forked from mirrors/linux
		
	-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmdYzmoACgkQxWXV+ddt
 WDv5GxAAnCsGctNax89x/VpCDZynRghrkxlzu/4kG/pqxsJyzlgXDFtzHAEewSMs
 MYL+WCZLYpeKB5FpZq98mDJVLGNMG+9wqkx1bH/xy2ajBGZTeQe5pnkXMNlv9U1O
 SX34t8nzOdTCENDnQeRc5I2vTcsQRhgHoVjJkAYdWdhcD9fs6xHKZRe+himlstSn
 46ioKzEKSR3ztEUW4ycPF379g7d4kTR0hkk3pu5Nxe7ER8iq+jNSWXj0mzKg7mpJ
 KxP56VgY0OrsiUcJr2qFZ1hQIp810puaAuM4C1lLgRplECHxtLbP9JvL9Rr7a8Ox
 68tuThyLEpQtR59078jIX3RK6CwVi15rKb/ZkLZkW19TNSAAfM5qrB146hLBUM4T
 16WaiJ0x9lVkH2oYQv8zbNZiqDxPhPUdS/JArNAcQYk9ma+C1hCsxPQ/N5yoWH/C
 OABJddNR83sm4VTXu3Nci1EB8QuEoOuihYO6CdRkJ3PPNDuQiG6gwnoA2zqSihhy
 L5fQaLSWAUsLczarHZrvAi9Y0rfG66QzqGR+A1K/8qMTQ8pSCupd+LfqVa21QpI1
 Awx/wVFzsAm7z9CrnPTRJe+JSlBDQdeXWX7pDhhkXgwbCsMVSf3dbBweCD3o1EiM
 BVI7SfEgImlbatd0QvDp9FcsnEqp90SCi+99U+zZCmQ1SW8CEC0=
 =+DUB
 -----END PGP SIGNATURE-----
Merge tag 'for-6.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
 "A few more fixes. Apart from the one liners and updated bio splitting
  error handling there's a fix for subvolume mount with different flags.
  This was known and fixed for some time but I've delayed it to give it
  more testing.
   - fix unbalanced locking when swapfile activation fails when the
     subvolume gets deleted in the meantime
   - add btrfs error handling after bio_split() calls that got error
     handling recently
   - during unmount, flush delalloc workers at the right time before the
     cleaner thread is shut down
   - fix regression in buffered write folio conversion, explicitly wait
     for writeback as FGP_STABLE flag is currently a no-op on btrfs
   - handle race in subvolume mount with different flags, the conversion
     to the new mount API did not handle the case where multiple
     subvolumes get mounted in parallel, which is a distro use case"
* tag 'for-6.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: flush delalloc workers queue before stopping cleaner kthread during unmount
  btrfs: handle bio_split() errors
  btrfs: properly wait for writeback before buffered write
  btrfs: fix missing snapshot drew unlock when root is dead during swap activation
  btrfs: fix mount failure due to remount races
		
	
			
		
			
				
	
	
		
			3725 lines
		
	
	
	
		
			105 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3725 lines
		
	
	
	
		
			105 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/falloc.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/btrfs.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/iversion.h>
 | |
| #include <linux/fsverity.h>
 | |
| #include "ctree.h"
 | |
| #include "direct-io.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "tree-log.h"
 | |
| #include "locking.h"
 | |
| #include "qgroup.h"
 | |
| #include "compression.h"
 | |
| #include "delalloc-space.h"
 | |
| #include "reflink.h"
 | |
| #include "subpage.h"
 | |
| #include "fs.h"
 | |
| #include "accessors.h"
 | |
| #include "extent-tree.h"
 | |
| #include "file-item.h"
 | |
| #include "ioctl.h"
 | |
| #include "file.h"
 | |
| #include "super.h"
 | |
| 
 | |
| /*
 | |
|  * Helper to fault in page and copy.  This should go away and be replaced with
 | |
|  * calls into generic code.
 | |
|  */
 | |
| static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 | |
| 					 struct folio *folio, struct iov_iter *i)
 | |
| {
 | |
| 	size_t copied = 0;
 | |
| 	size_t total_copied = 0;
 | |
| 	int offset = offset_in_page(pos);
 | |
| 
 | |
| 	while (write_bytes > 0) {
 | |
| 		size_t count = min_t(size_t, PAGE_SIZE - offset, write_bytes);
 | |
| 		/*
 | |
| 		 * Copy data from userspace to the current page
 | |
| 		 */
 | |
| 		copied = copy_folio_from_iter_atomic(folio, offset, count, i);
 | |
| 
 | |
| 		/* Flush processor's dcache for this page */
 | |
| 		flush_dcache_folio(folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * if we get a partial write, we can end up with
 | |
| 		 * partially up to date page.  These add
 | |
| 		 * a lot of complexity, so make sure they don't
 | |
| 		 * happen by forcing this copy to be retried.
 | |
| 		 *
 | |
| 		 * The rest of the btrfs_file_write code will fall
 | |
| 		 * back to page at a time copies after we return 0.
 | |
| 		 */
 | |
| 		if (unlikely(copied < count)) {
 | |
| 			if (!folio_test_uptodate(folio)) {
 | |
| 				iov_iter_revert(i, copied);
 | |
| 				copied = 0;
 | |
| 			}
 | |
| 			if (!copied)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		write_bytes -= copied;
 | |
| 		total_copied += copied;
 | |
| 		offset += copied;
 | |
| 	}
 | |
| 	return total_copied;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock folio after btrfs_file_write() is done with it.
 | |
|  */
 | |
| static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
 | |
| 			     u64 pos, u64 copied)
 | |
| {
 | |
| 	u64 block_start = round_down(pos, fs_info->sectorsize);
 | |
| 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
 | |
| 
 | |
| 	ASSERT(block_len <= U32_MAX);
 | |
| 	/*
 | |
| 	 * Folio checked is some magic around finding folios that have been
 | |
| 	 * modified without going through btrfs_dirty_folio().  Clear it here.
 | |
| 	 * There should be no need to mark the pages accessed as
 | |
| 	 * prepare_one_folio() should have marked them accessed in
 | |
| 	 * prepare_one_folio() via find_or_create_page()
 | |
| 	 */
 | |
| 	btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
 | |
| 	folio_unlock(folio);
 | |
| 	folio_put(folio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After btrfs_copy_from_user(), update the following things for delalloc:
 | |
|  * - Mark newly dirtied folio as DELALLOC in the io tree.
 | |
|  *   Used to advise which range is to be written back.
 | |
|  * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
 | |
|  * - Update inode size for past EOF write
 | |
|  */
 | |
| int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
 | |
| 		      size_t write_bytes, struct extent_state **cached, bool noreserve)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	int ret = 0;
 | |
| 	u64 num_bytes;
 | |
| 	u64 start_pos;
 | |
| 	u64 end_of_last_block;
 | |
| 	u64 end_pos = pos + write_bytes;
 | |
| 	loff_t isize = i_size_read(&inode->vfs_inode);
 | |
| 	unsigned int extra_bits = 0;
 | |
| 
 | |
| 	if (write_bytes == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (noreserve)
 | |
| 		extra_bits |= EXTENT_NORESERVE;
 | |
| 
 | |
| 	start_pos = round_down(pos, fs_info->sectorsize);
 | |
| 	num_bytes = round_up(write_bytes + pos - start_pos,
 | |
| 			     fs_info->sectorsize);
 | |
| 	ASSERT(num_bytes <= U32_MAX);
 | |
| 	ASSERT(folio_pos(folio) <= pos &&
 | |
| 	       folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
 | |
| 
 | |
| 	end_of_last_block = start_pos + num_bytes - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The pages may have already been dirty, clear out old accounting so
 | |
| 	 * we can set things up properly
 | |
| 	 */
 | |
| 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 | |
| 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 | |
| 			 cached);
 | |
| 
 | |
| 	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 | |
| 					extra_bits, cached);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
 | |
| 	btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
 | |
| 	btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
 | |
| 
 | |
| 	/*
 | |
| 	 * we've only changed i_size in ram, and we haven't updated
 | |
| 	 * the disk i_size.  There is no need to log the inode
 | |
| 	 * at this time.
 | |
| 	 */
 | |
| 	if (end_pos > isize)
 | |
| 		i_size_write(&inode->vfs_inode, end_pos);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is very complex, but the basic idea is to drop all extents
 | |
|  * in the range start - end.  hint_block is filled in with a block number
 | |
|  * that would be a good hint to the block allocator for this file.
 | |
|  *
 | |
|  * If an extent intersects the range but is not entirely inside the range
 | |
|  * it is either truncated or split.  Anything entirely inside the range
 | |
|  * is deleted from the tree.
 | |
|  *
 | |
|  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 | |
|  * to deal with that. We set the field 'bytes_found' of the arguments structure
 | |
|  * with the number of allocated bytes found in the target range, so that the
 | |
|  * caller can update the inode's number of bytes in an atomic way when
 | |
|  * replacing extents in a range to avoid races with stat(2).
 | |
|  */
 | |
| int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 | |
| 		       struct btrfs_root *root, struct btrfs_inode *inode,
 | |
| 		       struct btrfs_drop_extents_args *args)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key new_key;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 	u64 search_start = args->start;
 | |
| 	u64 disk_bytenr = 0;
 | |
| 	u64 num_bytes = 0;
 | |
| 	u64 extent_offset = 0;
 | |
| 	u64 extent_end = 0;
 | |
| 	u64 last_end = args->start;
 | |
| 	int del_nr = 0;
 | |
| 	int del_slot = 0;
 | |
| 	int extent_type;
 | |
| 	int recow;
 | |
| 	int ret;
 | |
| 	int modify_tree = -1;
 | |
| 	int update_refs;
 | |
| 	int found = 0;
 | |
| 	struct btrfs_path *path = args->path;
 | |
| 
 | |
| 	args->bytes_found = 0;
 | |
| 	args->extent_inserted = false;
 | |
| 
 | |
| 	/* Must always have a path if ->replace_extent is true */
 | |
| 	ASSERT(!(args->replace_extent && !args->path));
 | |
| 
 | |
| 	if (!path) {
 | |
| 		path = btrfs_alloc_path();
 | |
| 		if (!path) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (args->drop_cache)
 | |
| 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
 | |
| 
 | |
| 	if (args->start >= inode->disk_i_size && !args->replace_extent)
 | |
| 		modify_tree = 0;
 | |
| 
 | |
| 	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
 | |
| 	while (1) {
 | |
| 		recow = 0;
 | |
| 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 | |
| 					       search_start, modify_tree);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 | |
| 			leaf = path->nodes[0];
 | |
| 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 | |
| 			if (key.objectid == ino &&
 | |
| 			    key.type == BTRFS_EXTENT_DATA_KEY)
 | |
| 				path->slots[0]--;
 | |
| 		}
 | |
| 		ret = 0;
 | |
| next_slot:
 | |
| 		leaf = path->nodes[0];
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | |
| 			BUG_ON(del_nr > 0);
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				break;
 | |
| 			if (ret > 0) {
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			leaf = path->nodes[0];
 | |
| 			recow = 1;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 
 | |
| 		if (key.objectid > ino)
 | |
| 			break;
 | |
| 		if (WARN_ON_ONCE(key.objectid < ino) ||
 | |
| 		    key.type < BTRFS_EXTENT_DATA_KEY) {
 | |
| 			ASSERT(del_nr == 0);
 | |
| 			path->slots[0]++;
 | |
| 			goto next_slot;
 | |
| 		}
 | |
| 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 | |
| 			break;
 | |
| 
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		extent_type = btrfs_file_extent_type(leaf, fi);
 | |
| 
 | |
| 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 | |
| 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 | |
| 			extent_offset = btrfs_file_extent_offset(leaf, fi);
 | |
| 			extent_end = key.offset +
 | |
| 				btrfs_file_extent_num_bytes(leaf, fi);
 | |
| 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 			extent_end = key.offset +
 | |
| 				btrfs_file_extent_ram_bytes(leaf, fi);
 | |
| 		} else {
 | |
| 			/* can't happen */
 | |
| 			BUG();
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't skip extent items representing 0 byte lengths. They
 | |
| 		 * used to be created (bug) if while punching holes we hit
 | |
| 		 * -ENOSPC condition. So if we find one here, just ensure we
 | |
| 		 * delete it, otherwise we would insert a new file extent item
 | |
| 		 * with the same key (offset) as that 0 bytes length file
 | |
| 		 * extent item in the call to setup_items_for_insert() later
 | |
| 		 * in this function.
 | |
| 		 */
 | |
| 		if (extent_end == key.offset && extent_end >= search_start) {
 | |
| 			last_end = extent_end;
 | |
| 			goto delete_extent_item;
 | |
| 		}
 | |
| 
 | |
| 		if (extent_end <= search_start) {
 | |
| 			path->slots[0]++;
 | |
| 			goto next_slot;
 | |
| 		}
 | |
| 
 | |
| 		found = 1;
 | |
| 		search_start = max(key.offset, args->start);
 | |
| 		if (recow || !modify_tree) {
 | |
| 			modify_tree = -1;
 | |
| 			btrfs_release_path(path);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 *     | - range to drop - |
 | |
| 		 *  | -------- extent -------- |
 | |
| 		 */
 | |
| 		if (args->start > key.offset && args->end < extent_end) {
 | |
| 			BUG_ON(del_nr > 0);
 | |
| 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 				ret = -EOPNOTSUPP;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			memcpy(&new_key, &key, sizeof(new_key));
 | |
| 			new_key.offset = args->start;
 | |
| 			ret = btrfs_duplicate_item(trans, root, path,
 | |
| 						   &new_key);
 | |
| 			if (ret == -EAGAIN) {
 | |
| 				btrfs_release_path(path);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (ret < 0)
 | |
| 				break;
 | |
| 
 | |
| 			leaf = path->nodes[0];
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							args->start - key.offset);
 | |
| 
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 
 | |
| 			extent_offset += args->start - key.offset;
 | |
| 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							extent_end - args->start);
 | |
| 			btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 
 | |
| 			if (update_refs && disk_bytenr > 0) {
 | |
| 				struct btrfs_ref ref = {
 | |
| 					.action = BTRFS_ADD_DELAYED_REF,
 | |
| 					.bytenr = disk_bytenr,
 | |
| 					.num_bytes = num_bytes,
 | |
| 					.parent = 0,
 | |
| 					.owning_root = btrfs_root_id(root),
 | |
| 					.ref_root = btrfs_root_id(root),
 | |
| 				};
 | |
| 				btrfs_init_data_ref(&ref, new_key.objectid,
 | |
| 						    args->start - extent_offset,
 | |
| 						    0, false);
 | |
| 				ret = btrfs_inc_extent_ref(trans, &ref);
 | |
| 				if (ret) {
 | |
| 					btrfs_abort_transaction(trans, ret);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			key.offset = args->start;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * From here on out we will have actually dropped something, so
 | |
| 		 * last_end can be updated.
