key_to_disk(&disk_key, new_key);
 | |
| 	btrfs_set_item_key(leaf, &disk_key, slot);
 | |
| 
 | |
| 	btrfs_set_item_offset(leaf, slot, orig_offset);
 | |
| 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
 | |
| 
 | |
| 	btrfs_set_item_offset(leaf, orig_slot,
 | |
| 				 orig_offset + item_size - split_offset);
 | |
| 	btrfs_set_item_size(leaf, orig_slot, split_offset);
 | |
| 
 | |
| 	btrfs_set_header_nritems(leaf, nritems + 1);
 | |
| 
 | |
| 	/* write the data for the start of the original item */
 | |
| 	write_extent_buffer(leaf, buf,
 | |
| 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
 | |
| 			    split_offset);
 | |
| 
 | |
| 	/* write the data for the new item */
 | |
| 	write_extent_buffer(leaf, buf + split_offset,
 | |
| 			    btrfs_item_ptr_offset(leaf, slot),
 | |
| 			    item_size - split_offset);
 | |
| 	btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 
 | |
| 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
 | |
| 	kfree(buf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function splits a single item into two items,
 | |
|  * giving 'new_key' to the new item and splitting the
 | |
|  * old one at split_offset (from the start of the item).
 | |
|  *
 | |
|  * The path may be released by this operation.  After
 | |
|  * the split, the path is pointing to the old item.  The
 | |
|  * new item is going to be in the same node as the old one.
 | |
|  *
 | |
|  * Note, the item being split must be smaller enough to live alone on
 | |
|  * a tree block with room for one extra struct btrfs_item
 | |
|  *
 | |
|  * This allows us to split the item in place, keeping a lock on the
 | |
|  * leaf the entire time.
 | |
|  */
 | |
| int btrfs_split_item(struct btrfs_trans_handle *trans,
 | |
| 		     struct btrfs_root *root,
 | |
| 		     struct btrfs_path *path,
 | |
| 		     const struct btrfs_key *new_key,
 | |
| 		     unsigned long split_offset)
 | |
| {
 | |
| 	int ret;
 | |
| 	ret = setup_leaf_for_split(trans, root, path,
 | |
| 				   sizeof(struct btrfs_item));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = split_item(trans, path, new_key, split_offset);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * make the item pointed to by the path smaller.  new_size indicates
 | |
|  * how small to make it, and from_end tells us if we just chop bytes
 | |
|  * off the end of the item or if we shift the item to chop bytes off
 | |
|  * the front.
 | |
|  */
 | |
| void btrfs_truncate_item(struct btrfs_trans_handle *trans,
 | |
| 			 const struct btrfs_path *path, u32 new_size, int from_end)
 | |
| {
 | |
| 	int slot;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 nritems;
 | |
| 	unsigned int data_end;
 | |
| 	unsigned int old_data_start;
 | |
| 	unsigned int old_size;
 | |
| 	unsigned int size_diff;
 | |
| 	int i;
 | |
| 	struct btrfs_map_token token;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	slot = path->slots[0];
 | |
| 
 | |
| 	old_size = btrfs_item_size(leaf, slot);
 | |
| 	if (old_size == new_size)
 | |
| 		return;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(leaf);
 | |
| 	data_end = leaf_data_end(leaf);
 | |
| 
 | |
| 	old_data_start = btrfs_item_offset(leaf, slot);
 | |
| 
 | |
| 	size_diff = old_size - new_size;
 | |
| 
 | |
| 	BUG_ON(slot < 0);
 | |
| 	BUG_ON(slot >= nritems);
 | |
| 
 | |
| 	/*
 | |
| 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
 | |
| 	 */
 | |
| 	/* first correct the data pointers */
 | |
| 	btrfs_init_map_token(&token, leaf);
 | |
| 	for (i = slot; i < nritems; i++) {
 | |
| 		u32 ioff;
 | |
| 
 | |
| 		ioff = btrfs_token_item_offset(&token, i);
 | |
| 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
 | |
| 	}
 | |
| 
 | |
| 	/* shift the data */
 | |
| 	if (from_end) {
 | |
| 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
 | |
| 				  old_data_start + new_size - data_end);
 | |
| 	} else {
 | |
| 		struct btrfs_disk_key disk_key;
 | |
| 		u64 offset;
 | |
| 
 | |
| 		btrfs_item_key(leaf, &disk_key, slot);
 | |
| 
 | |
| 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
 | |
| 			unsigned long ptr;
 | |
| 			struct btrfs_file_extent_item *fi;
 | |
| 
 | |
| 			fi = btrfs_item_ptr(leaf, slot,
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			fi = (struct btrfs_file_extent_item *)(
 | |
| 			     (unsigned long)fi - size_diff);
 | |
| 
 | |
| 			if (btrfs_file_extent_type(leaf, fi) ==
 | |
| 			    BTRFS_FILE_EXTENT_INLINE) {
 | |
| 				ptr = btrfs_item_ptr_offset(leaf, slot);
 | |
| 				memmove_extent_buffer(leaf, ptr,
 | |
| 				      (unsigned long)fi,
 | |
| 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
 | |
| 				  old_data_start - data_end);
 | |
| 
 | |
| 		offset = btrfs_disk_key_offset(&disk_key);
 | |
| 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
 | |
| 		btrfs_set_item_key(leaf, &disk_key, slot);
 | |
| 		if (slot == 0)
 | |
| 			fixup_low_keys(trans, path, &disk_key, 1);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_item_size(leaf, slot, new_size);
 | |
| 	btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 
 | |
| 	if (btrfs_leaf_free_space(leaf) < 0) {
 | |
| 		btrfs_print_leaf(leaf);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * make the item pointed to by the path bigger, data_size is the added size.
