forked from mirrors/linux
		
	 887d417f0a
			
		
	
	
		887d417f0a
		
	
	
	
	
		
			
			The parameter map used to be passed to scrub_extent() until
e02ee89baa ("btrfs: scrub: switch scrub_simple_mirror() to
scrub_stripe infrastructure"), where the scrub implementation was
completely reworked.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
		
	
			
		
			
				
	
	
		
			3158 lines
		
	
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3158 lines
		
	
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <crypto/hash.h>
 | |
| #include "ctree.h"
 | |
| #include "discard.h"
 | |
| #include "volumes.h"
 | |
| #include "disk-io.h"
 | |
| #include "ordered-data.h"
 | |
| #include "transaction.h"
 | |
| #include "backref.h"
 | |
| #include "extent_io.h"
 | |
| #include "dev-replace.h"
 | |
| #include "raid56.h"
 | |
| #include "block-group.h"
 | |
| #include "zoned.h"
 | |
| #include "fs.h"
 | |
| #include "accessors.h"
 | |
| #include "file-item.h"
 | |
| #include "scrub.h"
 | |
| #include "raid-stripe-tree.h"
 | |
| 
 | |
| /*
 | |
|  * This is only the first step towards a full-features scrub. It reads all
 | |
|  * extent and super block and verifies the checksums. In case a bad checksum
 | |
|  * is found or the extent cannot be read, good data will be written back if
 | |
|  * any can be found.
 | |
|  *
 | |
|  * Future enhancements:
 | |
|  *  - In case an unrepairable extent is encountered, track which files are
 | |
|  *    affected and report them
 | |
|  *  - track and record media errors, throw out bad devices
 | |
|  *  - add a mode to also read unallocated space
 | |
|  */
 | |
| 
 | |
| struct scrub_ctx;
 | |
| 
 | |
| /*
 | |
|  * The following value only influences the performance.
 | |
|  *
 | |
|  * This determines how many stripes would be submitted in one go,
 | |
|  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
 | |
|  */
 | |
| #define SCRUB_STRIPES_PER_GROUP		8
 | |
| 
 | |
| /*
 | |
|  * How many groups we have for each sctx.
 | |
|  *
 | |
|  * This would be 8M per device, the same value as the old scrub in-flight bios
 | |
|  * size limit.
 | |
|  */
 | |
| #define SCRUB_GROUPS_PER_SCTX		16
 | |
| 
 | |
| #define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
 | |
| 
 | |
| /*
 | |
|  * The following value times PAGE_SIZE needs to be large enough to match the
 | |
|  * largest node/leaf/sector size that shall be supported.
 | |
|  */
 | |
| #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
 | |
| 
 | |
| /* Represent one sector and its needed info to verify the content. */
 | |
| struct scrub_sector_verification {
 | |
| 	bool is_metadata;
 | |
| 
 | |
| 	union {
 | |
| 		/*
 | |
| 		 * Csum pointer for data csum verification.  Should point to a
 | |
| 		 * sector csum inside scrub_stripe::csums.
 | |
| 		 *
 | |
| 		 * NULL if this data sector has no csum.
 | |
| 		 */
 | |
| 		u8 *csum;
 | |
| 
 | |
| 		/*
 | |
| 		 * Extra info for metadata verification.  All sectors inside a
 | |
| 		 * tree block share the same generation.
 | |
| 		 */
 | |
| 		u64 generation;
 | |
| 	};
 | |
| };
 | |
| 
 | |
| enum scrub_stripe_flags {
 | |
| 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
 | |
| 	SCRUB_STRIPE_FLAG_INITIALIZED,
 | |
| 
 | |
| 	/* Set when the read-repair is finished. */
 | |
| 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
 | |
| 
 | |
| 	/*
 | |
| 	 * Set for data stripes if it's triggered from P/Q stripe.
 | |
| 	 * During such scrub, we should not report errors in data stripes, nor
 | |
| 	 * update the accounting.
 | |
| 	 */
 | |
| 	SCRUB_STRIPE_FLAG_NO_REPORT,
 | |
| };
 | |
| 
 | |
| #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
 | |
| 
 | |
| /*
 | |
|  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 | |
|  */
 | |
| struct scrub_stripe {
 | |
| 	struct scrub_ctx *sctx;
 | |
| 	struct btrfs_block_group *bg;
 | |
| 
 | |
| 	struct page *pages[SCRUB_STRIPE_PAGES];
 | |
| 	struct scrub_sector_verification *sectors;
 | |
| 
 | |
| 	struct btrfs_device *dev;
 | |
| 	u64 logical;
 | |
| 	u64 physical;
 | |
| 
 | |
| 	u16 mirror_num;
 | |
| 
 | |
| 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
 | |
| 	u16 nr_sectors;
 | |
| 
 | |
| 	/*
 | |
| 	 * How many data/meta extents are in this stripe.  Only for scrub status
 | |
| 	 * reporting purposes.
 | |
| 	 */
 | |
| 	u16 nr_data_extents;
 | |
| 	u16 nr_meta_extents;
 | |
| 
 | |
| 	atomic_t pending_io;
 | |
| 	wait_queue_head_t io_wait;
 | |
| 	wait_queue_head_t repair_wait;
 | |
| 
 | |
| 	/*
 | |
| 	 * Indicate the states of the stripe.  Bits are defined in
 | |
| 	 * scrub_stripe_flags enum.
 | |
| 	 */
 | |
| 	unsigned long state;
 | |
| 
 | |
| 	/* Indicate which sectors are covered by extent items. */
 | |
| 	unsigned long extent_sector_bitmap;
 | |
| 
 | |
| 	/*
 | |
| 	 * The errors hit during the initial read of the stripe.
 | |
| 	 *
 | |
| 	 * Would be utilized for error reporting and repair.
 | |
| 	 *
 | |
| 	 * The remaining init_nr_* records the number of errors hit, only used
 | |
| 	 * by error reporting.
 | |
| 	 */
 | |
| 	unsigned long init_error_bitmap;
 | |
| 	unsigned int init_nr_io_errors;
 | |
| 	unsigned int init_nr_csum_errors;
 | |
| 	unsigned int init_nr_meta_errors;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following error bitmaps are all for the current status.
 | |
| 	 * Every time we submit a new read, these bitmaps may be updated.
 | |
| 	 *
 | |
| 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
 | |
| 	 *
 | |
| 	 * IO and csum errors can happen for both metadata and data.
 | |
| 	 */
 | |
| 	unsigned long error_bitmap;
 | |
| 	unsigned long io_error_bitmap;
 | |
| 	unsigned long csum_error_bitmap;
 | |
| 	unsigned long meta_error_bitmap;
 | |
| 
 | |
| 	/* For writeback (repair or replace) error reporting. */
 | |
| 	unsigned long write_error_bitmap;
 | |
| 
 | |
| 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
 | |
| 	spinlock_t write_error_lock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Checksum for the whole stripe if this stripe is inside a data block
 | |
| 	 * group.
 | |
| 	 */
 | |
| 	u8 *csums;
 | |
| 
 | |
| 	struct work_struct work;
 | |
| };
 | |
| 
 | |
| struct scrub_ctx {
 | |
| 	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
 | |
| 	struct scrub_stripe	*raid56_data_stripes;
 | |
| 	struct btrfs_fs_info	*fs_info;
 | |
| 	struct btrfs_path	extent_path;
 | |
| 	struct btrfs_path	csum_path;
 | |
| 	int			first_free;
 | |
| 	int			cur_stripe;
 | |
| 	atomic_t		cancel_req;
 | |
| 	int			readonly;
 | |
| 
 | |
| 	/* State of IO submission throttling affecting the associated device */
 | |
| 	ktime_t			throttle_deadline;
 | |
| 	u64			throttle_sent;
 | |
| 
 | |
| 	int			is_dev_replace;
 | |
| 	u64			write_pointer;
 | |
| 
 | |
| 	struct mutex            wr_lock;
 | |
| 	struct btrfs_device     *wr_tgtdev;
 | |
| 
 | |
| 	/*
 | |
| 	 * statistics
 | |
| 	 */
 | |
| 	struct btrfs_scrub_progress stat;
 | |
| 	spinlock_t		stat_lock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 | |
| 	 * decrement bios_in_flight and workers_pending and then do a wakeup
 | |
| 	 * on the list_wait wait queue. We must ensure the main scrub task
 | |
| 	 * doesn't free the scrub context before or while the workers are
 | |
| 	 * doing the wakeup() call.
 | |
| 	 */
 | |
| 	refcount_t              refs;
 | |
| };
 | |
| 
 | |
| struct scrub_warning {
 | |
| 	struct btrfs_path	*path;
 | |
| 	u64			extent_item_size;
 | |
| 	const char		*errstr;
 | |
| 	u64			physical;
 | |
| 	u64			logical;
 | |
| 	struct btrfs_device	*dev;
 | |
| };
 | |
| 
 | |
| static void release_scrub_stripe(struct scrub_stripe *stripe)
 | |
| {
 | |
| 	if (!stripe)
 | |
| 		return;
 | |
| 
 | |
| 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
 | |
| 		if (stripe->pages[i])
 | |
| 			__free_page(stripe->pages[i]);
 | |
| 		stripe->pages[i] = NULL;
 | |
| 	}
 | |
| 	kfree(stripe->sectors);
 | |
| 	kfree(stripe->csums);
 | |
| 	stripe->sectors = NULL;
 | |
| 	stripe->csums = NULL;
 | |
| 	stripe->sctx = NULL;
 | |
| 	stripe->state = 0;
 | |
| }
 | |
| 
 | |
| static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
 | |
| 			     struct scrub_stripe *stripe)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(stripe, 0, sizeof(*stripe));
 | |
| 
 | |
| 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 | |
| 	stripe->state = 0;
 | |
| 
 | |
| 	init_waitqueue_head(&stripe->io_wait);
 | |
| 	init_waitqueue_head(&stripe->repair_wait);
 | |
| 	atomic_set(&stripe->pending_io, 0);
 | |
| 	spin_lock_init(&stripe->write_error_lock);
 | |
| 
 | |
| 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	stripe->sectors = kcalloc(stripe->nr_sectors,
 | |
| 				  sizeof(struct scrub_sector_verification),
 | |
| 				  GFP_KERNEL);
 | |
| 	if (!stripe->sectors)
 | |
| 		goto error;
 | |
| 
 | |
| 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
 | |
| 				fs_info->csum_size, GFP_KERNEL);
 | |
| 	if (!stripe->csums)
 | |
| 		goto error;
 | |
| 	return 0;
 | |
| error:
 | |
| 	release_scrub_stripe(stripe);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
 | |
| {
 | |
| 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
 | |
| }
 | |
| 
 | |
| static void scrub_put_ctx(struct scrub_ctx *sctx);
 | |
| 
 | |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	while (atomic_read(&fs_info->scrub_pause_req)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 		   atomic_read(&fs_info->scrub_pause_req) == 0);
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	atomic_inc(&fs_info->scrubs_paused);
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| }
 | |
| 
 | |
| static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	__scrub_blocked_if_needed(fs_info);
 | |
| 	atomic_dec(&fs_info->scrubs_paused);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| }
 | |
| 
 | |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	scrub_pause_on(fs_info);
 | |
| 	scrub_pause_off(fs_info);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!sctx)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
 | |
| 		release_scrub_stripe(&sctx->stripes[i]);
 | |
| 
 | |
| 	kvfree(sctx);
 | |
| }
 | |
| 
 | |
| static void scrub_put_ctx(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&sctx->refs))
 | |
| 		scrub_free_ctx(sctx);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 | |
| 		struct btrfs_fs_info *fs_info, int is_dev_replace)
 | |
| {
 | |
| 	struct scrub_ctx *sctx;
 | |
| 	int		i;
 | |
| 
 | |
| 	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
 | |
| 	 * kvzalloc().
