forked from mirrors/linux
		
	 c186345a6b
			
		
	
	
		c186345a6b
		
	
	
	
	
		
			
			According to the description, CONFIG_BTRFS_DEBUG is only for extra debug info, meanwhile sanity checks should be managed by CONFIG_BTRFS_ASSERT. There is no need to check both to enable assert_rbio(). Just remove the check for CONFIG_BTRFS_DEBUG. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			2892 lines
		
	
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2892 lines
		
	
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2012 Fusion-io  All rights reserved.
 | |
|  * Copyright (C) 2012 Intel Corp. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/raid/pq.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/list_sort.h>
 | |
| #include <linux/raid/xor.h>
 | |
| #include <linux/mm.h>
 | |
| #include "messages.h"
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "volumes.h"
 | |
| #include "raid56.h"
 | |
| #include "async-thread.h"
 | |
| #include "file-item.h"
 | |
| #include "btrfs_inode.h"
 | |
| 
 | |
| /* set when additional merges to this rbio are not allowed */
 | |
| #define RBIO_RMW_LOCKED_BIT	1
 | |
| 
 | |
| /*
 | |
|  * set when this rbio is sitting in the hash, but it is just a cache
 | |
|  * of past RMW
 | |
|  */
 | |
| #define RBIO_CACHE_BIT		2
 | |
| 
 | |
| /*
 | |
|  * set when it is safe to trust the stripe_pages for caching
 | |
|  */
 | |
| #define RBIO_CACHE_READY_BIT	3
 | |
| 
 | |
| #define RBIO_CACHE_SIZE 1024
 | |
| 
 | |
| #define BTRFS_STRIPE_HASH_TABLE_BITS				11
 | |
| 
 | |
| static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc)
 | |
| {
 | |
| 	if (unlikely(!bioc)) {
 | |
| 		btrfs_crit(fs_info, "bioc=NULL");
 | |
| 		return;
 | |
| 	}
 | |
| 	btrfs_crit(fs_info,
 | |
| "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u",
 | |
| 		bioc->logical, bioc->full_stripe_logical, bioc->size,
 | |
| 		bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes,
 | |
| 		bioc->replace_stripe_src, bioc->num_stripes);
 | |
| 	for (int i = 0; i < bioc->num_stripes; i++) {
 | |
| 		btrfs_crit(fs_info, "    nr=%d devid=%llu physical=%llu",
 | |
| 			   i, bioc->stripes[i].dev->devid,
 | |
| 			   bioc->stripes[i].physical);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info,
 | |
| 			    const struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
 | |
| 		return;
 | |
| 
 | |
| 	dump_bioc(fs_info, rbio->bioc);
 | |
| 	btrfs_crit(fs_info,
 | |
| "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx",
 | |
| 		rbio->flags, rbio->nr_sectors, rbio->nr_data,
 | |
| 		rbio->real_stripes, rbio->stripe_nsectors,
 | |
| 		rbio->scrubp, rbio->dbitmap);
 | |
| }
 | |
| 
 | |
| #define ASSERT_RBIO(expr, rbio)						\
 | |
| ({									\
 | |
| 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
 | |
| 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
 | |
| 					(rbio)->bioc->fs_info : NULL;	\
 | |
| 									\
 | |
| 		btrfs_dump_rbio(__fs_info, (rbio));			\
 | |
| 	}								\
 | |
| 	ASSERT((expr));							\
 | |
| })
 | |
| 
 | |
| #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr)			\
 | |
| ({									\
 | |
| 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
 | |
| 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
 | |
| 					(rbio)->bioc->fs_info : NULL;	\
 | |
| 									\
 | |
| 		btrfs_dump_rbio(__fs_info, (rbio));			\
 | |
| 		btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr));	\
 | |
| 	}								\
 | |
| 	ASSERT((expr));							\
 | |
| })
 | |
| 
 | |
| #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr)			\
 | |
| ({									\
 | |
| 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
 | |
| 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
 | |
| 					(rbio)->bioc->fs_info : NULL;	\
 | |
| 									\
 | |
| 		btrfs_dump_rbio(__fs_info, (rbio));			\
 | |
| 		btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr));	\
 | |
| 	}								\
 | |
| 	ASSERT((expr));							\
 | |
| })
 | |
| 
 | |
| #define ASSERT_RBIO_LOGICAL(expr, rbio, logical)			\
 | |
| ({									\
 | |
| 	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
 | |
| 		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
 | |
| 					(rbio)->bioc->fs_info : NULL;	\
 | |
| 									\
 | |
| 		btrfs_dump_rbio(__fs_info, (rbio));			\
 | |
| 		btrfs_crit(__fs_info, "logical=%llu", (logical));		\
 | |
| 	}								\
 | |
| 	ASSERT((expr));							\
 | |
| })
 | |
| 
 | |
| /* Used by the raid56 code to lock stripes for read/modify/write */
 | |
| struct btrfs_stripe_hash {
 | |
| 	struct list_head hash_list;
 | |
| 	spinlock_t lock;
 | |
| };
 | |
| 
 | |
| /* Used by the raid56 code to lock stripes for read/modify/write */
 | |
| struct btrfs_stripe_hash_table {
 | |
| 	struct list_head stripe_cache;
 | |
| 	spinlock_t cache_lock;
 | |
| 	int cache_size;
 | |
| 	struct btrfs_stripe_hash table[];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * A bvec like structure to present a sector inside a page.
 | |
|  *
 | |
|  * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 | |
|  */
 | |
| struct sector_ptr {
 | |
| 	struct page *page;
 | |
| 	unsigned int pgoff:24;
 | |
| 	unsigned int uptodate:8;
 | |
| };
 | |
| 
 | |
| static void rmw_rbio_work(struct work_struct *work);
 | |
| static void rmw_rbio_work_locked(struct work_struct *work);
 | |
| static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 | |
| static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 | |
| 
 | |
| static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
 | |
| static void scrub_rbio_work_locked(struct work_struct *work);
 | |
| 
 | |
| static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	bitmap_free(rbio->error_bitmap);
 | |
| 	kfree(rbio->stripe_pages);
 | |
| 	kfree(rbio->bio_sectors);
 | |
| 	kfree(rbio->stripe_sectors);
 | |
| 	kfree(rbio->finish_pointers);
 | |
| }
 | |
| 
 | |
| static void free_raid_bio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!refcount_dec_and_test(&rbio->refs))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(!list_empty(&rbio->stripe_cache));
 | |
| 	WARN_ON(!list_empty(&rbio->hash_list));
 | |
| 	WARN_ON(!bio_list_empty(&rbio->bio_list));
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_pages; i++) {
 | |
| 		if (rbio->stripe_pages[i]) {
 | |
| 			__free_page(rbio->stripe_pages[i]);
 | |
| 			rbio->stripe_pages[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_put_bioc(rbio->bioc);
 | |
| 	free_raid_bio_pointers(rbio);
 | |
| 	kfree(rbio);
 | |
| }
 | |
| 
 | |
| static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
 | |
| {
 | |
| 	INIT_WORK(&rbio->work, work_func);
 | |
| 	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the stripe hash table is used for locking, and to collect
 | |
|  * bios in hopes of making a full stripe
 | |
|  */
 | |
| int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	struct btrfs_stripe_hash_table *x;
 | |
| 	struct btrfs_stripe_hash *cur;
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 | |
| 	int i;
 | |
| 
 | |
| 	if (info->stripe_hash_table)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The table is large, starting with order 4 and can go as high as
 | |
| 	 * order 7 in case lock debugging is turned on.
 | |
| 	 *
 | |
| 	 * Try harder to allocate and fallback to vmalloc to lower the chance
 | |
| 	 * of a failing mount.
 | |
| 	 */
 | |
| 	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 | |
| 	if (!table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_init(&table->cache_lock);
 | |
| 	INIT_LIST_HEAD(&table->stripe_cache);
 | |
| 
 | |
| 	h = table->table;
 | |
| 
 | |
| 	for (i = 0; i < num_entries; i++) {
 | |
| 		cur = h + i;
 | |
| 		INIT_LIST_HEAD(&cur->hash_list);
 | |
| 		spin_lock_init(&cur->lock);
 | |
| 	}
 | |
| 
 | |
| 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 | |
| 	kvfree(x);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * caching an rbio means to copy anything from the
 | |
|  * bio_sectors array into the stripe_pages array.  We
 | |
|  * use the page uptodate bit in the stripe cache array
 | |
|  * to indicate if it has valid data
 | |
|  *
 | |
|  * once the caching is done, we set the cache ready
 | |
|  * bit.
 | |
|  */
 | |
| static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = alloc_rbio_pages(rbio);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_sectors; i++) {
 | |
| 		/* Some range not covered by bio (partial write), skip it */
 | |
| 		if (!rbio->bio_sectors[i].page) {
 | |
| 			/*
 | |
| 			 * Even if the sector is not covered by bio, if it is
 | |
| 			 * a data sector it should still be uptodate as it is
 | |
| 			 * read from disk.
 | |
| 			 */
 | |
| 			if (i < rbio->nr_data * rbio->stripe_nsectors)
 | |
| 				ASSERT(rbio->stripe_sectors[i].uptodate);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ASSERT(rbio->stripe_sectors[i].page);
 | |
| 		memcpy_page(rbio->stripe_sectors[i].page,
 | |
| 			    rbio->stripe_sectors[i].pgoff,
 | |
| 			    rbio->bio_sectors[i].page,
 | |
| 			    rbio->bio_sectors[i].pgoff,
 | |
| 			    rbio->bioc->fs_info->sectorsize);
 | |
| 		rbio->stripe_sectors[i].uptodate = 1;
 | |
| 	}
 | |
| 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we hash on the first logical address of the stripe
 | |
|  */
 | |
| static int rbio_bucket(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	u64 num = rbio->bioc->full_stripe_logical;
 | |
| 
 | |
| 	/*
 | |
| 	 * we shift down quite a bit.  We're using byte
 | |
| 	 * addressing, and most of the lower bits are zeros.
 | |
| 	 * This tends to upset hash_64, and it consistently
 | |
| 	 * returns just one or two different values.
 | |
| 	 *
 | |
| 	 * shifting off the lower bits fixes things.
 | |
| 	 */
 | |
| 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 | |
| }
 | |
| 
 | |
| static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
 | |
| 				       unsigned int page_nr)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(page_nr < rbio->nr_pages);
 | |
| 
 | |
| 	for (i = sectors_per_page * page_nr;
 | |
| 	     i < sectors_per_page * page_nr + sectors_per_page;
 | |
| 	     i++) {
 | |
| 		if (!rbio->stripe_sectors[i].uptodate)
 | |
| 			return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the stripe_sectors[] array to use correct page and pgoff
 | |
|  *
 | |
|  * Should be called every time any page pointer in stripes_pages[] got modified.