 | |
|  */
 | |
| void btrfs_extend_item(struct btrfs_trans_handle *trans,
 | |
| 		       const struct btrfs_path *path, u32 data_size)
 | |
| {
 | |
| 	int slot;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 nritems;
 | |
| 	unsigned int data_end;
 | |
| 	unsigned int old_data;
 | |
| 	unsigned int old_size;
 | |
| 	int i;
 | |
| 	struct btrfs_map_token token;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(leaf);
 | |
| 	data_end = leaf_data_end(leaf);
 | |
| 
 | |
| 	if (btrfs_leaf_free_space(leaf) < data_size) {
 | |
| 		btrfs_print_leaf(leaf);
 | |
| 		BUG();
 | |
| 	}
 | |
| 	slot = path->slots[0];
 | |
| 	old_data = btrfs_item_data_end(leaf, slot);
 | |
| 
 | |
| 	BUG_ON(slot < 0);
 | |
| 	if (slot >= nritems) {
 | |
| 		btrfs_print_leaf(leaf);
 | |
| 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
 | |
| 			   slot, nritems);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
 | |
| 	 */
 | |
| 	/* first correct the data pointers */
 | |
| 	btrfs_init_map_token(&token, leaf);
 | |
| 	for (i = slot; i < nritems; i++) {
 | |
| 		u32 ioff;
 | |
| 
 | |
| 		ioff = btrfs_token_item_offset(&token, i);
 | |
| 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
 | |
| 	}
 | |
| 
 | |
| 	/* shift the data */
 | |
| 	memmove_leaf_data(leaf, data_end - data_size, data_end,
 | |
| 			  old_data - data_end);
 | |
| 
 | |
| 	data_end = old_data;
 | |
| 	old_size = btrfs_item_size(leaf, slot);
 | |
| 	btrfs_set_item_size(leaf, slot, old_size + data_size);
 | |
| 	btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 
 | |
| 	if (btrfs_leaf_free_space(leaf) < 0) {
 | |
| 		btrfs_print_leaf(leaf);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make space in the node before inserting one or more items.
 | |
|  *
 | |
|  * @trans:	transaction handle
 | |
|  * @root:	root we are inserting items to
 | |
|  * @path:	points to the leaf/slot where we are going to insert new items
 | |
|  * @batch:      information about the batch of items to insert
 | |
|  *
 | |
|  * Main purpose is to save stack depth by doing the bulk of the work in a
 | |
|  * function that doesn't call btrfs_search_slot
 | |
|  */
 | |
| static void setup_items_for_insert(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root, struct btrfs_path *path,
 | |
| 				   const struct btrfs_item_batch *batch)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	int i;
 | |
| 	u32 nritems;
 | |
| 	unsigned int data_end;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int slot;
 | |
| 	struct btrfs_map_token token;
 | |
| 	u32 total_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Before anything else, update keys in the parent and other ancestors
 | |
| 	 * if needed, then release the write locks on them, so that other tasks
 | |
| 	 * can use them while we modify the leaf.