 | |
| 	 */
 | |
| 	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
 | |
| 	if (!sctx)
 | |
| 		goto nomem;
 | |
| 	refcount_set(&sctx->refs, 1);
 | |
| 	sctx->is_dev_replace = is_dev_replace;
 | |
| 	sctx->fs_info = fs_info;
 | |
| 	sctx->extent_path.search_commit_root = 1;
 | |
| 	sctx->extent_path.skip_locking = 1;
 | |
| 	sctx->csum_path.search_commit_root = 1;
 | |
| 	sctx->csum_path.skip_locking = 1;
 | |
| 	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
 | |
| 		if (ret < 0)
 | |
| 			goto nomem;
 | |
| 		sctx->stripes[i].sctx = sctx;
 | |
| 	}
 | |
| 	sctx->first_free = 0;
 | |
| 	atomic_set(&sctx->cancel_req, 0);
 | |
| 
 | |
| 	spin_lock_init(&sctx->stat_lock);
 | |
| 	sctx->throttle_deadline = 0;
 | |
| 
 | |
| 	mutex_init(&sctx->wr_lock);
 | |
| 	if (is_dev_replace) {
 | |
| 		WARN_ON(!fs_info->dev_replace.tgtdev);
 | |
| 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 | |
| 	}
 | |
| 
 | |
| 	return sctx;
 | |
| 
 | |
| nomem:
 | |
| 	scrub_free_ctx(sctx);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 | |
| 				     u64 root, void *warn_ctx)
 | |
| {
 | |
| 	u32 nlink;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	unsigned nofs_flag;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	struct scrub_warning *swarn = warn_ctx;
 | |
| 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 | |
| 	struct inode_fs_paths *ipath = NULL;
 | |
| 	struct btrfs_root *local_root;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	local_root = btrfs_get_fs_root(fs_info, root, true);
 | |
| 	if (IS_ERR(local_root)) {
 | |
| 		ret = PTR_ERR(local_root);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * this makes the path point to (inum INODE_ITEM ioff)
 | |
| 	 */
 | |
| 	key.objectid = inum;
 | |
| 	key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 | |
| 	if (ret) {
 | |
| 		btrfs_put_root(local_root);
 | |
| 		btrfs_release_path(swarn->path);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	eb = swarn->path->nodes[0];
 | |
| 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 | |
| 					struct btrfs_inode_item);
 | |
| 	nlink = btrfs_inode_nlink(eb, inode_item);
 | |
| 	btrfs_release_path(swarn->path);
 | |
| 
 | |
| 	/*
 | |
| 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 | |
| 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 | |
| 	 * not seem to be strictly necessary.
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	ipath = init_ipath(4096, local_root, swarn->path);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 	if (IS_ERR(ipath)) {
 | |
| 		btrfs_put_root(local_root);
 | |
| 		ret = PTR_ERR(ipath);
 | |
| 		ipath = NULL;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	ret = paths_from_inode(inum, ipath);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * we deliberately ignore the bit ipath might have been too small to
 | |
| 	 * hold all of the paths here
 | |
| 	 */
 | |
| 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 | |
| 		btrfs_warn_in_rcu(fs_info,
 | |
| "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 | |
| 				  swarn->errstr, swarn->logical,
 | |
| 				  btrfs_dev_name(swarn->dev),
 | |
| 				  swarn->physical,
 | |
| 				  root, inum, offset,
 | |
| 				  fs_info->sectorsize, nlink,
 | |
| 				  (char *)(unsigned long)ipath->fspath->val[i]);
 | |
| 
 | |
| 	btrfs_put_root(local_root);
 | |
| 	free_ipath(ipath);
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	btrfs_warn_in_rcu(fs_info,
 | |
| 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 | |
| 			  swarn->errstr, swarn->logical,
 | |
| 			  btrfs_dev_name(swarn->dev),
 | |
| 			  swarn->physical,
 | |
| 			  root, inum, offset, ret);
 | |
| 
 | |
| 	free_ipath(ipath);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
 | |
| 				       bool is_super, u64 logical, u64 physical)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = dev->fs_info;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct scrub_warning swarn;
 | |
| 	u64 flags = 0;
 | |
| 	u32 item_size;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Super block error, no need to search extent tree. */
 | |
| 	if (is_super) {
 | |
| 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 | |
| 				  errstr, btrfs_dev_name(dev), physical);
 | |
| 		return;
 | |
| 	}
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return;
 | |
| 
 | |
| 	swarn.physical = physical;
 | |
| 	swarn.logical = logical;
 | |
| 	swarn.errstr = errstr;
 | |
| 	swarn.dev = NULL;
 | |
| 
 | |
| 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 | |
| 				  &flags);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	swarn.extent_item_size = found_key.offset;
 | |
| 
 | |
| 	eb = path->nodes[0];
 | |
| 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 | |
| 	item_size = btrfs_item_size(eb, path->slots[0]);
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 		unsigned long ptr = 0;
 | |
| 		u8 ref_level;
 | |
| 		u64 ref_root;
 | |
| 
 | |
| 		while (true) {
 | |
| 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 | |
| 						      item_size, &ref_root,
 | |
| 						      &ref_level);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_warn(fs_info,
 | |
| 				"failed to resolve tree backref for logical %llu: %d",
 | |
| 						  swarn.logical, ret);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (ret > 0)
 | |
| 				break;
 | |
| 			btrfs_warn_in_rcu(fs_info,
 | |
| "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 | |
| 				errstr, swarn.logical, btrfs_dev_name(dev),
 | |
| 				swarn.physical, (ref_level ? "node" : "leaf"),
 | |
| 				ref_level, ref_root);
 | |
| 		}
 | |
| 		btrfs_release_path(path);
 | |
| 	} else {
 | |
| 		struct btrfs_backref_walk_ctx ctx = { 0 };
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		ctx.bytenr = found_key.objectid;
 | |
| 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 | |
| 		ctx.fs_info = fs_info;
 | |
| 
 | |
| 		swarn.path = path;
 | |
| 		swarn.dev = dev;
 | |
| 
 | |
| 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| }
 | |
| 
 | |
| static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u64 length;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(sctx->fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sctx->write_pointer < physical) {
 | |
| 		length = physical - sctx->write_pointer;
 | |
| 
 | |
| 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
 | |
| 						sctx->write_pointer, length);
 | |
| 		if (!ret)
 | |
| 			sctx->write_pointer = physical;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
 | |
| 
 | |
| 	return stripe->pages[page_index];
 | |
| }
 | |
| 
 | |
| static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
 | |
| 						 int sector_nr)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 
 | |
| 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
 | |
| }
 | |
| 
 | |
| static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 | |
| 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
 | |
| 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
 | |
| 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
 | |
| 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 | |
| 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 | |
| 	u8 calculated_csum[BTRFS_CSUM_SIZE];
 | |
| 	struct btrfs_header *header;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we don't have a good way to attach the pages (and subpages)
 | |
| 	 * to a dummy extent buffer, thus we have to directly grab the members
 | |
| 	 * from pages.
 | |
| 	 */
 | |
| 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
 | |
| 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
 | |
| 
 | |
| 	if (logical != btrfs_stack_header_bytenr(header)) {
 | |
| 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		btrfs_warn_rl(fs_info,
 | |
| 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
 | |
| 			      logical, stripe->mirror_num,
 | |
| 			      btrfs_stack_header_bytenr(header), logical);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
 | |
| 		   BTRFS_FSID_SIZE) != 0) {
 | |
| 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		btrfs_warn_rl(fs_info,
 | |
| 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
 | |
| 			      logical, stripe->mirror_num,
 | |
| 			      header->fsid, fs_info->fs_devices->fsid);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 | |
| 		   BTRFS_UUID_SIZE) != 0) {
 | |
| 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		btrfs_warn_rl(fs_info,
 | |
| 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
 | |
| 			      logical, stripe->mirror_num,
 | |
| 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Now check tree block csum. */
 | |
| 	shash->tfm = fs_info->csum_shash;
 | |
| 	crypto_shash_init(shash);
 | |
| 	crypto_shash_update(shash, page_address(first_page) + first_off +
 | |
| 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
 | |
| 
 | |
| 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
 | |
| 		struct page *page = scrub_stripe_get_page(stripe, i);
 | |
| 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
 | |
| 
 | |
| 		crypto_shash_update(shash, page_address(page) + page_off,
 | |
| 				    fs_info->sectorsize);
 | |
| 	}
 | |
| 
 | |
| 	crypto_shash_final(shash, calculated_csum);
 | |
| 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
 | |
| 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		btrfs_warn_rl(fs_info,
 | |
| 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
 | |
| 			      logical, stripe->mirror_num,
 | |
| 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
 | |
| 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
 | |
| 		return;
 | |
| 	}
 | |
| 	if (stripe->sectors[sector_nr].generation !=
 | |
| 	    btrfs_stack_header_generation(header)) {
 | |
| 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 | |
| 		btrfs_warn_rl(fs_info,
 | |
| 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
 | |
| 			      logical, stripe->mirror_num,
 | |
| 			      btrfs_stack_header_generation(header),
 | |
| 			      stripe->sectors[sector_nr].generation);
 | |
| 		return;
 | |
| 	}
 | |
| 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 | |
| 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 | |
| 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 | |
| }
 | |
| 
 | |
| static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
 | |
| 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 | |
| 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
 | |
| 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
 | |
| 	u8 csum_buf[BTRFS_CSUM_SIZE];
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
 | |
| 
 | |
| 	/* Sector not utilized, skip it. */
 | |
| 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
 | |
| 		return;
 | |
| 
 | |
| 	/* IO error, no need to check. */
 | |
| 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
 | |
| 		return;
 | |
| 
 | |
| 	/* Metadata, verify the full tree block. */
 | |
| 	if (sector->is_metadata) {
 | |
| 		/*
 | |
| 		 * Check if the tree block crosses the stripe boundary.  If
 | |
| 		 * crossed the boundary, we cannot verify it but only give a
 | |
| 		 * warning.
 | |
| 		 *
 | |
| 		 * This can only happen on a very old filesystem where chunks
 | |
| 		 * are not ensured to be stripe aligned.
 | |
| 		 */
 | |
| 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
 | |
| 			btrfs_warn_rl(fs_info,
 | |
| 			"tree block at %llu crosses stripe boundary %llu",
 | |
| 				      stripe->logical +
 | |
| 				      (sector_nr << fs_info->sectorsize_bits),
 | |
| 				      stripe->logical);
 | |
| 			return;
 | |
| 		}
 | |
| 		scrub_verify_one_metadata(stripe, sector_nr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Data is easier, we just verify the data csum (if we have it).  For
 | |
| 	 * cases without csum, we have no other choice but to trust it.