 | |
| 		 */
 | |
| 		last_end = extent_end;
 | |
| 
 | |
| 		/*
 | |
| 		 *  | ---- range to drop ----- |
 | |
| 		 *      | -------- extent -------- |
 | |
| 		 */
 | |
| 		if (args->start <= key.offset && args->end < extent_end) {
 | |
| 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 				ret = -EOPNOTSUPP;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			memcpy(&new_key, &key, sizeof(new_key));
 | |
| 			new_key.offset = args->end;
 | |
| 			btrfs_set_item_key_safe(trans, path, &new_key);
 | |
| 
 | |
| 			extent_offset += args->end - key.offset;
 | |
| 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							extent_end - args->end);
 | |
| 			btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 			if (update_refs && disk_bytenr > 0)
 | |
| 				args->bytes_found += args->end - key.offset;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		search_start = extent_end;
 | |
| 		/*
 | |
| 		 *       | ---- range to drop ----- |
 | |
| 		 *  | -------- extent -------- |
 | |
| 		 */
 | |
| 		if (args->start > key.offset && args->end >= extent_end) {
 | |
| 			BUG_ON(del_nr > 0);
 | |
| 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 				ret = -EOPNOTSUPP;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							args->start - key.offset);
 | |
| 			btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 			if (update_refs && disk_bytenr > 0)
 | |
| 				args->bytes_found += extent_end - args->start;
 | |
| 			if (args->end == extent_end)
 | |
| 				break;
 | |
| 
 | |
| 			path->slots[0]++;
 | |
| 			goto next_slot;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 *  | ---- range to drop ----- |
 | |
| 		 *    | ------ extent ------ |
 | |
| 		 */
 | |
| 		if (args->start <= key.offset && args->end >= extent_end) {
 | |
| delete_extent_item:
 | |
| 			if (del_nr == 0) {
 | |
| 				del_slot = path->slots[0];
 | |
| 				del_nr = 1;
 | |
| 			} else {
 | |
| 				BUG_ON(del_slot + del_nr != path->slots[0]);
 | |
| 				del_nr++;
 | |
| 			}
 | |
| 
 | |
| 			if (update_refs &&
 | |
| 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 				args->bytes_found += extent_end - key.offset;
 | |
| 				extent_end = ALIGN(extent_end,
 | |
| 						   fs_info->sectorsize);
 | |
| 			} else if (update_refs && disk_bytenr > 0) {
 | |
| 				struct btrfs_ref ref = {
 | |
| 					.action = BTRFS_DROP_DELAYED_REF,
 | |
| 					.bytenr = disk_bytenr,
 | |
| 					.num_bytes = num_bytes,
 | |
| 					.parent = 0,
 | |
| 					.owning_root = btrfs_root_id(root),
 | |
| 					.ref_root = btrfs_root_id(root),
 | |
| 				};
 | |
| 				btrfs_init_data_ref(&ref, key.objectid,
 | |
| 						    key.offset - extent_offset,
 | |
| 						    0, false);
 | |
| 				ret = btrfs_free_extent(trans, &ref);
 | |
| 				if (ret) {
 | |
| 					btrfs_abort_transaction(trans, ret);
 | |
| 					break;
 | |
| 				}
 | |
| 				args->bytes_found += extent_end - key.offset;
 | |
| 			}
 | |
| 
 | |
| 			if (args->end == extent_end)
 | |
| 				break;
 | |
| 
 | |
| 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 | |
| 				path->slots[0]++;
 | |
| 				goto next_slot;
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_del_items(trans, root, path, del_slot,
 | |
| 					      del_nr);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			del_nr = 0;
 | |
| 			del_slot = 0;
 | |
| 
 | |
| 			btrfs_release_path(path);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (!ret && del_nr > 0) {
 | |
| 		/*
 | |
| 		 * Set path->slots[0] to first slot, so that after the delete
 | |
| 		 * if items are move off from our leaf to its immediate left or
 | |
| 		 * right neighbor leafs, we end up with a correct and adjusted
 | |
| 		 * path->slots[0] for our insertion (if args->replace_extent).
 | |
| 		 */
 | |
| 		path->slots[0] = del_slot;
 | |
| 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 | |
| 		if (ret)
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	/*
 | |
| 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 | |
| 	 * which case it unlocked our path, so check path->locks[0] matches a
 | |
| 	 * write lock.
 | |
| 	 */
 | |
| 	if (!ret && args->replace_extent &&
 | |
| 	    path->locks[0] == BTRFS_WRITE_LOCK &&
 | |
| 	    btrfs_leaf_free_space(leaf) >=
 | |
| 	    sizeof(struct btrfs_item) + args->extent_item_size) {
 | |
| 
 | |
| 		key.objectid = ino;
 | |
| 		key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 		key.offset = args->start;
 | |
| 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 | |
| 			struct btrfs_key slot_key;
 | |
| 
 | |
| 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 | |
| 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 | |
| 				path->slots[0]++;
 | |
| 		}
 | |
| 		btrfs_setup_item_for_insert(trans, root, path, &key,
 | |
| 					    args->extent_item_size);
 | |
| 		args->extent_inserted = true;
 | |
| 	}
 | |
| 
 | |
| 	if (!args->path)
 | |
| 		btrfs_free_path(path);
 | |
| 	else if (!args->extent_inserted)
 | |
| 		btrfs_release_path(path);
 | |
| out:
 | |
| 	args->drop_end = found ? min(args->end, last_end) : args->end;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int extent_mergeable(struct extent_buffer *leaf, int slot,
 | |
| 			    u64 objectid, u64 bytenr, u64 orig_offset,
 | |
| 			    u64 *start, u64 *end)
 | |
| {
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 extent_end;
 | |
| 
 | |
| 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 | |
| 		return 0;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 		return 0;
 | |
| 
 | |
| 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 | |
| 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 | |
| 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 | |
| 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 | |
| 	    btrfs_file_extent_compression(leaf, fi) ||
 | |
| 	    btrfs_file_extent_encryption(leaf, fi) ||
 | |
| 	    btrfs_file_extent_other_encoding(leaf, fi))
 | |
| 		return 0;
 | |
| 
 | |
| 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 | |
| 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 | |
| 		return 0;
 | |
| 
 | |
| 	*start = key.offset;
 | |
| 	*end = extent_end;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark extent in the range start - end as written.
 | |
|  *
 | |
|  * This changes extent type from 'pre-allocated' to 'regular'. If only
 | |
|  * part of extent is marked as written, the extent will be split into
 | |
|  * two or three.
 | |
|  */
 | |
| int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_inode *inode, u64 start, u64 end)
 | |
| {
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_ref ref = { 0 };
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key new_key;
 | |
| 	u64 bytenr;
 | |
| 	u64 num_bytes;
 | |
| 	u64 extent_end;
 | |
| 	u64 orig_offset;
 | |
| 	u64 other_start;
 | |
| 	u64 other_end;
 | |
| 	u64 split;
 | |
| 	int del_nr = 0;
 | |
| 	int del_slot = 0;
 | |
| 	int recow;
 | |
| 	int ret = 0;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| again:
 | |
| 	recow = 0;
 | |
| 	split = start;
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = split;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0 && path->slots[0] > 0)
 | |
| 		path->slots[0]--;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 	if (key.objectid != ino ||
 | |
| 	    key.type != BTRFS_EXTENT_DATA_KEY) {
 | |
| 		ret = -EINVAL;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 			    struct btrfs_file_extent_item);
 | |
| 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 		ret = -EINVAL;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 | |
| 	if (key.offset > start || extent_end < end) {
 | |
| 		ret = -EINVAL;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 | |
| 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 | |
| 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 | |
| 	memcpy(&new_key, &key, sizeof(new_key));
 | |
| 
 | |
| 	if (start == key.offset && end < extent_end) {
 | |
| 		other_start = 0;
 | |
| 		other_end = start;
 | |
| 		if (extent_mergeable(leaf, path->slots[0] - 1,
 | |
| 				     ino, bytenr, orig_offset,
 | |
| 				     &other_start, &other_end)) {
 | |
| 			new_key.offset = end;
 | |
| 			btrfs_set_item_key_safe(trans, path, &new_key);
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_generation(leaf, fi,
 | |
| 							 trans->transid);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							extent_end - end);
 | |
| 			btrfs_set_file_extent_offset(leaf, fi,
 | |
| 						     end - orig_offset);
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_generation(leaf, fi,
 | |
| 							 trans->transid);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							end - other_start);
 | |
| 			btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (start > key.offset && end == extent_end) {
 | |
| 		other_start = end;
 | |
| 		other_end = 0;
 | |
| 		if (extent_mergeable(leaf, path->slots[0] + 1,
 | |
| 				     ino, bytenr, orig_offset,
 | |
| 				     &other_start, &other_end)) {
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							start - key.offset);
 | |
| 			btrfs_set_file_extent_generation(leaf, fi,
 | |
| 							 trans->transid);
 | |
| 			path->slots[0]++;
 | |
| 			new_key.offset = start;
 | |
| 			btrfs_set_item_key_safe(trans, path, &new_key);
 | |
| 
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_generation(leaf, fi,
 | |
| 							 trans->transid);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							other_end - start);
 | |
| 			btrfs_set_file_extent_offset(leaf, fi,
 | |
| 						     start - orig_offset);
 | |
| 			btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (start > key.offset || end < extent_end) {
 | |
| 		if (key.offset == start)
 | |
| 			split = end;
 | |
| 
 | |
| 		new_key.offset = split;
 | |
| 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 | |
| 		if (ret == -EAGAIN) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 						split - key.offset);
 | |
| 
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 						extent_end - split);
 | |
| 		btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 
 | |
| 		ref.action = BTRFS_ADD_DELAYED_REF;
 | |
| 		ref.bytenr = bytenr;
 | |
| 		ref.num_bytes = num_bytes;
 | |
| 		ref.parent = 0;
 | |
| 		ref.owning_root = btrfs_root_id(root);
 | |
| 		ref.ref_root = btrfs_root_id(root);
 | |
| 		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 | |
| 		ret = btrfs_inc_extent_ref(trans, &ref);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (split == start) {
 | |
| 			key.offset = start;
 | |
| 		} else {
 | |
| 			if (start != key.offset) {
 | |
| 				ret = -EINVAL;
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			path->slots[0]--;
 | |
| 			extent_end = end;
 | |
| 		}
 | |
| 		recow = 1;
 | |
| 	}
 | |
| 
 | |
| 	other_start = end;
 | |
| 	other_end = 0;
 | |
| 
 | |
| 	ref.action = BTRFS_DROP_DELAYED_REF;
 | |
| 	ref.bytenr = bytenr;
 | |
| 	ref.num_bytes = num_bytes;
 | |
| 	ref.parent = 0;
 | |
| 	ref.owning_root = btrfs_root_id(root);
 | |
| 	ref.ref_root = btrfs_root_id(root);
 | |
| 	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
 | |
| 	if (extent_mergeable(leaf, path->slots[0] + 1,
 | |
| 			     ino, bytenr, orig_offset,
 | |
| 			     &other_start, &other_end)) {
 | |
| 		if (recow) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		extent_end = other_end;
 | |
| 		del_slot = path->slots[0] + 1;
 | |
| 		del_nr++;
 | |
| 		ret = btrfs_free_extent(trans, &ref);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	other_start = 0;
 | |
| 	other_end = start;
 | |
| 	if (extent_mergeable(leaf, path->slots[0] - 1,
 | |
| 			     ino, bytenr, orig_offset,
 | |
| 			     &other_start, &other_end)) {
 | |
| 		if (recow) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		key.offset = other_start;
 | |
| 		del_slot = path->slots[0];
 | |
| 		del_nr++;
 | |
| 		ret = btrfs_free_extent(trans, &ref);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	if (del_nr == 0) {
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 			   struct btrfs_file_extent_item);
 | |
| 		btrfs_set_file_extent_type(leaf, fi,
 | |
| 					   BTRFS_FILE_EXTENT_REG);
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 	} else {
 | |
| 		fi = btrfs_item_ptr(leaf, del_slot - 1,
 | |
| 			   struct btrfs_file_extent_item);
 | |
| 		btrfs_set_file_extent_type(leaf, fi,
 | |
| 					   BTRFS_FILE_EXTENT_REG);
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 						extent_end - key.offset);
 | |
| 		btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 
 | |
| 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On error return an unlocked folio and the error value
 | |
|  * On success return a locked folio and 0
 | |
|  */
 | |
| static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
 | |
| 				  u64 len, bool force_uptodate)
 | |
| {
 | |
| 	u64 clamp_start = max_t(u64, pos, folio_pos(folio));
 | |
| 	u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (folio_test_uptodate(folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!force_uptodate &&
 | |
| 	    IS_ALIGNED(clamp_start, PAGE_SIZE) &&
 | |
| 	    IS_ALIGNED(clamp_end, PAGE_SIZE))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = btrfs_read_folio(NULL, folio);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	folio_lock(folio);
 | |
| 	if (!folio_test_uptodate(folio)) {
 | |
| 		folio_unlock(folio);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since btrfs_read_folio() will unlock the folio before it returns,
 | |
| 	 * there is a window where btrfs_release_folio() can be called to
 | |
| 	 * release the page.  Here we check both inode mapping and page
 | |
| 	 * private to make sure the page was not released.
 | |
| 	 *
 | |
| 	 * The private flag check is essential for subpage as we need to store
 | |
| 	 * extra bitmap using folio private.
 | |
| 	 */
 | |
| 	if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
 | |
| 		folio_unlock(folio);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
 | |
| {
 | |
| 	gfp_t gfp;
 | |
| 
 | |
| 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
 | |
| 	if (nowait) {
 | |
| 		gfp &= ~__GFP_DIRECT_RECLAIM;
 | |
| 		gfp |= GFP_NOWAIT;
 | |
| 	}
 | |
| 
 | |
| 	return gfp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get folio into the page cache and lock it.
 | |
|  */
 | |
| static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
 | |
| 				      loff_t pos, size_t write_bytes,
 | |
| 				      bool force_uptodate, bool nowait)
 | |
| {
 | |
| 	unsigned long index = pos >> PAGE_SHIFT;
 | |
| 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
 | |
| 	fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN);
 | |
| 	struct folio *folio;
 | |
| 	int ret = 0;
 | |
| 
 | |
| again:
 | |
| 	folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
 | |
| 	if (IS_ERR(folio)) {
 | |
| 		if (nowait)
 | |
| 			ret = -EAGAIN;
 | |
| 		else
 | |
| 			ret = PTR_ERR(folio);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	folio_wait_writeback(folio);
 | |
| 	/* Only support page sized folio yet. */
 | |
| 	ASSERT(folio_order(folio) == 0);
 | |
| 	ret = set_folio_extent_mapped(folio);
 | |
| 	if (ret < 0) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate);
 | |
| 	if (ret) {
 | |
| 		/* The folio is already unlocked. */
 | |
| 		folio_put(folio);
 | |
| 		if (!nowait && ret == -EAGAIN) {
 | |
| 			ret = 0;
 | |
| 			goto again;
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 	*folio_ret = folio;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locks the extent and properly waits for data=ordered extents to finish
 | |
|  * before allowing the folios to be modified if need.