 | |
| 	 */
 | |
| 	if (path->slots[0] == 0) {
 | |
| 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
 | |
| 		fixup_low_keys(trans, path, &disk_key, 1);
 | |
| 	}
 | |
| 	btrfs_unlock_up_safe(path, 1);
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	slot = path->slots[0];
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(leaf);
 | |
| 	data_end = leaf_data_end(leaf);
 | |
| 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
 | |
| 
 | |
| 	if (btrfs_leaf_free_space(leaf) < total_size) {
 | |
| 		btrfs_print_leaf(leaf);
 | |
| 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
 | |
| 			   total_size, btrfs_leaf_free_space(leaf));
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	btrfs_init_map_token(&token, leaf);
 | |
| 	if (slot != nritems) {
 | |
| 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
 | |
| 
 | |
| 		if (old_data < data_end) {
 | |
| 			btrfs_print_leaf(leaf);
 | |
| 			btrfs_crit(fs_info,
 | |
| 		"item at slot %d with data offset %u beyond data end of leaf %u",
 | |
| 				   slot, old_data, data_end);
 | |
| 			BUG();
 | |
| 		}
 | |
| 		/*
 | |
| 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
 | |
| 		 */
 | |
| 		/* first correct the data pointers */
 | |
| 		for (i = slot; i < nritems; i++) {
 | |
| 			u32 ioff;
 | |
| 
 | |
| 			ioff = btrfs_token_item_offset(&token, i);
 | |
| 			btrfs_set_token_item_offset(&token, i,
 | |
| 						       ioff - batch->total_data_size);
 | |
| 		}
 | |
| 		/* shift the items */
 | |
| 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
 | |
| 
 | |
| 		/* shift the data */
 | |
| 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
 | |
| 				  data_end, old_data - data_end);
 | |
| 		data_end = old_data;
 | |
| 	}
 | |
| 
 | |
| 	/* setup the item for the new data */
 | |
| 	for (i = 0; i < batch->nr; i++) {
 | |
| 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
 | |
| 		btrfs_set_item_key(leaf, &disk_key, slot + i);
 | |
| 		data_end -= batch->data_sizes[i];
 | |
| 		btrfs_set_token_item_offset(&token, slot + i, data_end);
 | |
| 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
 | |
| 	btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 
 | |
| 	if (btrfs_leaf_free_space(leaf) < 0) {
 | |
| 		btrfs_print_leaf(leaf);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert a new item into a leaf.
 | |
|  *
 | |
|  * @trans:     Transaction handle.
 | |
|  * @root:      The root of the btree.
 | |
|  * @path:      A path pointing to the target leaf and slot.
 | |
|  * @key:       The key of the new item.
 | |
|  * @data_size: The size of the data associated with the new key.
 | |
|  */
 | |
| void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 const struct btrfs_key *key,
 | |
| 				 u32 data_size)
 | |
| {
 | |
| 	struct btrfs_item_batch batch;
 | |
| 
 | |
| 	batch.keys = key;
 | |
| 	batch.data_sizes = &data_size;
 | |
| 	batch.total_data_size = data_size;
 | |
| 	batch.nr = 1;
 | |
| 
 | |
| 	setup_items_for_insert(trans, root, path, &batch);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a key and some data, insert items into the tree.
 | |
|  * This does all the path init required, making room in the tree if needed.
 | |
|  *
 | |
|  * Returns: 0        on success
 | |
|  *          -EEXIST  if the first key already exists
 | |
|  *          < 0      on other errors
 | |
|  */
 | |
| int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_root *root,
 | |
| 			    struct btrfs_path *path,
 | |
| 			    const struct btrfs_item_batch *batch)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int slot;
 | |
| 	u32 total_size;
 | |
| 
 | |
| 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
 | |
| 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
 | |
| 	if (ret == 0)
 | |
| 		return -EEXIST;
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	slot = path->slots[0];
 | |
| 	BUG_ON(slot < 0);
 | |
| 
 | |
| 	setup_items_for_insert(trans, root, path, batch);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a key and some data, insert an item into the tree.
 | |
|  * This does all the path init required, making room in the tree if needed.
 | |
|  */
 | |
| int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		      const struct btrfs_key *cpu_key, void *data,
 | |
| 		      u32 data_size)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	unsigned long ptr;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
 | |
| 	if (!ret) {
 | |
| 		leaf = path->nodes[0];
 | |
| 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | |
| 		write_extent_buffer(leaf, data, ptr, data_size);
 | |
| 		btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function duplicates an item, giving 'new_key' to the new item.
 | |
|  * It guarantees both items live in the same tree leaf and the new item is
 | |
|  * contiguous with the original item.
 | |
|  *
 | |
|  * This allows us to split a file extent in place, keeping a lock on the leaf
 | |
|  * the entire time.
 | |
|  */
 | |
| int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
 | |
| 			 struct btrfs_root *root,
 | |
| 			 struct btrfs_path *path,
 | |
| 			 const struct btrfs_key *new_key)
 | |
| {
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int ret;
 | |
| 	u32 item_size;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item_size = btrfs_item_size(leaf, path->slots[0]);
 | |
| 	ret = setup_leaf_for_split(trans, root, path,
 | |
| 				   item_size + sizeof(struct btrfs_item));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	path->slots[0]++;
 | |
| 	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
 | |
| 	leaf = path->nodes[0];
 | |
| 	memcpy_extent_buffer(leaf,
 | |
| 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
 | |
| 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
 | |
| 			     item_size);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * delete the pointer from a given node.
 | |
|  *
 | |
|  * the tree should have been previously balanced so the deletion does not
 | |
|  * empty a node.
 | |
|  *
 | |
|  * This is exported for use inside btrfs-progs, don't un-export it.
