forked from mirrors/linux
		
	 9b8e8091c8
			
		
	
	
		9b8e8091c8
		
			
		
	
	
	
	
		
			
			Matthew Wilcox (Oracle) <willy@infradead.org> says: A few minor fixes; nothing earth-shattering. Matthew Wilcox (Oracle) (3): netfs: Remove call to folio_index() netfs: Fix a few minor bugs in netfs_page_mkwrite() netfs: Remove unnecessary references to pages Link: https://lore.kernel.org/r/20241005182307.3190401-1-willy@infradead.org Signed-off-by: Christian Brauner <brauner@kernel.org>
		
			
				
	
	
		
			723 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			723 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /* Network filesystem high-level (buffered) writeback.
 | |
|  *
 | |
|  * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
 | |
|  * Written by David Howells (dhowells@redhat.com)
 | |
|  *
 | |
|  *
 | |
|  * To support network filesystems with local caching, we manage a situation
 | |
|  * that can be envisioned like the following:
 | |
|  *
 | |
|  *               +---+---+-----+-----+---+----------+
 | |
|  *    Folios:    |   |   |     |     |   |          |
 | |
|  *               +---+---+-----+-----+---+----------+
 | |
|  *
 | |
|  *                 +------+------+     +----+----+
 | |
|  *    Upload:      |      |      |.....|    |    |
 | |
|  *  (Stream 0)     +------+------+     +----+----+
 | |
|  *
 | |
|  *               +------+------+------+------+------+
 | |
|  *    Cache:     |      |      |      |      |      |
 | |
|  *  (Stream 1)   +------+------+------+------+------+
 | |
|  *
 | |
|  * Where we have a sequence of folios of varying sizes that we need to overlay
 | |
|  * with multiple parallel streams of I/O requests, where the I/O requests in a
 | |
|  * stream may also be of various sizes (in cifs, for example, the sizes are
 | |
|  * negotiated with the server; in something like ceph, they may represent the
 | |
|  * sizes of storage objects).
 | |
|  *
 | |
|  * The sequence in each stream may contain gaps and noncontiguous subrequests
 | |
|  * may be glued together into single vectored write RPCs.
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * Kill all dirty folios in the event of an unrecoverable error, starting with
 | |
|  * a locked folio we've already obtained from writeback_iter().
 | |
|  */
 | |
| static void netfs_kill_dirty_pages(struct address_space *mapping,
 | |
| 				   struct writeback_control *wbc,
 | |
| 				   struct folio *folio)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	do {
 | |
| 		enum netfs_folio_trace why = netfs_folio_trace_kill;
 | |
| 		struct netfs_group *group = NULL;
 | |
| 		struct netfs_folio *finfo = NULL;
 | |
| 		void *priv;
 | |
| 
 | |
| 		priv = folio_detach_private(folio);
 | |
| 		if (priv) {
 | |
| 			finfo = __netfs_folio_info(priv);
 | |
| 			if (finfo) {
 | |
| 				/* Kill folio from streaming write. */
 | |
| 				group = finfo->netfs_group;
 | |
| 				why = netfs_folio_trace_kill_s;
 | |
| 			} else {
 | |
| 				group = priv;
 | |
| 				if (group == NETFS_FOLIO_COPY_TO_CACHE) {
 | |
| 					/* Kill copy-to-cache folio */
 | |
| 					why = netfs_folio_trace_kill_cc;
 | |
| 					group = NULL;
 | |
| 				} else {
 | |
| 					/* Kill folio with group */
 | |