 | |
|  *
 | |
|  * Return:
 | |
|  * 1 - the extent is locked
 | |
|  * 0 - the extent is not locked, and everything is OK
 | |
|  * -EAGAIN - need to prepare the folios again
 | |
|  */
 | |
| static noinline int
 | |
| lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
 | |
| 				loff_t pos, size_t write_bytes,
 | |
| 				u64 *lockstart, u64 *lockend, bool nowait,
 | |
| 				struct extent_state **cached_state)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	u64 start_pos;
 | |
| 	u64 last_pos;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	start_pos = round_down(pos, fs_info->sectorsize);
 | |
| 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
 | |
| 
 | |
| 	if (start_pos < inode->vfs_inode.i_size) {
 | |
| 		struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 		if (nowait) {
 | |
| 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
 | |
| 					     cached_state)) {
 | |
| 				folio_unlock(folio);
 | |
| 				folio_put(folio);
 | |
| 				return -EAGAIN;
 | |
| 			}
 | |
| 		} else {
 | |
| 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
 | |
| 		}
 | |
| 
 | |
| 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
 | |
| 						     last_pos - start_pos + 1);
 | |
| 		if (ordered &&
 | |
| 		    ordered->file_offset + ordered->num_bytes > start_pos &&
 | |
| 		    ordered->file_offset <= last_pos) {
 | |
| 			unlock_extent(&inode->io_tree, start_pos, last_pos,
 | |
| 				      cached_state);
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			btrfs_start_ordered_extent(ordered);
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 		if (ordered)
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 
 | |
| 		*lockstart = start_pos;
 | |
| 		*lockend = last_pos;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We should be called after prepare_one_folio() which should have locked
 | |
| 	 * all pages in the range.
 | |
| 	 */
 | |
| 	WARN_ON(!folio_test_locked(folio));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
 | |
|  *
 | |
|  * @pos:         File offset.
 | |
|  * @write_bytes: The length to write, will be updated to the nocow writeable
 | |
|  *               range.
 | |
|  *
 | |
|  * This function will flush ordered extents in the range to ensure proper
 | |
|  * nocow checks.
 | |
|  *
 | |
|  * Return:
 | |
|  * > 0          If we can nocow, and updates @write_bytes.
 | |
|  *  0           If we can't do a nocow write.
 | |
|  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
 | |
|  *              root is in progress.
 | |
|  * < 0          If an error happened.
 | |
|  *
 | |
|  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
 | |
|  */
 | |
| int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
 | |
| 			   size_t *write_bytes, bool nowait)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 lockstart, lockend;
 | |
| 	u64 num_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	lockstart = round_down(pos, fs_info->sectorsize);
 | |
| 	lockend = round_up(pos + *write_bytes,
 | |
| 			   fs_info->sectorsize) - 1;
 | |
| 	num_bytes = lockend - lockstart + 1;
 | |
| 
 | |
| 	if (nowait) {
 | |
| 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
 | |
| 						  &cached_state)) {
 | |
| 			btrfs_drew_write_unlock(&root->snapshot_lock);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 	} else {
 | |
| 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
 | |
| 						   &cached_state);
 | |
| 	}
 | |
| 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
 | |
| 			       NULL, nowait, false);
 | |
| 	if (ret <= 0)
 | |
| 		btrfs_drew_write_unlock(&root->snapshot_lock);
 | |
| 	else
 | |
| 		*write_bytes = min_t(size_t, *write_bytes ,
 | |
| 				     num_bytes - pos + lockstart);
 | |
| 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
 | |
| {
 | |
| 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
 | |
| }
 | |
| 
 | |
| int btrfs_write_check(struct kiocb *iocb, size_t count)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	loff_t pos = iocb->ki_pos;
 | |
| 	int ret;
 | |
| 	loff_t oldsize;
 | |
| 	loff_t start_pos;
 | |
| 
 | |
| 	/*
 | |
| 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
 | |
| 	 * prealloc flags, as without those flags we always have to COW. We will
 | |
| 	 * later check if we can really COW into the target range (using
 | |
| 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
 | |
| 	 */
 | |
| 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
 | |
| 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	ret = file_remove_privs(file);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We reserve space for updating the inode when we reserve space for the
 | |
| 	 * extent we are going to write, so we will enospc out there.  We don't
 | |
| 	 * need to start yet another transaction to update the inode as we will
 | |
| 	 * update the inode when we finish writing whatever data we write.
 | |
| 	 */
 | |
| 	if (!IS_NOCMTIME(inode)) {
 | |
| 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
 | |
| 		inode_inc_iversion(inode);
 | |
| 	}
 | |
| 
 | |
| 	start_pos = round_down(pos, fs_info->sectorsize);
 | |
| 	oldsize = i_size_read(inode);
 | |
| 	if (start_pos > oldsize) {
 | |
| 		/* Expand hole size to cover write data, preventing empty gap */
 | |
| 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
 | |
| 
 | |
| 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	loff_t pos;
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	struct extent_changeset *data_reserved = NULL;
 | |
| 	u64 release_bytes = 0;
 | |
| 	u64 lockstart;
 | |
| 	u64 lockend;
 | |
| 	size_t num_written = 0;
 | |
| 	ssize_t ret;
 | |
| 	loff_t old_isize = i_size_read(inode);
 | |
| 	unsigned int ilock_flags = 0;
 | |
| 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
 | |
| 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
 | |
| 	bool only_release_metadata = false;
 | |
| 
 | |
| 	if (nowait)
 | |
| 		ilock_flags |= BTRFS_ILOCK_TRY;
 | |
| 
 | |
| 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = generic_write_checks(iocb, i);
 | |
| 	if (ret <= 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = btrfs_write_check(iocb, ret);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	pos = iocb->ki_pos;
 | |
| 	while (iov_iter_count(i) > 0) {
 | |
| 		struct extent_state *cached_state = NULL;
 | |
| 		size_t offset = offset_in_page(pos);
 | |
| 		size_t sector_offset;
 | |
| 		size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset);
 | |
| 		size_t reserve_bytes;
 | |
| 		size_t copied;
 | |
| 		size_t dirty_sectors;
 | |
| 		size_t num_sectors;
 | |
| 		struct folio *folio = NULL;
 | |
| 		int extents_locked;
 | |
| 		bool force_page_uptodate = false;
 | |
| 
 | |
| 		/*
 | |
| 		 * Fault pages before locking them in prepare_one_folio()
 | |
| 		 * to avoid recursive lock
 | |
| 		 */
 | |
| 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		only_release_metadata = false;
 | |
| 		sector_offset = pos & (fs_info->sectorsize - 1);
 | |
| 
 | |
| 		extent_changeset_release(data_reserved);
 | |
| 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
 | |
| 						  &data_reserved, pos,
 | |
| 						  write_bytes, nowait);
 | |
| 		if (ret < 0) {
 | |
| 			int can_nocow;
 | |
| 
 | |
| 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
 | |
| 				ret = -EAGAIN;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If we don't have to COW at the offset, reserve
 | |
| 			 * metadata only. write_bytes may get smaller than
 | |
| 			 * requested here.
 | |
| 			 */
 | |
| 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
 | |
| 							   &write_bytes, nowait);
 | |
| 			if (can_nocow < 0)
 | |
| 				ret = can_nocow;
 | |
| 			if (can_nocow > 0)
 | |
| 				ret = 0;
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			only_release_metadata = true;
 | |
| 		}
 | |
| 
 | |
| 		reserve_bytes = round_up(write_bytes + sector_offset,
 | |
| 					 fs_info->sectorsize);
 | |
| 		WARN_ON(reserve_bytes == 0);
 | |
| 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
 | |
| 						      reserve_bytes,
 | |
| 						      reserve_bytes, nowait);
 | |
| 		if (ret) {
 | |
| 			if (!only_release_metadata)
 | |
| 				btrfs_free_reserved_data_space(BTRFS_I(inode),
 | |
| 						data_reserved, pos,
 | |
| 						write_bytes);
 | |
| 			else
 | |
| 				btrfs_check_nocow_unlock(BTRFS_I(inode));
 | |
| 
 | |
| 			if (nowait && ret == -ENOSPC)
 | |
| 				ret = -EAGAIN;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		release_bytes = reserve_bytes;
 | |
| again:
 | |
| 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
 | |
| 		if (ret) {
 | |
| 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = prepare_one_folio(inode, &folio, pos, write_bytes,
 | |
| 					force_page_uptodate, false);
 | |
| 		if (ret) {
 | |
| 			btrfs_delalloc_release_extents(BTRFS_I(inode),
 | |
| 						       reserve_bytes);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode),
 | |
| 						folio, pos, write_bytes, &lockstart,
 | |
| 						&lockend, nowait, &cached_state);
 | |
| 		if (extents_locked < 0) {
 | |
| 			if (!nowait && extents_locked == -EAGAIN)
 | |
| 				goto again;
 | |
| 
 | |
| 			btrfs_delalloc_release_extents(BTRFS_I(inode),
 | |
| 						       reserve_bytes);
 | |
| 			ret = extents_locked;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		copied = btrfs_copy_from_user(pos, write_bytes, folio, i);
 | |
| 
 | |
| 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
 | |
| 		dirty_sectors = round_up(copied + sector_offset,
 | |
| 					fs_info->sectorsize);
 | |
| 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
 | |
| 
 | |
| 		if (copied == 0) {
 | |
| 			force_page_uptodate = true;
 | |
| 			dirty_sectors = 0;
 | |
| 		} else {
 | |
| 			force_page_uptodate = false;
 | |
| 		}
 | |
| 
 | |
| 		if (num_sectors > dirty_sectors) {
 | |
| 			/* release everything except the sectors we dirtied */
 | |
| 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
 | |
| 			if (only_release_metadata) {
 | |
| 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
 | |
| 							release_bytes, true);
 | |
| 			} else {
 | |
| 				u64 release_start = round_up(pos + copied,
 | |
| 							     fs_info->sectorsize);
 | |
| 				btrfs_delalloc_release_space(BTRFS_I(inode),
 | |
| 						data_reserved, release_start,
 | |
| 						release_bytes, true);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		release_bytes = round_up(copied + sector_offset,
 | |
| 					fs_info->sectorsize);
 | |
| 
 | |
| 		ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied,
 | |
| 					&cached_state, only_release_metadata);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have not locked the extent range, because the range's
 | |
| 		 * start offset is >= i_size, we might still have a non-NULL
 | |
| 		 * cached extent state, acquired while marking the extent range
 | |
| 		 * as delalloc through btrfs_dirty_page(). Therefore free any
 | |
| 		 * possible cached extent state to avoid a memory leak.
 | |
| 		 */
 | |
| 		if (extents_locked)
 | |
| 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
 | |
| 				      lockend, &cached_state);
 | |
| 		else
 | |
| 			free_extent_state(cached_state);
 | |
| 
 | |
| 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
 | |
| 		if (ret) {
 | |
| 			btrfs_drop_folio(fs_info, folio, pos, copied);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		release_bytes = 0;
 | |
| 		if (only_release_metadata)
 | |
| 			btrfs_check_nocow_unlock(BTRFS_I(inode));
 | |
| 
 | |
| 		btrfs_drop_folio(fs_info, folio, pos, copied);
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		pos += copied;
 | |
| 		num_written += copied;
 | |
| 	}
 | |
| 
 | |
| 	if (release_bytes) {
 | |
| 		if (only_release_metadata) {
 | |
| 			btrfs_check_nocow_unlock(BTRFS_I(inode));
 | |
| 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
 | |
| 					release_bytes, true);
 | |
| 		} else {
 | |
| 			btrfs_delalloc_release_space(BTRFS_I(inode),
 | |
| 					data_reserved,
 | |
| 					round_down(pos, fs_info->sectorsize),
 | |
| 					release_bytes, true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	extent_changeset_free(data_reserved);
 | |
| 	if (num_written > 0) {
 | |
| 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
 | |
| 		iocb->ki_pos += num_written;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
 | |
| 	return num_written ? num_written : ret;
 | |
| }
 | |
| 
 | |
| static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
 | |
| 			const struct btrfs_ioctl_encoded_io_args *encoded)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	loff_t count;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	btrfs_inode_lock(BTRFS_I(inode), 0);
 | |
| 	count = encoded->len;
 | |
| 	ret = generic_write_checks_count(iocb, &count);
 | |
| 	if (ret == 0 && count != encoded->len) {
 | |
| 		/*
 | |
| 		 * The write got truncated by generic_write_checks_count(). We
 | |
| 		 * can't do a partial encoded write.
 | |
| 		 */
 | |
| 		ret = -EFBIG;
 | |
| 	}
 | |
| 	if (ret || encoded->len == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = btrfs_write_check(iocb, encoded->len);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = btrfs_do_encoded_write(iocb, from, encoded);
 | |
| out:
 | |
| 	btrfs_inode_unlock(BTRFS_I(inode), 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
 | |
| 			    const struct btrfs_ioctl_encoded_io_args *encoded)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
 | |
| 	ssize_t num_written, num_sync;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the fs flips readonly due to some impossible error, although we
 | |
| 	 * have opened a file as writable, we have to stop this write operation
 | |
| 	 * to ensure consistency.
 | |
| 	 */
 | |
| 	if (BTRFS_FS_ERROR(inode->root->fs_info))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (encoded) {
 | |
| 		num_written = btrfs_encoded_write(iocb, from, encoded);
 | |
| 		num_sync = encoded->len;
 | |
| 	} else if (iocb->ki_flags & IOCB_DIRECT) {
 | |
| 		num_written = btrfs_direct_write(iocb, from);
 | |
| 		num_sync = num_written;
 | |
| 	} else {
 | |
| 		num_written = btrfs_buffered_write(iocb, from);
 | |
| 		num_sync = num_written;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_inode_last_sub_trans(inode);
 | |
| 
 | |
| 	if (num_sync > 0) {
 | |
| 		num_sync = generic_write_sync(iocb, num_sync);
 | |
| 		if (num_sync < 0)
 | |
| 			num_written = num_sync;
 | |
| 	}
 | |
| 
 | |
| 	return num_written;
 | |
| }
 | |
| 
 | |
| static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | |
| {
 | |
| 	return btrfs_do_write_iter(iocb, from, NULL);
 | |
| }
 | |
| 
 | |
| int btrfs_release_file(struct inode *inode, struct file *filp)
 | |
| {
 | |
| 	struct btrfs_file_private *private = filp->private_data;
 | |
| 
 | |
| 	if (private) {
 | |
| 		kfree(private->filldir_buf);
 | |
| 		free_extent_state(private->llseek_cached_state);
 | |
| 		kfree(private);
 | |
| 		filp->private_data = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set by setattr when we are about to truncate a file from a non-zero
 | |
| 	 * size to a zero size.  This tries to flush down new bytes that may
 | |
| 	 * have been written if the application were using truncate to replace
 | |
| 	 * a file in place.
 | |
| 	 */
 | |
| 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
 | |
| 			       &BTRFS_I(inode)->runtime_flags))
 | |
| 			filemap_flush(inode->i_mapping);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is only called in fsync, which would do synchronous writes, so
 | |
| 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
 | |
| 	 * multiple disks using raid profile, a large IO can be split to
 | |
| 	 * several segments of stripe length (currently 64K).