 | |
|  */
 | |
| int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		  struct btrfs_path *path, int level, int slot)
 | |
| {
 | |
| 	struct extent_buffer *parent = path->nodes[level];
 | |
| 	u32 nritems;
 | |
| 	int ret;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(parent);
 | |
| 	if (slot != nritems - 1) {
 | |
| 		if (level) {
 | |
| 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
 | |
| 					slot + 1, nritems - slot - 1);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 		memmove_extent_buffer(parent,
 | |
| 			      btrfs_node_key_ptr_offset(parent, slot),
 | |
| 			      btrfs_node_key_ptr_offset(parent, slot + 1),
 | |
| 			      sizeof(struct btrfs_key_ptr) *
 | |
| 			      (nritems - slot - 1));
 | |
| 	} else if (level) {
 | |
| 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
 | |
| 						    BTRFS_MOD_LOG_KEY_REMOVE);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nritems--;
 | |
| 	btrfs_set_header_nritems(parent, nritems);
 | |
| 	if (nritems == 0 && parent == root->node) {
 | |
| 		BUG_ON(btrfs_header_level(root->node) != 1);
 | |
| 		/* just turn the root into a leaf and break */
 | |
| 		btrfs_set_header_level(root->node, 0);
 | |
| 	} else if (slot == 0) {
 | |
| 		struct btrfs_disk_key disk_key;
 | |
| 
 | |
| 		btrfs_node_key(parent, &disk_key, 0);
 | |
| 		fixup_low_keys(trans, path, &disk_key, level + 1);
 | |
| 	}
 | |
| 	btrfs_mark_buffer_dirty(trans, parent);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper function to delete the leaf pointed to by path->slots[1] and
 | |
|  * path->nodes[1].
 | |
|  *
 | |
|  * This deletes the pointer in path->nodes[1] and frees the leaf
 | |
|  * block extent.  zero is returned if it all worked out, < 0 otherwise.
 | |
|  *
 | |
|  * The path must have already been setup for deleting the leaf, including
 | |
|  * all the proper balancing.  path->nodes[1] must be locked.
 | |
|  */
 | |
| static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   struct extent_buffer *leaf)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
 | |
| 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * btrfs_free_extent is expensive, we want to make sure we
 | |
| 	 * aren't holding any locks when we call it
 | |
| 	 */
 | |
| 	btrfs_unlock_up_safe(path, 0);
 | |
| 
 | |
| 	root_sub_used_bytes(root);
 | |
| 
 | |
| 	atomic_inc(&leaf->refs);
 | |
| 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
 | |
| 	free_extent_buffer_stale(leaf);
 | |
| 	if (ret < 0)
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| /*
 | |
|  * delete the item at the leaf level in path.  If that empties
 | |
|  * the leaf, remove it from the tree
 | |
|  */
 | |
| int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 | |
| 		    struct btrfs_path *path, int slot, int nr)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 	u32 nritems;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	nritems = btrfs_header_nritems(leaf);
 | |
| 
 | |
| 	if (slot + nr != nritems) {
 | |
| 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
 | |
| 		const int data_end = leaf_data_end(leaf);
 | |
| 		struct btrfs_map_token token;
 | |
| 		u32 dsize = 0;
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < nr; i++)
 | |
| 			dsize += btrfs_item_size(leaf, slot + i);
 | |
| 
 | |
| 		memmove_leaf_data(leaf, data_end + dsize, data_end,
 | |
| 				  last_off - data_end);
 | |
| 
 | |
| 		btrfs_init_map_token(&token, leaf);
 | |
| 		for (i = slot + nr; i < nritems; i++) {
 | |
| 			u32 ioff;
 | |
| 
 | |
| 			ioff = btrfs_token_item_offset(&token, i);
 | |
| 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
 | |
| 		}
 | |
| 
 | |
| 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
 | |
| 	}
 | |
| 	btrfs_set_header_nritems(leaf, nritems - nr);
 | |
| 	nritems -= nr;
 | |
| 
 | |
| 	/* delete the leaf if we've emptied it */
 | |
| 	if (nritems == 0) {
 | |
| 		if (leaf == root->node) {
 | |
| 			btrfs_set_header_level(leaf, 0);
 | |
| 		} else {
 | |
| 			btrfs_clear_buffer_dirty(trans, leaf);
 | |
| 			ret = btrfs_del_leaf(trans, root, path, leaf);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	} else {
 | |
| 		int used = leaf_space_used(leaf, 0, nritems);
 | |
| 		if (slot == 0) {
 | |
| 			struct btrfs_disk_key disk_key;
 | |
| 
 | |
| 			btrfs_item_key(leaf, &disk_key, 0);
 | |
| 			fixup_low_keys(trans, path, &disk_key, 1);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to delete the leaf if it is mostly empty. We do this by
 | |
| 		 * trying to move all its items into its left and right neighbours.