 | |
|  */
 | |
| static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	u32 offset;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
 | |
| 		int page_index = offset >> PAGE_SHIFT;
 | |
| 
 | |
| 		ASSERT(page_index < rbio->nr_pages);
 | |
| 		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
 | |
| 		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void steal_rbio_page(struct btrfs_raid_bio *src,
 | |
| 			    struct btrfs_raid_bio *dest, int page_nr)
 | |
| {
 | |
| 	const u32 sectorsize = src->bioc->fs_info->sectorsize;
 | |
| 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 | |
| 	int i;
 | |
| 
 | |
| 	if (dest->stripe_pages[page_nr])
 | |
| 		__free_page(dest->stripe_pages[page_nr]);
 | |
| 	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
 | |
| 	src->stripe_pages[page_nr] = NULL;
 | |
| 
 | |
| 	/* Also update the sector->uptodate bits. */
 | |
| 	for (i = sectors_per_page * page_nr;
 | |
| 	     i < sectors_per_page * page_nr + sectors_per_page; i++)
 | |
| 		dest->stripe_sectors[i].uptodate = true;
 | |
| }
 | |
| 
 | |
| static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
 | |
| {
 | |
| 	const int sector_nr = (page_nr << PAGE_SHIFT) >>
 | |
| 			      rbio->bioc->fs_info->sectorsize_bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
 | |
| 	 * we won't have a page which is half data half parity.
 | |
| 	 *
 | |
| 	 * Thus if the first sector of the page belongs to data stripes, then
 | |
| 	 * the full page belongs to data stripes.
 | |
| 	 */
 | |
| 	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stealing an rbio means taking all the uptodate pages from the stripe array
 | |
|  * in the source rbio and putting them into the destination rbio.
 | |
|  *
 | |
|  * This will also update the involved stripe_sectors[] which are referring to
 | |
|  * the old pages.
 | |
|  */
 | |
| static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < dest->nr_pages; i++) {
 | |
| 		struct page *p = src->stripe_pages[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't need to steal P/Q pages as they will always be
 | |
| 		 * regenerated for RMW or full write anyway.
 | |
| 		 */
 | |
| 		if (!is_data_stripe_page(src, i))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If @src already has RBIO_CACHE_READY_BIT, it should have
 | |
| 		 * all data stripe pages present and uptodate.
 | |
| 		 */
 | |
| 		ASSERT(p);
 | |
| 		ASSERT(full_page_sectors_uptodate(src, i));
 | |
| 		steal_rbio_page(src, dest, i);
 | |
| 	}
 | |
| 	index_stripe_sectors(dest);
 | |
| 	index_stripe_sectors(src);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * merging means we take the bio_list from the victim and
 | |
|  * splice it into the destination.  The victim should
 | |
|  * be discarded afterwards.
 | |
|  *
 | |
|  * must be called with dest->rbio_list_lock held
 | |
|  */
 | |
| static void merge_rbio(struct btrfs_raid_bio *dest,
 | |
| 		       struct btrfs_raid_bio *victim)
 | |
| {
 | |
| 	bio_list_merge_init(&dest->bio_list, &victim->bio_list);
 | |
| 	dest->bio_list_bytes += victim->bio_list_bytes;
 | |
| 	/* Also inherit the bitmaps from @victim. */
 | |
| 	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
 | |
| 		  dest->stripe_nsectors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * used to prune items that are in the cache.  The caller
 | |
|  * must hold the hash table lock.
 | |
|  */
 | |
| static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bucket = rbio_bucket(rbio);
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	int freeit = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * check the bit again under the hash table lock.
 | |
| 	 */
 | |
| 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 | |
| 		return;
 | |
| 
 | |
| 	table = rbio->bioc->fs_info->stripe_hash_table;
 | |
| 	h = table->table + bucket;
 | |
| 
 | |
| 	/* hold the lock for the bucket because we may be
 | |
| 	 * removing it from the hash table
 | |
| 	 */
 | |
| 	spin_lock(&h->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * hold the lock for the bio list because we need
 | |
| 	 * to make sure the bio list is empty
 | |
| 	 */
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 | |
| 		list_del_init(&rbio->stripe_cache);
 | |
| 		table->cache_size -= 1;
 | |
| 		freeit = 1;
 | |
| 
 | |
| 		/* if the bio list isn't empty, this rbio is
 | |
| 		 * still involved in an IO.  We take it out
 | |
| 		 * of the cache list, and drop the ref that
 | |
| 		 * was held for the list.
 | |
| 		 *
 | |
| 		 * If the bio_list was empty, we also remove
 | |
| 		 * the rbio from the hash_table, and drop
 | |
| 		 * the corresponding ref
 | |
| 		 */
 | |
| 		if (bio_list_empty(&rbio->bio_list)) {
 | |
| 			if (!list_empty(&rbio->hash_list)) {
 | |
| 				list_del_init(&rbio->hash_list);
 | |
| 				refcount_dec(&rbio->refs);
 | |
| 				BUG_ON(!list_empty(&rbio->plug_list));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 	spin_unlock(&h->lock);
 | |
| 
 | |
| 	if (freeit)
 | |
| 		free_raid_bio(rbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prune a given rbio from the cache
 | |
|  */
 | |
| static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 
 | |
| 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 | |
| 		return;
 | |
| 
 | |
| 	table = rbio->bioc->fs_info->stripe_hash_table;
 | |
| 
 | |
| 	spin_lock(&table->cache_lock);
 | |
| 	__remove_rbio_from_cache(rbio);
 | |
| 	spin_unlock(&table->cache_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove everything in the cache
 | |
|  */
 | |
| static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	table = info->stripe_hash_table;
 | |
| 
 | |
| 	spin_lock(&table->cache_lock);
 | |
| 	while (!list_empty(&table->stripe_cache)) {
 | |
| 		rbio = list_entry(table->stripe_cache.next,
 | |
| 				  struct btrfs_raid_bio,
 | |
| 				  stripe_cache);
 | |
| 		__remove_rbio_from_cache(rbio);
 | |
| 	}
 | |
| 	spin_unlock(&table->cache_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove all cached entries and free the hash table
 | |
|  * used by unmount
 | |
|  */
 | |
| void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 | |
| {
 | |
| 	if (!info->stripe_hash_table)
 | |
| 		return;
 | |
| 	btrfs_clear_rbio_cache(info);
 | |
| 	kvfree(info->stripe_hash_table);
 | |
| 	info->stripe_hash_table = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * insert an rbio into the stripe cache.  It
 | |
|  * must have already been prepared by calling
 | |
|  * cache_rbio_pages
 | |
|  *
 | |
|  * If this rbio was already cached, it gets
 | |
|  * moved to the front of the lru.
 | |
|  *
 | |
|  * If the size of the rbio cache is too big, we
 | |
|  * prune an item.
 | |
|  */
 | |
| static void cache_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_stripe_hash_table *table;
 | |
| 
 | |
| 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 | |
| 		return;
 | |
| 
 | |
| 	table = rbio->bioc->fs_info->stripe_hash_table;
 | |
| 
 | |
| 	spin_lock(&table->cache_lock);
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	/* bump our ref if we were not in the list before */
 | |
| 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 | |
| 		refcount_inc(&rbio->refs);
 | |
| 
 | |
| 	if (!list_empty(&rbio->stripe_cache)){
 | |
| 		list_move(&rbio->stripe_cache, &table->stripe_cache);
 | |
| 	} else {
 | |
| 		list_add(&rbio->stripe_cache, &table->stripe_cache);
 | |
| 		table->cache_size += 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (table->cache_size > RBIO_CACHE_SIZE) {
 | |
| 		struct btrfs_raid_bio *found;
 | |
| 
 | |
| 		found = list_entry(table->stripe_cache.prev,
 | |
| 				  struct btrfs_raid_bio,
 | |
| 				  stripe_cache);
 | |
| 
 | |
| 		if (found != rbio)
 | |
| 			__remove_rbio_from_cache(found);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&table->cache_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to run the xor_blocks api.  It is only
 | |
|  * able to do MAX_XOR_BLOCKS at a time, so we need to
 | |
|  * loop through.
 | |
|  */
 | |
| static void run_xor(void **pages, int src_cnt, ssize_t len)
 | |
| {
 | |
| 	int src_off = 0;
 | |
| 	int xor_src_cnt = 0;
 | |
| 	void *dest = pages[src_cnt];
 | |
| 
 | |
| 	while(src_cnt > 0) {
 | |
| 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 | |
| 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 | |
| 
 | |
| 		src_cnt -= xor_src_cnt;
 | |
| 		src_off += xor_src_cnt;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the bio list inside this rbio covers an entire stripe (no
 | |
|  * rmw required).
 | |
|  */
 | |
| static int rbio_is_full(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	unsigned long size = rbio->bio_list_bytes;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
 | |
| 		ret = 0;
 | |
| 	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns 1 if it is safe to merge two rbios together.
 | |
|  * The merging is safe if the two rbios correspond to
 | |
|  * the same stripe and if they are both going in the same
 | |
|  * direction (read vs write), and if neither one is
 | |
|  * locked for final IO
 | |
|  *
 | |
|  * The caller is responsible for locking such that
 | |
|  * rmw_locked is safe to test
 | |
|  */
 | |
| static int rbio_can_merge(struct btrfs_raid_bio *last,
 | |
| 			  struct btrfs_raid_bio *cur)
 | |
| {
 | |
| 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 | |
| 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * we can't merge with cached rbios, since the
 | |
| 	 * idea is that when we merge the destination
 | |
| 	 * rbio is going to run our IO for us.  We can
 | |
| 	 * steal from cached rbios though, other functions
 | |
| 	 * handle that.
 | |
| 	 */
 | |
| 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 | |
| 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* we can't merge with different operations */
 | |
| 	if (last->operation != cur->operation)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We've need read the full stripe from the drive.
 | |
| 	 * check and repair the parity and write the new results.
 | |
| 	 *
 | |
| 	 * We're not allowed to add any new bios to the
 | |
| 	 * bio list here, anyone else that wants to
 | |
| 	 * change this stripe needs to do their own rmw.
 | |
| 	 */
 | |
| 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (last->operation == BTRFS_RBIO_READ_REBUILD)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
 | |
| 					     unsigned int stripe_nr,
 | |
| 					     unsigned int sector_nr)
 | |
| {
 | |
| 	ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr);
 | |
| 	ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr);
 | |
| 
 | |
| 	return stripe_nr * rbio->stripe_nsectors + sector_nr;
 | |
| }
 | |
| 
 | |
| /* Return a sector from rbio->stripe_sectors, not from the bio list */
 | |
| static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
 | |
| 					     unsigned int stripe_nr,
 | |
| 					     unsigned int sector_nr)
 | |
| {
 | |
| 	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
 | |
| 							      sector_nr)];
 | |
| }
 | |
| 
 | |
| /* Grab a sector inside P stripe */
 | |
| static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
 | |
| 					      unsigned int sector_nr)
 | |
| {
 | |
| 	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
 | |
| }
 | |
| 
 | |
| /* Grab a sector inside Q stripe, return NULL if not RAID6 */
 | |
| static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
 | |
| 					      unsigned int sector_nr)
 | |
| {
 | |
| 	if (rbio->nr_data + 1 == rbio->real_stripes)
 | |
| 		return NULL;
 | |
| 	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The first stripe in the table for a logical address
 | |
|  * has the lock.  rbios are added in one of three ways:
 | |
|  *
 | |
|  * 1) Nobody has the stripe locked yet.  The rbio is given
 | |
|  * the lock and 0 is returned.  The caller must start the IO
 | |
|  * themselves.
 | |
|  *
 | |
|  * 2) Someone has the stripe locked, but we're able to merge
 | |
|  * with the lock owner.  The rbio is freed and the IO will
 | |
|  * start automatically along with the existing rbio.  1 is returned.
 | |
|  *
 | |
|  * 3) Someone has the stripe locked, but we're not able to merge.