| 					why = netfs_folio_trace_kill_g;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		trace_netfs_folio(folio, why);
 | |
| 
 | |
| 		folio_start_writeback(folio);
 | |
| 		folio_unlock(folio);
 | |
| 		folio_end_writeback(folio);
 | |
| 
 | |
| 		netfs_put_group(group);
 | |
| 		kfree(finfo);
 | |
| 
 | |
| 	} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a write request and set it up appropriately for the origin type.
 | |
|  */
 | |
| struct netfs_io_request *netfs_create_write_req(struct address_space *mapping,
 | |
| 						struct file *file,
 | |
| 						loff_t start,
 | |
| 						enum netfs_io_origin origin)
 | |
| {
 | |
| 	struct netfs_io_request *wreq;
 | |
| 	struct netfs_inode *ictx;
 | |
| 	bool is_buffered = (origin == NETFS_WRITEBACK ||
 | |
| 			    origin == NETFS_WRITETHROUGH ||
 | |
| 			    origin == NETFS_PGPRIV2_COPY_TO_CACHE);
 | |
| 
 | |
| 	wreq = netfs_alloc_request(mapping, file, start, 0, origin);
 | |
| 	if (IS_ERR(wreq))
 | |
| 		return wreq;
 | |
| 
 | |
| 	_enter("R=%x", wreq->debug_id);
 | |
| 
 | |
| 	ictx = netfs_inode(wreq->inode);
 | |
| 	if (is_buffered && netfs_is_cache_enabled(ictx))
 | |
| 		fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx));
 | |
| 
 | |
| 	wreq->cleaned_to = wreq->start;
 | |
| 
 | |
| 	wreq->io_streams[0].stream_nr		= 0;
 | |
| 	wreq->io_streams[0].source		= NETFS_UPLOAD_TO_SERVER;
 | |
| 	wreq->io_streams[0].prepare_write	= ictx->ops->prepare_write;
 | |
| 	wreq->io_streams[0].issue_write		= ictx->ops->issue_write;
 | |
| 	wreq->io_streams[0].collected_to	= start;
 | |
| 	wreq->io_streams[0].transferred		= LONG_MAX;
 | |
| 
 | |
| 	wreq->io_streams[1].stream_nr		= 1;
 | |
| 	wreq->io_streams[1].source		= NETFS_WRITE_TO_CACHE;
 | |
| 	wreq->io_streams[1].collected_to	= start;
 | |
| 	wreq->io_streams[1].transferred		= LONG_MAX;
 | |
| 	if (fscache_resources_valid(&wreq->cache_resources)) {
 | |
| 		wreq->io_streams[1].avail	= true;
 | |
| 		wreq->io_streams[1].active	= true;
 | |
| 		wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq;
 | |
| 		wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write;
 | |
| 	}
 | |
| 
 | |
| 	return wreq;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * netfs_prepare_write_failed - Note write preparation failed
 | |
|  * @subreq: The subrequest to mark
 | |
|  *
 | |
|  * Mark a subrequest to note that preparation for write failed.
 | |
|  */
 | |
| void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq)
 | |
| {
 | |
| 	__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
 | |
| 	trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed);
 | |
| }
 | |
| EXPORT_SYMBOL(netfs_prepare_write_failed);
 | |
| 
 | |
| /*
 | |
|  * Prepare a write subrequest.  We need to allocate a new subrequest
 | |
|  * if we don't have one.
 | |
|  */
 | |
| static void netfs_prepare_write(struct netfs_io_request *wreq,
 | |
| 				struct netfs_io_stream *stream,
 | |
| 				loff_t start)
 | |
| {
 | |
| 	struct netfs_io_subrequest *subreq;
 | |
| 	struct iov_iter *wreq_iter = &wreq->io_iter;
 | |
| 
 | |
| 	/* Make sure we don't point the iterator at a used-up folio_queue
 | |
| 	 * struct being used as a placeholder to prevent the queue from
 | |
| 	 * collapsing.  In such a case, extend the queue.
 | |
| 	 */
 | |
| 	if (iov_iter_is_folioq(wreq_iter) &&