 | |
| 	 */
 | |
| 	blk_start_plug(&plug);
 | |
| 	ret = btrfs_fdatawrite_range(inode, start, end);
 | |
| 	blk_finish_plug(&plug);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
 | |
| {
 | |
| 	struct btrfs_inode *inode = ctx->inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 
 | |
| 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
 | |
| 	    list_empty(&ctx->ordered_extents))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are doing a fast fsync we can not bail out if the inode's
 | |
| 	 * last_trans is <= then the last committed transaction, because we only
 | |
| 	 * update the last_trans of the inode during ordered extent completion,
 | |
| 	 * and for a fast fsync we don't wait for that, we only wait for the
 | |
| 	 * writeback to complete.
 | |
| 	 */
 | |
| 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
 | |
| 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
 | |
| 	     list_empty(&ctx->ordered_extents)))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fsync call for both files and directories.  This logs the inode into
 | |
|  * the tree log instead of forcing full commits whenever possible.
 | |
|  *
 | |
|  * It needs to call filemap_fdatawait so that all ordered extent updates are
 | |
|  * in the metadata btree are up to date for copying to the log.
 | |
|  *
 | |
|  * It drops the inode mutex before doing the tree log commit.  This is an
 | |
|  * important optimization for directories because holding the mutex prevents
 | |
|  * new operations on the dir while we write to disk.
 | |
|  */
 | |
| int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
 | |
| {
 | |
| 	struct dentry *dentry = file_dentry(file);
 | |
| 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_log_ctx ctx;
 | |
| 	int ret = 0, err;
 | |
| 	u64 len;
 | |
| 	bool full_sync;
 | |
| 	bool skip_ilock = false;
 | |
| 
 | |
| 	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
 | |
| 		skip_ilock = true;
 | |
| 		current->journal_info = NULL;
 | |
| 		btrfs_assert_inode_locked(inode);
 | |
| 	}
 | |
| 
 | |
| 	trace_btrfs_sync_file(file, datasync);
 | |
| 
 | |
| 	btrfs_init_log_ctx(&ctx, inode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Always set the range to a full range, otherwise we can get into
 | |
| 	 * several problems, from missing file extent items to represent holes
 | |
| 	 * when not using the NO_HOLES feature, to log tree corruption due to
 | |
| 	 * races between hole detection during logging and completion of ordered
 | |
| 	 * extents outside the range, to missing checksums due to ordered extents
 | |
| 	 * for which we flushed only a subset of their pages.
 | |
| 	 */
 | |
| 	start = 0;
 | |
| 	end = LLONG_MAX;
 | |
| 	len = (u64)LLONG_MAX + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We write the dirty pages in the range and wait until they complete
 | |
| 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
 | |
| 	 * multi-task, and make the performance up.  See
 | |
| 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
 | |
| 	 */
 | |
| 	ret = start_ordered_ops(inode, start, end);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (skip_ilock)
 | |
| 		down_write(&inode->i_mmap_lock);
 | |
| 	else
 | |
| 		btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
 | |
| 
 | |
| 	atomic_inc(&root->log_batch);
 | |
| 
 | |
| 	/*
 | |
| 	 * Before we acquired the inode's lock and the mmap lock, someone may
 | |
| 	 * have dirtied more pages in the target range. We need to make sure
 | |
| 	 * that writeback for any such pages does not start while we are logging
 | |
| 	 * the inode, because if it does, any of the following might happen when
 | |
| 	 * we are not doing a full inode sync:
 | |
| 	 *
 | |
| 	 * 1) We log an extent after its writeback finishes but before its
 | |
| 	 *    checksums are added to the csum tree, leading to -EIO errors
 | |
| 	 *    when attempting to read the extent after a log replay.
 | |
| 	 *
 | |
| 	 * 2) We can end up logging an extent before its writeback finishes.
 | |
| 	 *    Therefore after the log replay we will have a file extent item
 | |
| 	 *    pointing to an unwritten extent (and no data checksums as well).
 | |
| 	 *
 | |
| 	 * So trigger writeback for any eventual new dirty pages and then we
 | |
| 	 * wait for all ordered extents to complete below.
 | |
| 	 */
 | |
| 	ret = start_ordered_ops(inode, start, end);
 | |
| 	if (ret) {
 | |
| 		if (skip_ilock)
 | |
| 			up_write(&inode->i_mmap_lock);
 | |
| 		else
 | |
| 			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Always check for the full sync flag while holding the inode's lock,
 | |
| 	 * to avoid races with other tasks. The flag must be either set all the
 | |
| 	 * time during logging or always off all the time while logging.
 | |
| 	 * We check the flag here after starting delalloc above, because when
 | |
| 	 * running delalloc the full sync flag may be set if we need to drop
 | |
| 	 * extra extent map ranges due to temporary memory allocation failures.
 | |
| 	 */
 | |
| 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to do this here to avoid the priority inversion of waiting on
 | |
| 	 * IO of a lower priority task while holding a transaction open.
 | |
| 	 *
 | |
| 	 * For a full fsync we wait for the ordered extents to complete while
 | |
| 	 * for a fast fsync we wait just for writeback to complete, and then
 | |
| 	 * attach the ordered extents to the transaction so that a transaction
 | |
| 	 * commit waits for their completion, to avoid data loss if we fsync,
 | |
| 	 * the current transaction commits before the ordered extents complete
 | |
| 	 * and a power failure happens right after that.
 | |
| 	 *
 | |
| 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
 | |
| 	 * logical address recorded in the ordered extent may change. We need
 | |
| 	 * to wait for the IO to stabilize the logical address.
 | |
| 	 */
 | |
| 	if (full_sync || btrfs_is_zoned(fs_info)) {
 | |
| 		ret = btrfs_wait_ordered_range(inode, start, len);
 | |
| 		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Get our ordered extents as soon as possible to avoid doing
 | |
| 		 * checksum lookups in the csum tree, and use instead the
 | |
| 		 * checksums attached to the ordered extents.
 | |
| 		 */
 | |
| 		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
 | |
| 		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
 | |
| 		if (ret)
 | |
| 			goto out_release_extents;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
 | |
| 		 * starting and waiting for writeback, because for buffered IO
 | |
| 		 * it may have been set during the end IO callback
 | |
| 		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
 | |
| 		 * case an error happened and we need to wait for ordered
 | |
| 		 * extents to complete so that any extent maps that point to
 | |
| 		 * unwritten locations are dropped and we don't log them.
 | |
| 		 */
 | |
| 		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
 | |
| 			ret = btrfs_wait_ordered_range(inode, start, len);
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out_release_extents;
 | |
| 
 | |
| 	atomic_inc(&root->log_batch);
 | |
| 
 | |
| 	if (skip_inode_logging(&ctx)) {
 | |
| 		/*
 | |
| 		 * We've had everything committed since the last time we were
 | |
| 		 * modified so clear this flag in case it was set for whatever
 | |
| 		 * reason, it's no longer relevant.
 | |
| 		 */
 | |
| 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 | |
| 		/*
 | |
| 		 * An ordered extent might have started before and completed
 | |
| 		 * already with io errors, in which case the inode was not
 | |
| 		 * updated and we end up here. So check the inode's mapping
 | |
| 		 * for any errors that might have happened since we last
 | |
| 		 * checked called fsync.
 | |
| 		 */
 | |
| 		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
 | |
| 		goto out_release_extents;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_init_log_ctx_scratch_eb(&ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * We use start here because we will need to wait on the IO to complete
 | |
| 	 * in btrfs_sync_log, which could require joining a transaction (for
 | |
| 	 * example checking cross references in the nocow path).  If we use join
 | |
| 	 * here we could get into a situation where we're waiting on IO to
 | |
| 	 * happen that is blocked on a transaction trying to commit.  With start
 | |
| 	 * we inc the extwriter counter, so we wait for all extwriters to exit
 | |
| 	 * before we start blocking joiners.  This comment is to keep somebody
 | |
| 	 * from thinking they are super smart and changing this to
 | |
| 	 * btrfs_join_transaction *cough*Josef*cough*.
 | |
| 	 */
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		goto out_release_extents;
 | |
| 	}
 | |
| 	trans->in_fsync = true;
 | |
| 
 | |
| 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
 | |
| 	/*
 | |
| 	 * Scratch eb no longer needed, release before syncing log or commit
 | |
| 	 * transaction, to avoid holding unnecessary memory during such long
 | |
| 	 * operations.
 | |
| 	 */
 | |
| 	if (ctx.scratch_eb) {
 | |
| 		free_extent_buffer(ctx.scratch_eb);
 | |
| 		ctx.scratch_eb = NULL;
 | |
| 	}
 | |
| 	btrfs_release_log_ctx_extents(&ctx);
 | |
| 	if (ret < 0) {
 | |
| 		/* Fallthrough and commit/free transaction. */
 | |
| 		ret = BTRFS_LOG_FORCE_COMMIT;
 | |
| 	}
 | |
| 
 | |
| 	/* we've logged all the items and now have a consistent
 | |
| 	 * version of the file in the log.  It is possible that
 | |
| 	 * someone will come in and modify the file, but that's
 | |
| 	 * fine because the log is consistent on disk, and we
 | |
| 	 * have references to all of the file's extents
 | |
| 	 *
 | |
| 	 * It is possible that someone will come in and log the
 | |
| 	 * file again, but that will end up using the synchronization
 | |
| 	 * inside btrfs_sync_log to keep things safe.
 | |
| 	 */
 | |
| 	if (skip_ilock)
 | |
| 		up_write(&inode->i_mmap_lock);
 | |
| 	else
 | |
| 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
 | |
| 
 | |
| 	if (ret == BTRFS_NO_LOG_SYNC) {
 | |
| 		ret = btrfs_end_transaction(trans);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* We successfully logged the inode, attempt to sync the log. */
 | |
| 	if (!ret) {
 | |
| 		ret = btrfs_sync_log(trans, root, &ctx);
 | |
| 		if (!ret) {
 | |
| 			ret = btrfs_end_transaction(trans);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we need to commit the transaction because we had
 | |
| 	 * btrfs_need_log_full_commit() or some other error.
 | |
| 	 *
 | |
| 	 * If we didn't do a full sync we have to stop the trans handle, wait on
 | |
| 	 * the ordered extents, start it again and commit the transaction.  If
 | |
| 	 * we attempt to wait on the ordered extents here we could deadlock with
 | |
| 	 * something like fallocate() that is holding the extent lock trying to
 | |
| 	 * start a transaction while some other thread is trying to commit the
 | |
| 	 * transaction while we (fsync) are currently holding the transaction
 | |
| 	 * open.
 | |
| 	 */
 | |
| 	if (!full_sync) {
 | |
| 		ret = btrfs_end_transaction(trans);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		ret = btrfs_wait_ordered_range(inode, start, len);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is safe to use here because we're only interested in
 | |
| 		 * making sure the transaction that had the ordered extents is
 | |
| 		 * committed.  We aren't waiting on anything past this point,
 | |
| 		 * we're purely getting the transaction and committing it.
 | |
| 		 */
 | |
| 		trans = btrfs_attach_transaction_barrier(root);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			ret = PTR_ERR(trans);
 | |
| 
 | |
| 			/*
 | |
| 			 * We committed the transaction and there's no currently
 | |
| 			 * running transaction, this means everything we care
 | |
| 			 * about made it to disk and we are done.
 | |
| 			 */
 | |
| 			if (ret == -ENOENT)
 | |
| 				ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_commit_transaction(trans);
 | |
| out:
 | |
| 	free_extent_buffer(ctx.scratch_eb);
 | |
| 	ASSERT(list_empty(&ctx.list));
 | |
| 	ASSERT(list_empty(&ctx.conflict_inodes));
 | |
| 	err = file_check_and_advance_wb_err(file);
 | |
| 	if (!ret)
 | |
| 		ret = err;
 | |
| 	return ret > 0 ? -EIO : ret;
 | |
| 
 | |
| out_release_extents:
 | |
| 	btrfs_release_log_ctx_extents(&ctx);
 | |
| 	if (skip_ilock)
 | |
| 		up_write(&inode->i_mmap_lock);
 | |
| 	else
 | |
| 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
 | |
|  * called from a page fault handler when a page is first dirtied. Hence we must
 | |
|  * be careful to check for EOF conditions here. We set the page up correctly
 | |
|  * for a written page which means we get ENOSPC checking when writing into
 | |
|  * holes and correct delalloc and unwritten extent mapping on filesystems that
 | |
|  * support these features.
 | |
|  *
 | |
|  * We are not allowed to take the i_mutex here so we have to play games to
 | |
|  * protect against truncate races as the page could now be beyond EOF.  Because
 | |
|  * truncate_setsize() writes the inode size before removing pages, once we have
 | |
|  * the page lock we can determine safely if the page is beyond EOF. If it is not
 | |
|  * beyond EOF, then the page is guaranteed safe against truncation until we
 | |
|  * unlock the page.
 | |
|  */
 | |
| static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct page *page = vmf->page;
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	struct inode *inode = file_inode(vmf->vma->vm_file);
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct extent_changeset *data_reserved = NULL;
 | |
| 	unsigned long zero_start;
 | |
| 	loff_t size;
 | |
| 	vm_fault_t ret;
 | |
| 	int ret2;
 | |
| 	int reserved = 0;
 | |
| 	u64 reserved_space;
 | |
| 	u64 page_start;
 | |
| 	u64 page_end;
 | |
| 	u64 end;
 | |
| 
 | |
| 	ASSERT(folio_order(folio) == 0);
 | |
| 
 | |
| 	reserved_space = PAGE_SIZE;
 | |
| 
 | |
| 	sb_start_pagefault(inode->i_sb);
 | |
| 	page_start = folio_pos(folio);
 | |
| 	page_end = page_start + folio_size(folio) - 1;
 | |
| 	end = page_end;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserving delalloc space after obtaining the page lock can lead to
 | |
| 	 * deadlock. For example, if a dirty page is locked by this function
 | |
| 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
 | |
| 	 * dirty page write out, then the btrfs_writepages() function could
 | |
| 	 * end up waiting indefinitely to get a lock on the page currently
 | |
| 	 * being processed by btrfs_page_mkwrite() function.
 | |
| 	 */
 | |
| 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
 | |
| 					    page_start, reserved_space);
 | |
| 	if (!ret2) {
 | |
| 		ret2 = file_update_time(vmf->vma->vm_file);
 | |
| 		reserved = 1;
 | |
| 	}
 | |
| 	if (ret2) {
 | |
| 		ret = vmf_error(ret2);
 | |
| 		if (reserved)
 | |
| 			goto out;
 | |
| 		goto out_noreserve;
 | |
| 	}
 | |
| 
 | |
| 	/* Make the VM retry the fault. */
 | |
| 	ret = VM_FAULT_NOPAGE;
 | |
| again:
 | |
| 	down_read(&BTRFS_I(inode)->i_mmap_lock);
 | |
| 	folio_lock(folio);
 | |
| 	size = i_size_read(inode);
 | |
| 
 | |
| 	if ((folio->mapping != inode->i_mapping) ||
 | |
| 	    (page_start >= size)) {
 | |
| 		/* Page got truncated out from underneath us. */
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	folio_wait_writeback(folio);
 | |
| 
 | |
| 	lock_extent(io_tree, page_start, page_end, &cached_state);
 | |
| 	ret2 = set_folio_extent_mapped(folio);
 | |
| 	if (ret2 < 0) {
 | |
| 		ret = vmf_error(ret2);
 | |
| 		unlock_extent(io_tree, page_start, page_end, &cached_state);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't set the delalloc bits if there are pending ordered
 | |
| 	 * extents.  Drop our locks and wait for them to finish.