 | |
| 		 * If we can't move all the items, then we don't delete it - it's
 | |
| 		 * not ideal, but future insertions might fill the leaf with more
 | |
| 		 * items, or items from other leaves might be moved later into our
 | |
| 		 * leaf due to deletions on those leaves.
 | |
| 		 */
 | |
| 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
 | |
| 			u32 min_push_space;
 | |
| 
 | |
| 			/* push_leaf_left fixes the path.
 | |
| 			 * make sure the path still points to our leaf
 | |
| 			 * for possible call to btrfs_del_ptr below
 | |
| 			 */
 | |
| 			slot = path->slots[1];
 | |
| 			atomic_inc(&leaf->refs);
 | |
| 			/*
 | |
| 			 * We want to be able to at least push one item to the
 | |
| 			 * left neighbour leaf, and that's the first item.
 | |
| 			 */
 | |
| 			min_push_space = sizeof(struct btrfs_item) +
 | |
| 				btrfs_item_size(leaf, 0);
 | |
| 			wret = push_leaf_left(trans, root, path, 0,
 | |
| 					      min_push_space, 1, (u32)-1);
 | |
| 			if (wret < 0 && wret != -ENOSPC)
 | |
| 				ret = wret;
 | |
| 
 | |
| 			if (path->nodes[0] == leaf &&
 | |
| 			    btrfs_header_nritems(leaf)) {
 | |
| 				/*
 | |
| 				 * If we were not able to push all items from our
 | |
| 				 * leaf to its left neighbour, then attempt to
 | |
| 				 * either push all the remaining items to the
 | |
| 				 * right neighbour or none. There's no advantage
 | |
| 				 * in pushing only some items, instead of all, as
 | |
| 				 * it's pointless to end up with a leaf having
 | |
| 				 * too few items while the neighbours can be full
 | |
| 				 * or nearly full.
 | |
| 				 */
 | |
| 				nritems = btrfs_header_nritems(leaf);
 | |
| 				min_push_space = leaf_space_used(leaf, 0, nritems);
 | |
| 				wret = push_leaf_right(trans, root, path, 0,
 | |
| 						       min_push_space, 1, 0);
 | |
| 				if (wret < 0 && wret != -ENOSPC)
 | |
| 					ret = wret;
 | |
| 			}
 | |
| 
 | |
| 			if (btrfs_header_nritems(leaf) == 0) {
 | |
| 				path->slots[1] = slot;
 | |
| 				ret = btrfs_del_leaf(trans, root, path, leaf);
 | |
| 				if (ret < 0)
 | |
| 					return ret;
 | |
| 				free_extent_buffer(leaf);
 | |
| 				ret = 0;
 | |
| 			} else {
 | |
| 				/* if we're still in the path, make sure
 | |
| 				 * we're dirty.  Otherwise, one of the
 | |
| 				 * push_leaf functions must have already
 | |
| 				 * dirtied this buffer
 | |
| 				 */
 | |
| 				if (path->nodes[0] == leaf)
 | |
| 					btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 				free_extent_buffer(leaf);
 | |
| 			}
 | |
| 		} else {
 | |
| 			btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A helper function to walk down the tree starting at min_key, and looking
 | |
|  * for nodes or leaves that are have a minimum transaction id.
 | |
|  * This is used by the btree defrag code, and tree logging
 | |
|  *
 | |
|  * This does not cow, but it does stuff the starting key it finds back
 | |
|  * into min_key, so you can call btrfs_search_slot with cow=1 on the
 | |
|  * key and get a writable path.
 | |
|  *
 | |
|  * This honors path->lowest_level to prevent descent past a given level
 | |
|  * of the tree.
 | |
|  *
 | |
|  * min_trans indicates the oldest transaction that you are interested
 | |
|  * in walking through.  Any nodes or leaves older than min_trans are
 | |
|  * skipped over (without reading them).
 | |
|  *
 | |
|  * returns zero if something useful was found, < 0 on error and 1 if there
 | |
|  * was nothing in the tree that matched the search criteria.