 | |
| 	    wreq_iter->folioq_slot >= folioq_nr_slots(wreq_iter->folioq)) {
 | |
| 		netfs_buffer_make_space(wreq);
 | |
| 	}
 | |
| 
 | |
| 	subreq = netfs_alloc_subrequest(wreq);
 | |
| 	subreq->source		= stream->source;
 | |
| 	subreq->start		= start;
 | |
| 	subreq->stream_nr	= stream->stream_nr;
 | |
| 	subreq->io_iter		= *wreq_iter;
 | |
| 
 | |
| 	_enter("R=%x[%x]", wreq->debug_id, subreq->debug_index);
 | |
| 
 | |
| 	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
 | |
| 
 | |
| 	stream->sreq_max_len	= UINT_MAX;
 | |
| 	stream->sreq_max_segs	= INT_MAX;
 | |
| 	switch (stream->source) {
 | |
| 	case NETFS_UPLOAD_TO_SERVER:
 | |
| 		netfs_stat(&netfs_n_wh_upload);
 | |
| 		stream->sreq_max_len = wreq->wsize;
 | |
| 		break;
 | |
| 	case NETFS_WRITE_TO_CACHE:
 | |
| 		netfs_stat(&netfs_n_wh_write);
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (stream->prepare_write)
 | |
| 		stream->prepare_write(subreq);
 | |
| 
 | |
| 	__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
 | |
| 
 | |
| 	/* We add to the end of the list whilst the collector may be walking
 | |
| 	 * the list.  The collector only goes nextwards and uses the lock to
 | |
| 	 * remove entries off of the front.
 | |
| 	 */
 | |
| 	spin_lock_bh(&wreq->lock);
 | |
| 	list_add_tail(&subreq->rreq_link, &stream->subrequests);
 | |
| 	if (list_is_first(&subreq->rreq_link, &stream->subrequests)) {
 | |
| 		stream->front = subreq;
 | |
| 		if (!stream->active) {
 | |
| 			stream->collected_to = stream->front->start;
 | |
| 			/* Write list pointers before active flag */
 | |
| 			smp_store_release(&stream->active, true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_bh(&wreq->lock);
 | |
| 
 | |
| 	stream->construct = subreq;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the I/O iterator for the filesystem/cache to use and dispatch the I/O
 | |
|  * operation.  The operation may be asynchronous and should call
 | |
|  * netfs_write_subrequest_terminated() when complete.
 | |
|  */
 | |
| static void netfs_do_issue_write(struct netfs_io_stream *stream,
 | |
| 				 struct netfs_io_subrequest *subreq)
 | |
| {
 | |
| 	struct netfs_io_request *wreq = subreq->rreq;
 | |
| 
 | |
| 	_enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len);
 | |
| 
 | |
| 	if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
 | |
| 		return netfs_write_subrequest_terminated(subreq, subreq->error, false);
 | |
| 
 | |
| 	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
 | |
| 	stream->issue_write(subreq);
 | |
| }
 | |
| 
 | |
| void netfs_reissue_write(struct netfs_io_stream *stream,
 | |
| 			 struct netfs_io_subrequest *subreq,
 | |
| 			 struct iov_iter *source)
 | |
| {
 | |
| 	size_t size = subreq->len - subreq->transferred;
 | |
| 
 | |
| 	// TODO: Use encrypted buffer
 | |
| 	subreq->io_iter = *source;
 | |
| 	iov_iter_advance(source, size);
 | |
| 	iov_iter_truncate(&subreq->io_iter, size);
 | |
| 
 | |
| 	__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
 | |
| 	netfs_do_issue_write(stream, subreq);
 | |
| }
 | |
| 
 | |
| void netfs_issue_write(struct netfs_io_request *wreq,
 | |
| 		       struct netfs_io_stream *stream)
 | |
| {
 | |
| 	struct netfs_io_subrequest *subreq = stream->construct;
 | |
| 
 | |
| 	if (!subreq)
 | |