 | |
| 	 */
 | |
| 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
 | |
| 	if (ordered) {
 | |
| 		unlock_extent(io_tree, page_start, page_end, &cached_state);
 | |
| 		folio_unlock(folio);
 | |
| 		up_read(&BTRFS_I(inode)->i_mmap_lock);
 | |
| 		btrfs_start_ordered_extent(ordered);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	if (folio->index == ((size - 1) >> PAGE_SHIFT)) {
 | |
| 		reserved_space = round_up(size - page_start, fs_info->sectorsize);
 | |
| 		if (reserved_space < PAGE_SIZE) {
 | |
| 			end = page_start + reserved_space - 1;
 | |
| 			btrfs_delalloc_release_space(BTRFS_I(inode),
 | |
| 					data_reserved, page_start,
 | |
| 					PAGE_SIZE - reserved_space, true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * page_mkwrite gets called when the page is firstly dirtied after it's
 | |
| 	 * faulted in, but write(2) could also dirty a page and set delalloc
 | |
| 	 * bits, thus in this case for space account reason, we still need to
 | |
| 	 * clear any delalloc bits within this page range since we have to
 | |
| 	 * reserve data&meta space before lock_page() (see above comments).
 | |
| 	 */
 | |
| 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
 | |
| 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
 | |
| 			  EXTENT_DEFRAG, &cached_state);
 | |
| 
 | |
| 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
 | |
| 					&cached_state);
 | |
| 	if (ret2) {
 | |
| 		unlock_extent(io_tree, page_start, page_end, &cached_state);
 | |
| 		ret = VM_FAULT_SIGBUS;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Page is wholly or partially inside EOF. */
 | |
| 	if (page_start + folio_size(folio) > size)
 | |
| 		zero_start = offset_in_folio(folio, size);
 | |
| 	else
 | |
| 		zero_start = PAGE_SIZE;
 | |
| 
 | |
| 	if (zero_start != PAGE_SIZE)
 | |
| 		folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
 | |
| 
 | |
| 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
 | |
| 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
 | |
| 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
 | |
| 
 | |
| 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
 | |
| 
 | |
| 	unlock_extent(io_tree, page_start, page_end, &cached_state);
 | |
| 	up_read(&BTRFS_I(inode)->i_mmap_lock);
 | |
| 
 | |
| 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
 | |
| 	sb_end_pagefault(inode->i_sb);
 | |
| 	extent_changeset_free(data_reserved);
 | |
| 	return VM_FAULT_LOCKED;
 | |
| 
 | |
| out_unlock:
 | |
| 	folio_unlock(folio);
 | |
| 	up_read(&BTRFS_I(inode)->i_mmap_lock);
 | |
| out:
 | |
| 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
 | |
| 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
 | |
| 				     reserved_space, (ret != 0));
 | |
| out_noreserve:
 | |
| 	sb_end_pagefault(inode->i_sb);
 | |
| 	extent_changeset_free(data_reserved);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct vm_operations_struct btrfs_file_vm_ops = {
 | |
| 	.fault		= filemap_fault,
 | |
| 	.map_pages	= filemap_map_pages,
 | |
| 	.page_mkwrite	= btrfs_page_mkwrite,
 | |
| };
 | |
| 
 | |
| static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct address_space *mapping = filp->f_mapping;
 | |
| 
 | |
| 	if (!mapping->a_ops->read_folio)
 | |
| 		return -ENOEXEC;
 | |
| 
 | |
| 	file_accessed(filp);
 | |
| 	vma->vm_ops = &btrfs_file_vm_ops;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
 | |
| 			  int slot, u64 start, u64 end)
 | |
| {
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 | |
| 		return 0;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 	if (key.objectid != btrfs_ino(inode) ||
 | |
| 	    key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 		return 0;
 | |
| 
 | |
| 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 | |
| 
 | |
| 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (key.offset == end)
 | |
| 		return 1;
 | |
| 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fill_holes(struct btrfs_trans_handle *trans,
 | |
| 		struct btrfs_inode *inode,
 | |
| 		struct btrfs_path *path, u64 offset, u64 end)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct extent_map *hole_em;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
 | |
| 		goto out;
 | |
| 
 | |
| 	key.objectid = btrfs_ino(inode);
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = offset;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 	if (ret <= 0) {
 | |
| 		/*
 | |
| 		 * We should have dropped this offset, so if we find it then
 | |
| 		 * something has gone horribly wrong.
 | |
| 		 */
 | |
| 		if (ret == 0)
 | |
| 			ret = -EINVAL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
 | |
| 		u64 num_bytes;
 | |
| 
 | |
| 		path->slots[0]--;
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
 | |
| 			end - offset;
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
 | |
| 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
 | |
| 		btrfs_set_file_extent_offset(leaf, fi, 0);
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
 | |
| 		u64 num_bytes;
 | |
| 
 | |
| 		key.offset = offset;
 | |
| 		btrfs_set_item_key_safe(trans, path, &key);
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
 | |
| 			offset;
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
 | |
| 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
 | |
| 		btrfs_set_file_extent_offset(leaf, fi, 0);
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
 | |
| 				       end - offset);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	hole_em = alloc_extent_map();
 | |
| 	if (!hole_em) {
 | |
| 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
 | |
| 		btrfs_set_inode_full_sync(inode);
 | |
| 	} else {
 | |
| 		hole_em->start = offset;
 | |
| 		hole_em->len = end - offset;
 | |
| 		hole_em->ram_bytes = hole_em->len;
 | |
| 
 | |
| 		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
 | |
| 		hole_em->disk_num_bytes = 0;
 | |
| 		hole_em->generation = trans->transid;
 | |
| 
 | |
| 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
 | |
| 		free_extent_map(hole_em);
 | |
| 		if (ret)
 | |
| 			btrfs_set_inode_full_sync(inode);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a hole extent on given inode and change start/len to the end of hole
 | |
|  * extent.(hole/vacuum extent whose em->start <= start &&
 | |
|  *	   em->start + em->len > start)
 | |
|  * When a hole extent is found, return 1 and modify start/len.
 | |
|  */
 | |
| static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct extent_map *em;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	em = btrfs_get_extent(inode, NULL,
 | |
| 			      round_down(*start, fs_info->sectorsize),
 | |
| 			      round_up(*len, fs_info->sectorsize));
 | |
| 	if (IS_ERR(em))
 | |
| 		return PTR_ERR(em);
 | |
| 
 | |
| 	/* Hole or vacuum extent(only exists in no-hole mode) */
 | |
| 	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
 | |
| 		ret = 1;
 | |
| 		*len = em->start + em->len > *start + *len ?
 | |
| 		       0 : *start + *len - em->start - em->len;
 | |
| 		*start = em->start + em->len;
 | |
| 	}
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void btrfs_punch_hole_lock_range(struct inode *inode,
 | |
| 					const u64 lockstart,
 | |
| 					const u64 lockend,
 | |
| 					struct extent_state **cached_state)
 | |
| {
 | |
| 	/*
 | |
| 	 * For subpage case, if the range is not at page boundary, we could
 | |
| 	 * have pages at the leading/tailing part of the range.
 | |
| 	 * This could lead to dead loop since filemap_range_has_page()
 | |
| 	 * will always return true.
 | |
| 	 * So here we need to do extra page alignment for
 | |
| 	 * filemap_range_has_page().
 | |
| 	 */
 | |
| 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
 | |
| 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
 | |
| 
 | |
| 	while (1) {
 | |
| 		truncate_pagecache_range(inode, lockstart, lockend);
 | |
| 
 | |
| 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | |
| 			    cached_state);
 | |
| 		/*
 | |
| 		 * We can't have ordered extents in the range, nor dirty/writeback
 | |
| 		 * pages, because we have locked the inode's VFS lock in exclusive
 | |
| 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
 | |
| 		 * we have flushed all delalloc in the range and we have waited
 | |
| 		 * for any ordered extents in the range to complete.
 | |
| 		 * We can race with anyone reading pages from this range, so after
 | |
| 		 * locking the range check if we have pages in the range, and if
 | |
| 		 * we do, unlock the range and retry.
 | |
| 		 */
 | |
| 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
 | |
| 					    page_lockend))
 | |
| 			break;
 | |
| 
 | |
| 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | |
| 			      cached_state);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
 | |
| }
 | |
| 
 | |
| static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_inode *inode,
 | |
| 				     struct btrfs_path *path,
 | |
| 				     struct btrfs_replace_extent_info *extent_info,
 | |
| 				     const u64 replace_len,
 | |
| 				     const u64 bytes_to_drop)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_file_extent_item *extent;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	int slot;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (replace_len == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (extent_info->disk_offset == 0 &&
 | |
| 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
 | |
| 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = btrfs_ino(inode);
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = extent_info->file_offset;
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | |
| 				      sizeof(struct btrfs_file_extent_item));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	leaf = path->nodes[0];
 | |
| 	slot = path->slots[0];
 | |
| 	write_extent_buffer(leaf, extent_info->extent_buf,
 | |
| 			    btrfs_item_ptr_offset(leaf, slot),
 | |
| 			    sizeof(struct btrfs_file_extent_item));
 | |
| 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 | |
| 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
 | |
| 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
 | |
| 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
 | |
| 	if (extent_info->is_new_extent)
 | |
| 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
 | |
| 	btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
 | |
| 						replace_len);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* If it's a hole, nothing more needs to be done. */
 | |
| 	if (extent_info->disk_offset == 0) {
 | |
| 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
 | |
| 
 | |
| 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
 | |
| 		key.objectid = extent_info->disk_offset;
 | |
| 		key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 		key.offset = extent_info->disk_len;
 | |
| 		ret = btrfs_alloc_reserved_file_extent(trans, root,
 | |
| 						       btrfs_ino(inode),
 | |
| 						       extent_info->file_offset,
 | |
| 						       extent_info->qgroup_reserved,
 | |
| 						       &key);
 | |
| 	} else {
 | |
| 		struct btrfs_ref ref = {
 | |
| 			.action = BTRFS_ADD_DELAYED_REF,
 | |
| 			.bytenr = extent_info->disk_offset,
 | |
| 			.num_bytes = extent_info->disk_len,
 | |
| 			.owning_root = btrfs_root_id(root),
 | |
| 			.ref_root = btrfs_root_id(root),
 | |
| 		};
 | |
| 		u64 ref_offset;
 | |
| 
 | |
| 		ref_offset = extent_info->file_offset - extent_info->data_offset;
 | |
| 		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
 | |
| 		ret = btrfs_inc_extent_ref(trans, &ref);
 | |
| 	}
 | |
| 
 | |
| 	extent_info->insertions++;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The respective range must have been previously locked, as well as the inode.
 | |
|  * The end offset is inclusive (last byte of the range).
 | |
|  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
 | |
|  * the file range with an extent.
 | |
|  * When not punching a hole, we don't want to end up in a state where we dropped
 | |
|  * extents without inserting a new one, so we must abort the transaction to avoid
 | |
|  * a corruption.
 | |
|  */
 | |
| int btrfs_replace_file_extents(struct btrfs_inode *inode,
 | |
| 			       struct btrfs_path *path, const u64 start,
 | |
| 			       const u64 end,
 | |
| 			       struct btrfs_replace_extent_info *extent_info,
 | |
| 			       struct btrfs_trans_handle **trans_out)
 | |
| {
 | |
| 	struct btrfs_drop_extents_args drop_args = { 0 };
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
 | |
| 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
 | |
| 	struct btrfs_trans_handle *trans = NULL;
 | |
| 	struct btrfs_block_rsv *rsv;
 | |
| 	unsigned int rsv_count;
 | |
| 	u64 cur_offset;
 | |
| 	u64 len = end - start;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (end <= start)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
 | |
| 	if (!rsv) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
 | |
| 	rsv->failfast = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * 1 - update the inode
 | |
| 	 * 1 - removing the extents in the range
 | |
| 	 * 1 - adding the hole extent if no_holes isn't set or if we are
 | |
| 	 *     replacing the range with a new extent
 | |
| 	 */
 | |
| 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
 | |
| 		rsv_count = 3;
 | |
| 	else
 | |
| 		rsv_count = 2;
 | |
| 
 | |
| 	trans = btrfs_start_transaction(root, rsv_count);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		trans = NULL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
 | |
| 				      min_size, false);
 | |
| 	if (WARN_ON(ret))
 | |
| 		goto out_trans;
 | |
| 	trans->block_rsv = rsv;
 | |
| 
 | |
| 	cur_offset = start;
 | |
| 	drop_args.path = path;
 | |
| 	drop_args.end = end + 1;
 | |
| 	drop_args.drop_cache = true;
 | |
| 	while (cur_offset < end) {
 | |
| 		drop_args.start = cur_offset;
 | |
| 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
 | |
| 		/* If we are punching a hole decrement the inode's byte count */
 | |
| 		if (!extent_info)
 | |
| 			btrfs_update_inode_bytes(inode, 0,
 | |
| 						 drop_args.bytes_found);
 | |
| 		if (ret != -ENOSPC) {
 | |
| 			/*
 | |
| 			 * The only time we don't want to abort is if we are
 | |
| 			 * attempting to clone a partial inline extent, in which
 | |
| 			 * case we'll get EOPNOTSUPP.  However if we aren't
 | |
| 			 * clone we need to abort no matter what, because if we
 | |
| 			 * got EOPNOTSUPP via prealloc then we messed up and
 | |
| 			 * need to abort.
 | |
| 			 */
 | |
| 			if (ret &&
 | |
| 			    (ret != -EOPNOTSUPP ||
 | |
| 			     (extent_info && extent_info->is_new_extent)))
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		trans->block_rsv = &fs_info->trans_block_rsv;
 | |
| 
 | |
| 		if (!extent_info && cur_offset < drop_args.drop_end &&
 | |
| 		    cur_offset < ino_size) {
 | |
| 			ret = fill_holes(trans, inode, path, cur_offset,
 | |
| 					 drop_args.drop_end);
 | |
| 			if (ret) {
 | |
| 				/*
 | |
| 				 * If we failed then we didn't insert our hole
 | |
| 				 * entries for the area we dropped, so now the
 | |
| 				 * fs is corrupted, so we must abort the
 | |
| 				 * transaction.
 | |
| 				 */
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				break;
 | |
| 			}
 | |
| 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
 | |
| 			/*
 | |
| 			 * We are past the i_size here, but since we didn't
 | |
| 			 * insert holes we need to clear the mapped area so we
 | |
| 			 * know to not set disk_i_size in this area until a new
 | |
| 			 * file extent is inserted here.