 | |
| 	 */
 | |
| 	if (!sector->csum) {
 | |
| 		clear_bit(sector_nr, &stripe->error_bitmap);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
 | |
| 	if (ret < 0) {
 | |
| 		set_bit(sector_nr, &stripe->csum_error_bitmap);
 | |
| 		set_bit(sector_nr, &stripe->error_bitmap);
 | |
| 	} else {
 | |
| 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
 | |
| 		clear_bit(sector_nr, &stripe->error_bitmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Verify specified sectors of a stripe. */
 | |
| static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 | |
| 	int sector_nr;
 | |
| 
 | |
| 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
 | |
| 		scrub_verify_one_sector(stripe, sector_nr);
 | |
| 		if (stripe->sectors[sector_nr].is_metadata)
 | |
| 			sector_nr += sectors_per_tree - 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < stripe->nr_sectors; i++) {
 | |
| 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
 | |
| 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
 | |
| 			break;
 | |
| 	}
 | |
| 	ASSERT(i < stripe->nr_sectors);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Repair read is different to the regular read:
 | |
|  *
 | |
|  * - Only reads the failed sectors
 | |
|  * - May have extra blocksize limits
 | |
|  */
 | |
| static void scrub_repair_read_endio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct scrub_stripe *stripe = bbio->private;
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 	struct bio_vec *bvec;
 | |
| 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 | |
| 	u32 bio_size = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(sector_nr < stripe->nr_sectors);
 | |
| 
 | |
| 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 | |
| 		bio_size += bvec->bv_len;
 | |
| 
 | |
| 	if (bbio->bio.bi_status) {
 | |
| 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
 | |
| 			   bio_size >> fs_info->sectorsize_bits);
 | |
| 		bitmap_set(&stripe->error_bitmap, sector_nr,
 | |
| 			   bio_size >> fs_info->sectorsize_bits);
 | |
| 	} else {
 | |
| 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
 | |
| 			     bio_size >> fs_info->sectorsize_bits);
 | |
| 	}
 | |
| 	bio_put(&bbio->bio);
 | |
| 	if (atomic_dec_and_test(&stripe->pending_io))
 | |
| 		wake_up(&stripe->io_wait);
 | |
| }
 | |
| 
 | |
| static int calc_next_mirror(int mirror, int num_copies)
 | |
| {
 | |
| 	ASSERT(mirror <= num_copies);
 | |
| 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
 | |
| }
 | |
| 
 | |
| static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
 | |
| 					    int mirror, int blocksize, bool wait)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	const unsigned long old_error_bitmap = stripe->error_bitmap;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(stripe->mirror_num >= 1);
 | |
| 	ASSERT(atomic_read(&stripe->pending_io) == 0);
 | |
| 
 | |
| 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
 | |
| 		struct page *page;
 | |
| 		int pgoff;
 | |
| 		int ret;
 | |
| 
 | |
| 		page = scrub_stripe_get_page(stripe, i);
 | |
| 		pgoff = scrub_stripe_get_page_offset(stripe, i);
 | |
| 
 | |
| 		/* The current sector cannot be merged, submit the bio. */
 | |
| 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
 | |
| 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
 | |
| 			ASSERT(bbio->bio.bi_iter.bi_size);
 | |
| 			atomic_inc(&stripe->pending_io);
 | |
| 			btrfs_submit_bbio(bbio, mirror);
 | |
| 			if (wait)
 | |
| 				wait_scrub_stripe_io(stripe);
 | |
| 			bbio = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (!bbio) {
 | |
| 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
 | |
| 				fs_info, scrub_repair_read_endio, stripe);
 | |
| 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
 | |
| 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
 | |
| 		}
 | |
| 
 | |
| 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 | |
| 		ASSERT(ret == fs_info->sectorsize);
 | |
| 	}
 | |
| 	if (bbio) {
 | |
| 		ASSERT(bbio->bio.bi_iter.bi_size);
 | |
| 		atomic_inc(&stripe->pending_io);
 | |
| 		btrfs_submit_bbio(bbio, mirror);
 | |
| 		if (wait)
 | |
| 			wait_scrub_stripe_io(stripe);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
 | |
| 				       struct scrub_stripe *stripe)
 | |
| {
 | |
| 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 | |
| 				      DEFAULT_RATELIMIT_BURST);
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_device *dev = NULL;
 | |
| 	u64 physical = 0;
 | |
| 	int nr_data_sectors = 0;
 | |
| 	int nr_meta_sectors = 0;
 | |
| 	int nr_nodatacsum_sectors = 0;
 | |
| 	int nr_repaired_sectors = 0;
 | |
| 	int sector_nr;
 | |
| 
 | |
| 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Init needed infos for error reporting.
 | |
| 	 *
 | |
| 	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
 | |
| 	 * thus no need for dev/physical, error reporting still needs dev and physical.
 | |
| 	 */
 | |
| 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
 | |
| 		u64 mapped_len = fs_info->sectorsize;
 | |
| 		struct btrfs_io_context *bioc = NULL;
 | |
| 		int stripe_index = stripe->mirror_num - 1;
 | |
| 		int ret;
 | |
| 
 | |
| 		/* For scrub, our mirror_num should always start at 1. */
 | |
| 		ASSERT(stripe->mirror_num >= 1);
 | |
| 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 | |
| 				      stripe->logical, &mapped_len, &bioc,
 | |
| 				      NULL, NULL);
 | |
| 		/*
 | |
| 		 * If we failed, dev will be NULL, and later detailed reports
 | |
| 		 * will just be skipped.
 | |
| 		 */
 | |
| 		if (ret < 0)
 | |
| 			goto skip;
 | |
| 		physical = bioc->stripes[stripe_index].physical;
 | |
| 		dev = bioc->stripes[stripe_index].dev;
 | |
| 		btrfs_put_bioc(bioc);
 | |
| 	}
 | |
| 
 | |
| skip:
 | |
| 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
 | |
| 		bool repaired = false;
 | |
| 
 | |
| 		if (stripe->sectors[sector_nr].is_metadata) {
 | |
| 			nr_meta_sectors++;
 | |
| 		} else {
 | |
| 			nr_data_sectors++;
 | |
| 			if (!stripe->sectors[sector_nr].csum)
 | |
| 				nr_nodatacsum_sectors++;
 | |
| 		}
 | |
| 
 | |
| 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
 | |
| 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
 | |
| 			nr_repaired_sectors++;
 | |
| 			repaired = true;
 | |
| 		}
 | |
| 
 | |
| 		/* Good sector from the beginning, nothing need to be done. */
 | |
| 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Report error for the corrupted sectors.  If repaired, just
 | |
| 		 * output the message of repaired message.
 | |
| 		 */
 | |
| 		if (repaired) {
 | |
| 			if (dev) {
 | |
| 				btrfs_err_rl_in_rcu(fs_info,
 | |
| 			"fixed up error at logical %llu on dev %s physical %llu",
 | |
| 					    stripe->logical, btrfs_dev_name(dev),
 | |
| 					    physical);
 | |
| 			} else {
 | |
| 				btrfs_err_rl_in_rcu(fs_info,
 | |
| 			"fixed up error at logical %llu on mirror %u",
 | |
| 					    stripe->logical, stripe->mirror_num);
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* The remaining are all for unrepaired. */
 | |
| 		if (dev) {
 | |
| 			btrfs_err_rl_in_rcu(fs_info,
 | |
| 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
 | |
| 					    stripe->logical, btrfs_dev_name(dev),
 | |
| 					    physical);
 | |
| 		} else {
 | |
| 			btrfs_err_rl_in_rcu(fs_info,
 | |
| 	"unable to fixup (regular) error at logical %llu on mirror %u",
 | |
| 					    stripe->logical, stripe->mirror_num);
 | |
| 		}
 | |
| 
 | |
| 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
 | |
| 			if (__ratelimit(&rs) && dev)
 | |
| 				scrub_print_common_warning("i/o error", dev, false,
 | |
| 						     stripe->logical, physical);
 | |
| 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
 | |
| 			if (__ratelimit(&rs) && dev)
 | |
| 				scrub_print_common_warning("checksum error", dev, false,
 | |
| 						     stripe->logical, physical);
 | |
| 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
 | |
| 			if (__ratelimit(&rs) && dev)
 | |
| 				scrub_print_common_warning("header error", dev, false,
 | |
| 						     stripe->logical, physical);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&sctx->stat_lock);
 | |
| 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
 | |
| 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
 | |
| 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
 | |
| 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
 | |
| 	sctx->stat.no_csum += nr_nodatacsum_sectors;
 | |
| 	sctx->stat.read_errors += stripe->init_nr_io_errors;
 | |
| 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
 | |
| 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
 | |
| 	sctx->stat.uncorrectable_errors +=
 | |
| 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
 | |
| 	sctx->stat.corrected_errors += nr_repaired_sectors;
 | |
| 	spin_unlock(&sctx->stat_lock);
 | |
| }
 | |
| 
 | |
| static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
 | |
| 				unsigned long write_bitmap, bool dev_replace);
 | |
| 
 | |
| /*
 | |
|  * The main entrance for all read related scrub work, including:
 | |
|  *
 | |
|  * - Wait for the initial read to finish
 | |
|  * - Verify and locate any bad sectors
 | |
|  * - Go through the remaining mirrors and try to read as large blocksize as
 | |
|  *   possible
 | |
|  * - Go through all mirrors (including the failed mirror) sector-by-sector
 | |
|  * - Submit writeback for repaired sectors
 | |
|  *
 | |
|  * Writeback for dev-replace does not happen here, it needs extra
 | |
|  * synchronization for zoned devices.
 | |
|  */
 | |
| static void scrub_stripe_read_repair_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
 | |
| 	struct scrub_ctx *sctx = stripe->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
 | |
| 					  stripe->bg->length);
 | |
| 	unsigned long repaired;
 | |
| 	int mirror;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(stripe->mirror_num > 0);
 | |
| 
 | |
| 	wait_scrub_stripe_io(stripe);
 | |
| 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
 | |
| 	/* Save the initial failed bitmap for later repair and report usage. */
 | |
| 	stripe->init_error_bitmap = stripe->error_bitmap;
 | |
| 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
 | |
| 						  stripe->nr_sectors);
 | |
| 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
 | |
| 						    stripe->nr_sectors);
 | |
| 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
 | |
| 						    stripe->nr_sectors);
 | |
| 
 | |
| 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try all remaining mirrors.
 | |
| 	 *
 | |
| 	 * Here we still try to read as large block as possible, as this is
 | |
| 	 * faster and we have extra safety nets to rely on.
 | |
| 	 */
 | |
| 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
 | |
| 	     mirror != stripe->mirror_num;
 | |
| 	     mirror = calc_next_mirror(mirror, num_copies)) {
 | |
| 		const unsigned long old_error_bitmap = stripe->error_bitmap;
 | |
| 
 | |
| 		scrub_stripe_submit_repair_read(stripe, mirror,
 | |
| 						BTRFS_STRIPE_LEN, false);
 | |
| 		wait_scrub_stripe_io(stripe);
 | |
| 		scrub_verify_one_stripe(stripe, old_error_bitmap);
 | |
| 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Last safety net, try re-checking all mirrors, including the failed
 | |
| 	 * one, sector-by-sector.
 | |
| 	 *
 | |
| 	 * As if one sector failed the drive's internal csum, the whole read
 | |
| 	 * containing the offending sector would be marked as error.
 | |
| 	 * Thus here we do sector-by-sector read.
 | |
| 	 *
 | |
| 	 * This can be slow, thus we only try it as the last resort.
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0, mirror = stripe->mirror_num;
 | |
| 	     i < num_copies;
 | |
| 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
 | |
| 		const unsigned long old_error_bitmap = stripe->error_bitmap;
 | |
| 
 | |
| 		scrub_stripe_submit_repair_read(stripe, mirror,
 | |
| 						fs_info->sectorsize, true);
 | |
| 		wait_scrub_stripe_io(stripe);
 | |
| 		scrub_verify_one_stripe(stripe, old_error_bitmap);
 | |
| 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
 | |
| 			goto out;
 | |
| 	}
 | |
| out:
 | |
| 	/*
 | |
| 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
 | |
| 	 * in-place, but queue the bg to be relocated.
 | |
| 	 */
 | |
| 	bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
 | |
| 		      stripe->nr_sectors);
 | |
| 	if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
 | |
| 		if (btrfs_is_zoned(fs_info)) {
 | |
| 			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
 | |
| 		} else {
 | |
| 			scrub_write_sectors(sctx, stripe, repaired, false);
 | |
| 			wait_scrub_stripe_io(stripe);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	scrub_stripe_report_errors(sctx, stripe);
 | |
| 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
 | |
| 	wake_up(&stripe->repair_wait);
 | |
| }
 | |
| 
 | |
| static void scrub_read_endio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct scrub_stripe *stripe = bbio->private;
 | |
| 	struct bio_vec *bvec;
 | |
| 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 | |
| 	int num_sectors;
 | |
| 	u32 bio_size = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(sector_nr < stripe->nr_sectors);
 | |
| 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 | |
| 		bio_size += bvec->bv_len;
 | |
| 	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
 | |
| 
 | |
| 	if (bbio->bio.bi_status) {
 | |
| 		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
 | |
| 		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
 | |
| 	} else {
 | |
| 		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
 | |
| 	}
 | |
| 	bio_put(&bbio->bio);
 | |
| 	if (atomic_dec_and_test(&stripe->pending_io)) {
 | |
| 		wake_up(&stripe->io_wait);
 | |
| 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
 | |
| 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_write_endio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	struct scrub_stripe *stripe = bbio->private;
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 	struct bio_vec *bvec;
 | |
| 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 | |
| 	u32 bio_size = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 | |
| 		bio_size += bvec->bv_len;
 | |
| 
 | |
| 	if (bbio->bio.bi_status) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&stripe->write_error_lock, flags);
 | |
| 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
 | |
| 			   bio_size >> fs_info->sectorsize_bits);
 | |
| 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
 | |
| 	}
 | |
| 	bio_put(&bbio->bio);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&stripe->pending_io))
 | |
| 		wake_up(&stripe->io_wait);
 | |
| }
 | |
| 
 | |
| static void scrub_submit_write_bio(struct scrub_ctx *sctx,
 | |
| 				   struct scrub_stripe *stripe,
 | |
| 				   struct btrfs_bio *bbio, bool dev_replace)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	u32 bio_len = bbio->bio.bi_iter.bi_size;
 | |
| 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
 | |
| 		      stripe->logical;
 | |
| 
 | |
| 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
 | |
| 	atomic_inc(&stripe->pending_io);
 | |
| 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * For zoned writeback, queue depth must be 1, thus we must wait for
 | |
| 	 * the write to finish before the next write.