| 		return;
 | |
| 	stream->construct = NULL;
 | |
| 	subreq->io_iter.count = subreq->len;
 | |
| 	netfs_do_issue_write(stream, subreq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add data to the write subrequest, dispatching each as we fill it up or if it
 | |
|  * is discontiguous with the previous.  We only fill one part at a time so that
 | |
|  * we can avoid overrunning the credits obtained (cifs) and try to parallelise
 | |
|  * content-crypto preparation with network writes.
 | |
|  */
 | |
| int netfs_advance_write(struct netfs_io_request *wreq,
 | |
| 			struct netfs_io_stream *stream,
 | |
| 			loff_t start, size_t len, bool to_eof)
 | |
| {
 | |
| 	struct netfs_io_subrequest *subreq = stream->construct;
 | |
| 	size_t part;
 | |
| 
 | |
| 	if (!stream->avail) {
 | |
| 		_leave("no write");
 | |
| 		return len;
 | |
| 	}
 | |
| 
 | |
| 	_enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0);
 | |
| 
 | |
| 	if (subreq && start != subreq->start + subreq->len) {
 | |
| 		netfs_issue_write(wreq, stream);
 | |
| 		subreq = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!stream->construct)
 | |
| 		netfs_prepare_write(wreq, stream, start);
 | |
| 	subreq = stream->construct;
 | |
| 
 | |
| 	part = umin(stream->sreq_max_len - subreq->len, len);
 | |
| 	_debug("part %zx/%zx %zx/%zx", subreq->len, stream->sreq_max_len, part, len);
 | |
| 	subreq->len += part;
 | |
| 	subreq->nr_segs++;
 | |
| 	stream->submit_extendable_to -= part;
 | |
| 
 | |
| 	if (subreq->len >= stream->sreq_max_len ||
 | |
| 	    subreq->nr_segs >= stream->sreq_max_segs ||
 | |
| 	    to_eof) {
 | |
| 		netfs_issue_write(wreq, stream);
 | |
| 		subreq = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return part;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write some of a pending folio data back to the server.
 | |
|  */
 | |
| static int netfs_write_folio(struct netfs_io_request *wreq,
 | |
| 			     struct writeback_control *wbc,
 | |
| 			     struct folio *folio)
 | |
| {
 | |
| 	struct netfs_io_stream *upload = &wreq->io_streams[0];
 | |
| 	struct netfs_io_stream *cache  = &wreq->io_streams[1];
 | |
| 	struct netfs_io_stream *stream;
 | |
| 	struct netfs_group *fgroup; /* TODO: Use this with ceph */
 | |
| 	struct netfs_folio *finfo;
 | |
| 	size_t iter_off = 0;
 | |
| 	size_t fsize = folio_size(folio), flen = fsize, foff = 0;
 | |
| 	loff_t fpos = folio_pos(folio), i_size;
 | |
| 	bool to_eof = false, streamw = false;
 | |
| 	bool debug = false;
 | |
| 
 | |
| 	_enter("");
 | |
| 
 | |
| 	/* netfs_perform_write() may shift i_size around the page or from out
 | |
| 	 * of the page to beyond it, but cannot move i_size into or through the
 | |
| 	 * page since we have it locked.
 | |
| 	 */
 | |
| 	i_size = i_size_read(wreq->inode);
 | |
| 
 | |
| 	if (fpos >= i_size) {
 | |
| 		/* mmap beyond eof. */
 | |
| 		_debug("beyond eof");
 | |
| 		folio_start_writeback(folio);
 | |
| 		folio_unlock(folio);
 | |
| 		wreq->nr_group_rel += netfs_folio_written_back(folio);
 | |
| 		netfs_put_group_many(wreq->group, wreq->nr_group_rel);
 | |
| 		wreq->nr_group_rel = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (fpos + fsize > wreq->i_size)
 | |
| 		wreq->i_size = i_size;
 | |
| 
 | |
| 	fgroup = netfs_folio_group(folio);