 | |
| 			 */
 | |
| 			ret = btrfs_inode_clear_file_extent_range(inode,
 | |
| 					cur_offset,
 | |
| 					drop_args.drop_end - cur_offset);
 | |
| 			if (ret) {
 | |
| 				/*
 | |
| 				 * We couldn't clear our area, so we could
 | |
| 				 * presumably adjust up and corrupt the fs, so
 | |
| 				 * we need to abort.
 | |
| 				 */
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (extent_info &&
 | |
| 		    drop_args.drop_end > extent_info->file_offset) {
 | |
| 			u64 replace_len = drop_args.drop_end -
 | |
| 					  extent_info->file_offset;
 | |
| 
 | |
| 			ret = btrfs_insert_replace_extent(trans, inode,	path,
 | |
| 					extent_info, replace_len,
 | |
| 					drop_args.bytes_found);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, ret);
 | |
| 				break;
 | |
| 			}
 | |
| 			extent_info->data_len -= replace_len;
 | |
| 			extent_info->data_offset += replace_len;
 | |
| 			extent_info->file_offset += replace_len;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We are releasing our handle on the transaction, balance the
 | |
| 		 * dirty pages of the btree inode and flush delayed items, and
 | |
| 		 * then get a new transaction handle, which may now point to a
 | |
| 		 * new transaction in case someone else may have committed the
 | |
| 		 * transaction we used to replace/drop file extent items. So
 | |
| 		 * bump the inode's iversion and update mtime and ctime except
 | |
| 		 * if we are called from a dedupe context. This is because a
 | |
| 		 * power failure/crash may happen after the transaction is
 | |
| 		 * committed and before we finish replacing/dropping all the
 | |
| 		 * file extent items we need.
 | |
| 		 */
 | |
| 		inode_inc_iversion(&inode->vfs_inode);
 | |
| 
 | |
| 		if (!extent_info || extent_info->update_times)
 | |
| 			inode_set_mtime_to_ts(&inode->vfs_inode,
 | |
| 					      inode_set_ctime_current(&inode->vfs_inode));
 | |
| 
 | |
| 		ret = btrfs_update_inode(trans, inode);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		btrfs_end_transaction(trans);
 | |
| 		btrfs_btree_balance_dirty(fs_info);
 | |
| 
 | |
| 		trans = btrfs_start_transaction(root, rsv_count);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			ret = PTR_ERR(trans);
 | |
| 			trans = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
 | |
| 					      rsv, min_size, false);
 | |
| 		if (WARN_ON(ret))
 | |
| 			break;
 | |
| 		trans->block_rsv = rsv;
 | |
| 
 | |
| 		cur_offset = drop_args.drop_end;
 | |
| 		len = end - cur_offset;
 | |
| 		if (!extent_info && len) {
 | |
| 			ret = find_first_non_hole(inode, &cur_offset, &len);
 | |
| 			if (unlikely(ret < 0))
 | |
| 				break;
 | |
| 			if (ret && !len) {
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we were cloning, force the next fsync to be a full one since we
 | |
| 	 * we replaced (or just dropped in the case of cloning holes when
 | |
| 	 * NO_HOLES is enabled) file extent items and did not setup new extent
 | |
| 	 * maps for the replacement extents (or holes).
 | |
| 	 */
 | |
| 	if (extent_info && !extent_info->is_new_extent)
 | |
| 		btrfs_set_inode_full_sync(inode);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out_trans;
 | |
| 
 | |
| 	trans->block_rsv = &fs_info->trans_block_rsv;
 | |
| 	/*
 | |
| 	 * If we are using the NO_HOLES feature we might have had already an
 | |
| 	 * hole that overlaps a part of the region [lockstart, lockend] and
 | |
| 	 * ends at (or beyond) lockend. Since we have no file extent items to
 | |
| 	 * represent holes, drop_end can be less than lockend and so we must
 | |
| 	 * make sure we have an extent map representing the existing hole (the
 | |
| 	 * call to __btrfs_drop_extents() might have dropped the existing extent
 | |
| 	 * map representing the existing hole), otherwise the fast fsync path
 | |
| 	 * will not record the existence of the hole region
 | |
| 	 * [existing_hole_start, lockend].
 | |
| 	 */
 | |
| 	if (drop_args.drop_end <= end)
 | |
| 		drop_args.drop_end = end + 1;
 | |
| 	/*
 | |
| 	 * Don't insert file hole extent item if it's for a range beyond eof
 | |
| 	 * (because it's useless) or if it represents a 0 bytes range (when
 | |
| 	 * cur_offset == drop_end).
 | |
| 	 */
 | |
| 	if (!extent_info && cur_offset < ino_size &&
 | |
| 	    cur_offset < drop_args.drop_end) {
 | |
| 		ret = fill_holes(trans, inode, path, cur_offset,
 | |
| 				 drop_args.drop_end);
 | |
| 		if (ret) {
 | |
| 			/* Same comment as above. */
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out_trans;
 | |
| 		}
 | |
| 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
 | |
| 		/* See the comment in the loop above for the reasoning here. */
 | |
| 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
 | |
| 					drop_args.drop_end - cur_offset);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out_trans;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	if (extent_info) {
 | |
| 		ret = btrfs_insert_replace_extent(trans, inode, path,
 | |
| 				extent_info, extent_info->data_len,
 | |
| 				drop_args.bytes_found);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out_trans;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_trans:
 | |
| 	if (!trans)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	trans->block_rsv = &fs_info->trans_block_rsv;
 | |
| 	if (ret)
 | |
| 		btrfs_end_transaction(trans);
 | |
| 	else
 | |
| 		*trans_out = trans;
 | |
| out_free:
 | |
| 	btrfs_free_block_rsv(fs_info, rsv);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_trans_handle *trans = NULL;
 | |
| 	u64 lockstart;
 | |
| 	u64 lockend;
 | |
| 	u64 tail_start;
 | |
| 	u64 tail_len;
 | |
| 	u64 orig_start = offset;
 | |
| 	int ret = 0;
 | |
| 	bool same_block;
 | |
| 	u64 ino_size;
 | |
| 	bool truncated_block = false;
 | |
| 	bool updated_inode = false;
 | |
| 
 | |
| 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 | |
| 
 | |
| 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
 | |
| 	if (ret)
 | |
| 		goto out_only_mutex;
 | |
| 
 | |
| 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
 | |
| 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
 | |
| 	if (ret < 0)
 | |
| 		goto out_only_mutex;
 | |
| 	if (ret && !len) {
 | |
| 		/* Already in a large hole */
 | |
| 		ret = 0;
 | |
| 		goto out_only_mutex;
 | |
| 	}
 | |
| 
 | |
| 	ret = file_modified(file);
 | |
| 	if (ret)
 | |
| 		goto out_only_mutex;
 | |
| 
 | |
| 	lockstart = round_up(offset, fs_info->sectorsize);
 | |
| 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
 | |
| 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
 | |
| 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
 | |
| 	/*
 | |
| 	 * We needn't truncate any block which is beyond the end of the file
 | |
| 	 * because we are sure there is no data there.
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * Only do this if we are in the same block and we aren't doing the
 | |
| 	 * entire block.
 | |
| 	 */
 | |
| 	if (same_block && len < fs_info->sectorsize) {
 | |
| 		if (offset < ino_size) {
 | |
| 			truncated_block = true;
 | |
| 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
 | |
| 						   0);
 | |
| 		} else {
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 		goto out_only_mutex;
 | |
| 	}
 | |
| 
 | |
| 	/* zero back part of the first block */
 | |
| 	if (offset < ino_size) {
 | |
| 		truncated_block = true;
 | |
| 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
 | |
| 		if (ret) {
 | |
| 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check the aligned pages after the first unaligned page,
 | |
| 	 * if offset != orig_start, which means the first unaligned page
 | |
| 	 * including several following pages are already in holes,
 | |
| 	 * the extra check can be skipped */
 | |
| 	if (offset == orig_start) {
 | |
| 		/* after truncate page, check hole again */
 | |
| 		len = offset + len - lockstart;
 | |
| 		offset = lockstart;
 | |
| 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
 | |
| 		if (ret < 0)
 | |
| 			goto out_only_mutex;
 | |
| 		if (ret && !len) {
 | |
| 			ret = 0;
 | |
| 			goto out_only_mutex;
 | |
| 		}
 | |
| 		lockstart = offset;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the tail unaligned part is in a hole */
 | |
| 	tail_start = lockend + 1;
 | |
| 	tail_len = offset + len - tail_start;
 | |
| 	if (tail_len) {
 | |
| 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
 | |
| 		if (unlikely(ret < 0))
 | |
| 			goto out_only_mutex;
 | |
| 		if (!ret) {
 | |
| 			/* zero the front end of the last page */
 | |
| 			if (tail_start + tail_len < ino_size) {
 | |
| 				truncated_block = true;
 | |
| 				ret = btrfs_truncate_block(BTRFS_I(inode),
 | |
| 							tail_start + tail_len,
 | |
| 							0, 1);
 | |
| 				if (ret)
 | |
| 					goto out_only_mutex;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (lockend < lockstart) {
 | |
| 		ret = 0;
 | |
| 		goto out_only_mutex;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
 | |
| 					 lockend, NULL, &trans);
 | |
| 	btrfs_free_path(path);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ASSERT(trans != NULL);
 | |
| 	inode_inc_iversion(inode);
 | |
| 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
 | |
| 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 | |
| 	updated_inode = true;
 | |
| 	btrfs_end_transaction(trans);
 | |
| 	btrfs_btree_balance_dirty(fs_info);
 | |
| out:
 | |
| 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | |
| 		      &cached_state);
 | |
| out_only_mutex:
 | |
| 	if (!updated_inode && truncated_block && !ret) {
 | |
| 		/*
 | |
| 		 * If we only end up zeroing part of a page, we still need to
 | |
| 		 * update the inode item, so that all the time fields are
 | |
| 		 * updated as well as the necessary btrfs inode in memory fields
 | |
| 		 * for detecting, at fsync time, if the inode isn't yet in the
 | |
| 		 * log tree or it's there but not up to date.
 | |
| 		 */
 | |
| 		struct timespec64 now = inode_set_ctime_current(inode);
 | |
| 
 | |
| 		inode_inc_iversion(inode);
 | |
| 		inode_set_mtime_to_ts(inode, now);
 | |
| 		trans = btrfs_start_transaction(root, 1);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			ret = PTR_ERR(trans);
 | |
| 		} else {
 | |
| 			int ret2;
 | |
| 
 | |
| 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
 | |
| 			ret2 = btrfs_end_transaction(trans);
 | |
| 			if (!ret)
 | |
| 				ret = ret2;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Helper structure to record which range is already reserved */
 | |
| struct falloc_range {
 | |
| 	struct list_head list;
 | |
| 	u64 start;
 | |
| 	u64 len;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Helper function to add falloc range
 | |
|  *
 | |
|  * Caller should have locked the larger range of extent containing
 | |
|  * [start, len)
 | |
|  */
 | |
| static int add_falloc_range(struct list_head *head, u64 start, u64 len)
 | |
| {
 | |
| 	struct falloc_range *range = NULL;
 | |
| 
 | |
| 	if (!list_empty(head)) {
 | |
| 		/*
 | |
| 		 * As fallocate iterates by bytenr order, we only need to check
 | |
| 		 * the last range.
 | |
| 		 */
 | |
| 		range = list_last_entry(head, struct falloc_range, list);
 | |
| 		if (range->start + range->len == start) {
 | |
| 			range->len += len;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	range = kmalloc(sizeof(*range), GFP_KERNEL);
 | |
| 	if (!range)
 | |
| 		return -ENOMEM;
 | |
| 	range->start = start;
 | |
| 	range->len = len;
 | |
| 	list_add_tail(&range->list, head);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_fallocate_update_isize(struct inode *inode,
 | |
| 					const u64 end,
 | |
| 					const int mode)
 | |
| {
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	int ret;
 | |
| 	int ret2;
 | |
| 
 | |
| 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	trans = btrfs_start_transaction(root, 1);
 | |
| 	if (IS_ERR(trans))
 | |
| 		return PTR_ERR(trans);
 | |
| 
 | |
| 	inode_set_ctime_current(inode);
 | |
| 	i_size_write(inode, end);
 | |
| 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 | |
| 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 | |
| 	ret2 = btrfs_end_transaction(trans);
 | |
| 
 | |
| 	return ret ? ret : ret2;
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	RANGE_BOUNDARY_WRITTEN_EXTENT,
 | |
| 	RANGE_BOUNDARY_PREALLOC_EXTENT,
 | |
| 	RANGE_BOUNDARY_HOLE,
 | |
| };
 | |
| 
 | |
| static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
 | |
| 						 u64 offset)
 | |
| {
 | |
| 	const u64 sectorsize = inode->root->fs_info->sectorsize;
 | |
| 	struct extent_map *em;
 | |
| 	int ret;
 | |
| 
 | |
| 	offset = round_down(offset, sectorsize);
 | |
| 	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
 | |
| 	if (IS_ERR(em))
 | |
| 		return PTR_ERR(em);
 | |
| 
 | |
| 	if (em->disk_bytenr == EXTENT_MAP_HOLE)
 | |
| 		ret = RANGE_BOUNDARY_HOLE;
 | |
| 	else if (em->flags & EXTENT_FLAG_PREALLOC)
 | |
| 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
 | |
| 	else
 | |
| 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
 | |
| 
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_zero_range(struct inode *inode,
 | |
| 			    loff_t offset,
 | |
| 			    loff_t len,
 | |
| 			    const int mode)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 | |
| 	struct extent_map *em;
 | |
| 	struct extent_changeset *data_reserved = NULL;
 | |
| 	int ret;
 | |
| 	u64 alloc_hint = 0;
 | |
| 	const u64 sectorsize = fs_info->sectorsize;
 | |
| 	u64 alloc_start = round_down(offset, sectorsize);
 | |
| 	u64 alloc_end = round_up(offset + len, sectorsize);
 | |
| 	u64 bytes_to_reserve = 0;
 | |
| 	bool space_reserved = false;
 | |
| 
 | |
| 	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
 | |
| 			      alloc_end - alloc_start);
 | |
| 	if (IS_ERR(em)) {
 | |
| 		ret = PTR_ERR(em);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid hole punching and extent allocation for some cases. More cases
 | |
| 	 * could be considered, but these are unlikely common and we keep things
 | |
| 	 * as simple as possible for now. Also, intentionally, if the target
 | |
| 	 * range contains one or more prealloc extents together with regular
 | |
| 	 * extents and holes, we drop all the existing extents and allocate a
 | |
| 	 * new prealloc extent, so that we get a larger contiguous disk extent.
 | |
| 	 */
 | |
| 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
 | |
| 		const u64 em_end = em->start + em->len;
 | |
| 
 | |
| 		if (em_end >= offset + len) {
 | |
| 			/*
 | |
| 			 * The whole range is already a prealloc extent,
 | |
| 			 * do nothing except updating the inode's i_size if
 | |
| 			 * needed.