 | |
|  * The rbio is added to the lock owner's plug list, or merged into
 | |
|  * an rbio already on the plug list.  When the lock owner unlocks,
 | |
|  * the next rbio on the list is run and the IO is started automatically.
 | |
|  * 1 is returned
 | |
|  *
 | |
|  * If we return 0, the caller still owns the rbio and must continue with
 | |
|  * IO submission.  If we return 1, the caller must assume the rbio has
 | |
|  * already been freed.
 | |
|  */
 | |
| static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	struct btrfs_raid_bio *cur;
 | |
| 	struct btrfs_raid_bio *pending;
 | |
| 	struct btrfs_raid_bio *freeit = NULL;
 | |
| 	struct btrfs_raid_bio *cache_drop = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 | |
| 
 | |
| 	spin_lock(&h->lock);
 | |
| 	list_for_each_entry(cur, &h->hash_list, hash_list) {
 | |
| 		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&cur->bio_list_lock);
 | |
| 
 | |
| 		/* Can we steal this cached rbio's pages? */
 | |
| 		if (bio_list_empty(&cur->bio_list) &&
 | |
| 		    list_empty(&cur->plug_list) &&
 | |
| 		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 | |
| 		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 | |
| 			list_del_init(&cur->hash_list);
 | |
| 			refcount_dec(&cur->refs);
 | |
| 
 | |
| 			steal_rbio(cur, rbio);
 | |
| 			cache_drop = cur;
 | |
| 			spin_unlock(&cur->bio_list_lock);
 | |
| 
 | |
| 			goto lockit;
 | |
| 		}
 | |
| 
 | |
| 		/* Can we merge into the lock owner? */
 | |
| 		if (rbio_can_merge(cur, rbio)) {
 | |
| 			merge_rbio(cur, rbio);
 | |
| 			spin_unlock(&cur->bio_list_lock);
 | |
| 			freeit = rbio;
 | |
| 			ret = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * We couldn't merge with the running rbio, see if we can merge
 | |
| 		 * with the pending ones.  We don't have to check for rmw_locked
 | |
| 		 * because there is no way they are inside finish_rmw right now
 | |
| 		 */
 | |
| 		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 | |
| 			if (rbio_can_merge(pending, rbio)) {
 | |
| 				merge_rbio(pending, rbio);
 | |
| 				spin_unlock(&cur->bio_list_lock);
 | |
| 				freeit = rbio;
 | |
| 				ret = 1;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * No merging, put us on the tail of the plug list, our rbio
 | |
| 		 * will be started with the currently running rbio unlocks
 | |
| 		 */
 | |
| 		list_add_tail(&rbio->plug_list, &cur->plug_list);
 | |
| 		spin_unlock(&cur->bio_list_lock);
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| lockit:
 | |
| 	refcount_inc(&rbio->refs);
 | |
| 	list_add(&rbio->hash_list, &h->hash_list);
 | |
| out:
 | |
| 	spin_unlock(&h->lock);
 | |
| 	if (cache_drop)
 | |
| 		remove_rbio_from_cache(cache_drop);
 | |
| 	if (freeit)
 | |
| 		free_raid_bio(freeit);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void recover_rbio_work_locked(struct work_struct *work);
 | |
| 
 | |
| /*
 | |
|  * called as rmw or parity rebuild is completed.  If the plug list has more
 | |
|  * rbios waiting for this stripe, the next one on the list will be started
 | |
|  */
 | |
| static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int bucket;
 | |
| 	struct btrfs_stripe_hash *h;
 | |
| 	int keep_cache = 0;
 | |
| 
 | |
| 	bucket = rbio_bucket(rbio);
 | |
| 	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
 | |
| 
 | |
| 	if (list_empty(&rbio->plug_list))
 | |
| 		cache_rbio(rbio);
 | |
| 
 | |
| 	spin_lock(&h->lock);
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	if (!list_empty(&rbio->hash_list)) {
 | |
| 		/*
 | |
| 		 * if we're still cached and there is no other IO
 | |
| 		 * to perform, just leave this rbio here for others
 | |
| 		 * to steal from later
 | |
| 		 */
 | |
| 		if (list_empty(&rbio->plug_list) &&
 | |
| 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 | |
| 			keep_cache = 1;
 | |
| 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 | |
| 			BUG_ON(!bio_list_empty(&rbio->bio_list));
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		list_del_init(&rbio->hash_list);
 | |
| 		refcount_dec(&rbio->refs);
 | |
| 
 | |
| 		/*
 | |
| 		 * we use the plug list to hold all the rbios
 | |
| 		 * waiting for the chance to lock this stripe.
 | |
| 		 * hand the lock over to one of them.
 | |
| 		 */
 | |
| 		if (!list_empty(&rbio->plug_list)) {
 | |
| 			struct btrfs_raid_bio *next;
 | |
| 			struct list_head *head = rbio->plug_list.next;
 | |
| 
 | |
| 			next = list_entry(head, struct btrfs_raid_bio,
 | |
| 					  plug_list);
 | |
| 
 | |
| 			list_del_init(&rbio->plug_list);
 | |
| 
 | |
| 			list_add(&next->hash_list, &h->hash_list);
 | |
| 			refcount_inc(&next->refs);
 | |
| 			spin_unlock(&rbio->bio_list_lock);
 | |
| 			spin_unlock(&h->lock);
 | |
| 
 | |
| 			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
 | |
| 				start_async_work(next, recover_rbio_work_locked);
 | |
| 			} else if (next->operation == BTRFS_RBIO_WRITE) {
 | |
| 				steal_rbio(rbio, next);
 | |
| 				start_async_work(next, rmw_rbio_work_locked);
 | |
| 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 | |
| 				steal_rbio(rbio, next);
 | |
| 				start_async_work(next, scrub_rbio_work_locked);
 | |
| 			}
 | |
| 
 | |
| 			goto done_nolock;
 | |
| 		}
 | |
| 	}
 | |
| done:
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 	spin_unlock(&h->lock);
 | |
| 
 | |
| done_nolock:
 | |
| 	if (!keep_cache)
 | |
| 		remove_rbio_from_cache(rbio);
 | |
| }
 | |
| 
 | |
| static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 | |
| {
 | |
| 	struct bio *next;
 | |
| 
 | |
| 	while (cur) {
 | |
| 		next = cur->bi_next;
 | |
| 		cur->bi_next = NULL;
 | |
| 		cur->bi_status = err;
 | |
| 		bio_endio(cur);
 | |
| 		cur = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this frees the rbio and runs through all the bios in the
 | |
|  * bio_list and calls end_io on them
 | |
|  */
 | |
| static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 | |
| {
 | |
| 	struct bio *cur = bio_list_get(&rbio->bio_list);
 | |
| 	struct bio *extra;
 | |
| 
 | |
| 	kfree(rbio->csum_buf);
 | |
| 	bitmap_free(rbio->csum_bitmap);
 | |
| 	rbio->csum_buf = NULL;
 | |
| 	rbio->csum_bitmap = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the data bitmap, as the rbio may be cached for later usage.
 | |
| 	 * do this before before unlock_stripe() so there will be no new bio
 | |
| 	 * for this bio.
 | |
| 	 */
 | |
| 	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this moment, rbio->bio_list is empty, however since rbio does not
 | |
| 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 | |
| 	 * hash list, rbio may be merged with others so that rbio->bio_list
 | |
| 	 * becomes non-empty.
 | |
| 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 | |
| 	 * more and we can call bio_endio() on all queued bios.
 | |
| 	 */
 | |
| 	unlock_stripe(rbio);
 | |
| 	extra = bio_list_get(&rbio->bio_list);
 | |
| 	free_raid_bio(rbio);
 | |
| 
 | |
| 	rbio_endio_bio_list(cur, err);
 | |
| 	if (extra)
 | |
| 		rbio_endio_bio_list(extra, err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a sector pointer specified by its @stripe_nr and @sector_nr.
 | |
|  *
 | |
|  * @rbio:               The raid bio
 | |
|  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 | |
|  * @sector_nr:		Sector number inside the stripe,
 | |
|  *			valid range [0, stripe_nsectors)
 | |
|  * @bio_list_only:      Whether to use sectors inside the bio list only.
 | |
|  *
 | |
|  * The read/modify/write code wants to reuse the original bio page as much
 | |
|  * as possible, and only use stripe_sectors as fallback.
 | |
|  */
 | |
| static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
 | |
| 					 int stripe_nr, int sector_nr,
 | |
| 					 bool bio_list_only)
 | |
| {
 | |
| 	struct sector_ptr *sector;
 | |
| 	int index;
 | |
| 
 | |
| 	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes,
 | |
| 			   rbio, stripe_nr);
 | |
| 	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
 | |
| 			   rbio, sector_nr);
 | |
| 
 | |
| 	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
 | |
| 	ASSERT(index >= 0 && index < rbio->nr_sectors);
 | |
| 
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 	sector = &rbio->bio_sectors[index];
 | |
| 	if (sector->page || bio_list_only) {
 | |
| 		/* Don't return sector without a valid page pointer */
 | |
| 		if (!sector->page)
 | |
| 			sector = NULL;
 | |
| 		spin_unlock(&rbio->bio_list_lock);
 | |
| 		return sector;
 | |
| 	}
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	return &rbio->stripe_sectors[index];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocation and initial setup for the btrfs_raid_bio.  Not
 | |
|  * this does not allocate any pages for rbio->pages.
 | |
|  */
 | |
| static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 | |
| 					 struct btrfs_io_context *bioc)
 | |
| {
 | |
| 	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
 | |
| 	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
 | |
| 	const unsigned int num_pages = stripe_npages * real_stripes;
 | |
| 	const unsigned int stripe_nsectors =
 | |
| 		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 | |
| 	const unsigned int num_sectors = stripe_nsectors * real_stripes;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
 | |
| 	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
 | |
| 	/*
 | |
| 	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
 | |
| 	 * (at most 16) should be no larger than BITS_PER_LONG.
 | |
| 	 */
 | |
| 	ASSERT(stripe_nsectors <= BITS_PER_LONG);
 | |
| 
 | |
| 	/*
 | |
| 	 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
 | |
| 	 * (limited by u8).
 | |
| 	 */
 | |
| 	ASSERT(real_stripes >= 2);
 | |
| 	ASSERT(real_stripes <= U8_MAX);
 | |
| 
 | |
| 	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
 | |
| 	if (!rbio)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
 | |
| 				     GFP_NOFS);
 | |
| 	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 | |
| 				    GFP_NOFS);
 | |
| 	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 | |
| 				       GFP_NOFS);
 | |
| 	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
 | |
| 	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
 | |
| 
 | |
| 	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
 | |
| 	    !rbio->finish_pointers || !rbio->error_bitmap) {
 | |
| 		free_raid_bio_pointers(rbio);
 | |
| 		kfree(rbio);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	bio_list_init(&rbio->bio_list);
 | |
| 	init_waitqueue_head(&rbio->io_wait);
 | |
| 	INIT_LIST_HEAD(&rbio->plug_list);
 | |
| 	spin_lock_init(&rbio->bio_list_lock);
 | |
| 	INIT_LIST_HEAD(&rbio->stripe_cache);
 | |
| 	INIT_LIST_HEAD(&rbio->hash_list);
 | |
| 	btrfs_get_bioc(bioc);
 | |
| 	rbio->bioc = bioc;
 | |
| 	rbio->nr_pages = num_pages;
 | |
| 	rbio->nr_sectors = num_sectors;
 | |
| 	rbio->real_stripes = real_stripes;
 | |
| 	rbio->stripe_npages = stripe_npages;
 | |
| 	rbio->stripe_nsectors = stripe_nsectors;
 | |
| 	refcount_set(&rbio->refs, 1);
 | |
| 	atomic_set(&rbio->stripes_pending, 0);
 | |
| 
 | |
| 	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
 | |
| 	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
 | |
| 	ASSERT(rbio->nr_data > 0);
 | |
| 
 | |
| 	return rbio;
 | |
| }
 | |
| 
 | |
| /* allocate pages for all the stripes in the bio, including parity */
 | |
| static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	/* Mapping all sectors */
 | |
| 	index_stripe_sectors(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* only allocate pages for p/q stripes */
 | |
| static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
 | |
| 				     rbio->stripe_pages + data_pages, false);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	index_stripe_sectors(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the total number of errors found in the vertical stripe of @sector_nr.