 | |
| 	finfo = netfs_folio_info(folio);
 | |
| 	if (finfo) {
 | |
| 		foff = finfo->dirty_offset;
 | |
| 		flen = foff + finfo->dirty_len;
 | |
| 		streamw = true;
 | |
| 	}
 | |
| 
 | |
| 	if (wreq->origin == NETFS_WRITETHROUGH) {
 | |
| 		to_eof = false;
 | |
| 		if (flen > i_size - fpos)
 | |
| 			flen = i_size - fpos;
 | |
| 	} else if (flen > i_size - fpos) {
 | |
| 		flen = i_size - fpos;
 | |
| 		if (!streamw)
 | |
| 			folio_zero_segment(folio, flen, fsize);
 | |
| 		to_eof = true;
 | |
| 	} else if (flen == i_size - fpos) {
 | |
| 		to_eof = true;
 | |
| 	}
 | |
| 	flen -= foff;
 | |
| 
 | |
| 	_debug("folio %zx %zx %zx", foff, flen, fsize);
 | |
| 
 | |
| 	/* Deal with discontinuities in the stream of dirty pages.  These can
 | |
| 	 * arise from a number of sources:
 | |
| 	 *
 | |
| 	 * (1) Intervening non-dirty pages from random-access writes, multiple
 | |
| 	 *     flushers writing back different parts simultaneously and manual
 | |
| 	 *     syncing.
 | |
| 	 *
 | |
| 	 * (2) Partially-written pages from write-streaming.
 | |
| 	 *
 | |
| 	 * (3) Pages that belong to a different write-back group (eg.  Ceph
 | |
| 	 *     snapshots).
 | |
| 	 *
 | |
| 	 * (4) Actually-clean pages that were marked for write to the cache
 | |
| 	 *     when they were read.  Note that these appear as a special
 | |
| 	 *     write-back group.
 | |
| 	 */
 | |
| 	if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
 | |
| 		netfs_issue_write(wreq, upload);
 | |
| 	} else if (fgroup != wreq->group) {
 | |
| 		/* We can't write this page to the server yet. */
 | |
| 		kdebug("wrong group");
 | |
| 		folio_redirty_for_writepage(wbc, folio);
 | |
| 		folio_unlock(folio);
 | |
| 		netfs_issue_write(wreq, upload);
 | |
| 		netfs_issue_write(wreq, cache);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (foff > 0)
 | |
| 		netfs_issue_write(wreq, upload);
 | |
| 	if (streamw)
 | |
| 		netfs_issue_write(wreq, cache);
 | |
| 
 | |
| 	/* Flip the page to the writeback state and unlock.  If we're called
 | |
| 	 * from write-through, then the page has already been put into the wb
 | |
| 	 * state.
 | |
| 	 */
 | |
| 	if (wreq->origin == NETFS_WRITEBACK)
 | |
| 		folio_start_writeback(folio);
 | |
| 	folio_unlock(folio);
 | |
| 
 | |
| 	if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
 | |
| 		if (!cache->avail) {
 | |
| 			trace_netfs_folio(folio, netfs_folio_trace_cancel_copy);
 | |
| 			netfs_issue_write(wreq, upload);
 | |
| 			netfs_folio_written_back(folio);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		trace_netfs_folio(folio, netfs_folio_trace_store_copy);
 | |
| 	} else if (!upload->avail && !cache->avail) {
 | |
| 		trace_netfs_folio(folio, netfs_folio_trace_cancel_store);
 | |
| 		netfs_folio_written_back(folio);
 | |
| 		return 0;
 | |
| 	} else if (!upload->construct) {
 | |
| 		trace_netfs_folio(folio, netfs_folio_trace_store);
 | |
| 	} else {
 | |
| 		trace_netfs_folio(folio, netfs_folio_trace_store_plus);
 | |
| 	}
 | |
| 
 | |
| 	/* Attach the folio to the rolling buffer. */
 | |
| 	netfs_buffer_append_folio(wreq, folio, false);
 | |
| 
 | |
| 	/* Move the submission point forward to allow for write-streaming data
 | |
| 	 * not starting at the front of the page.  We don't do write-streaming