 | |
| 			 */
 | |
| 			free_extent_map(em);
 | |
| 			ret = btrfs_fallocate_update_isize(inode, offset + len,
 | |
| 							   mode);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Part of the range is already a prealloc extent, so operate
 | |
| 		 * only on the remaining part of the range.
 | |
| 		 */
 | |
| 		alloc_start = em_end;
 | |
| 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
 | |
| 		len = offset + len - alloc_start;
 | |
| 		offset = alloc_start;
 | |
| 		alloc_hint = extent_map_block_start(em) + em->len;
 | |
| 	}
 | |
| 	free_extent_map(em);
 | |
| 
 | |
| 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
 | |
| 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
 | |
| 		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
 | |
| 		if (IS_ERR(em)) {
 | |
| 			ret = PTR_ERR(em);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (em->flags & EXTENT_FLAG_PREALLOC) {
 | |
| 			free_extent_map(em);
 | |
| 			ret = btrfs_fallocate_update_isize(inode, offset + len,
 | |
| 							   mode);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
 | |
| 			free_extent_map(em);
 | |
| 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
 | |
| 						   0);
 | |
| 			if (!ret)
 | |
| 				ret = btrfs_fallocate_update_isize(inode,
 | |
| 								   offset + len,
 | |
| 								   mode);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		free_extent_map(em);
 | |
| 		alloc_start = round_down(offset, sectorsize);
 | |
| 		alloc_end = alloc_start + sectorsize;
 | |
| 		goto reserve_space;
 | |
| 	}
 | |
| 
 | |
| 	alloc_start = round_up(offset, sectorsize);
 | |
| 	alloc_end = round_down(offset + len, sectorsize);
 | |
| 
 | |
| 	/*
 | |
| 	 * For unaligned ranges, check the pages at the boundaries, they might
 | |
| 	 * map to an extent, in which case we need to partially zero them, or
 | |
| 	 * they might map to a hole, in which case we need our allocation range
 | |
| 	 * to cover them.
 | |
| 	 */
 | |
| 	if (!IS_ALIGNED(offset, sectorsize)) {
 | |
| 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
 | |
| 							    offset);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		if (ret == RANGE_BOUNDARY_HOLE) {
 | |
| 			alloc_start = round_down(offset, sectorsize);
 | |
| 			ret = 0;
 | |
| 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
 | |
| 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		} else {
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_ALIGNED(offset + len, sectorsize)) {
 | |
| 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
 | |
| 							    offset + len);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		if (ret == RANGE_BOUNDARY_HOLE) {
 | |
| 			alloc_end = round_up(offset + len, sectorsize);
 | |
| 			ret = 0;
 | |
| 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
 | |
| 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
 | |
| 						   0, 1);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		} else {
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| reserve_space:
 | |
| 	if (alloc_start < alloc_end) {
 | |
| 		struct extent_state *cached_state = NULL;
 | |
| 		const u64 lockstart = alloc_start;
 | |
| 		const u64 lockend = alloc_end - 1;
 | |
| 
 | |
| 		bytes_to_reserve = alloc_end - alloc_start;
 | |
| 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
 | |
| 						      bytes_to_reserve);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		space_reserved = true;
 | |
| 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
 | |
| 					    &cached_state);
 | |
| 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
 | |
| 						alloc_start, bytes_to_reserve);
 | |
| 		if (ret) {
 | |
| 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
 | |
| 				      lockend, &cached_state);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
 | |
| 						alloc_end - alloc_start,
 | |
| 						fs_info->sectorsize,
 | |
| 						offset + len, &alloc_hint);
 | |
| 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | |
| 			      &cached_state);
 | |
| 		/* btrfs_prealloc_file_range releases reserved space on error */
 | |
| 		if (ret) {
 | |
| 			space_reserved = false;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
 | |
|  out:
 | |
| 	if (ret && space_reserved)
 | |
| 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
 | |
| 					       alloc_start, bytes_to_reserve);
 | |
| 	extent_changeset_free(data_reserved);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static long btrfs_fallocate(struct file *file, int mode,
 | |
| 			    loff_t offset, loff_t len)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct extent_changeset *data_reserved = NULL;
 | |
| 	struct falloc_range *range;
 | |
| 	struct falloc_range *tmp;
 | |
| 	LIST_HEAD(reserve_list);
 | |
| 	u64 cur_offset;
 | |
| 	u64 last_byte;
 | |
| 	u64 alloc_start;
 | |
| 	u64 alloc_end;
 | |
| 	u64 alloc_hint = 0;
 | |
| 	u64 locked_end;
 | |
| 	u64 actual_end = 0;
 | |
| 	u64 data_space_needed = 0;
 | |
| 	u64 data_space_reserved = 0;
 | |
| 	u64 qgroup_reserved = 0;
 | |
| 	struct extent_map *em;
 | |
| 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Do not allow fallocate in ZONED mode */
 | |
| 	if (btrfs_is_zoned(inode_to_fs_info(inode)))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	alloc_start = round_down(offset, blocksize);
 | |
| 	alloc_end = round_up(offset + len, blocksize);
 | |
| 	cur_offset = alloc_start;
 | |
| 
 | |
| 	/* Make sure we aren't being give some crap mode */
 | |
| 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
 | |
| 		     FALLOC_FL_ZERO_RANGE))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (mode & FALLOC_FL_PUNCH_HOLE)
 | |
| 		return btrfs_punch_hole(file, offset, len);
 | |
| 
 | |
| 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 | |
| 
 | |
| 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
 | |
| 		ret = inode_newsize_ok(inode, offset + len);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = file_modified(file);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: Move these two operations after we have checked
 | |
| 	 * accurate reserved space, or fallocate can still fail but
 | |
| 	 * with page truncated or size expanded.
 | |
| 	 *
 | |
| 	 * But that's a minor problem and won't do much harm BTW.
 | |
| 	 */
 | |
| 	if (alloc_start > inode->i_size) {
 | |
| 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
 | |
| 					alloc_start);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	} else if (offset + len > inode->i_size) {
 | |
| 		/*
 | |
| 		 * If we are fallocating from the end of the file onward we
 | |
| 		 * need to zero out the end of the block if i_size lands in the
 | |
| 		 * middle of a block.
 | |
| 		 */
 | |
| 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have locked the inode at the VFS level (in exclusive mode) and we
 | |
| 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
 | |
| 	 * locking the file range, flush all dealloc in the range and wait for
 | |
| 	 * all ordered extents in the range to complete. After this we can lock
 | |
| 	 * the file range and, due to the previous locking we did, we know there
 | |
| 	 * can't be more delalloc or ordered extents in the range.
 | |
| 	 */
 | |
| 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
 | |
| 				       alloc_end - alloc_start);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (mode & FALLOC_FL_ZERO_RANGE) {
 | |
| 		ret = btrfs_zero_range(inode, offset, len, mode);
 | |
| 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	locked_end = alloc_end - 1;
 | |
| 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
 | |
| 		    &cached_state);
 | |
| 
 | |
| 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
 | |
| 
 | |
| 	/* First, check if we exceed the qgroup limit */
 | |
| 	while (cur_offset < alloc_end) {
 | |
| 		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
 | |
| 				      alloc_end - cur_offset);
 | |
| 		if (IS_ERR(em)) {
 | |
| 			ret = PTR_ERR(em);
 | |
| 			break;
 | |
| 		}
 | |
| 		last_byte = min(extent_map_end(em), alloc_end);
 | |
| 		actual_end = min_t(u64, extent_map_end(em), offset + len);
 | |
| 		last_byte = ALIGN(last_byte, blocksize);
 | |
| 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
 | |
| 		    (cur_offset >= inode->i_size &&
 | |
| 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
 | |
| 			const u64 range_len = last_byte - cur_offset;
 | |
| 
 | |
| 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
 | |
| 			if (ret < 0) {
 | |
| 				free_extent_map(em);
 | |
| 				break;
 | |
| 			}
 | |
| 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
 | |
| 					&data_reserved, cur_offset, range_len);
 | |
| 			if (ret < 0) {
 | |
| 				free_extent_map(em);
 | |
| 				break;
 | |
| 			}
 | |
| 			qgroup_reserved += range_len;
 | |
| 			data_space_needed += range_len;
 | |
| 		}
 | |
| 		free_extent_map(em);
 | |
| 		cur_offset = last_byte;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret && data_space_needed > 0) {
 | |
| 		/*
 | |
| 		 * We are safe to reserve space here as we can't have delalloc
 | |
| 		 * in the range, see above.
 | |
| 		 */
 | |
| 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
 | |
| 						      data_space_needed);
 | |
| 		if (!ret)
 | |
| 			data_space_reserved = data_space_needed;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If ret is still 0, means we're OK to fallocate.
 | |
| 	 * Or just cleanup the list and exit.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
 | |
| 		if (!ret) {
 | |
| 			ret = btrfs_prealloc_file_range(inode, mode,
 | |
| 					range->start,
 | |
| 					range->len, blocksize,
 | |
| 					offset + len, &alloc_hint);
 | |
| 			/*
 | |
| 			 * btrfs_prealloc_file_range() releases space even
 | |
| 			 * if it returns an error.
 | |
| 			 */
 | |
| 			data_space_reserved -= range->len;
 | |
| 			qgroup_reserved -= range->len;
 | |
| 		} else if (data_space_reserved > 0) {
 | |
| 			btrfs_free_reserved_data_space(BTRFS_I(inode),
 | |
| 					       data_reserved, range->start,
 | |
| 					       range->len);
 | |
| 			data_space_reserved -= range->len;
 | |
| 			qgroup_reserved -= range->len;
 | |
| 		} else if (qgroup_reserved > 0) {
 | |
| 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
 | |
| 					       range->start, range->len, NULL);
 | |
| 			qgroup_reserved -= range->len;
 | |
| 		}
 | |
| 		list_del(&range->list);
 | |
| 		kfree(range);
 | |
| 	}
 | |
| 	if (ret < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * We didn't need to allocate any more space, but we still extended the
 | |
| 	 * size of the file so we need to update i_size and the inode item.
 | |
| 	 */
 | |
| 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
 | |
| out_unlock:
 | |
| 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
 | |
| 		      &cached_state);
 | |
| out:
 | |
| 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
 | |
| 	extent_changeset_free(data_reserved);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
 | |
|  * that has unflushed and/or flushing delalloc. There might be other adjacent
 | |
|  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
 | |
|  * looping while it gets adjacent subranges, and merging them together.
 | |
|  */
 | |
| static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
 | |
| 				   struct extent_state **cached_state,
 | |
| 				   bool *search_io_tree,
 | |
| 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
 | |
| {
 | |
| 	u64 len = end + 1 - start;
 | |
| 	u64 delalloc_len = 0;
 | |
| 	struct btrfs_ordered_extent *oe;
 | |
| 	u64 oe_start;
 | |
| 	u64 oe_end;
 | |
| 
 | |
| 	/*
 | |
| 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
 | |
| 	 * means we have delalloc (dirty pages) for which writeback has not
 | |
| 	 * started yet.
 | |
| 	 */
 | |
| 	if (*search_io_tree) {
 | |
| 		spin_lock(&inode->lock);
 | |
| 		if (inode->delalloc_bytes > 0) {
 | |
| 			spin_unlock(&inode->lock);
 | |
| 			*delalloc_start_ret = start;
 | |
| 			delalloc_len = count_range_bits(&inode->io_tree,
 | |
| 							delalloc_start_ret, end,
 | |
| 							len, EXTENT_DELALLOC, 1,
 | |
| 							cached_state);
 | |
| 		} else {
 | |
| 			spin_unlock(&inode->lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (delalloc_len > 0) {
 | |
| 		/*
 | |
| 		 * If delalloc was found then *delalloc_start_ret has a sector size
 | |
| 		 * aligned value (rounded down).
 | |
| 		 */
 | |
| 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
 | |
| 
 | |
| 		if (*delalloc_start_ret == start) {
 | |
| 			/* Delalloc for the whole range, nothing more to do. */
 | |
| 			if (*delalloc_end_ret == end)
 | |
| 				return true;
 | |
| 			/* Else trim our search range for ordered extents. */
 | |
| 			start = *delalloc_end_ret + 1;
 | |
| 			len = end + 1 - start;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* No delalloc, future calls don't need to search again. */
 | |
| 		*search_io_tree = false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now also check if there's any ordered extent in the range.
 | |
| 	 * We do this because:
 | |
| 	 *
 | |
| 	 * 1) When delalloc is flushed, the file range is locked, we clear the
 | |
| 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
 | |
| 	 *    an ordered extent for the write. So we might just have been called
 | |
| 	 *    after delalloc is flushed and before the ordered extent completes
 | |
| 	 *    and inserts the new file extent item in the subvolume's btree;
 | |
| 	 *
 | |
| 	 * 2) We may have an ordered extent created by flushing delalloc for a
 | |
| 	 *    subrange that starts before the subrange we found marked with
 | |
| 	 *    EXTENT_DELALLOC in the io tree.
 | |
| 	 *
 | |
| 	 * We could also use the extent map tree to find such delalloc that is
 | |
| 	 * being flushed, but using the ordered extents tree is more efficient
 | |
| 	 * because it's usually much smaller as ordered extents are removed from
 | |
| 	 * the tree once they complete. With the extent maps, we mau have them
 | |
| 	 * in the extent map tree for a very long time, and they were either
 | |
| 	 * created by previous writes or loaded by read operations.
 | |
| 	 */
 | |
| 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
 | |
| 	if (!oe)
 | |
| 		return (delalloc_len > 0);
 | |
| 
 | |
| 	/* The ordered extent may span beyond our search range. */
 | |
| 	oe_start = max(oe->file_offset, start);
 | |
| 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
 | |
| 
 | |
| 	btrfs_put_ordered_extent(oe);
 | |
| 
 | |
| 	/* Don't have unflushed delalloc, return the ordered extent range. */
 | |
| 	if (delalloc_len == 0) {
 | |
| 		*delalloc_start_ret = oe_start;
 | |
| 		*delalloc_end_ret = oe_end;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
 | |
| 	 * If the ranges are adjacent returned a combined range, otherwise
 | |
| 	 * return the leftmost range.
 | |
| 	 */
 | |
| 	if (oe_start < *delalloc_start_ret) {
 | |
| 		if (oe_end < *delalloc_start_ret)
 | |
| 			*delalloc_end_ret = oe_end;
 | |
| 		*delalloc_start_ret = oe_start;
 | |
| 	} else if (*delalloc_end_ret + 1 == oe_start) {
 | |
| 		*delalloc_end_ret = oe_end;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if there's delalloc in a given range.
 | |
|  *
 | |
|  * @inode:               The inode.
 | |
|  * @start:               The start offset of the range. It does not need to be
 | |
|  *                       sector size aligned.
 | |
|  * @end:                 The end offset (inclusive value) of the search range.
 | |
|  *                       It does not need to be sector size aligned.
 | |
|  * @cached_state:        Extent state record used for speeding up delalloc
 | |
|  *                       searches in the inode's io_tree. Can be NULL.