 | |
| 	 */
 | |
| 	wait_scrub_stripe_io(stripe);
 | |
| 
 | |
| 	/*
 | |
| 	 * And also need to update the write pointer if write finished
 | |
| 	 * successfully.
 | |
| 	 */
 | |
| 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
 | |
| 		      &stripe->write_error_bitmap))
 | |
| 		sctx->write_pointer += bio_len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit the write bio(s) for the sectors specified by @write_bitmap.
 | |
|  *
 | |
|  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
 | |
|  *
 | |
|  * - Only needs logical bytenr and mirror_num
 | |
|  *   Just like the scrub read path
 | |
|  *
 | |
|  * - Would only result in writes to the specified mirror
 | |
|  *   Unlike the regular writeback path, which would write back to all stripes
 | |
|  *
 | |
|  * - Handle dev-replace and read-repair writeback differently
 | |
|  */
 | |
| static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
 | |
| 				unsigned long write_bitmap, bool dev_replace)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	int sector_nr;
 | |
| 
 | |
| 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
 | |
| 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
 | |
| 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
 | |
| 		int ret;
 | |
| 
 | |
| 		/* We should only writeback sectors covered by an extent. */
 | |
| 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
 | |
| 
 | |
| 		/* Cannot merge with previous sector, submit the current one. */
 | |
| 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
 | |
| 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
 | |
| 			bbio = NULL;
 | |
| 		}
 | |
| 		if (!bbio) {
 | |
| 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
 | |
| 					       fs_info, scrub_write_endio, stripe);
 | |
| 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
 | |
| 				(sector_nr << fs_info->sectorsize_bits)) >>
 | |
| 				SECTOR_SHIFT;
 | |
| 		}
 | |
| 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 | |
| 		ASSERT(ret == fs_info->sectorsize);
 | |
| 	}
 | |
| 	if (bbio)
 | |
| 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 | |
|  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 | |
|  */
 | |
| static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
 | |
| 				  unsigned int bio_size)
 | |
| {
 | |
| 	const int time_slice = 1000;
 | |
| 	s64 delta;
 | |
| 	ktime_t now;
 | |
| 	u32 div;
 | |
| 	u64 bwlimit;
 | |
| 
 | |
| 	bwlimit = READ_ONCE(device->scrub_speed_max);
 | |
| 	if (bwlimit == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Slice is divided into intervals when the IO is submitted, adjust by
 | |
| 	 * bwlimit and maximum of 64 intervals.
 | |
| 	 */
 | |
| 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
 | |
| 	div = min_t(u32, 64, div);
 | |
| 
 | |
| 	/* Start new epoch, set deadline */
 | |
| 	now = ktime_get();
 | |
| 	if (sctx->throttle_deadline == 0) {
 | |
| 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
 | |
| 		sctx->throttle_sent = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Still in the time to send? */
 | |
| 	if (ktime_before(now, sctx->throttle_deadline)) {
 | |
| 		/* If current bio is within the limit, send it */
 | |
| 		sctx->throttle_sent += bio_size;
 | |
| 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
 | |
| 			return;
 | |
| 
 | |
| 		/* We're over the limit, sleep until the rest of the slice */
 | |
| 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
 | |
| 	} else {
 | |
| 		/* New request after deadline, start new epoch */
 | |
| 		delta = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (delta) {
 | |
| 		long timeout;
 | |
| 
 | |
| 		timeout = div_u64(delta * HZ, 1000);
 | |
| 		schedule_timeout_interruptible(timeout);
 | |
| 	}
 | |
| 
 | |
| 	/* Next call will start the deadline period */
 | |
| 	sctx->throttle_deadline = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a physical address, this will calculate it's
 | |
|  * logical offset. if this is a parity stripe, it will return
 | |
|  * the most left data stripe's logical offset.
 | |
|  *
 | |
|  * return 0 if it is a data stripe, 1 means parity stripe.
 | |
|  */
 | |
| static int get_raid56_logic_offset(u64 physical, int num,
 | |
| 				   struct btrfs_chunk_map *map, u64 *offset,
 | |
| 				   u64 *stripe_start)
 | |
| {
 | |
| 	int i;
 | |
| 	int j = 0;
 | |
| 	u64 last_offset;
 | |
| 	const int data_stripes = nr_data_stripes(map);
 | |
| 
 | |
| 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
 | |
| 	if (stripe_start)
 | |
| 		*stripe_start = last_offset;
 | |
| 
 | |
| 	*offset = last_offset;
 | |
| 	for (i = 0; i < data_stripes; i++) {
 | |
| 		u32 stripe_nr;
 | |
| 		u32 stripe_index;
 | |
| 		u32 rot;
 | |
| 
 | |
| 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
 | |
| 
 | |
| 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
 | |
| 
 | |
| 		/* Work out the disk rotation on this stripe-set */
 | |
| 		rot = stripe_nr % map->num_stripes;
 | |
| 		/* calculate which stripe this data locates */
 | |
| 		rot += i;
 | |
| 		stripe_index = rot % map->num_stripes;
 | |
| 		if (stripe_index == num)
 | |
| 			return 0;
 | |
| 		if (stripe_index < num)
 | |
| 			j++;
 | |
| 	}
 | |
| 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 0 if the extent item range covers any byte of the range.
 | |
|  * Return <0 if the extent item is before @search_start.
 | |
|  * Return >0 if the extent item is after @start_start + @search_len.
 | |
|  */
 | |
| static int compare_extent_item_range(struct btrfs_path *path,
 | |
| 				     u64 search_start, u64 search_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
 | |
| 	u64 len;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
 | |
| 	       key.type == BTRFS_METADATA_ITEM_KEY);
 | |
| 	if (key.type == BTRFS_METADATA_ITEM_KEY)
 | |
| 		len = fs_info->nodesize;
 | |
| 	else
 | |
| 		len = key.offset;
 | |
| 
 | |
| 	if (key.objectid + len <= search_start)
 | |
| 		return -1;
 | |
| 	if (key.objectid >= search_start + search_len)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate one extent item which covers any byte in range
 | |
|  * [@search_start, @search_start + @search_length)
 | |
|  *
 | |
|  * If the path is not initialized, we will initialize the search by doing
 | |
|  * a btrfs_search_slot().
 | |
|  * If the path is already initialized, we will use the path as the initial
 | |
|  * slot, to avoid duplicated btrfs_search_slot() calls.
 | |
|  *
 | |
|  * NOTE: If an extent item starts before @search_start, we will still
 | |
|  * return the extent item. This is for data extent crossing stripe boundary.
 | |
|  *
 | |
|  * Return 0 if we found such extent item, and @path will point to the extent item.
 | |
|  * Return >0 if no such extent item can be found, and @path will be released.
 | |
|  * Return <0 if hit fatal error, and @path will be released.
 | |
|  */
 | |
| static int find_first_extent_item(struct btrfs_root *extent_root,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  u64 search_start, u64 search_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Continue using the existing path */
 | |
| 	if (path->nodes[0])
 | |
| 		goto search_forward;
 | |
| 
 | |
| 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 | |
| 		key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 	else
 | |
| 		key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	key.objectid = search_start;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	if (ret == 0) {
 | |
| 		/*
 | |
| 		 * Key with offset -1 found, there would have to exist an extent
 | |
| 		 * item with such offset, but this is out of the valid range.
 | |
| 		 */
 | |
| 		btrfs_release_path(path);
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we intentionally pass 0 as @min_objectid, as there could be
 | |
| 	 * an extent item starting before @search_start.
 | |
| 	 */
 | |
| 	ret = btrfs_previous_extent_item(extent_root, path, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	/*
 | |
| 	 * No matter whether we have found an extent item, the next loop will
 | |
| 	 * properly do every check on the key.
 | |
| 	 */
 | |
| search_forward:
 | |
| 	while (true) {
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 		if (key.objectid >= search_start + search_len)
 | |
| 			break;
 | |
| 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
 | |
| 		    key.type != BTRFS_EXTENT_ITEM_KEY)
 | |
| 			goto next;
 | |
| 
 | |
| 		ret = compare_extent_item_range(path, search_start, search_len);
 | |
| 		if (ret == 0)
 | |
| 			return ret;
 | |
| 		if (ret > 0)
 | |
| 			break;
 | |
| next:
 | |
| 		ret = btrfs_next_item(extent_root, path);
 | |
| 		if (ret) {
 | |
| 			/* Either no more items or a fatal error. */
 | |
| 			btrfs_release_path(path);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
 | |
| 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
 | |
| 	       key.type == BTRFS_EXTENT_ITEM_KEY);
 | |
| 	*extent_start_ret = key.objectid;
 | |
| 	if (key.type == BTRFS_METADATA_ITEM_KEY)
 | |
| 		*size_ret = path->nodes[0]->fs_info->nodesize;
 | |
| 	else
 | |
| 		*size_ret = key.offset;
 | |
| 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
 | |
| 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
 | |
| 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
 | |
| }
 | |
| 
 | |
| static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
 | |
| 					u64 physical, u64 physical_end)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&sctx->wr_lock);
 | |
| 	if (sctx->write_pointer < physical_end) {
 | |
| 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
 | |
| 						    physical,
 | |
| 						    sctx->write_pointer);
 | |
| 		if (ret)
 | |
| 			btrfs_err(fs_info,
 | |
| 				  "zoned: failed to recover write pointer");
 | |
| 	}
 | |
| 	mutex_unlock(&sctx->wr_lock);
 | |
| 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
 | |
| 				 struct scrub_stripe *stripe,
 | |
| 				 u64 extent_start, u64 extent_len,
 | |
| 				 u64 extent_flags, u64 extent_gen)
 | |
| {
 | |
| 	for (u64 cur_logical = max(stripe->logical, extent_start);
 | |
| 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
 | |
| 			       extent_start + extent_len);
 | |
| 	     cur_logical += fs_info->sectorsize) {
 | |
| 		const int nr_sector = (cur_logical - stripe->logical) >>
 | |
| 				      fs_info->sectorsize_bits;
 | |
| 		struct scrub_sector_verification *sector =
 | |
| 						&stripe->sectors[nr_sector];
 | |
| 
 | |
| 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
 | |
| 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 			sector->is_metadata = true;
 | |
| 			sector->generation = extent_gen;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
 | |
| {
 | |
| 	stripe->extent_sector_bitmap = 0;
 | |
| 	stripe->init_error_bitmap = 0;
 | |
| 	stripe->init_nr_io_errors = 0;
 | |
| 	stripe->init_nr_csum_errors = 0;
 | |
| 	stripe->init_nr_meta_errors = 0;
 | |
| 	stripe->error_bitmap = 0;
 | |
| 	stripe->io_error_bitmap = 0;
 | |
| 	stripe->csum_error_bitmap = 0;
 | |
| 	stripe->meta_error_bitmap = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate one stripe which has at least one extent in its range.
 | |
|  *
 | |
|  * Return 0 if found such stripe, and store its info into @stripe.
 | |
|  * Return >0 if there is no such stripe in the specified range.
 | |
|  * Return <0 for error.
 | |
|  */
 | |
| static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
 | |
| 					struct btrfs_path *extent_path,
 | |
| 					struct btrfs_path *csum_path,
 | |
| 					struct btrfs_device *dev, u64 physical,
 | |
| 					int mirror_num, u64 logical_start,
 | |
| 					u32 logical_len,
 | |
| 					struct scrub_stripe *stripe)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bg->fs_info;
 | |
| 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
 | |
| 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
 | |
| 	const u64 logical_end = logical_start + logical_len;
 | |
| 	u64 cur_logical = logical_start;
 | |
| 	u64 stripe_end;
 | |
| 	u64 extent_start;
 | |
| 	u64 extent_len;
 | |
| 	u64 extent_flags;
 | |
| 	u64 extent_gen;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
 | |
| 				   stripe->nr_sectors);
 | |
| 	scrub_stripe_reset_bitmaps(stripe);
 | |
| 
 | |
| 	/* The range must be inside the bg. */
 | |
| 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
 | |
| 
 | |
| 	ret = find_first_extent_item(extent_root, extent_path, logical_start,
 | |
| 				     logical_len);
 | |
| 	/* Either error or not found. */
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
 | |
| 			&extent_gen);
 | |
| 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
 | |
| 		stripe->nr_meta_extents++;
 | |
| 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
 | |
| 		stripe->nr_data_extents++;
 | |
| 	cur_logical = max(extent_start, cur_logical);
 | |
| 
 | |
| 	/*
 | |
| 	 * Round down to stripe boundary.