 | |
|  */
 | |
| int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
 | |
| 			 struct btrfs_path *path,
 | |
| 			 u64 min_trans)
 | |
| {
 | |
| 	struct extent_buffer *cur;
 | |
| 	struct btrfs_key found_key;
 | |
| 	int slot;
 | |
| 	int sret;
 | |
| 	u32 nritems;
 | |
| 	int level;
 | |
| 	int ret = 1;
 | |
| 	int keep_locks = path->keep_locks;
 | |
| 
 | |
| 	ASSERT(!path->nowait);
 | |
| 	path->keep_locks = 1;
 | |
| again:
 | |
| 	cur = btrfs_read_lock_root_node(root);
 | |
| 	level = btrfs_header_level(cur);
 | |
| 	WARN_ON(path->nodes[level]);
 | |
| 	path->nodes[level] = cur;
 | |
| 	path->locks[level] = BTRFS_READ_LOCK;
 | |
| 
 | |
| 	if (btrfs_header_generation(cur) < min_trans) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	while (1) {
 | |
| 		nritems = btrfs_header_nritems(cur);
 | |
| 		level = btrfs_header_level(cur);
 | |
| 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
 | |
| 		if (sret < 0) {
 | |
| 			ret = sret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* at the lowest level, we're done, setup the path and exit */
 | |
| 		if (level == path->lowest_level) {
 | |
| 			if (slot >= nritems)
 | |
| 				goto find_next_key;
 | |
| 			ret = 0;
 | |
| 			path->slots[level] = slot;
 | |
| 			btrfs_item_key_to_cpu(cur, &found_key, slot);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (sret && slot > 0)
 | |
| 			slot--;
 | |
| 		/*
 | |
| 		 * check this node pointer against the min_trans parameters.
 | |
| 		 * If it is too old, skip to the next one.
 | |
| 		 */
 | |
| 		while (slot < nritems) {
 | |
| 			u64 gen;
 | |
| 
 | |
| 			gen = btrfs_node_ptr_generation(cur, slot);
 | |
| 			if (gen < min_trans) {
 | |
| 				slot++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| find_next_key:
 | |
| 		/*
 | |
| 		 * we didn't find a candidate key in this node, walk forward
 | |
| 		 * and find another one
 | |
| 		 */
 | |
| 		if (slot >= nritems) {
 | |
| 			path->slots[level] = slot;
 | |
| 			sret = btrfs_find_next_key(root, path, min_key, level,
 | |
| 						  min_trans);
 | |
| 			if (sret == 0) {
 | |
| 				btrfs_release_path(path);
 | |
| 				goto again;
 | |
| 			} else {
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		/* save our key for returning back */
 | |
| 		btrfs_node_key_to_cpu(cur, &found_key, slot);
 | |
| 		path->slots[level] = slot;
 | |
| 		if (level == path->lowest_level) {
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		cur = btrfs_read_node_slot(cur, slot);
 | |
| 		if (IS_ERR(cur)) {
 | |
| 			ret = PTR_ERR(cur);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_tree_read_lock(cur);
 | |
| 
 | |
| 		path->locks[level - 1] = BTRFS_READ_LOCK;
 | |
| 		path->nodes[level - 1] = cur;
 | |
| 		unlock_up(path, level, 1, 0, NULL);
 | |
| 	}
 | |
| out:
 | |
| 	path->keep_locks = keep_locks;
 | |
| 	if (ret == 0) {
 | |
| 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
 | |
| 		memcpy(min_key, &found_key, sizeof(found_key));
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is similar to btrfs_next_leaf, but does not try to preserve
 | |
|  * and fixup the path.  It looks for and returns the next key in the
 | |
|  * tree based on the current path and the min_trans parameters.
 | |
|  *
 | |
|  * 0 is returned if another key is found, < 0 if there are any errors
 | |
|  * and 1 is returned if there are no higher keys in the tree
 | |
|  *
 | |
|  * path->keep_locks should be set to 1 on the search made before
 | |
|  * calling this function.
 | |
|  */
 | |
| int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
 | |
| 			struct btrfs_key *key, int level, u64 min_trans)
 | |
| {
 | |
| 	int slot;
 | |
| 	struct extent_buffer *c;
 | |
| 
 | |
| 	WARN_ON(!path->keep_locks && !path->skip_locking);
 | |
| 	while (level < BTRFS_MAX_LEVEL) {
 | |
| 		if (!path->nodes[level])
 | |
| 			return 1;
 | |
| 
 | |
| 		slot = path->slots[level] + 1;
 | |
| 		c = path->nodes[level];
 | |
| next:
 | |
| 		if (slot >= btrfs_header_nritems(c)) {
 | |
| 			int ret;
 | |
| 			int orig_lowest;
 | |
| 			struct btrfs_key cur_key;
 | |
| 			if (level + 1 >= BTRFS_MAX_LEVEL ||
 | |
| 			    !path->nodes[level + 1])
 | |
| 				return 1;
 | |
| 
 | |
| 			if (path->locks[level + 1] || path->skip_locking) {
 | |
| 				level++;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			slot = btrfs_header_nritems(c) - 1;
 | |
| 			if (level == 0)
 | |
| 				btrfs_item_key_to_cpu(c, &cur_key, slot);
 | |
| 			else
 | |
| 				btrfs_node_key_to_cpu(c, &cur_key, slot);
 | |
| 
 | |
| 			orig_lowest = path->lowest_level;
 | |
| 			btrfs_release_path(path);
 | |
| 			path->lowest_level = level;
 | |
| 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
 | |
| 						0, 0);
 | |
| 			path->lowest_level = orig_lowest;
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 
 | |
| 			c = path->nodes[level];
 | |
| 			slot = path->slots[level];
 | |
| 			if (ret == 0)
 | |
| 				slot++;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		if (level == 0)
 | |
| 			btrfs_item_key_to_cpu(c, key, slot);
 | |
| 		else {
 | |
| 			u64 gen = btrfs_node_ptr_generation(c, slot);
 | |
| 
 | |
| 			if (gen < min_trans) {
 | |
| 				slot++;
 | |
| 				goto next;
 | |
| 			}
 | |
| 			btrfs_node_key_to_cpu(c, key, slot);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
 | |
| 			u64 time_seq)
 | |
| {
 | |
| 	int slot;
 | |
| 	int level;
 | |
| 	struct extent_buffer *c;
 | |
| 	struct extent_buffer *next;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_key key;
 | |
| 	bool need_commit_sem = false;
 | |
| 	u32 nritems;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * The nowait semantics are used only for write paths, where we don't
 | |
| 	 * use the tree mod log and sequence numbers.