 | |
|  *
 | |
|  * @faila and @failb will also be updated to the first and second stripe
 | |
|  * number of the errors.
 | |
|  */
 | |
| static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
 | |
| 				     int *faila, int *failb)
 | |
| {
 | |
| 	int stripe_nr;
 | |
| 	int found_errors = 0;
 | |
| 
 | |
| 	if (faila || failb) {
 | |
| 		/*
 | |
| 		 * Both @faila and @failb should be valid pointers if any of
 | |
| 		 * them is specified.
 | |
| 		 */
 | |
| 		ASSERT(faila && failb);
 | |
| 		*faila = -1;
 | |
| 		*failb = -1;
 | |
| 	}
 | |
| 
 | |
| 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
 | |
| 		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
 | |
| 
 | |
| 		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
 | |
| 			found_errors++;
 | |
| 			if (faila) {
 | |
| 				/* Update faila and failb. */
 | |
| 				if (*faila < 0)
 | |
| 					*faila = stripe_nr;
 | |
| 				else if (*failb < 0)
 | |
| 					*failb = stripe_nr;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return found_errors;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a single sector @sector into our list of bios for IO.
 | |
|  *
 | |
|  * Return 0 if everything went well.
 | |
|  * Return <0 for error.
 | |
|  */
 | |
| static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
 | |
| 			      struct bio_list *bio_list,
 | |
| 			      struct sector_ptr *sector,
 | |
| 			      unsigned int stripe_nr,
 | |
| 			      unsigned int sector_nr,
 | |
| 			      enum req_op op)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	struct bio *last = bio_list->tail;
 | |
| 	int ret;
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_io_stripe *stripe;
 | |
| 	u64 disk_start;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: here stripe_nr has taken device replace into consideration,
 | |
| 	 * thus it can be larger than rbio->real_stripe.
 | |
| 	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
 | |
| 	 */
 | |
| 	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes,
 | |
| 			   rbio, stripe_nr);
 | |
| 	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
 | |
| 			   rbio, sector_nr);
 | |
| 	ASSERT(sector->page);
 | |
| 
 | |
| 	stripe = &rbio->bioc->stripes[stripe_nr];
 | |
| 	disk_start = stripe->physical + sector_nr * sectorsize;
 | |
| 
 | |
| 	/* if the device is missing, just fail this stripe */
 | |
| 	if (!stripe->dev->bdev) {
 | |
| 		int found_errors;
 | |
| 
 | |
| 		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
 | |
| 			rbio->error_bitmap);
 | |
| 
 | |
| 		/* Check if we have reached tolerance early. */
 | |
| 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
 | |
| 							 NULL, NULL);
 | |
| 		if (found_errors > rbio->bioc->max_errors)
 | |
| 			return -EIO;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* see if we can add this page onto our existing bio */
 | |
| 	if (last) {
 | |
| 		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 		last_end += last->bi_iter.bi_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * we can't merge these if they are from different
 | |
| 		 * devices or if they are not contiguous
 | |
| 		 */
 | |
| 		if (last_end == disk_start && !last->bi_status &&
 | |
| 		    last->bi_bdev == stripe->dev->bdev) {
 | |
| 			ret = bio_add_page(last, sector->page, sectorsize,
 | |
| 					   sector->pgoff);
 | |
| 			if (ret == sectorsize)
 | |
| 				return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* put a new bio on the list */
 | |
| 	bio = bio_alloc(stripe->dev->bdev,
 | |
| 			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
 | |
| 			op, GFP_NOFS);
 | |
| 	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
 | |
| 	bio->bi_private = rbio;
 | |
| 
 | |
| 	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
 | |
| 	bio_list_add(bio_list, bio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	struct bio_vec bvec;
 | |
| 	struct bvec_iter iter;
 | |
| 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
 | |
| 		     rbio->bioc->full_stripe_logical;
 | |
| 
 | |
| 	bio_for_each_segment(bvec, bio, iter) {
 | |
| 		u32 bvec_offset;
 | |
| 
 | |
| 		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
 | |
| 		     bvec_offset += sectorsize, offset += sectorsize) {
 | |
| 			int index = offset / sectorsize;
 | |
| 			struct sector_ptr *sector = &rbio->bio_sectors[index];
 | |
| 
 | |
| 			sector->page = bvec.bv_page;
 | |
| 			sector->pgoff = bvec.bv_offset + bvec_offset;
 | |
| 			ASSERT(sector->pgoff < PAGE_SIZE);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to walk our bio list and populate the bio_pages array with
 | |
|  * the result.  This seems expensive, but it is faster than constantly
 | |
|  * searching through the bio list as we setup the IO in finish_rmw or stripe
 | |
|  * reconstruction.
 | |
|  *
 | |
|  * This must be called before you trust the answers from page_in_rbio
 | |
|  */
 | |
| static void index_rbio_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 	bio_list_for_each(bio, &rbio->bio_list)
 | |
| 		index_one_bio(rbio, bio);
 | |
| 
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| }
 | |
| 
 | |
| static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
 | |
| 			       struct raid56_bio_trace_info *trace_info)
 | |
| {
 | |
| 	const struct btrfs_io_context *bioc = rbio->bioc;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(bioc);
 | |
| 
 | |
| 	/* We rely on bio->bi_bdev to find the stripe number. */
 | |
| 	if (!bio->bi_bdev)
 | |
| 		goto not_found;
 | |
| 
 | |
| 	for (i = 0; i < bioc->num_stripes; i++) {
 | |
| 		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
 | |
| 			continue;
 | |
| 		trace_info->stripe_nr = i;
 | |
| 		trace_info->devid = bioc->stripes[i].dev->devid;
 | |
| 		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
 | |
| 				     bioc->stripes[i].physical;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| not_found:
 | |
| 	trace_info->devid = -1;
 | |
| 	trace_info->offset = -1;
 | |
| 	trace_info->stripe_nr = -1;
 | |
| }
 | |
| 
 | |
| static inline void bio_list_put(struct bio_list *bio_list)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	while ((bio = bio_list_pop(bio_list)))
 | |
| 		bio_put(bio);
 | |
| }
 | |
| 
 | |
| static void assert_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
 | |
| 	 * we won't go beyond 256 disks anyway.
 | |
| 	 */
 | |
| 	ASSERT_RBIO(rbio->real_stripes >= 2, rbio);
 | |
| 	ASSERT_RBIO(rbio->nr_data > 0, rbio);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is another check to make sure nr data stripes is smaller
 | |
| 	 * than total stripes.
 | |
| 	 */
 | |
| 	ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio);
 | |
| }
 | |
| 
 | |
| /* Generate PQ for one vertical stripe. */
 | |
| static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
 | |
| {
 | |
| 	void **pointers = rbio->finish_pointers;
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	struct sector_ptr *sector;
 | |
| 	int stripe;
 | |
| 	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
 | |
| 
 | |
| 	/* First collect one sector from each data stripe */
 | |
| 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
 | |
| 		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
 | |
| 		pointers[stripe] = kmap_local_page(sector->page) +
 | |
| 				   sector->pgoff;
 | |
| 	}
 | |
| 
 | |
| 	/* Then add the parity stripe */
 | |
| 	sector = rbio_pstripe_sector(rbio, sectornr);
 | |
| 	sector->uptodate = 1;
 | |
| 	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
 | |
| 
 | |
| 	if (has_qstripe) {
 | |
| 		/*
 | |
| 		 * RAID6, add the qstripe and call the library function
 | |
| 		 * to fill in our p/q
 | |
| 		 */
 | |
| 		sector = rbio_qstripe_sector(rbio, sectornr);
 | |
| 		sector->uptodate = 1;
 | |
| 		pointers[stripe++] = kmap_local_page(sector->page) +
 | |
| 				     sector->pgoff;
 | |
| 
 | |
| 		assert_rbio(rbio);
 | |
| 		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
 | |
| 					pointers);
 | |
| 	} else {
 | |
| 		/* raid5 */
 | |
| 		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
 | |
| 		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
 | |
| 	}
 | |
| 	for (stripe = stripe - 1; stripe >= 0; stripe--)
 | |
| 		kunmap_local(pointers[stripe]);
 | |
| }
 | |
| 
 | |
| static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
 | |
| 				   struct bio_list *bio_list)
 | |
| {
 | |
| 	/* The total sector number inside the full stripe. */
 | |
| 	int total_sector_nr;
 | |
| 	int sectornr;
 | |
| 	int stripe;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(bio_list_size(bio_list) == 0);
 | |
| 
 | |
| 	/* We should have at least one data sector. */
 | |
| 	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset errors, as we may have errors inherited from from degraded
 | |
| 	 * write.
 | |
| 	 */
 | |
| 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 | |
| 
 | |
| 	/*
 | |
| 	 * Start assembly.  Make bios for everything from the higher layers (the
 | |
| 	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
 | |
| 	 */
 | |
| 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
 | |
| 	     total_sector_nr++) {
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		stripe = total_sector_nr / rbio->stripe_nsectors;
 | |
| 		sectornr = total_sector_nr % rbio->stripe_nsectors;
 | |
| 
 | |
| 		/* This vertical stripe has no data, skip it. */
 | |
| 		if (!test_bit(sectornr, &rbio->dbitmap))
 | |
| 			continue;
 | |
| 
 | |
| 		if (stripe < rbio->nr_data) {
 | |
| 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
 | |
| 			if (!sector)
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 		}
 | |
| 
 | |
| 		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
 | |
| 					 sectornr, REQ_OP_WRITE);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!rbio->bioc->replace_nr_stripes))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make a copy for the replace target device.
 | |
| 	 *
 | |
| 	 * Thus the source stripe number (in replace_stripe_src) should be valid.
 | |
| 	 */
 | |
| 	ASSERT(rbio->bioc->replace_stripe_src >= 0);
 | |
| 
 | |
| 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
 | |
| 	     total_sector_nr++) {
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		stripe = total_sector_nr / rbio->stripe_nsectors;
 | |
| 		sectornr = total_sector_nr % rbio->stripe_nsectors;
 | |
| 
 | |
| 		/*
 | |
| 		 * For RAID56, there is only one device that can be replaced,
 | |
| 		 * and replace_stripe_src[0] indicates the stripe number we
 | |
| 		 * need to copy from.
 | |
| 		 */
 | |
| 		if (stripe != rbio->bioc->replace_stripe_src) {
 | |
| 			/*
 | |
| 			 * We can skip the whole stripe completely, note
 | |
| 			 * total_sector_nr will be increased by one anyway.