 | |
|  * @delalloc_start_ret:  Output argument, set to the start offset of the
 | |
|  *                       subrange found with delalloc (may not be sector size
 | |
|  *                       aligned).
 | |
|  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
 | |
|  *                       of the subrange found with delalloc.
 | |
|  *
 | |
|  * Returns true if a subrange with delalloc is found within the given range, and
 | |
|  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
 | |
|  * end offsets of the subrange.
 | |
|  */
 | |
| bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
 | |
| 				  struct extent_state **cached_state,
 | |
| 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
 | |
| {
 | |
| 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
 | |
| 	u64 prev_delalloc_end = 0;
 | |
| 	bool search_io_tree = true;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	while (cur_offset <= end) {
 | |
| 		u64 delalloc_start;
 | |
| 		u64 delalloc_end;
 | |
| 		bool delalloc;
 | |
| 
 | |
| 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
 | |
| 						  cached_state, &search_io_tree,
 | |
| 						  &delalloc_start,
 | |
| 						  &delalloc_end);
 | |
| 		if (!delalloc)
 | |
| 			break;
 | |
| 
 | |
| 		if (prev_delalloc_end == 0) {
 | |
| 			/* First subrange found. */
 | |
| 			*delalloc_start_ret = max(delalloc_start, start);
 | |
| 			*delalloc_end_ret = delalloc_end;
 | |
| 			ret = true;
 | |
| 		} else if (delalloc_start == prev_delalloc_end + 1) {
 | |
| 			/* Subrange adjacent to the previous one, merge them. */
 | |
| 			*delalloc_end_ret = delalloc_end;
 | |
| 		} else {
 | |
| 			/* Subrange not adjacent to the previous one, exit. */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		prev_delalloc_end = delalloc_end;
 | |
| 		cur_offset = delalloc_end + 1;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if there's a hole or delalloc range in a range representing a hole (or
 | |
|  * prealloc extent) found in the inode's subvolume btree.
 | |
|  *
 | |
|  * @inode:      The inode.
 | |
|  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
 | |
|  * @start:      Start offset of the hole region. It does not need to be sector
 | |
|  *              size aligned.
 | |
|  * @end:        End offset (inclusive value) of the hole region. It does not
 | |
|  *              need to be sector size aligned.
 | |
|  * @start_ret:  Return parameter, used to set the start of the subrange in the
 | |
|  *              hole that matches the search criteria (seek mode), if such
 | |
|  *              subrange is found (return value of the function is true).
 | |
|  *              The value returned here may not be sector size aligned.
 | |
|  *
 | |
|  * Returns true if a subrange matching the given seek mode is found, and if one
 | |
|  * is found, it updates @start_ret with the start of the subrange.
 | |
|  */
 | |
| static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
 | |
| 					struct extent_state **cached_state,
 | |
| 					u64 start, u64 end, u64 *start_ret)
 | |
| {
 | |
| 	u64 delalloc_start;
 | |
| 	u64 delalloc_end;
 | |
| 	bool delalloc;
 | |
| 
 | |
| 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
 | |
| 						&delalloc_start, &delalloc_end);
 | |
| 	if (delalloc && whence == SEEK_DATA) {
 | |
| 		*start_ret = delalloc_start;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (delalloc && whence == SEEK_HOLE) {
 | |
| 		/*
 | |
| 		 * We found delalloc but it starts after out start offset. So we
 | |
| 		 * have a hole between our start offset and the delalloc start.
 | |
| 		 */
 | |
| 		if (start < delalloc_start) {
 | |
| 			*start_ret = start;
 | |
| 			return true;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Delalloc range starts at our start offset.
 | |
| 		 * If the delalloc range's length is smaller than our range,
 | |
| 		 * then it means we have a hole that starts where the delalloc
 | |
| 		 * subrange ends.
 | |
| 		 */
 | |
| 		if (delalloc_end < end) {
 | |
| 			*start_ret = delalloc_end + 1;
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		/* There's delalloc for the whole range. */
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (!delalloc && whence == SEEK_HOLE) {
 | |
| 		*start_ret = start;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No delalloc in the range and we are seeking for data. The caller has
 | |
| 	 * to iterate to the next extent item in the subvolume btree.
 | |
| 	 */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
 | |
| {
 | |
| 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
 | |
| 	struct btrfs_file_private *private;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct extent_state **delalloc_cached_state;
 | |
| 	const loff_t i_size = i_size_read(&inode->vfs_inode);
 | |
| 	const u64 ino = btrfs_ino(inode);
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 last_extent_end;
 | |
| 	u64 lockstart;
 | |
| 	u64 lockend;
 | |
| 	u64 start;
 | |
| 	int ret;
 | |
| 	bool found = false;
 | |
| 
 | |
| 	if (i_size == 0 || offset >= i_size)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Quick path. If the inode has no prealloc extents and its number of
 | |
| 	 * bytes used matches its i_size, then it can not have holes.
 | |
| 	 */
 | |
| 	if (whence == SEEK_HOLE &&
 | |
| 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
 | |
| 	    inode_get_bytes(&inode->vfs_inode) == i_size)
 | |
| 		return i_size;
 | |
| 
 | |
| 	spin_lock(&inode->lock);
 | |
| 	private = file->private_data;
 | |
| 	spin_unlock(&inode->lock);
 | |
| 
 | |
| 	if (private && private->owner_task != current) {
 | |
| 		/*
 | |
| 		 * Not allocated by us, don't use it as its cached state is used
 | |
| 		 * by the task that allocated it and we don't want neither to
 | |
| 		 * mess with it nor get incorrect results because it reflects an
 | |
| 		 * invalid state for the current task.
 | |
| 		 */
 | |
| 		private = NULL;
 | |
| 	} else if (!private) {
 | |
| 		private = kzalloc(sizeof(*private), GFP_KERNEL);
 | |
| 		/*
 | |
| 		 * No worries if memory allocation failed.
 | |
| 		 * The private structure is used only for speeding up multiple
 | |
| 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
 | |
| 		 * so everything will still be correct.
 | |
| 		 */
 | |
| 		if (private) {
 | |
| 			bool free = false;
 | |
| 
 | |
| 			private->owner_task = current;
 | |
| 
 | |
| 			spin_lock(&inode->lock);
 | |
| 			if (file->private_data)
 | |
| 				free = true;
 | |
| 			else
 | |
| 				file->private_data = private;
 | |
| 			spin_unlock(&inode->lock);
 | |
| 
 | |
| 			if (free) {
 | |
| 				kfree(private);
 | |
| 				private = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (private)
 | |
| 		delalloc_cached_state = &private->llseek_cached_state;
 | |
| 	else
 | |
| 		delalloc_cached_state = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * offset can be negative, in this case we start finding DATA/HOLE from
 | |
| 	 * the very start of the file.
 | |
| 	 */
 | |
| 	start = max_t(loff_t, 0, offset);
 | |
| 
 | |
| 	lockstart = round_down(start, fs_info->sectorsize);
 | |
| 	lockend = round_up(i_size, fs_info->sectorsize);
 | |
| 	if (lockend <= lockstart)
 | |
| 		lockend = lockstart + fs_info->sectorsize;
 | |
| 	lockend--;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	path->reada = READA_FORWARD;
 | |
| 
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = start;
 | |
| 
 | |
| 	last_extent_end = lockstart;
 | |
| 
 | |
| 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0) {
 | |
| 		goto out;
 | |
| 	} else if (ret > 0 && path->slots[0] > 0) {
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
 | |
| 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
 | |
| 			path->slots[0]--;
 | |
| 	}
 | |
| 
 | |
| 	while (start < i_size) {
 | |
| 		struct extent_buffer *leaf = path->nodes[0];
 | |
| 		struct btrfs_file_extent_item *extent;
 | |
| 		u64 extent_end;
 | |
| 		u8 type;
 | |
| 
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			else if (ret > 0)
 | |
| 				break;
 | |
| 
 | |
| 			leaf = path->nodes[0];
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		extent_end = btrfs_file_extent_end(path);
 | |
| 
 | |
| 		/*
 | |
| 		 * In the first iteration we may have a slot that points to an
 | |
| 		 * extent that ends before our start offset, so skip it.
 | |
| 		 */
 | |
| 		if (extent_end <= start) {
 | |
| 			path->slots[0]++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* We have an implicit hole, NO_HOLES feature is likely set. */
 | |
| 		if (last_extent_end < key.offset) {
 | |
| 			u64 search_start = last_extent_end;
 | |
| 			u64 found_start;
 | |
| 
 | |
| 			/*
 | |
| 			 * First iteration, @start matches @offset and it's
 | |
| 			 * within the hole.
 | |
| 			 */
 | |
| 			if (start == offset)
 | |
| 				search_start = offset;
 | |
| 
 | |
| 			found = find_desired_extent_in_hole(inode, whence,
 | |
| 							    delalloc_cached_state,
 | |
| 							    search_start,
 | |
| 							    key.offset - 1,
 | |
| 							    &found_start);
 | |
| 			if (found) {
 | |
| 				start = found_start;
 | |
| 				break;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Didn't find data or a hole (due to delalloc) in the
 | |
| 			 * implicit hole range, so need to analyze the extent.
 | |
| 			 */
 | |
| 		}
 | |
| 
 | |
| 		extent = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					struct btrfs_file_extent_item);
 | |
| 		type = btrfs_file_extent_type(leaf, extent);
 | |
| 
 | |
| 		/*
 | |
| 		 * Can't access the extent's disk_bytenr field if this is an
 | |
| 		 * inline extent, since at that offset, it's where the extent
 | |
| 		 * data starts.
 | |
| 		 */
 | |
| 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
 | |
| 		    (type == BTRFS_FILE_EXTENT_REG &&
 | |
| 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
 | |
| 			/*
 | |
| 			 * Explicit hole or prealloc extent, search for delalloc.
 | |
| 			 * A prealloc extent is treated like a hole.
 | |
| 			 */
 | |
| 			u64 search_start = key.offset;
 | |
| 			u64 found_start;
 | |
| 
 | |
| 			/*
 | |
| 			 * First iteration, @start matches @offset and it's
 | |
| 			 * within the hole.
 | |
| 			 */
 | |
| 			if (start == offset)
 | |
| 				search_start = offset;
 | |
| 
 | |
| 			found = find_desired_extent_in_hole(inode, whence,
 | |
| 							    delalloc_cached_state,
 | |
| 							    search_start,
 | |
| 							    extent_end - 1,
 | |
| 							    &found_start);
 | |
| 			if (found) {
 | |
| 				start = found_start;
 | |
| 				break;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Didn't find data or a hole (due to delalloc) in the
 | |
| 			 * implicit hole range, so need to analyze the next
 | |
| 			 * extent item.
 | |
| 			 */
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Found a regular or inline extent.
 | |
| 			 * If we are seeking for data, adjust the start offset
 | |
| 			 * and stop, we're done.
 | |
| 			 */
 | |
| 			if (whence == SEEK_DATA) {
 | |
| 				start = max_t(u64, key.offset, offset);
 | |
| 				found = true;
 | |
| 				break;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Else, we are seeking for a hole, check the next file
 | |
| 			 * extent item.
 | |
| 			 */
 | |
| 		}
 | |
| 
 | |
| 		start = extent_end;
 | |
| 		last_extent_end = extent_end;
 | |
| 		path->slots[0]++;
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/* We have an implicit hole from the last extent found up to i_size. */
 | |
| 	if (!found && start < i_size) {
 | |
| 		found = find_desired_extent_in_hole(inode, whence,
 | |
| 						    delalloc_cached_state, start,
 | |
| 						    i_size - 1, &start);
 | |
| 		if (!found)
 | |
| 			start = i_size;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (whence == SEEK_DATA && start >= i_size)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	return min_t(loff_t, start, i_size);
 | |
| }
 | |
| 
 | |
| static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
 | |
| {
 | |
| 	struct inode *inode = file->f_mapping->host;
 | |
| 
 | |
| 	switch (whence) {
 | |
| 	default:
 | |
| 		return generic_file_llseek(file, offset, whence);
 | |
| 	case SEEK_DATA:
 | |
| 	case SEEK_HOLE:
 | |
| 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
 | |
| 		offset = find_desired_extent(file, offset, whence);
 | |
| 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (offset < 0)
 | |
| 		return offset;
 | |
| 
 | |
| 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 | |
| }
 | |
| 
 | |
| static int btrfs_file_open(struct inode *inode, struct file *filp)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
 | |
| 
 | |
| 	ret = fsverity_file_open(inode, filp);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	return generic_file_open(inode, filp);
 | |
| }
 | |
| 
 | |
| static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 | |
| {
 | |
| 	ssize_t ret = 0;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_DIRECT) {
 | |
| 		ret = btrfs_direct_read(iocb, to);
 | |
| 		if (ret < 0 || !iov_iter_count(to) ||
 | |
| 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return filemap_read(iocb, to, ret);
 | |
| }
 | |
| 
 | |
| const struct file_operations btrfs_file_operations = {
 | |
| 	.llseek		= btrfs_file_llseek,
 | |
| 	.read_iter      = btrfs_file_read_iter,
 | |
| 	.splice_read	= filemap_splice_read,
 | |
| 	.write_iter	= btrfs_file_write_iter,
 | |
| 	.splice_write	= iter_file_splice_write,
 | |
| 	.mmap		= btrfs_file_mmap,
 | |
| 	.open		= btrfs_file_open,
 | |
| 	.release	= btrfs_release_file,
 | |
| 	.get_unmapped_area = thp_get_unmapped_area,
 | |
| 	.fsync		= btrfs_sync_file,
 | |
| 	.fallocate	= btrfs_fallocate,
 | |
| 	.unlocked_ioctl	= btrfs_ioctl,
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	.compat_ioctl	= btrfs_compat_ioctl,
 | |
| #endif
 | |
| 	.remap_file_range = btrfs_remap_file_range,
 | |
| 	.uring_cmd	= btrfs_uring_cmd,
 | |
| 	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
 | |
| };
 | |
| 
 | |
| int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
 | |
| {
 | |
| 	struct address_space *mapping = inode->vfs_inode.i_mapping;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * So with compression we will find and lock a dirty page and clear the
 | |
| 	 * first one as dirty, setup an async extent, and immediately return
 | |
| 	 * with the entire range locked but with nobody actually marked with
 | |
| 	 * writeback.  So we can't just filemap_write_and_wait_range() and
 | |
| 	 * expect it to work since it will just kick off a thread to do the
 | |
| 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
 | |
| 	 * since it will wait on the page lock, which won't be unlocked until
 | |
| 	 * after the pages have been marked as writeback and so we're good to go
 | |
| 	 * from there.  We have to do this otherwise we'll miss the ordered
 | |
| 	 * extents and that results in badness.  Please Josef, do not think you
 | |
| 	 * know better and pull this out at some point in the future, it is
 | |
| 	 * right and you are wrong.
 | |
| 	 */
 | |
| 	ret = filemap_fdatawrite_range(mapping, start, end);
 | |
| 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
 | |
| 		ret = filemap_fdatawrite_range(mapping, start, end);
 | |
| 
 | |
| 	return ret;
 | |
| }
 |