 | |
| 	 */
 | |
| 	if (time_seq)
 | |
| 		ASSERT(!path->nowait);
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 	if (nritems == 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
 | |
| again:
 | |
| 	level = 1;
 | |
| 	next = NULL;
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	path->keep_locks = 1;
 | |
| 
 | |
| 	if (time_seq) {
 | |
| 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
 | |
| 	} else {
 | |
| 		if (path->need_commit_sem) {
 | |
| 			path->need_commit_sem = 0;
 | |
| 			need_commit_sem = true;
 | |
| 			if (path->nowait) {
 | |
| 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
 | |
| 					ret = -EAGAIN;
 | |
| 					goto done;
 | |
| 				}
 | |
| 			} else {
 | |
| 				down_read(&fs_info->commit_root_sem);
 | |
| 			}
 | |
| 		}
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	}
 | |
| 	path->keep_locks = 0;
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto done;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 	/*
 | |
| 	 * by releasing the path above we dropped all our locks.  A balance
 | |
| 	 * could have added more items next to the key that used to be
 | |
| 	 * at the very end of the block.  So, check again here and
 | |
| 	 * advance the path if there are now more items available.
 | |
| 	 */
 | |
| 	if (nritems > 0 && path->slots[0] < nritems - 1) {
 | |
| 		if (ret == 0)
 | |
| 			path->slots[0]++;
 | |
| 		ret = 0;
 | |
| 		goto done;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * So the above check misses one case:
 | |
| 	 * - after releasing the path above, someone has removed the item that
 | |
| 	 *   used to be at the very end of the block, and balance between leafs
 | |
| 	 *   gets another one with bigger key.offset to replace it.
 | |
| 	 *
 | |
| 	 * This one should be returned as well, or we can get leaf corruption
 | |
| 	 * later(esp. in __btrfs_drop_extents()).
 | |
| 	 *
 | |
| 	 * And a bit more explanation about this check,
 | |
| 	 * with ret > 0, the key isn't found, the path points to the slot
 | |
| 	 * where it should be inserted, so the path->slots[0] item must be the
 | |
| 	 * bigger one.
 | |
| 	 */
 | |
| 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
 | |
| 		ret = 0;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	while (level < BTRFS_MAX_LEVEL) {
 | |
| 		if (!path->nodes[level]) {
 | |
| 			ret = 1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		slot = path->slots[level] + 1;
 | |
| 		c = path->nodes[level];
 | |
| 		if (slot >= btrfs_header_nritems(c)) {
 | |
| 			level++;
 | |
| 			if (level == BTRFS_MAX_LEVEL) {
 | |
| 				ret = 1;
 | |
| 				goto done;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * Our current level is where we're going to start from, and to
 | |
| 		 * make sure lockdep doesn't complain we need to drop our locks
 | |
| 		 * and nodes from 0 to our current level.
 | |
| 		 */
 | |
| 		for (i = 0; i < level; i++) {
 | |
| 			if (path->locks[level]) {
 | |
| 				btrfs_tree_read_unlock(path->nodes[i]);
 | |
| 				path->locks[i] = 0;
 | |
| 			}
 | |
| 			free_extent_buffer(path->nodes[i]);
 | |
| 			path->nodes[i] = NULL;
 | |
| 		}
 | |
| 
 | |
| 		next = c;
 | |
| 		ret = read_block_for_search(root, path, &next, slot, &key);
 | |
| 		if (ret == -EAGAIN && !path->nowait)
 | |
| 			goto again;
 | |
| 
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		if (!path->skip_locking) {
 | |
| 			ret = btrfs_try_tree_read_lock(next);
 | |
| 			if (!ret && path->nowait) {
 | |
| 				ret = -EAGAIN;
 | |
| 				goto done;
 | |
| 			}
 | |
| 			if (!ret && time_seq) {
 | |
| 				/*
 | |
| 				 * If we don't get the lock, we may be racing
 | |
| 				 * with push_leaf_left, holding that lock while
 | |
| 				 * itself waiting for the leaf we've currently
 | |
| 				 * locked. To solve this situation, we give up
 | |
| 				 * on our lock and cycle.