 | |
| 			 */
 | |
| 			ASSERT(sectornr == 0);
 | |
| 			total_sector_nr += rbio->stripe_nsectors - 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* This vertical stripe has no data, skip it. */
 | |
| 		if (!test_bit(sectornr, &rbio->dbitmap))
 | |
| 			continue;
 | |
| 
 | |
| 		if (stripe < rbio->nr_data) {
 | |
| 			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
 | |
| 			if (!sector)
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 		}
 | |
| 
 | |
| 		ret = rbio_add_io_sector(rbio, bio_list, sector,
 | |
| 					 rbio->real_stripes,
 | |
| 					 sectornr, REQ_OP_WRITE);
 | |
| 		if (ret)
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| error:
 | |
| 	bio_list_put(bio_list);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
 | |
| 	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
 | |
| 		     rbio->bioc->full_stripe_logical;
 | |
| 	int total_nr_sector = offset >> fs_info->sectorsize_bits;
 | |
| 
 | |
| 	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
 | |
| 
 | |
| 	bitmap_set(rbio->error_bitmap, total_nr_sector,
 | |
| 		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
 | |
| 
 | |
| 	/*
 | |
| 	 * Special handling for raid56_alloc_missing_rbio() used by
 | |
| 	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
 | |
| 	 * pass an empty bio here.  Thus we have to find out the missing device
 | |
| 	 * and mark the stripe error instead.
 | |
| 	 */
 | |
| 	if (bio->bi_iter.bi_size == 0) {
 | |
| 		bool found_missing = false;
 | |
| 		int stripe_nr;
 | |
| 
 | |
| 		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
 | |
| 			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
 | |
| 				found_missing = true;
 | |
| 				bitmap_set(rbio->error_bitmap,
 | |
| 					   stripe_nr * rbio->stripe_nsectors,
 | |
| 					   rbio->stripe_nsectors);
 | |
| 			}
 | |
| 		}
 | |
| 		ASSERT(found_missing);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For subpage case, we can no longer set page Up-to-date directly for
 | |
|  * stripe_pages[], thus we need to locate the sector.
 | |
|  */
 | |
| static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
 | |
| 					     struct page *page,
 | |
| 					     unsigned int pgoff)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_sectors; i++) {
 | |
| 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
 | |
| 
 | |
| 		if (sector->page == page && sector->pgoff == pgoff)
 | |
| 			return sector;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this sets each page in the bio uptodate.  It should only be used on private
 | |
|  * rbio pages, nothing that comes in from the higher layers
 | |
|  */
 | |
| static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	struct bio_vec *bvec;
 | |
| 	struct bvec_iter_all iter_all;
 | |
| 
 | |
| 	ASSERT(!bio_flagged(bio, BIO_CLONED));
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, iter_all) {
 | |
| 		struct sector_ptr *sector;
 | |
| 		int pgoff;
 | |
| 
 | |
| 		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
 | |
| 		     pgoff += sectorsize) {
 | |
| 			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
 | |
| 			ASSERT(sector);
 | |
| 			if (sector)
 | |
| 				sector->uptodate = 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
 | |
| {
 | |
| 	struct bio_vec *bv = bio_first_bvec_all(bio);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_sectors; i++) {
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		sector = &rbio->stripe_sectors[i];
 | |
| 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
 | |
| 			break;
 | |
| 		sector = &rbio->bio_sectors[i];
 | |
| 		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
 | |
| 			break;
 | |
| 	}
 | |
| 	ASSERT(i < rbio->nr_sectors);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
 | |
| {
 | |
| 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
 | |
| 	u32 bio_size = 0;
 | |
| 	struct bio_vec *bvec;
 | |
| 	int i;
 | |
| 
 | |
| 	bio_for_each_bvec_all(bvec, bio, i)
 | |
| 		bio_size += bvec->bv_len;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we can have multiple bios touching the error_bitmap, we cannot
 | |
| 	 * call bitmap_set() without protection.
 | |
| 	 *
 | |
| 	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
 | |
| 	 */
 | |
| 	for (i = total_sector_nr; i < total_sector_nr +
 | |
| 	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
 | |
| 		set_bit(i, rbio->error_bitmap);
 | |
| }
 | |
| 
 | |
| /* Verify the data sectors at read time. */
 | |
| static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
 | |
| 				    struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
 | |
| 	int total_sector_nr = get_bio_sector_nr(rbio, bio);
 | |
| 	struct bio_vec *bvec;
 | |
| 	struct bvec_iter_all iter_all;
 | |
| 
 | |
| 	/* No data csum for the whole stripe, no need to verify. */
 | |
| 	if (!rbio->csum_bitmap || !rbio->csum_buf)
 | |
| 		return;
 | |
| 
 | |
| 	/* P/Q stripes, they have no data csum to verify against. */
 | |
| 	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
 | |
| 		return;
 | |
| 
 | |
| 	bio_for_each_segment_all(bvec, bio, iter_all) {
 | |
| 		int bv_offset;
 | |
| 
 | |
| 		for (bv_offset = bvec->bv_offset;
 | |
| 		     bv_offset < bvec->bv_offset + bvec->bv_len;
 | |
| 		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
 | |
| 			u8 csum_buf[BTRFS_CSUM_SIZE];
 | |
| 			u8 *expected_csum = rbio->csum_buf +
 | |
| 					    total_sector_nr * fs_info->csum_size;
 | |
| 			int ret;
 | |
| 
 | |
| 			/* No csum for this sector, skip to the next sector. */
 | |
| 			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
 | |
| 				continue;
 | |
| 
 | |
| 			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
 | |
| 				bv_offset, csum_buf, expected_csum);
 | |
| 			if (ret < 0)
 | |
| 				set_bit(total_sector_nr, rbio->error_bitmap);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid_wait_read_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 
 | |
| 	if (bio->bi_status) {
 | |
| 		rbio_update_error_bitmap(rbio, bio);
 | |
| 	} else {
 | |
| 		set_bio_pages_uptodate(rbio, bio);
 | |
| 		verify_bio_data_sectors(rbio, bio);
 | |
| 	}
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 	if (atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		wake_up(&rbio->io_wait);
 | |
| }
 | |
| 
 | |
| static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
 | |
| 			     struct bio_list *bio_list)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
 | |
| 	while ((bio = bio_list_pop(bio_list))) {
 | |
| 		bio->bi_end_io = raid_wait_read_end_io;
 | |
| 
 | |
| 		if (trace_raid56_read_enabled()) {
 | |
| 			struct raid56_bio_trace_info trace_info = { 0 };
 | |
| 
 | |
| 			bio_get_trace_info(rbio, bio, &trace_info);
 | |
| 			trace_raid56_read(rbio, bio, &trace_info);
 | |
| 		}
 | |
| 		submit_bio(bio);
 | |
| 	}
 | |
| 
 | |
| 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
 | |
| }
 | |
| 
 | |
| static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	const int data_pages = rbio->nr_data * rbio->stripe_npages;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	index_stripe_sectors(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use plugging call backs to collect full stripes.
 | |
|  * Any time we get a partial stripe write while plugged
 | |
|  * we collect it into a list.  When the unplug comes down,
 | |
|  * we sort the list by logical block number and merge
 | |
|  * everything we can into the same rbios
 | |
|  */
 | |
| struct btrfs_plug_cb {
 | |
| 	struct blk_plug_cb cb;
 | |
| 	struct btrfs_fs_info *info;
 | |
| 	struct list_head rbio_list;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * rbios on the plug list are sorted for easier merging.
 | |
|  */
 | |
| static int plug_cmp(void *priv, const struct list_head *a,
 | |
| 		    const struct list_head *b)
 | |
| {
 | |
| 	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
 | |
| 						       plug_list);
 | |
| 	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
 | |
| 						       plug_list);
 | |
| 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
 | |
| 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
 | |
| 
 | |
| 	if (a_sector < b_sector)
 | |
| 		return -1;
 | |
| 	if (a_sector > b_sector)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
 | |
| {
 | |
| 	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
 | |
| 	struct btrfs_raid_bio *cur;
 | |
| 	struct btrfs_raid_bio *last = NULL;
 | |
| 
 | |
| 	list_sort(NULL, &plug->rbio_list, plug_cmp);
 | |
| 
 | |
| 	while (!list_empty(&plug->rbio_list)) {
 | |
| 		cur = list_entry(plug->rbio_list.next,
 | |
| 				 struct btrfs_raid_bio, plug_list);
 | |
| 		list_del_init(&cur->plug_list);
 | |
| 
 | |
| 		if (rbio_is_full(cur)) {
 | |
| 			/* We have a full stripe, queue it down. */
 | |
| 			start_async_work(cur, rmw_rbio_work);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (last) {
 | |
| 			if (rbio_can_merge(last, cur)) {
 | |
| 				merge_rbio(last, cur);
 | |
| 				free_raid_bio(cur);
 | |
| 				continue;
 | |
| 			}
 | |
| 			start_async_work(last, rmw_rbio_work);
 | |
| 		}
 | |
| 		last = cur;
 | |
| 	}
 | |
| 	if (last)
 | |
| 		start_async_work(last, rmw_rbio_work);
 | |
| 	kfree(plug);
 | |
| }
 | |
| 
 | |
| /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
 | |
| static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
 | |
| {
 | |
| 	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
 | |
| 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
 | |
| 	const u32 orig_len = orig_bio->bi_iter.bi_size;
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 	u64 cur_logical;
 | |
| 
 | |
| 	ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start &&
 | |
| 			    orig_logical + orig_len <= full_stripe_start +
 | |
| 			    rbio->nr_data * BTRFS_STRIPE_LEN,
 | |
| 			    rbio, orig_logical);
 | |
| 
 | |
| 	bio_list_add(&rbio->bio_list, orig_bio);
 | |
| 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
 | |
| 
 | |
| 	/* Update the dbitmap. */
 | |
| 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
 | |
| 	     cur_logical += sectorsize) {
 | |
| 		int bit = ((u32)(cur_logical - full_stripe_start) >>
 | |
| 			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
 | |
| 
 | |
| 		set_bit(bit, &rbio->dbitmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * our main entry point for writes from the rest of the FS.
 | |
|  */
 | |
| void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bioc->fs_info;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	struct btrfs_plug_cb *plug = NULL;
 | |
| 	struct blk_plug_cb *cb;
 | |
| 
 | |
| 	rbio = alloc_rbio(fs_info, bioc);
 | |
| 	if (IS_ERR(rbio)) {
 | |
| 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
 | |
| 		bio_endio(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 	rbio->operation = BTRFS_RBIO_WRITE;
 | |
| 	rbio_add_bio(rbio, bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't plug on full rbios, just get them out the door
 | |
| 	 * as quickly as we can
 | |
| 	 */
 | |
| 	if (!rbio_is_full(rbio)) {
 | |
| 		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
 | |
| 		if (cb) {
 | |
| 			plug = container_of(cb, struct btrfs_plug_cb, cb);
 | |
| 			if (!plug->info) {
 | |
| 				plug->info = fs_info;
 | |
| 				INIT_LIST_HEAD(&plug->rbio_list);
 | |
| 			}
 | |
| 			list_add_tail(&rbio->plug_list, &plug->rbio_list);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Either we don't have any existing plug, or we're doing a full stripe,
 | |
| 	 * queue the rmw work now.