 | |
| 	 *
 | |
| 	 * The extra calculation against bg->start is to handle block groups
 | |
| 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
 | |
| 	 */
 | |
| 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
 | |
| 			  bg->start;
 | |
| 	stripe->physical = physical + stripe->logical - logical_start;
 | |
| 	stripe->dev = dev;
 | |
| 	stripe->bg = bg;
 | |
| 	stripe->mirror_num = mirror_num;
 | |
| 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
 | |
| 
 | |
| 	/* Fill the first extent info into stripe->sectors[] array. */
 | |
| 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
 | |
| 			     extent_flags, extent_gen);
 | |
| 	cur_logical = extent_start + extent_len;
 | |
| 
 | |
| 	/* Fill the extent info for the remaining sectors. */
 | |
| 	while (cur_logical <= stripe_end) {
 | |
| 		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
 | |
| 					     stripe_end - cur_logical + 1);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		if (ret > 0) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		get_extent_info(extent_path, &extent_start, &extent_len,
 | |
| 				&extent_flags, &extent_gen);
 | |
| 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
 | |
| 			stripe->nr_meta_extents++;
 | |
| 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
 | |
| 			stripe->nr_data_extents++;
 | |
| 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
 | |
| 				     extent_flags, extent_gen);
 | |
| 		cur_logical = extent_start + extent_len;
 | |
| 	}
 | |
| 
 | |
| 	/* Now fill the data csum. */
 | |
| 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
 | |
| 		int sector_nr;
 | |
| 		unsigned long csum_bitmap = 0;
 | |
| 
 | |
| 		/* Csum space should have already been allocated. */
 | |
| 		ASSERT(stripe->csums);
 | |
| 
 | |
| 		/*
 | |
| 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
 | |
| 		 * should contain at most 16 sectors.
 | |
| 		 */
 | |
| 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
 | |
| 
 | |
| 		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
 | |
| 						stripe->logical, stripe_end,
 | |
| 						stripe->csums, &csum_bitmap);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		if (ret > 0)
 | |
| 			ret = 0;
 | |
| 
 | |
| 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
 | |
| 			stripe->sectors[sector_nr].csum = stripe->csums +
 | |
| 				sector_nr * fs_info->csum_size;
 | |
| 		}
 | |
| 	}
 | |
| 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void scrub_reset_stripe(struct scrub_stripe *stripe)
 | |
| {
 | |
| 	scrub_stripe_reset_bitmaps(stripe);
 | |
| 
 | |
| 	stripe->nr_meta_extents = 0;
 | |
| 	stripe->nr_data_extents = 0;
 | |
| 	stripe->state = 0;
 | |
| 
 | |
| 	for (int i = 0; i < stripe->nr_sectors; i++) {
 | |
| 		stripe->sectors[i].is_metadata = false;
 | |
| 		stripe->sectors[i].csum = NULL;
 | |
| 		stripe->sectors[i].generation = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 stripe_length(const struct scrub_stripe *stripe)
 | |
| {
 | |
| 	ASSERT(stripe->bg);
 | |
| 
 | |
| 	return min(BTRFS_STRIPE_LEN,
 | |
| 		   stripe->bg->start + stripe->bg->length - stripe->logical);
 | |
| }
 | |
| 
 | |
| static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
 | |
| 	u64 stripe_len = BTRFS_STRIPE_LEN;
 | |
| 	int mirror = stripe->mirror_num;
 | |
| 	int i;
 | |
| 
 | |
| 	atomic_inc(&stripe->pending_io);
 | |
| 
 | |
| 	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
 | |
| 		struct page *page = scrub_stripe_get_page(stripe, i);
 | |
| 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
 | |
| 
 | |
| 		/* We're beyond the chunk boundary, no need to read anymore. */
 | |
| 		if (i >= nr_sectors)
 | |
| 			break;
 | |
| 
 | |
| 		/* The current sector cannot be merged, submit the bio. */
 | |
| 		if (bbio &&
 | |
| 		    ((i > 0 &&
 | |
| 		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
 | |
| 		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
 | |
| 			ASSERT(bbio->bio.bi_iter.bi_size);
 | |
| 			atomic_inc(&stripe->pending_io);
 | |
| 			btrfs_submit_bbio(bbio, mirror);
 | |
| 			bbio = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (!bbio) {
 | |
| 			struct btrfs_io_stripe io_stripe = {};
 | |
| 			struct btrfs_io_context *bioc = NULL;
 | |
| 			const u64 logical = stripe->logical +
 | |
| 					    (i << fs_info->sectorsize_bits);
 | |
| 			int err;
 | |
| 
 | |
| 			io_stripe.rst_search_commit_root = true;
 | |
| 			stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
 | |
| 			/*
 | |
| 			 * For RST cases, we need to manually split the bbio to
 | |
| 			 * follow the RST boundary.
 | |
| 			 */
 | |
| 			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
 | |
| 					      &stripe_len, &bioc, &io_stripe, &mirror);
 | |
| 			btrfs_put_bioc(bioc);
 | |
| 			if (err < 0) {
 | |
| 				if (err != -ENODATA) {
 | |
| 					/*
 | |
| 					 * Earlier btrfs_get_raid_extent_offset()
 | |
| 					 * returned -ENODATA, which means there's
 | |
| 					 * no entry for the corresponding range
 | |
| 					 * in the stripe tree.  But if it's in
 | |
| 					 * the extent tree, then it's a preallocated
 | |
| 					 * extent and not an error.
 | |
| 					 */
 | |
| 					set_bit(i, &stripe->io_error_bitmap);
 | |
| 					set_bit(i, &stripe->error_bitmap);
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
 | |
| 					       fs_info, scrub_read_endio, stripe);
 | |
| 			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
 | |
| 		}
 | |
| 
 | |
| 		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 | |
| 	}
 | |
| 
 | |
| 	if (bbio) {
 | |
| 		ASSERT(bbio->bio.bi_iter.bi_size);
 | |
| 		atomic_inc(&stripe->pending_io);
 | |
| 		btrfs_submit_bbio(bbio, mirror);
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_dec_and_test(&stripe->pending_io)) {
 | |
| 		wake_up(&stripe->io_wait);
 | |
| 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
 | |
| 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_submit_initial_read(struct scrub_ctx *sctx,
 | |
| 				      struct scrub_stripe *stripe)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_bio *bbio;
 | |
| 	unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
 | |
| 	int mirror = stripe->mirror_num;
 | |
| 
 | |
| 	ASSERT(stripe->bg);
 | |
| 	ASSERT(stripe->mirror_num > 0);
 | |
| 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
 | |
| 
 | |
| 	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
 | |
| 		scrub_submit_extent_sector_read(stripe);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
 | |
| 			       scrub_read_endio, stripe);
 | |
| 
 | |
| 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
 | |
| 	/* Read the whole range inside the chunk boundary. */
 | |
| 	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
 | |
| 		struct page *page = scrub_stripe_get_page(stripe, cur);
 | |
| 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 | |
| 		/* We should have allocated enough bio vectors. */
 | |
| 		ASSERT(ret == fs_info->sectorsize);
 | |
| 	}
 | |
| 	atomic_inc(&stripe->pending_io);
 | |
| 
 | |
| 	/*
 | |
| 	 * For dev-replace, either user asks to avoid the source dev, or
 | |
| 	 * the device is missing, we try the next mirror instead.
 | |
| 	 */
 | |
| 	if (sctx->is_dev_replace &&
 | |
| 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
 | |
| 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
 | |
| 	     !stripe->dev->bdev)) {
 | |
| 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
 | |
| 						  stripe->bg->length);
 | |
| 
 | |
| 		mirror = calc_next_mirror(mirror, num_copies);
 | |
| 	}
 | |
| 	btrfs_submit_bbio(bbio, mirror);
 | |
| }
 | |
| 
 | |
| static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
 | |
| 		if (stripe->sectors[i].is_metadata) {
 | |
| 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 | |
| 
 | |
| 			btrfs_err(fs_info,
 | |
| 			"stripe %llu has unrepaired metadata sector at %llu",
 | |
| 				  stripe->logical,
 | |
| 				  stripe->logical + (i << fs_info->sectorsize_bits));
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void submit_initial_group_read(struct scrub_ctx *sctx,
 | |
| 				      unsigned int first_slot,
 | |
| 				      unsigned int nr_stripes)
 | |
| {
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
 | |
| 	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
 | |
| 
 | |
| 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
 | |
| 			      btrfs_stripe_nr_to_offset(nr_stripes));
 | |
| 	blk_start_plug(&plug);
 | |
| 	for (int i = 0; i < nr_stripes; i++) {
 | |
| 		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
 | |
| 
 | |
| 		/* Those stripes should be initialized. */
 | |
| 		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
 | |
| 		scrub_submit_initial_read(sctx, stripe);
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| }
 | |
| 
 | |
| static int flush_scrub_stripes(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct scrub_stripe *stripe;
 | |
| 	const int nr_stripes = sctx->cur_stripe;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!nr_stripes)
 | |
| 		return 0;
 | |
| 
 | |
| 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
 | |
| 
 | |
| 	/* Submit the stripes which are populated but not submitted. */
 | |
| 	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
 | |
| 		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
 | |
| 
 | |
| 		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < nr_stripes; i++) {
 | |
| 		stripe = &sctx->stripes[i];
 | |
| 
 | |
| 		wait_event(stripe->repair_wait,
 | |
| 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 | |
| 	}
 | |
| 
 | |
| 	/* Submit for dev-replace. */
 | |
| 	if (sctx->is_dev_replace) {
 | |
| 		/*
 | |
| 		 * For dev-replace, if we know there is something wrong with
 | |
| 		 * metadata, we should immediately abort.
 | |
| 		 */
 | |
| 		for (int i = 0; i < nr_stripes; i++) {
 | |
| 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
 | |
| 				ret = -EIO;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		for (int i = 0; i < nr_stripes; i++) {
 | |
| 			unsigned long good;
 | |
| 
 | |
| 			stripe = &sctx->stripes[i];
 | |
| 
 | |
| 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
 | |
| 
 | |
| 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
 | |
| 				      &stripe->error_bitmap, stripe->nr_sectors);
 | |
| 			scrub_write_sectors(sctx, stripe, good, true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for the above writebacks to finish. */
 | |
| 	for (int i = 0; i < nr_stripes; i++) {
 | |
| 		stripe = &sctx->stripes[i];
 | |
| 
 | |
| 		wait_scrub_stripe_io(stripe);
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		scrub_reset_stripe(stripe);
 | |
| 	}
 | |
| out:
 | |
| 	sctx->cur_stripe = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void raid56_scrub_wait_endio(struct bio *bio)
 | |
| {
 | |
| 	complete(bio->bi_private);
 | |
| }
 | |
| 
 | |
| static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
 | |
| 			      struct btrfs_device *dev, int mirror_num,
 | |
| 			      u64 logical, u32 length, u64 physical,
 | |
| 			      u64 *found_logical_ret)
 | |
| {
 | |
| 	struct scrub_stripe *stripe;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * There should always be one slot left, as caller filling the last
 | |
| 	 * slot should flush them all.