 | |
| 				 */
 | |
| 				free_extent_buffer(next);
 | |
| 				btrfs_release_path(path);
 | |
| 				cond_resched();
 | |
| 				goto again;
 | |
| 			}
 | |
| 			if (!ret)
 | |
| 				btrfs_tree_read_lock(next);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	path->slots[level] = slot;
 | |
| 	while (1) {
 | |
| 		level--;
 | |
| 		path->nodes[level] = next;
 | |
| 		path->slots[level] = 0;
 | |
| 		if (!path->skip_locking)
 | |
| 			path->locks[level] = BTRFS_READ_LOCK;
 | |
| 		if (!level)
 | |
| 			break;
 | |
| 
 | |
| 		ret = read_block_for_search(root, path, &next, 0, &key);
 | |
| 		if (ret == -EAGAIN && !path->nowait)
 | |
| 			goto again;
 | |
| 
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		if (!path->skip_locking) {
 | |
| 			if (path->nowait) {
 | |
| 				if (!btrfs_try_tree_read_lock(next)) {
 | |
| 					ret = -EAGAIN;
 | |
| 					goto done;
 | |
| 				}
 | |
| 			} else {
 | |
| 				btrfs_tree_read_lock(next);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 0;
 | |
| done:
 | |
| 	unlock_up(path, 0, 1, 0, NULL);
 | |
| 	if (need_commit_sem) {
 | |
| 		int ret2;
 | |
| 
 | |
| 		path->need_commit_sem = 1;
 | |
| 		ret2 = finish_need_commit_sem_search(path);
 | |
| 		up_read(&fs_info->commit_root_sem);
 | |
| 		if (ret2)
 | |
| 			ret = ret2;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
 | |
| {
 | |
| 	path->slots[0]++;
 | |
| 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
 | |
| 		return btrfs_next_old_leaf(root, path, time_seq);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 | |
|  * searching until it gets past min_objectid or finds an item of 'type'
 | |
|  *
 | |
|  * returns 0 if something is found, 1 if nothing was found and < 0 on error
 | |
|  */
 | |
| int btrfs_previous_item(struct btrfs_root *root,
 | |
| 			struct btrfs_path *path, u64 min_objectid,
 | |
| 			int type)
 | |
| {
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 nritems;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (path->slots[0] == 0) {
 | |
| 			ret = btrfs_prev_leaf(root, path);
 | |
| 			if (ret != 0)
 | |
| 				return ret;
 | |
| 		} else {
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 		leaf = path->nodes[0];
 | |
| 		nritems = btrfs_header_nritems(leaf);
 | |
| 		if (nritems == 0)
 | |
| 			return 1;
 | |
| 		if (path->slots[0] == nritems)
 | |
| 			path->slots[0]--;
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 		if (found_key.objectid < min_objectid)
 | |
| 			break;
 | |
| 		if (found_key.type == type)
 | |
| 			return 0;
 | |
| 		if (found_key.objectid == min_objectid &&
 | |
| 		    found_key.type < type)
 | |
| 			break;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search in extent tree to find a previous Metadata/Data extent item with
 | |
|  * min objecitd.
 | |
|  *
 | |
|  * returns 0 if something is found, 1 if nothing was found and < 0 on error
 | |
|  */
 | |
| int btrfs_previous_extent_item(struct btrfs_root *root,
 | |
| 			struct btrfs_path *path, u64 min_objectid)
 | |
| {
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	u32 nritems;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (path->slots[0] == 0) {
 | |
| 			ret = btrfs_prev_leaf(root, path);
 | |
| 			if (ret != 0)
 | |
| 				return ret;
 | |
| 		} else {
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 		leaf = path->nodes[0];
 | |
| 		nritems = btrfs_header_nritems(leaf);
 | |
| 		if (nritems == 0)
 | |
| 			return 1;
 | |
| 		if (path->slots[0] == nritems)
 | |
| 			path->slots[0]--;
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 		if (found_key.objectid < min_objectid)
 | |
| 			break;
 | |
| 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
 | |
| 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
 | |
| 			return 0;
 | |
| 		if (found_key.objectid == min_objectid &&
 | |
| 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
 | |
| 			break;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int __init btrfs_ctree_init(void)
 | |
| {
 | |
| 	btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
 | |
| 	if (!btrfs_path_cachep)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cold btrfs_ctree_exit(void)
 | |
| {
 | |
| 	kmem_cache_destroy(btrfs_path_cachep);
 | |
| }
 |