 | |
| 	 */
 | |
| 	start_async_work(rbio, rmw_rbio_work);
 | |
| }
 | |
| 
 | |
| static int verify_one_sector(struct btrfs_raid_bio *rbio,
 | |
| 			     int stripe_nr, int sector_nr)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
 | |
| 	struct sector_ptr *sector;
 | |
| 	u8 csum_buf[BTRFS_CSUM_SIZE];
 | |
| 	u8 *csum_expected;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!rbio->csum_bitmap || !rbio->csum_buf)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* No way to verify P/Q as they are not covered by data csum. */
 | |
| 	if (stripe_nr >= rbio->nr_data)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If we're rebuilding a read, we have to use pages from the
 | |
| 	 * bio list if possible.
 | |
| 	 */
 | |
| 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
 | |
| 		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
 | |
| 	} else {
 | |
| 		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(sector->page);
 | |
| 
 | |
| 	csum_expected = rbio->csum_buf +
 | |
| 			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
 | |
| 			fs_info->csum_size;
 | |
| 	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
 | |
| 				      csum_buf, csum_expected);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recover a vertical stripe specified by @sector_nr.
 | |
|  * @*pointers are the pre-allocated pointers by the caller, so we don't
 | |
|  * need to allocate/free the pointers again and again.
 | |
|  */
 | |
| static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
 | |
| 			    void **pointers, void **unmap_array)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
 | |
| 	struct sector_ptr *sector;
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 	int found_errors;
 | |
| 	int faila;
 | |
| 	int failb;
 | |
| 	int stripe_nr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we just use bitmap to mark the horizontal stripes in
 | |
| 	 * which we have data when doing parity scrub.
 | |
| 	 */
 | |
| 	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
 | |
| 	    !test_bit(sector_nr, &rbio->dbitmap))
 | |
| 		return 0;
 | |
| 
 | |
| 	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
 | |
| 						 &failb);
 | |
| 	/*
 | |
| 	 * No errors in the vertical stripe, skip it.  Can happen for recovery
 | |
| 	 * which only part of a stripe failed csum check.
 | |
| 	 */
 | |
| 	if (!found_errors)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (found_errors > rbio->bioc->max_errors)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup our array of pointers with sectors from each stripe
 | |
| 	 *
 | |
| 	 * NOTE: store a duplicate array of pointers to preserve the
 | |
| 	 * pointer order.
 | |
| 	 */
 | |
| 	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
 | |
| 		/*
 | |
| 		 * If we're rebuilding a read, we have to use pages from the
 | |
| 		 * bio list if possible.
 | |
| 		 */
 | |
| 		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
 | |
| 			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
 | |
| 		} else {
 | |
| 			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
 | |
| 		}
 | |
| 		ASSERT(sector->page);
 | |
| 		pointers[stripe_nr] = kmap_local_page(sector->page) +
 | |
| 				   sector->pgoff;
 | |
| 		unmap_array[stripe_nr] = pointers[stripe_nr];
 | |
| 	}
 | |
| 
 | |
| 	/* All raid6 handling here */
 | |
| 	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
 | |
| 		/* Single failure, rebuild from parity raid5 style */
 | |
| 		if (failb < 0) {
 | |
| 			if (faila == rbio->nr_data)
 | |
| 				/*
 | |
| 				 * Just the P stripe has failed, without
 | |
| 				 * a bad data or Q stripe.
 | |
| 				 * We have nothing to do, just skip the
 | |
| 				 * recovery for this stripe.
 | |
| 				 */
 | |
| 				goto cleanup;
 | |
| 			/*
 | |
| 			 * a single failure in raid6 is rebuilt
 | |
| 			 * in the pstripe code below
 | |
| 			 */
 | |
| 			goto pstripe;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the q stripe is failed, do a pstripe reconstruction from
 | |
| 		 * the xors.
 | |
| 		 * If both the q stripe and the P stripe are failed, we're
 | |
| 		 * here due to a crc mismatch and we can't give them the
 | |
| 		 * data they want.
 | |
| 		 */
 | |
| 		if (failb == rbio->real_stripes - 1) {
 | |
| 			if (faila == rbio->real_stripes - 2)
 | |
| 				/*
 | |
| 				 * Only P and Q are corrupted.
 | |
| 				 * We only care about data stripes recovery,
 | |
| 				 * can skip this vertical stripe.
 | |
| 				 */
 | |
| 				goto cleanup;
 | |
| 			/*
 | |
| 			 * Otherwise we have one bad data stripe and
 | |
| 			 * a good P stripe.  raid5!
 | |
| 			 */
 | |
| 			goto pstripe;
 | |
| 		}
 | |
| 
 | |
| 		if (failb == rbio->real_stripes - 2) {
 | |
| 			raid6_datap_recov(rbio->real_stripes, sectorsize,
 | |
| 					  faila, pointers);
 | |
| 		} else {
 | |
| 			raid6_2data_recov(rbio->real_stripes, sectorsize,
 | |
| 					  faila, failb, pointers);
 | |
| 		}
 | |
| 	} else {
 | |
| 		void *p;
 | |
| 
 | |
| 		/* Rebuild from P stripe here (raid5 or raid6). */
 | |
| 		ASSERT(failb == -1);
 | |
| pstripe:
 | |
| 		/* Copy parity block into failed block to start with */
 | |
| 		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
 | |
| 
 | |
| 		/* Rearrange the pointer array */
 | |
| 		p = pointers[faila];
 | |
| 		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
 | |
| 		     stripe_nr++)
 | |
| 			pointers[stripe_nr] = pointers[stripe_nr + 1];
 | |
| 		pointers[rbio->nr_data - 1] = p;
 | |
| 
 | |
| 		/* Xor in the rest */
 | |
| 		run_xor(pointers, rbio->nr_data - 1, sectorsize);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No matter if this is a RMW or recovery, we should have all
 | |
| 	 * failed sectors repaired in the vertical stripe, thus they are now
 | |
| 	 * uptodate.
 | |
| 	 * Especially if we determine to cache the rbio, we need to
 | |
| 	 * have at least all data sectors uptodate.
 | |
| 	 *
 | |
| 	 * If possible, also check if the repaired sector matches its data
 | |
| 	 * checksum.
 | |
| 	 */
 | |
| 	if (faila >= 0) {
 | |
| 		ret = verify_one_sector(rbio, faila, sector_nr);
 | |
| 		if (ret < 0)
 | |
| 			goto cleanup;
 | |
| 
 | |
| 		sector = rbio_stripe_sector(rbio, faila, sector_nr);
 | |
| 		sector->uptodate = 1;
 | |
| 	}
 | |
| 	if (failb >= 0) {
 | |
| 		ret = verify_one_sector(rbio, failb, sector_nr);
 | |
| 		if (ret < 0)
 | |
| 			goto cleanup;
 | |
| 
 | |
| 		sector = rbio_stripe_sector(rbio, failb, sector_nr);
 | |
| 		sector->uptodate = 1;
 | |
| 	}
 | |
| 
 | |
| cleanup:
 | |
| 	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
 | |
| 		kunmap_local(unmap_array[stripe_nr]);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int recover_sectors(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	void **pointers = NULL;
 | |
| 	void **unmap_array = NULL;
 | |
| 	int sectornr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * @pointers array stores the pointer for each sector.
 | |
| 	 *
 | |
| 	 * @unmap_array stores copy of pointers that does not get reordered
 | |
| 	 * during reconstruction so that kunmap_local works.
 | |
| 	 */
 | |
| 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
 | |
| 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
 | |
| 	if (!pointers || !unmap_array) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
 | |
| 		spin_lock(&rbio->bio_list_lock);
 | |
| 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 | |
| 		spin_unlock(&rbio->bio_list_lock);
 | |
| 	}
 | |
| 
 | |
| 	index_rbio_pages(rbio);
 | |
| 
 | |
| 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
 | |
| 		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	kfree(pointers);
 | |
| 	kfree(unmap_array);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void recover_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct bio_list bio_list = BIO_EMPTY_LIST;
 | |
| 	int total_sector_nr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Either we're doing recover for a read failure or degraded write,
 | |
| 	 * caller should have set error bitmap correctly.
 | |
| 	 */
 | |
| 	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
 | |
| 
 | |
| 	/* For recovery, we need to read all sectors including P/Q. */
 | |
| 	ret = alloc_rbio_pages(rbio);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	index_rbio_pages(rbio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read everything that hasn't failed. However this time we will
 | |
| 	 * not trust any cached sector.
 | |
| 	 * As we may read out some stale data but higher layer is not reading
 | |
| 	 * that stale part.
 | |
| 	 *
 | |
| 	 * So here we always re-read everything in recovery path.
 | |
| 	 */
 | |
| 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
 | |
| 	     total_sector_nr++) {
 | |
| 		int stripe = total_sector_nr / rbio->stripe_nsectors;
 | |
| 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip the range which has error.  It can be a range which is
 | |
| 		 * marked error (for csum mismatch), or it can be a missing
 | |
| 		 * device.
 | |
| 		 */
 | |
| 		if (!rbio->bioc->stripes[stripe].dev->bdev ||
 | |
| 		    test_bit(total_sector_nr, rbio->error_bitmap)) {
 | |
| 			/*
 | |
| 			 * Also set the error bit for missing device, which
 | |
| 			 * may not yet have its error bit set.
 | |
| 			 */
 | |
| 			set_bit(total_sector_nr, rbio->error_bitmap);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
 | |
| 					 sectornr, REQ_OP_READ);
 | |
| 		if (ret < 0) {
 | |
| 			bio_list_put(&bio_list);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	submit_read_wait_bio_list(rbio, &bio_list);
 | |
| 	ret = recover_sectors(rbio);
 | |
| out:
 | |
| 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
 | |
| }
 | |
| 
 | |
| static void recover_rbio_work(struct work_struct *work)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = container_of(work, struct btrfs_raid_bio, work);
 | |
| 	if (!lock_stripe_add(rbio))
 | |
| 		recover_rbio(rbio);
 | |
| }
 | |
| 
 | |
| static void recover_rbio_work_locked(struct work_struct *work)
 | |
| {
 | |
| 	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
 | |
| }
 | |
| 
 | |
| static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
 | |
| {
 | |
| 	bool found = false;
 | |
| 	int sector_nr;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is for RAID6 extra recovery tries, thus mirror number should
 | |
| 	 * be large than 2.
 | |
| 	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
 | |
| 	 * RAID5 methods.
 | |
| 	 */
 | |
| 	ASSERT(mirror_num > 2);
 | |
| 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
 | |
| 		int found_errors;
 | |
| 		int faila;
 | |
| 		int failb;
 | |
| 
 | |
| 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
 | |
| 							 &faila, &failb);
 | |
| 		/* This vertical stripe doesn't have errors. */
 | |
| 		if (!found_errors)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we found errors, there should be only one error marked
 | |
| 		 * by previous set_rbio_range_error().
 | |
| 		 */
 | |
| 		ASSERT(found_errors == 1);
 | |
| 		found = true;
 | |
| 
 | |
| 		/* Now select another stripe to mark as error. */
 | |
| 		failb = rbio->real_stripes - (mirror_num - 1);
 | |
| 		if (failb <= faila)
 | |
| 			failb--;
 | |
| 
 | |
| 		/* Set the extra bit in error bitmap. */
 | |
| 		if (failb >= 0)
 | |
| 			set_bit(failb * rbio->stripe_nsectors + sector_nr,
 | |
| 				rbio->error_bitmap);
 | |
| 	}
 | |
| 
 | |
| 	/* We should found at least one vertical stripe with error.*/
 | |
| 	ASSERT(found);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the main entry point for reads from the higher layers.  This
 | |
|  * is really only called when the normal read path had a failure,
 | |
|  * so we assume the bio they send down corresponds to a failed part
 | |
|  * of the drive.