 | |
| 	 */
 | |
| 	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
 | |
| 
 | |
| 	/* @found_logical_ret must be specified. */
 | |
| 	ASSERT(found_logical_ret);
 | |
| 
 | |
| 	stripe = &sctx->stripes[sctx->cur_stripe];
 | |
| 	scrub_reset_stripe(stripe);
 | |
| 	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
 | |
| 					   &sctx->csum_path, dev, physical,
 | |
| 					   mirror_num, logical, length, stripe);
 | |
| 	/* Either >0 as no more extents or <0 for error. */
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	*found_logical_ret = stripe->logical;
 | |
| 	sctx->cur_stripe++;
 | |
| 
 | |
| 	/* We filled one group, submit it. */
 | |
| 	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
 | |
| 		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
 | |
| 
 | |
| 		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
 | |
| 	}
 | |
| 
 | |
| 	/* Last slot used, flush them all. */
 | |
| 	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
 | |
| 		return flush_scrub_stripes(sctx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
 | |
| 				      struct btrfs_device *scrub_dev,
 | |
| 				      struct btrfs_block_group *bg,
 | |
| 				      struct btrfs_chunk_map *map,
 | |
| 				      u64 full_stripe_start)
 | |
| {
 | |
| 	DECLARE_COMPLETION_ONSTACK(io_done);
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	struct btrfs_io_context *bioc = NULL;
 | |
| 	struct btrfs_path extent_path = { 0 };
 | |
| 	struct btrfs_path csum_path = { 0 };
 | |
| 	struct bio *bio;
 | |
| 	struct scrub_stripe *stripe;
 | |
| 	bool all_empty = true;
 | |
| 	const int data_stripes = nr_data_stripes(map);
 | |
| 	unsigned long extent_bitmap = 0;
 | |
| 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(sctx->raid56_data_stripes);
 | |
| 
 | |
| 	/*
 | |
| 	 * For data stripe search, we cannot reuse the same extent/csum paths,
 | |
| 	 * as the data stripe bytenr may be smaller than previous extent.  Thus
 | |
| 	 * we have to use our own extent/csum paths.
 | |
| 	 */
 | |
| 	extent_path.search_commit_root = 1;
 | |
| 	extent_path.skip_locking = 1;
 | |
| 	csum_path.search_commit_root = 1;
 | |
| 	csum_path.skip_locking = 1;
 | |
| 
 | |
| 	for (int i = 0; i < data_stripes; i++) {
 | |
| 		int stripe_index;
 | |
| 		int rot;
 | |
| 		u64 physical;
 | |
| 
 | |
| 		stripe = &sctx->raid56_data_stripes[i];
 | |
| 		rot = div_u64(full_stripe_start - bg->start,
 | |
| 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
 | |
| 		stripe_index = (i + rot) % map->num_stripes;
 | |
| 		physical = map->stripes[stripe_index].physical +
 | |
| 			   btrfs_stripe_nr_to_offset(rot);
 | |
| 
 | |
| 		scrub_reset_stripe(stripe);
 | |
| 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
 | |
| 		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
 | |
| 				map->stripes[stripe_index].dev, physical, 1,
 | |
| 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
 | |
| 				BTRFS_STRIPE_LEN, stripe);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		/*
 | |
| 		 * No extent in this data stripe, need to manually mark them
 | |
| 		 * initialized to make later read submission happy.
 | |
| 		 */
 | |
| 		if (ret > 0) {
 | |
| 			stripe->logical = full_stripe_start +
 | |
| 					  btrfs_stripe_nr_to_offset(i);
 | |
| 			stripe->dev = map->stripes[stripe_index].dev;
 | |
| 			stripe->mirror_num = 1;
 | |
| 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check if all data stripes are empty. */
 | |
| 	for (int i = 0; i < data_stripes; i++) {
 | |
| 		stripe = &sctx->raid56_data_stripes[i];
 | |
| 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
 | |
| 			all_empty = false;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (all_empty) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < data_stripes; i++) {
 | |
| 		stripe = &sctx->raid56_data_stripes[i];
 | |
| 		scrub_submit_initial_read(sctx, stripe);
 | |
| 	}
 | |
| 	for (int i = 0; i < data_stripes; i++) {
 | |
| 		stripe = &sctx->raid56_data_stripes[i];
 | |
| 
 | |
| 		wait_event(stripe->repair_wait,
 | |
| 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 | |
| 	}
 | |
| 	/* For now, no zoned support for RAID56. */
 | |
| 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
 | |
| 
 | |
| 	/*
 | |
| 	 * Now all data stripes are properly verified. Check if we have any
 | |
| 	 * unrepaired, if so abort immediately or we could further corrupt the
 | |
| 	 * P/Q stripes.
 | |
| 	 *
 | |
| 	 * During the loop, also populate extent_bitmap.
 | |
| 	 */
 | |
| 	for (int i = 0; i < data_stripes; i++) {
 | |
| 		unsigned long error;
 | |
| 
 | |
| 		stripe = &sctx->raid56_data_stripes[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * We should only check the errors where there is an extent.
 | |
| 		 * As we may hit an empty data stripe while it's missing.
 | |
| 		 */
 | |
| 		bitmap_and(&error, &stripe->error_bitmap,
 | |
| 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
 | |
| 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
 | |
| 			btrfs_err(fs_info,
 | |
| "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
 | |
| 				  full_stripe_start, i, stripe->nr_sectors,
 | |
| 				  &error);
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		bitmap_or(&extent_bitmap, &extent_bitmap,
 | |
| 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
 | |
| 	}
 | |
| 
 | |
| 	/* Now we can check and regenerate the P/Q stripe. */
 | |
| 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
 | |
| 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
 | |
| 	bio->bi_private = &io_done;
 | |
| 	bio->bi_end_io = raid56_scrub_wait_endio;
 | |
| 
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
 | |
| 			      &length, &bioc, NULL, NULL);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_put_bioc(bioc);
 | |
| 		btrfs_bio_counter_dec(fs_info);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
 | |
| 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
 | |
| 	btrfs_put_bioc(bioc);
 | |
| 	if (!rbio) {
 | |
| 		ret = -ENOMEM;
 | |
| 		btrfs_bio_counter_dec(fs_info);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* Use the recovered stripes as cache to avoid read them from disk again. */
 | |
| 	for (int i = 0; i < data_stripes; i++) {
 | |
| 		stripe = &sctx->raid56_data_stripes[i];
 | |
| 
 | |
| 		raid56_parity_cache_data_pages(rbio, stripe->pages,
 | |
| 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
 | |
| 	}
 | |
| 	raid56_parity_submit_scrub_rbio(rbio);
 | |
| 	wait_for_completion_io(&io_done);
 | |
| 	ret = blk_status_to_errno(bio->bi_status);
 | |
| 	bio_put(bio);
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 
 | |
| 	btrfs_release_path(&extent_path);
 | |
| 	btrfs_release_path(&csum_path);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scrub one range which can only has simple mirror based profile.
 | |
|  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 | |
|  *  RAID0/RAID10).
 | |
|  *
 | |
|  * Since we may need to handle a subset of block group, we need @logical_start
 | |
|  * and @logical_length parameter.
 | |
|  */
 | |
| static int scrub_simple_mirror(struct scrub_ctx *sctx,
 | |
| 			       struct btrfs_block_group *bg,
 | |
| 			       u64 logical_start, u64 logical_length,
 | |
| 			       struct btrfs_device *device,
 | |
| 			       u64 physical, int mirror_num)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	const u64 logical_end = logical_start + logical_length;
 | |
| 	u64 cur_logical = logical_start;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* The range must be inside the bg */
 | |
| 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
 | |
| 
 | |
| 	/* Go through each extent items inside the logical range */
 | |
| 	while (cur_logical < logical_end) {
 | |
| 		u64 found_logical = U64_MAX;
 | |
| 		u64 cur_physical = physical + cur_logical - logical_start;
 | |
| 
 | |
| 		/* Canceled? */
 | |
| 		if (atomic_read(&fs_info->scrub_cancel_req) ||
 | |
| 		    atomic_read(&sctx->cancel_req)) {
 | |
| 			ret = -ECANCELED;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Paused? */
 | |
| 		if (atomic_read(&fs_info->scrub_pause_req)) {
 | |
| 			/* Push queued extents */
 | |
| 			scrub_blocked_if_needed(fs_info);
 | |
| 		}
 | |
| 		/* Block group removed? */
 | |
| 		spin_lock(&bg->lock);
 | |
| 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
 | |
| 			spin_unlock(&bg->lock);
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_unlock(&bg->lock);
 | |
| 
 | |
| 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
 | |
| 					 cur_logical, logical_end - cur_logical,
 | |
| 					 cur_physical, &found_logical);
 | |
| 		if (ret > 0) {
 | |
| 			/* No more extent, just update the accounting */
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.last_physical = physical + logical_length;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
 | |
| 		ASSERT(found_logical != U64_MAX);
 | |
| 		cur_logical = found_logical + BTRFS_STRIPE_LEN;
 | |
| 
 | |
| 		/* Don't hold CPU for too long time */
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Calculate the full stripe length for simple stripe based profiles */
 | |
| static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
 | |
| {
 | |
| 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 			    BTRFS_BLOCK_GROUP_RAID10));
 | |
| 
 | |
| 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
 | |
| }
 | |
| 
 | |
| /* Get the logical bytenr for the stripe */
 | |
| static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
 | |
| 				     struct btrfs_block_group *bg,
 | |
| 				     int stripe_index)
 | |
| {
 | |
| 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 			    BTRFS_BLOCK_GROUP_RAID10));
 | |
| 	ASSERT(stripe_index < map->num_stripes);
 | |
| 
 | |
| 	/*
 | |
| 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
 | |
| 	 * skip.
 | |
| 	 */
 | |
| 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
 | |
| 	       bg->start;
 | |
| }
 | |
| 
 | |
| /* Get the mirror number for the stripe */
 | |
| static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
 | |
| {
 | |
| 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 			    BTRFS_BLOCK_GROUP_RAID10));
 | |
| 	ASSERT(stripe_index < map->num_stripes);
 | |
| 
 | |
| 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
 | |
| 	return stripe_index % map->sub_stripes + 1;
 | |
| }
 | |
| 
 | |
| static int scrub_simple_stripe(struct scrub_ctx *sctx,
 | |
| 			       struct btrfs_block_group *bg,
 | |
| 			       struct btrfs_chunk_map *map,
 | |
| 			       struct btrfs_device *device,
 | |
| 			       int stripe_index)
 | |
| {
 | |
| 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
 | |
| 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
 | |
| 	const u64 orig_physical = map->stripes[stripe_index].physical;
 | |
| 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
 | |
| 	u64 cur_logical = orig_logical;
 | |
| 	u64 cur_physical = orig_physical;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (cur_logical < bg->start + bg->length) {
 | |
| 		/*
 | |
| 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
 | |
| 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
 | |
| 		 * this stripe.
 | |
| 		 */
 | |
| 		ret = scrub_simple_mirror(sctx, bg, cur_logical,
 | |
| 					  BTRFS_STRIPE_LEN, device, cur_physical,
 | |
| 					  mirror_num);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		/* Skip to next stripe which belongs to the target device */
 | |
| 		cur_logical += logical_increment;
 | |
| 		/* For physical offset, we just go to next stripe */
 | |
| 		cur_physical += BTRFS_STRIPE_LEN;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
 | |
| 					   struct btrfs_block_group *bg,
 | |
| 					   struct btrfs_chunk_map *map,
 | |
| 					   struct btrfs_device *scrub_dev,
 | |
| 					   int stripe_index)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
 | |
| 	const u64 chunk_logical = bg->start;
 | |
| 	int ret;
 | |
| 	int ret2;
 | |
| 	u64 physical = map->stripes[stripe_index].physical;
 | |
| 	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
 | |
| 	const u64 physical_end = physical + dev_stripe_len;
 | |
| 	u64 logical;
 | |
| 	u64 logic_end;
 | |
| 	/* The logical increment after finishing one stripe */
 | |
| 	u64 increment;
 | |
| 	/* Offset inside the chunk */
 | |
| 	u64 offset;
 | |
| 	u64 stripe_logical;
 | |
| 
 | |
| 	/* Extent_path should be released by now. */
 | |
| 	ASSERT(sctx->extent_path.nodes[0] == NULL);
 | |
| 
 | |
| 	scrub_blocked_if_needed(fs_info);
 | |
| 
 | |
| 	if (sctx->is_dev_replace &&
 | |
| 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
 | |
| 		mutex_lock(&sctx->wr_lock);
 | |
| 		sctx->write_pointer = physical;
 | |
| 		mutex_unlock(&sctx->wr_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare the extra data stripes used by RAID56. */
 | |
| 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 		ASSERT(sctx->raid56_data_stripes == NULL);
 | |
| 
 | |
| 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
 | |
| 						    sizeof(struct scrub_stripe),
 | |
| 						    GFP_KERNEL);
 | |
| 		if (!sctx->raid56_data_stripes) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		for (int i = 0; i < nr_data_stripes(map); i++) {
 | |
| 			ret = init_scrub_stripe(fs_info,
 | |
| 						&sctx->raid56_data_stripes[i]);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			sctx->raid56_data_stripes[i].bg = bg;
 | |
| 			sctx->raid56_data_stripes[i].sctx = sctx;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * There used to be a big double loop to handle all profiles using the
 | |
| 	 * same routine, which grows larger and more gross over time.
 | |
| 	 *
 | |
| 	 * So here we handle each profile differently, so simpler profiles
 | |
| 	 * have simpler scrubbing function.
 | |
| 	 */
 | |
| 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
 | |
| 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
 | |
| 		/*
 | |
| 		 * Above check rules out all complex profile, the remaining
 | |
| 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
 | |
| 		 * mirrored duplication without stripe.
 | |
| 		 *
 | |
| 		 * Only @physical and @mirror_num needs to calculated using
 | |
| 		 * @stripe_index.
 | |
| 		 */
 | |
| 		ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length,
 | |
| 				scrub_dev, map->stripes[stripe_index].physical,
 | |
| 				stripe_index + 1);
 | |
| 		offset = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
 | |
| 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
 | |
| 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Only RAID56 goes through the old code */
 | |
| 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/* Calculate the logical end of the stripe */
 | |
| 	get_raid56_logic_offset(physical_end, stripe_index,
 | |
| 				map, &logic_end, NULL);
 | |
| 	logic_end += chunk_logical;
 | |
| 
 | |
| 	/* Initialize @offset in case we need to go to out: label */
 | |
| 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
 | |
| 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
 | |
| 	 * using their physical offset.
 | |
| 	 */
 | |
| 	while (physical < physical_end) {
 | |
| 		ret = get_raid56_logic_offset(physical, stripe_index, map,
 | |
| 					      &logical, &stripe_logical);
 | |
| 		logical += chunk_logical;
 | |
| 		if (ret) {
 | |
| 			/* it is parity strip */
 | |
| 			stripe_logical += chunk_logical;
 | |
| 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
 | |
| 							 map, stripe_logical);
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
 | |
| 						       physical_end);
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we're at a data stripe, scrub each extents in the range.
 | |
| 		 *
 | |
| 		 * At this stage, if we ignore the repair part, inside each data
 | |
| 		 * stripe it is no different than SINGLE profile.
 | |
| 		 * We can reuse scrub_simple_mirror() here, as the repair part
 | |
| 		 * is still based on @mirror_num.
 | |
| 		 */
 | |
| 		ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN,
 | |
| 					  scrub_dev, physical, 1);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| next:
 | |
| 		logical += increment;
 | |
| 		physical += BTRFS_STRIPE_LEN;
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.last_physical = physical;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 	}
 | |
| out:
 | |
| 	ret2 = flush_scrub_stripes(sctx);
 | |
| 	if (!ret)
 | |
| 		ret = ret2;
 | |
| 	btrfs_release_path(&sctx->extent_path);
 | |
| 	btrfs_release_path(&sctx->csum_path);
 | |
| 
 | |
| 	if (sctx->raid56_data_stripes) {
 | |
| 		for (int i = 0; i < nr_data_stripes(map); i++)
 | |
| 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
 | |
| 		kfree(sctx->raid56_data_stripes);
 | |
| 		sctx->raid56_data_stripes = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (sctx->is_dev_replace && ret >= 0) {
 | |
| 		int ret2;
 | |
| 
 | |
| 		ret2 = sync_write_pointer_for_zoned(sctx,
 | |
| 				chunk_logical + offset,
 | |
| 				map->stripes[stripe_index].physical,
 | |
| 				physical_end);
 | |
| 		if (ret2)
 | |
| 			ret = ret2;
 | |
| 	}
 | |
| 
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 | |
| 					  struct btrfs_block_group *bg,
 | |
| 					  struct btrfs_device *scrub_dev,
 | |
| 					  u64 dev_offset,
 | |
| 					  u64 dev_extent_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_chunk_map *map;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
 | |
| 	if (!map) {
 | |
| 		/*
 | |
| 		 * Might have been an unused block group deleted by the cleaner
 | |
| 		 * kthread or relocation.
 | |
| 		 */
 | |
| 		spin_lock(&bg->lock);
 | |
| 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
 | |
| 			ret = -EINVAL;
 | |
| 		spin_unlock(&bg->lock);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 	if (map->start != bg->start)
 | |
| 		goto out;
 | |
| 	if (map->chunk_len < dev_extent_len)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; ++i) {
 | |
| 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
 | |
| 		    map->stripes[i].physical == dev_offset) {
 | |
| 			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_chunk_map(map);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int finish_extent_writes_for_zoned(struct btrfs_root *root,
 | |
| 					  struct btrfs_block_group *cache)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = cache->fs_info;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	btrfs_wait_block_group_reservations(cache);
 | |
| 	btrfs_wait_nocow_writers(cache);
 | |
| 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
 | |
| 
 | |
| 	return btrfs_commit_current_transaction(root);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| int scrub_enumerate_chunks(struct scrub_ctx *sctx,
 | |
| 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 | |
| {
 | |
| 	struct btrfs_dev_extent *dev_extent = NULL;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	u64 chunk_offset;
 | |
| 	int ret = 0;
 | |
| 	int ro_set;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *l;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->skip_locking = 1;
 | |
| 
 | |
| 	key.objectid = scrub_dev->devid;
 | |
| 	key.offset = 0ull;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		u64 dev_extent_len;
 | |
| 
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret > 0) {
 | |
| 			if (path->slots[0] >=
 | |
| 			    btrfs_header_nritems(path->nodes[0])) {
 | |
| 				ret = btrfs_next_leaf(root, path);
 | |
| 				if (ret < 0)
 | |
| 					break;
 | |
| 				if (ret > 0) {
 | |
| 					ret = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 			} else {
 | |
| 				ret = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		l = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(l, &found_key, slot);
 | |
| 
 | |
| 		if (found_key.objectid != scrub_dev->devid)
 | |
| 			break;
 | |
| 
 | |
| 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		if (found_key.offset >= end)
 | |
| 			break;
 | |
| 
 | |
| 		if (found_key.offset < key.offset)
 | |
| 			break;
 | |
| 
 | |
| 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | |
| 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
 | |
| 
 | |
| 		if (found_key.offset + dev_extent_len <= start)
 | |
| 			goto skip;
 | |
| 
 | |
| 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
 | |
| 
 | |
| 		/*
 | |
| 		 * get a reference on the corresponding block group to prevent
 | |
| 		 * the chunk from going away while we scrub it
 | |
| 		 */
 | |
| 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
 | |
| 
 | |
| 		/* some chunks are removed but not committed to disk yet,
 | |
| 		 * continue scrubbing */
 | |
| 		if (!cache)
 | |
| 			goto skip;
 | |
| 
 | |
| 		ASSERT(cache->start <= chunk_offset);
 | |
| 		/*
 | |
| 		 * We are using the commit root to search for device extents, so
 | |
| 		 * that means we could have found a device extent item from a
 | |
| 		 * block group that was deleted in the current transaction. The
 | |
| 		 * logical start offset of the deleted block group, stored at
 | |
| 		 * @chunk_offset, might be part of the logical address range of
 | |
| 		 * a new block group (which uses different physical extents).
 | |
| 		 * In this case btrfs_lookup_block_group() has returned the new
 | |
| 		 * block group, and its start address is less than @chunk_offset.
 | |
| 		 *
 | |
| 		 * We skip such new block groups, because it's pointless to
 | |
| 		 * process them, as we won't find their extents because we search
 | |
| 		 * for them using the commit root of the extent tree. For a device
 | |
| 		 * replace it's also fine to skip it, we won't miss copying them
 | |
| 		 * to the target device because we have the write duplication
 | |
| 		 * setup through the regular write path (by btrfs_map_block()),
 | |
| 		 * and we have committed a transaction when we started the device
 | |
| 		 * replace, right after setting up the device replace state.
 | |
| 		 */
 | |
| 		if (cache->start < chunk_offset) {
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			goto skip;
 | |
| 		}
 | |
| 
 | |
| 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
 | |
| 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
 | |
| 				btrfs_put_block_group(cache);
 | |
| 				goto skip;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that while we are scrubbing the corresponding block
 | |
| 		 * group doesn't get its logical address and its device extents
 | |
| 		 * reused for another block group, which can possibly be of a
 | |
| 		 * different type and different profile. We do this to prevent
 | |
| 		 * false error detections and crashes due to bogus attempts to
 | |
| 		 * repair extents.
 | |
| 		 */
 | |
| 		spin_lock(&cache->lock);
 | |
| 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
 | |
| 			spin_unlock(&cache->lock);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			goto skip;
 | |
| 		}
 | |
| 		btrfs_freeze_block_group(cache);
 | |
| 		spin_unlock(&cache->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
 | |
| 		 * to avoid deadlock caused by:
 | |
| 		 * btrfs_inc_block_group_ro()
 | |
| 		 * -> btrfs_wait_for_commit()
 | |
| 		 * -> btrfs_commit_transaction()
 | |
| 		 * -> btrfs_scrub_pause()
 | |
| 		 */
 | |
| 		scrub_pause_on(fs_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't do chunk preallocation for scrub.
 | |
| 		 *
 | |
| 		 * This is especially important for SYSTEM bgs, or we can hit
 | |
| 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
 | |
| 		 * 1. The only SYSTEM bg is marked RO.
 | |
| 		 *    Since SYSTEM bg is small, that's pretty common.
 | |
| 		 * 2. New SYSTEM bg will be allocated
 | |
| 		 *    Due to regular version will allocate new chunk.
 | |
| 		 * 3. New SYSTEM bg is empty and will get cleaned up
 | |
| 		 *    Before cleanup really happens, it's marked RO again.
 | |
| 		 * 4. Empty SYSTEM bg get scrubbed
 | |
| 		 *    We go back to 2.
 | |
| 		 *
 | |
| 		 * This can easily boost the amount of SYSTEM chunks if cleaner
 | |
| 		 * thread can't be triggered fast enough, and use up all space
 | |
| 		 * of btrfs_super_block::sys_chunk_array
 | |
| 		 *
 | |
| 		 * While for dev replace, we need to try our best to mark block
 | |
| 		 * group RO, to prevent race between:
 | |
| 		 * - Write duplication
 | |
| 		 *   Contains latest data
 | |
| 		 * - Scrub copy
 | |
| 		 *   Contains data from commit tree
 | |
| 		 *
 | |
| 		 * If target block group is not marked RO, nocow writes can
 | |
| 		 * be overwritten by scrub copy, causing data corruption.
 | |
| 		 * So for dev-replace, it's not allowed to continue if a block
 | |
| 		 * group is not RO.
 | |
| 		 */
 | |
| 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
 | |
| 		if (!ret && sctx->is_dev_replace) {
 | |
| 			ret = finish_extent_writes_for_zoned(root, cache);
 | |
| 			if (ret) {
 | |
| 				btrfs_dec_block_group_ro(cache);
 | |
| 				scrub_pause_off(fs_info);
 | |
| 				btrfs_put_block_group(cache);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (ret == 0) {
 | |
| 			ro_set = 1;
 | |
| 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
 | |
| 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
 | |
| 			/*
 | |
| 			 * btrfs_inc_block_group_ro return -ENOSPC when it
 | |
| 			 * failed in creating new chunk for metadata.
 | |
| 			 * It is not a problem for scrub, because
 | |
| 			 * metadata are always cowed, and our scrub paused
 | |
| 			 * commit_transactions.
 | |
| 			 *
 | |
| 			 * For RAID56 chunks, we have to mark them read-only
 | |
| 			 * for scrub, as later we would use our own cache
 | |
| 			 * out of RAID56 realm.
 | |
| 			 * Thus we want the RAID56 bg to be marked RO to
 | |
| 			 * prevent RMW from screwing up out cache.