 | |
|  */
 | |
| void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
 | |
| 			   int mirror_num)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bioc->fs_info;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = alloc_rbio(fs_info, bioc);
 | |
| 	if (IS_ERR(rbio)) {
 | |
| 		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
 | |
| 		bio_endio(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
 | |
| 	rbio_add_bio(rbio, bio);
 | |
| 
 | |
| 	set_rbio_range_error(rbio, bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop retry:
 | |
| 	 * for 'mirror == 2', reconstruct from all other stripes.
 | |
| 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
 | |
| 	 */
 | |
| 	if (mirror_num > 2)
 | |
| 		set_rbio_raid6_extra_error(rbio, mirror_num);
 | |
| 
 | |
| 	start_async_work(rbio, recover_rbio_work);
 | |
| }
 | |
| 
 | |
| static void fill_data_csums(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
 | |
| 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
 | |
| 						       rbio->bioc->full_stripe_logical);
 | |
| 	const u64 start = rbio->bioc->full_stripe_logical;
 | |
| 	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
 | |
| 			fs_info->sectorsize_bits;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* The rbio should not have its csum buffer initialized. */
 | |
| 	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip the csum search if:
 | |
| 	 *
 | |
| 	 * - The rbio doesn't belong to data block groups
 | |
| 	 *   Then we are doing IO for tree blocks, no need to search csums.
 | |
| 	 *
 | |
| 	 * - The rbio belongs to mixed block groups
 | |
| 	 *   This is to avoid deadlock, as we're already holding the full
 | |
| 	 *   stripe lock, if we trigger a metadata read, and it needs to do
 | |
| 	 *   raid56 recovery, we will deadlock.
 | |
| 	 */
 | |
| 	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
 | |
| 	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
 | |
| 		return;
 | |
| 
 | |
| 	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
 | |
| 				 fs_info->csum_size, GFP_NOFS);
 | |
| 	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
 | |
| 					  GFP_NOFS);
 | |
| 	if (!rbio->csum_buf || !rbio->csum_bitmap) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
 | |
| 					rbio->csum_buf, rbio->csum_bitmap);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
 | |
| 		goto no_csum;
 | |
| 	return;
 | |
| 
 | |
| error:
 | |
| 	/*
 | |
| 	 * We failed to allocate memory or grab the csum, but it's not fatal,
 | |
| 	 * we can still continue.  But better to warn users that RMW is no
 | |
| 	 * longer safe for this particular sub-stripe write.
 | |
| 	 */
 | |
| 	btrfs_warn_rl(fs_info,
 | |
| "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
 | |
| 			rbio->bioc->full_stripe_logical, ret);
 | |
| no_csum:
 | |
| 	kfree(rbio->csum_buf);
 | |
| 	bitmap_free(rbio->csum_bitmap);
 | |
| 	rbio->csum_buf = NULL;
 | |
| 	rbio->csum_bitmap = NULL;
 | |
| }
 | |
| 
 | |
| static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct bio_list bio_list = BIO_EMPTY_LIST;
 | |
| 	int total_sector_nr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill the data csums we need for data verification.  We need to fill
 | |
| 	 * the csum_bitmap/csum_buf first, as our endio function will try to
 | |
| 	 * verify the data sectors.
 | |
| 	 */
 | |
| 	fill_data_csums(rbio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Build a list of bios to read all sectors (including data and P/Q).
 | |
| 	 *
 | |
| 	 * This behavior is to compensate the later csum verification and recovery.
 | |
| 	 */
 | |
| 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
 | |
| 	     total_sector_nr++) {
 | |
| 		struct sector_ptr *sector;
 | |
| 		int stripe = total_sector_nr / rbio->stripe_nsectors;
 | |
| 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
 | |
| 
 | |
| 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
 | |
| 			       stripe, sectornr, REQ_OP_READ);
 | |
| 		if (ret) {
 | |
| 			bio_list_put(&bio_list);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We may or may not have any corrupted sectors (including missing dev
 | |
| 	 * and csum mismatch), just let recover_sectors() to handle them all.
 | |
| 	 */
 | |
| 	submit_read_wait_bio_list(rbio, &bio_list);
 | |
| 	return recover_sectors(rbio);
 | |
| }
 | |
| 
 | |
| static void raid_wait_write_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio = bio->bi_private;
 | |
| 	blk_status_t err = bio->bi_status;
 | |
| 
 | |
| 	if (err)
 | |
| 		rbio_update_error_bitmap(rbio, bio);
 | |
| 	bio_put(bio);
 | |
| 	if (atomic_dec_and_test(&rbio->stripes_pending))
 | |
| 		wake_up(&rbio->io_wait);
 | |
| }
 | |
| 
 | |
| static void submit_write_bios(struct btrfs_raid_bio *rbio,
 | |
| 			      struct bio_list *bio_list)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
 | |
| 	while ((bio = bio_list_pop(bio_list))) {
 | |
| 		bio->bi_end_io = raid_wait_write_end_io;
 | |
| 
 | |
| 		if (trace_raid56_write_enabled()) {
 | |
| 			struct raid56_bio_trace_info trace_info = { 0 };
 | |
| 
 | |
| 			bio_get_trace_info(rbio, bio, &trace_info);
 | |
| 			trace_raid56_write(rbio, bio, &trace_info);
 | |
| 		}
 | |
| 		submit_bio(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To determine if we need to read any sector from the disk.
 | |
|  * Should only be utilized in RMW path, to skip cached rbio.
 | |
|  */
 | |
| static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
 | |
| 		struct sector_ptr *sector = &rbio->stripe_sectors[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * We have a sector which doesn't have page nor uptodate,
 | |
| 		 * thus this rbio can not be cached one, as cached one must
 | |
| 		 * have all its data sectors present and uptodate.
 | |
| 		 */
 | |
| 		if (!sector->page || !sector->uptodate)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void rmw_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct bio_list bio_list;
 | |
| 	int sectornr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the pages for parity first, as P/Q pages will always be
 | |
| 	 * needed for both full-stripe and sub-stripe writes.
 | |
| 	 */
 | |
| 	ret = alloc_rbio_parity_pages(rbio);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Either full stripe write, or we have every data sector already
 | |
| 	 * cached, can go to write path immediately.
 | |
| 	 */
 | |
| 	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
 | |
| 		/*
 | |
| 		 * Now we're doing sub-stripe write, also need all data stripes
 | |
| 		 * to do the full RMW.
 | |
| 		 */
 | |
| 		ret = alloc_rbio_data_pages(rbio);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		index_rbio_pages(rbio);
 | |
| 
 | |
| 		ret = rmw_read_wait_recover(rbio);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this stage we're not allowed to add any new bios to the
 | |
| 	 * bio list any more, anyone else that wants to change this stripe
 | |
| 	 * needs to do their own rmw.
 | |
| 	 */
 | |
| 	spin_lock(&rbio->bio_list_lock);
 | |
| 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 | |
| 	spin_unlock(&rbio->bio_list_lock);
 | |
| 
 | |
| 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 | |
| 
 | |
| 	index_rbio_pages(rbio);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't cache full rbios because we're assuming
 | |
| 	 * the higher layers are unlikely to use this area of
 | |
| 	 * the disk again soon.  If they do use it again,
 | |
| 	 * hopefully they will send another full bio.
 | |
| 	 */
 | |
| 	if (!rbio_is_full(rbio))
 | |
| 		cache_rbio_pages(rbio);
 | |
| 	else
 | |
| 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| 
 | |
| 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
 | |
| 		generate_pq_vertical(rbio, sectornr);
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 	ret = rmw_assemble_write_bios(rbio, &bio_list);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* We should have at least one bio assembled. */
 | |
| 	ASSERT(bio_list_size(&bio_list));
 | |
| 	submit_write_bios(rbio, &bio_list);
 | |
| 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
 | |
| 
 | |
| 	/* We may have more errors than our tolerance during the read. */
 | |
| 	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
 | |
| 		int found_errors;
 | |
| 
 | |
| 		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
 | |
| 		if (found_errors > rbio->bioc->max_errors) {
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
 | |
| }
 | |
| 
 | |
| static void rmw_rbio_work(struct work_struct *work)
 | |
| {
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 
 | |
| 	rbio = container_of(work, struct btrfs_raid_bio, work);
 | |
| 	if (lock_stripe_add(rbio) == 0)
 | |
| 		rmw_rbio(rbio);
 | |
| }
 | |
| 
 | |
| static void rmw_rbio_work_locked(struct work_struct *work)
 | |
| {
 | |
| 	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following code is used to scrub/replace the parity stripe
 | |
|  *
 | |
|  * Caller must have already increased bio_counter for getting @bioc.
 | |
|  *
 | |
|  * Note: We need make sure all the pages that add into the scrub/replace
 | |
|  * raid bio are correct and not be changed during the scrub/replace. That
 | |
|  * is those pages just hold metadata or file data with checksum.
 | |
|  */
 | |
| 
 | |
| struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
 | |
| 				struct btrfs_io_context *bioc,
 | |
| 				struct btrfs_device *scrub_dev,
 | |
| 				unsigned long *dbitmap, int stripe_nsectors)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bioc->fs_info;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	int i;
 | |
| 
 | |
| 	rbio = alloc_rbio(fs_info, bioc);
 | |
| 	if (IS_ERR(rbio))
 | |
| 		return NULL;
 | |
| 	bio_list_add(&rbio->bio_list, bio);
 | |
| 	/*
 | |
| 	 * This is a special bio which is used to hold the completion handler
 | |
| 	 * and make the scrub rbio is similar to the other types
 | |
| 	 */
 | |
| 	ASSERT(!bio->bi_iter.bi_size);
 | |
| 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
 | |
| 
 | |
| 	/*
 | |
| 	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
 | |
| 	 * to the end position, so this search can start from the first parity
 | |
| 	 * stripe.
 | |
| 	 */
 | |
| 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
 | |
| 		if (bioc->stripes[i].dev == scrub_dev) {
 | |
| 			rbio->scrubp = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i);
 | |
| 
 | |
| 	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
 | |
| 	return rbio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We just scrub the parity that we have correct data on the same horizontal,
 | |
|  * so we needn't allocate all pages for all the stripes.
 | |
|  */
 | |
| static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	int total_sector_nr;
 | |
| 
 | |
| 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
 | |
| 	     total_sector_nr++) {
 | |
| 		struct page *page;
 | |
| 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
 | |
| 		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
 | |
| 
 | |
| 		if (!test_bit(sectornr, &rbio->dbitmap))
 | |
| 			continue;
 | |
| 		if (rbio->stripe_pages[index])
 | |
| 			continue;
 | |
| 		page = alloc_page(GFP_NOFS);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 		rbio->stripe_pages[index] = page;
 | |
| 	}
 | |
| 	index_stripe_sectors(rbio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct btrfs_io_context *bioc = rbio->bioc;
 | |
| 	const u32 sectorsize = bioc->fs_info->sectorsize;
 | |
| 	void **pointers = rbio->finish_pointers;
 | |
| 	unsigned long *pbitmap = &rbio->finish_pbitmap;
 | |
| 	int nr_data = rbio->nr_data;
 | |
| 	int stripe;
 | |
| 	int sectornr;
 | |
| 	bool has_qstripe;
 | |
| 	struct sector_ptr p_sector = { 0 };
 | |
| 	struct sector_ptr q_sector = { 0 };
 | |
| 	struct bio_list bio_list;
 | |
| 	int is_replace = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	bio_list_init(&bio_list);
 | |
| 
 | |
| 	if (rbio->real_stripes - rbio->nr_data == 1)
 | |
| 		has_qstripe = false;
 | |
| 	else if (rbio->real_stripes - rbio->nr_data == 2)
 | |
| 		has_qstripe = true;
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	/*
 | |
| 	 * Replace is running and our P/Q stripe is being replaced, then we
 | |
| 	 * need to duplicate the final write to replace target.