 | |
| 			 */
 | |
| 			ro_set = 0;
 | |
| 		} else if (ret == -ETXTBSY) {
 | |
| 			btrfs_warn(fs_info,
 | |
| 		   "skipping scrub of block group %llu due to active swapfile",
 | |
| 				   cache->start);
 | |
| 			scrub_pause_off(fs_info);
 | |
| 			ret = 0;
 | |
| 			goto skip_unfreeze;
 | |
| 		} else {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "failed setting block group ro: %d", ret);
 | |
| 			btrfs_unfreeze_block_group(cache);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			scrub_pause_off(fs_info);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now the target block is marked RO, wait for nocow writes to
 | |
| 		 * finish before dev-replace.
 | |
| 		 * COW is fine, as COW never overwrites extents in commit tree.
 | |
| 		 */
 | |
| 		if (sctx->is_dev_replace) {
 | |
| 			btrfs_wait_nocow_writers(cache);
 | |
| 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
 | |
| 		}
 | |
| 
 | |
| 		scrub_pause_off(fs_info);
 | |
| 		down_write(&dev_replace->rwsem);
 | |
| 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
 | |
| 		dev_replace->cursor_left = found_key.offset;
 | |
| 		dev_replace->item_needs_writeback = 1;
 | |
| 		up_write(&dev_replace->rwsem);
 | |
| 
 | |
| 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
 | |
| 				  dev_extent_len);
 | |
| 		if (sctx->is_dev_replace &&
 | |
| 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
 | |
| 						      cache, found_key.offset))
 | |
| 			ro_set = 0;
 | |
| 
 | |
| 		down_write(&dev_replace->rwsem);
 | |
| 		dev_replace->cursor_left = dev_replace->cursor_right;
 | |
| 		dev_replace->item_needs_writeback = 1;
 | |
| 		up_write(&dev_replace->rwsem);
 | |
| 
 | |
| 		if (ro_set)
 | |
| 			btrfs_dec_block_group_ro(cache);
 | |
| 
 | |
| 		/*
 | |
| 		 * We might have prevented the cleaner kthread from deleting
 | |
| 		 * this block group if it was already unused because we raced
 | |
| 		 * and set it to RO mode first. So add it back to the unused
 | |
| 		 * list, otherwise it might not ever be deleted unless a manual
 | |
| 		 * balance is triggered or it becomes used and unused again.
 | |
| 		 */
 | |
| 		spin_lock(&cache->lock);
 | |
| 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
 | |
| 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
 | |
| 			spin_unlock(&cache->lock);
 | |
| 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
 | |
| 				btrfs_discard_queue_work(&fs_info->discard_ctl,
 | |
| 							 cache);
 | |
| 			else
 | |
| 				btrfs_mark_bg_unused(cache);
 | |
| 		} else {
 | |
| 			spin_unlock(&cache->lock);
 | |
| 		}
 | |
| skip_unfreeze:
 | |
| 		btrfs_unfreeze_block_group(cache);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		if (sctx->is_dev_replace &&
 | |
| 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (sctx->stat.malloc_errors > 0) {
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| skip:
 | |
| 		key.offset = found_key.offset + dev_extent_len;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
 | |
| 			   struct page *page, u64 physical, u64 generation)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct bio_vec bvec;
 | |
| 	struct bio bio;
 | |
| 	struct btrfs_super_block *sb = page_address(page);
 | |
| 	int ret;
 | |
| 
 | |
| 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
 | |
| 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
 | |
| 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
 | |
| 	ret = submit_bio_wait(&bio);
 | |
| 	bio_uninit(&bio);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	ret = btrfs_check_super_csum(fs_info, sb);
 | |
| 	if (ret != 0) {
 | |
| 		btrfs_err_rl(fs_info,
 | |
| 			"super block at physical %llu devid %llu has bad csum",
 | |
| 			physical, dev->devid);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (btrfs_super_generation(sb) != generation) {
 | |
| 		btrfs_err_rl(fs_info,
 | |
| "super block at physical %llu devid %llu has bad generation %llu expect %llu",
 | |
| 			     physical, dev->devid,
 | |
| 			     btrfs_super_generation(sb), generation);
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	return btrfs_validate_super(fs_info, sb, -1);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
 | |
| 					   struct btrfs_device *scrub_dev)
 | |
| {
 | |
| 	int	i;
 | |
| 	u64	bytenr;
 | |
| 	u64	gen;
 | |
| 	int ret = 0;
 | |
| 	struct page *page;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 
 | |
| 	if (BTRFS_FS_ERROR(fs_info))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL);
 | |
| 	if (!page) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Seed devices of a new filesystem has their own generation. */
 | |
| 	if (scrub_dev->fs_devices != fs_info->fs_devices)
 | |
| 		gen = scrub_dev->generation;
 | |
| 	else
 | |
| 		gen = btrfs_get_last_trans_committed(fs_info);
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 | |
| 		ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
 | |
| 		if (ret == -ENOENT)
 | |
| 			break;
 | |
| 
 | |
| 		if (ret) {
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.super_errors++;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
 | |
| 		    scrub_dev->commit_total_bytes)
 | |
| 			break;
 | |
| 		if (!btrfs_check_super_location(scrub_dev, bytenr))
 | |
| 			continue;
 | |
| 
 | |
| 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
 | |
| 		if (ret) {
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.super_errors++;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	__free_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_workers_put(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
 | |
| 					&fs_info->scrub_lock)) {
 | |
| 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
 | |
| 
 | |
| 		fs_info->scrub_workers = NULL;
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 		if (scrub_workers)
 | |
| 			destroy_workqueue(scrub_workers);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get a reference count on fs_info->scrub_workers. start worker if necessary
 | |
|  */
 | |
| static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct workqueue_struct *scrub_workers = NULL;
 | |
| 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
 | |
| 	int max_active = fs_info->thread_pool_size;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
 | |
| 		return 0;
 | |
| 
 | |
| 	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
 | |
| 	if (!scrub_workers)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
 | |
| 		ASSERT(fs_info->scrub_workers == NULL);
 | |
| 		fs_info->scrub_workers = scrub_workers;
 | |
| 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Other thread raced in and created the workers for us */
 | |
| 	refcount_inc(&fs_info->scrub_workers_refcnt);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	destroy_workqueue(scrub_workers);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
 | |
| 		    u64 end, struct btrfs_scrub_progress *progress,
 | |
| 		    int readonly, int is_dev_replace)
 | |
| {
 | |
| 	struct btrfs_dev_lookup_args args = { .devid = devid };
 | |
| 	struct scrub_ctx *sctx;
 | |
| 	int ret;
 | |
| 	struct btrfs_device *dev;
 | |
| 	unsigned int nofs_flag;
 | |
| 	bool need_commit = false;
 | |
| 
 | |
| 	if (btrfs_fs_closing(fs_info))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
 | |
| 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
 | |
| 
 | |
| 	/*
 | |
| 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
 | |
| 	 * value (max nodesize / min sectorsize), thus nodesize should always
 | |
| 	 * be fine.
 | |
| 	 */
 | |
| 	ASSERT(fs_info->nodesize <=
 | |
| 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
 | |
| 
 | |
| 	/* Allocate outside of device_list_mutex */
 | |
| 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
 | |
| 	if (IS_ERR(sctx))
 | |
| 		return PTR_ERR(sctx);
 | |
| 
 | |
| 	ret = scrub_workers_get(fs_info);
 | |
| 	if (ret)
 | |
| 		goto out_free_ctx;
 | |
| 
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	dev = btrfs_find_device(fs_info->fs_devices, &args);
 | |
| 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
 | |
| 		     !is_dev_replace)) {
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = -ENODEV;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_dev_replace && !readonly &&
 | |
| 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		btrfs_err_in_rcu(fs_info,
 | |
| 			"scrub on devid %llu: filesystem on %s is not writable",
 | |
| 				 devid, btrfs_dev_name(dev));
 | |
| 		ret = -EROFS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
 | |
| 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	down_read(&fs_info->dev_replace.rwsem);
 | |
| 	if (dev->scrub_ctx ||
 | |
| 	    (!is_dev_replace &&
 | |
| 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
 | |
| 		up_read(&fs_info->dev_replace.rwsem);
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = -EINPROGRESS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	up_read(&fs_info->dev_replace.rwsem);
 | |
| 
 | |
| 	sctx->readonly = readonly;
 | |
| 	dev->scrub_ctx = sctx;
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * checking @scrub_pause_req here, we can avoid
 | |
| 	 * race between committing transaction and scrubbing.
 | |
| 	 */
 | |
| 	__scrub_blocked_if_needed(fs_info);
 | |
| 	atomic_inc(&fs_info->scrubs_running);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to avoid deadlock with reclaim when there is a transaction
 | |
| 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
 | |
| 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
 | |
| 	 * invoked by our callees. The pausing request is done when the
 | |
| 	 * transaction commit starts, and it blocks the transaction until scrub
 | |
| 	 * is paused (done at specific points at scrub_stripe() or right above
 | |
| 	 * before incrementing fs_info->scrubs_running).
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	if (!is_dev_replace) {
 | |
| 		u64 old_super_errors;
 | |
| 
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		old_super_errors = sctx->stat.super_errors;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 
 | |
| 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
 | |
| 		/*
 | |
| 		 * by holding device list mutex, we can
 | |
| 		 * kick off writing super in log tree sync.
 | |
| 		 */
 | |
| 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = scrub_supers(sctx, dev);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		/*
 | |
| 		 * Super block errors found, but we can not commit transaction
 | |
| 		 * at current context, since btrfs_commit_transaction() needs
 | |
| 		 * to pause the current running scrub (hold by ourselves).
 | |
| 		 */
 | |
| 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
 | |
| 			need_commit = true;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 
 | |
| 	atomic_dec(&fs_info->scrubs_running);
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| 
 | |
| 	if (progress)
 | |
| 		memcpy(progress, &sctx->stat, sizeof(*progress));
 | |
| 
 | |
| 	if (!is_dev_replace)
 | |
| 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
 | |
| 			ret ? "not finished" : "finished", devid, ret);
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	dev->scrub_ctx = NULL;
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	scrub_workers_put(fs_info);
 | |
| 	scrub_put_ctx(sctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * We found some super block errors before, now try to force a
 | |
| 	 * transaction commit, as scrub has finished.
 | |
| 	 */
 | |
| 	if (need_commit) {
 | |
| 		struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			ret = PTR_ERR(trans);
 | |
| 			btrfs_err(fs_info,
 | |
| 	"scrub: failed to start transaction to fix super block errors: %d", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		ret = btrfs_commit_transaction(trans);
 | |
| 		if (ret < 0)
 | |
| 			btrfs_err(fs_info,
 | |
| 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
 | |
| 	}
 | |
| 	return ret;
 | |
| out:
 | |
| 	scrub_workers_put(fs_info);
 | |
| out_free_ctx:
 | |
| 	scrub_free_ctx(sctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	atomic_inc(&fs_info->scrub_pause_req);
 | |
| 	while (atomic_read(&fs_info->scrubs_paused) !=
 | |
| 	       atomic_read(&fs_info->scrubs_running)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 			   atomic_read(&fs_info->scrubs_paused) ==
 | |
| 			   atomic_read(&fs_info->scrubs_running));
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| }
 | |
| 
 | |
| void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	atomic_dec(&fs_info->scrub_pause_req);
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	if (!atomic_read(&fs_info->scrubs_running)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		return -ENOTCONN;
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&fs_info->scrub_cancel_req);
 | |
| 	while (atomic_read(&fs_info->scrubs_running)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 			   atomic_read(&fs_info->scrubs_running) == 0);
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| 	atomic_dec(&fs_info->scrub_cancel_req);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = dev->fs_info;
 | |
| 	struct scrub_ctx *sctx;
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	sctx = dev->scrub_ctx;
 | |
| 	if (!sctx) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		return -ENOTCONN;
 | |
| 	}
 | |
| 	atomic_inc(&sctx->cancel_req);
 | |
| 	while (dev->scrub_ctx) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 			   dev->scrub_ctx == NULL);
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
 | |
| 			 struct btrfs_scrub_progress *progress)
 | |
| {
 | |
| 	struct btrfs_dev_lookup_args args = { .devid = devid };
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct scrub_ctx *sctx = NULL;
 | |
| 
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	dev = btrfs_find_device(fs_info->fs_devices, &args);
 | |
| 	if (dev)
 | |
| 		sctx = dev->scrub_ctx;
 | |
| 	if (sctx)
 | |
| 		memcpy(progress, &sctx->stat, sizeof(*progress));
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
 | |
| }
 |