 | |
| 	 */
 | |
| 	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
 | |
| 		is_replace = 1;
 | |
| 		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because the higher layers(scrubber) are unlikely to
 | |
| 	 * use this area of the disk again soon, so don't cache
 | |
| 	 * it.
 | |
| 	 */
 | |
| 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 | |
| 
 | |
| 	p_sector.page = alloc_page(GFP_NOFS);
 | |
| 	if (!p_sector.page)
 | |
| 		return -ENOMEM;
 | |
| 	p_sector.pgoff = 0;
 | |
| 	p_sector.uptodate = 1;
 | |
| 
 | |
| 	if (has_qstripe) {
 | |
| 		/* RAID6, allocate and map temp space for the Q stripe */
 | |
| 		q_sector.page = alloc_page(GFP_NOFS);
 | |
| 		if (!q_sector.page) {
 | |
| 			__free_page(p_sector.page);
 | |
| 			p_sector.page = NULL;
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		q_sector.pgoff = 0;
 | |
| 		q_sector.uptodate = 1;
 | |
| 		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
 | |
| 	}
 | |
| 
 | |
| 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 | |
| 
 | |
| 	/* Map the parity stripe just once */
 | |
| 	pointers[nr_data] = kmap_local_page(p_sector.page);
 | |
| 
 | |
| 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
 | |
| 		struct sector_ptr *sector;
 | |
| 		void *parity;
 | |
| 
 | |
| 		/* first collect one page from each data stripe */
 | |
| 		for (stripe = 0; stripe < nr_data; stripe++) {
 | |
| 			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
 | |
| 			pointers[stripe] = kmap_local_page(sector->page) +
 | |
| 					   sector->pgoff;
 | |
| 		}
 | |
| 
 | |
| 		if (has_qstripe) {
 | |
| 			assert_rbio(rbio);
 | |
| 			/* RAID6, call the library function to fill in our P/Q */
 | |
| 			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
 | |
| 						pointers);
 | |
| 		} else {
 | |
| 			/* raid5 */
 | |
| 			memcpy(pointers[nr_data], pointers[0], sectorsize);
 | |
| 			run_xor(pointers + 1, nr_data - 1, sectorsize);
 | |
| 		}
 | |
| 
 | |
| 		/* Check scrubbing parity and repair it */
 | |
| 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
 | |
| 		parity = kmap_local_page(sector->page) + sector->pgoff;
 | |
| 		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
 | |
| 			memcpy(parity, pointers[rbio->scrubp], sectorsize);
 | |
| 		else
 | |
| 			/* Parity is right, needn't writeback */
 | |
| 			bitmap_clear(&rbio->dbitmap, sectornr, 1);
 | |
| 		kunmap_local(parity);
 | |
| 
 | |
| 		for (stripe = nr_data - 1; stripe >= 0; stripe--)
 | |
| 			kunmap_local(pointers[stripe]);
 | |
| 	}
 | |
| 
 | |
| 	kunmap_local(pointers[nr_data]);
 | |
| 	__free_page(p_sector.page);
 | |
| 	p_sector.page = NULL;
 | |
| 	if (q_sector.page) {
 | |
| 		kunmap_local(pointers[rbio->real_stripes - 1]);
 | |
| 		__free_page(q_sector.page);
 | |
| 		q_sector.page = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * time to start writing.  Make bios for everything from the
 | |
| 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
 | |
| 	 * everything else.
 | |
| 	 */
 | |
| 	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
 | |
| 		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
 | |
| 					 sectornr, REQ_OP_WRITE);
 | |
| 		if (ret)
 | |
| 			goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_replace)
 | |
| 		goto submit_write;
 | |
| 
 | |
| 	/*
 | |
| 	 * Replace is running and our parity stripe needs to be duplicated to
 | |
| 	 * the target device.  Check we have a valid source stripe number.
 | |
| 	 */
 | |
| 	ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio);
 | |
| 	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
 | |
| 		ret = rbio_add_io_sector(rbio, &bio_list, sector,
 | |
| 					 rbio->real_stripes,
 | |
| 					 sectornr, REQ_OP_WRITE);
 | |
| 		if (ret)
 | |
| 			goto cleanup;
 | |
| 	}
 | |
| 
 | |
| submit_write:
 | |
| 	submit_write_bios(rbio, &bio_list);
 | |
| 	return 0;
 | |
| 
 | |
| cleanup:
 | |
| 	bio_list_put(&bio_list);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
 | |
| {
 | |
| 	if (stripe >= 0 && stripe < rbio->nr_data)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	void **pointers = NULL;
 | |
| 	void **unmap_array = NULL;
 | |
| 	int sector_nr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * @pointers array stores the pointer for each sector.
 | |
| 	 *
 | |
| 	 * @unmap_array stores copy of pointers that does not get reordered
 | |
| 	 * during reconstruction so that kunmap_local works.
 | |
| 	 */
 | |
| 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
 | |
| 	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
 | |
| 	if (!pointers || !unmap_array) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
 | |
| 		int dfail = 0, failp = -1;
 | |
| 		int faila;
 | |
| 		int failb;
 | |
| 		int found_errors;
 | |
| 
 | |
| 		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
 | |
| 							 &faila, &failb);
 | |
| 		if (found_errors > rbio->bioc->max_errors) {
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (found_errors == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* We should have at least one error here. */
 | |
| 		ASSERT(faila >= 0 || failb >= 0);
 | |
| 
 | |
| 		if (is_data_stripe(rbio, faila))
 | |
| 			dfail++;
 | |
| 		else if (is_parity_stripe(faila))
 | |
| 			failp = faila;
 | |
| 
 | |
| 		if (is_data_stripe(rbio, failb))
 | |
| 			dfail++;
 | |
| 		else if (is_parity_stripe(failb))
 | |
| 			failp = failb;
 | |
| 		/*
 | |
| 		 * Because we can not use a scrubbing parity to repair the
 | |
| 		 * data, so the capability of the repair is declined.  (In the
 | |
| 		 * case of RAID5, we can not repair anything.)
 | |
| 		 */
 | |
| 		if (dfail > rbio->bioc->max_errors - 1) {
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If all data is good, only parity is correctly, just repair
 | |
| 		 * the parity, no need to recover data stripes.
 | |
| 		 */
 | |
| 		if (dfail == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Here means we got one corrupted data stripe and one
 | |
| 		 * corrupted parity on RAID6, if the corrupted parity is
 | |
| 		 * scrubbing parity, luckily, use the other one to repair the
 | |
| 		 * data, or we can not repair the data stripe.
 | |
| 		 */
 | |
| 		if (failp != rbio->scrubp) {
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| out:
 | |
| 	kfree(pointers);
 | |
| 	kfree(unmap_array);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	struct bio_list bio_list = BIO_EMPTY_LIST;
 | |
| 	int total_sector_nr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Build a list of bios to read all the missing parts. */
 | |
| 	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
 | |
| 	     total_sector_nr++) {
 | |
| 		int sectornr = total_sector_nr % rbio->stripe_nsectors;
 | |
| 		int stripe = total_sector_nr / rbio->stripe_nsectors;
 | |
| 		struct sector_ptr *sector;
 | |
| 
 | |
| 		/* No data in the vertical stripe, no need to read. */
 | |
| 		if (!test_bit(sectornr, &rbio->dbitmap))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * We want to find all the sectors missing from the rbio and
 | |
| 		 * read them from the disk. If sector_in_rbio() finds a sector
 | |
| 		 * in the bio list we don't need to read it off the stripe.
 | |
| 		 */
 | |
| 		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
 | |
| 		if (sector)
 | |
| 			continue;
 | |
| 
 | |
| 		sector = rbio_stripe_sector(rbio, stripe, sectornr);
 | |
| 		/*
 | |
| 		 * The bio cache may have handed us an uptodate sector.  If so,
 | |
| 		 * use it.
 | |
| 		 */
 | |
| 		if (sector->uptodate)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
 | |
| 					 sectornr, REQ_OP_READ);
 | |
| 		if (ret) {
 | |
| 			bio_list_put(&bio_list);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	submit_read_wait_bio_list(rbio, &bio_list);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	int sector_nr;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = alloc_rbio_essential_pages(rbio);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 | |
| 
 | |
| 	ret = scrub_assemble_read_bios(rbio);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* We may have some failures, recover the failed sectors first. */
 | |
| 	ret = recover_scrub_rbio(rbio);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have every sector properly prepared. Can finish the scrub
 | |
| 	 * and writeback the good content.
 | |
| 	 */
 | |
| 	ret = finish_parity_scrub(rbio);
 | |
| 	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
 | |
| 	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
 | |
| 		int found_errors;
 | |
| 
 | |
| 		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
 | |
| 		if (found_errors > rbio->bioc->max_errors) {
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
 | |
| }
 | |
| 
 | |
| static void scrub_rbio_work_locked(struct work_struct *work)
 | |
| {
 | |
| 	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
 | |
| }
 | |
| 
 | |
| void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
 | |
| {
 | |
| 	if (!lock_stripe_add(rbio))
 | |
| 		start_async_work(rbio, scrub_rbio_work_locked);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is for scrub call sites where we already have correct data contents.
 | |
|  * This allows us to avoid reading data stripes again.
 | |
|  *
 | |
|  * Unfortunately here we have to do page copy, other than reusing the pages.
 | |
|  * This is due to the fact rbio has its own page management for its cache.
 | |
|  */
 | |
| void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
 | |
| 				    struct page **data_pages, u64 data_logical)
 | |
| {
 | |
| 	const u64 offset_in_full_stripe = data_logical -
 | |
| 					  rbio->bioc->full_stripe_logical;
 | |
| 	const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
 | |
| 	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 | |
| 	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we hit ENOMEM temporarily, but later at
 | |
| 	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
 | |
| 	 * the extra read, not a big deal.
 | |
| 	 *
 | |
| 	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
 | |
| 	 * the bio would got proper error number set.
 | |
| 	 */
 | |
| 	ret = alloc_rbio_data_pages(rbio);
 | |
| 	if (ret < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* data_logical must be at stripe boundary and inside the full stripe. */
 | |
| 	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
 | |
| 	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
 | |
| 
 | |
| 	for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
 | |
| 		struct page *dst = rbio->stripe_pages[page_nr + page_index];
 | |
| 		struct page *src = data_pages[page_nr];
 | |
| 
 | |
| 		memcpy_page(dst, 0, src, 0, PAGE_SIZE);
 | |
| 		for (int sector_nr = sectors_per_page * page_index;
 | |
| 		     sector_nr < sectors_per_page * (page_index + 1);
 | |
| 		     sector_nr++)
 | |
| 			rbio->stripe_sectors[sector_nr].uptodate = true;
 | |
| 	}
 | |
| }
 |