 | |
| 	 * with the cache as the cache requires DIO alignment.
 | |
| 	 *
 | |
| 	 * Also skip uploading for data that's been read and just needs copying
 | |
| 	 * to the cache.
 | |
| 	 */
 | |
| 	for (int s = 0; s < NR_IO_STREAMS; s++) {
 | |
| 		stream = &wreq->io_streams[s];
 | |
| 		stream->submit_off = foff;
 | |
| 		stream->submit_len = flen;
 | |
| 		if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) ||
 | |
| 		    (stream->source == NETFS_UPLOAD_TO_SERVER &&
 | |
| 		     fgroup == NETFS_FOLIO_COPY_TO_CACHE)) {
 | |
| 			stream->submit_off = UINT_MAX;
 | |
| 			stream->submit_len = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Attach the folio to one or more subrequests.  For a big folio, we
 | |
| 	 * could end up with thousands of subrequests if the wsize is small -
 | |
| 	 * but we might need to wait during the creation of subrequests for
 | |
| 	 * network resources (eg. SMB credits).
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		ssize_t part;
 | |
| 		size_t lowest_off = ULONG_MAX;
 | |
| 		int choose_s = -1;
 | |
| 
 | |
| 		/* Always add to the lowest-submitted stream first. */
 | |
| 		for (int s = 0; s < NR_IO_STREAMS; s++) {
 | |
| 			stream = &wreq->io_streams[s];
 | |
| 			if (stream->submit_len > 0 &&
 | |
| 			    stream->submit_off < lowest_off) {
 | |
| 				lowest_off = stream->submit_off;
 | |
| 				choose_s = s;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (choose_s < 0)
 | |
| 			break;
 | |
| 		stream = &wreq->io_streams[choose_s];
 | |
| 
 | |
| 		/* Advance the iterator(s). */
 | |
| 		if (stream->submit_off > iter_off) {
 | |
| 			iov_iter_advance(&wreq->io_iter, stream->submit_off - iter_off);
 | |
| 			iter_off = stream->submit_off;
 | |
| 		}
 | |
| 
 | |
| 		atomic64_set(&wreq->issued_to, fpos + stream->submit_off);
 | |
| 		stream->submit_extendable_to = fsize - stream->submit_off;
 | |
| 		part = netfs_advance_write(wreq, stream, fpos + stream->submit_off,
 | |
| 					   stream->submit_len, to_eof);
 | |
| 		stream->submit_off += part;
 | |
| 		if (part > stream->submit_len)
 | |
| 			stream->submit_len = 0;
 | |
| 		else
 | |
| 			stream->submit_len -= part;
 | |
| 		if (part > 0)
 | |
| 			debug = true;
 | |
| 	}
 | |
| 
 | |
| 	if (fsize > iter_off)
 | |
| 		iov_iter_advance(&wreq->io_iter, fsize - iter_off);
 | |
| 	atomic64_set(&wreq->issued_to, fpos + fsize);
 | |
| 
 | |
| 	if (!debug)
 | |
| 		kdebug("R=%x: No submit", wreq->debug_id);
 | |
| 
 | |
| 	if (foff + flen < fsize)
 | |
| 		for (int s = 0; s < NR_IO_STREAMS; s++)
 | |
| 			netfs_issue_write(wreq, &wreq->io_streams[s]);
 | |
| 
 | |
| 	_leave(" = 0");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * End the issuing of writes, letting the collector know we're done.
 | |
|  */
 | |
| static void netfs_end_issue_write(struct netfs_io_request *wreq)
 | |
| {
 | |
| 	bool needs_poke = true;
 | |
| 
 | |
| 	smp_wmb(); /* Write subreq lists before ALL_QUEUED. */
 | |
| 	set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
 | |
| 
 | |
| 	for (int s = 0; s < NR_IO_STREAMS; s++) {
 | |
| 		struct netfs_io_stream *stream = &wreq->io_streams[s];
 | |
| 
 | |
| 		if (!stream->active)
 | |
| 			continue;
 | |
| 		if (!list_empty(&stream->subrequests))
 | |
| 			needs_poke = false;
 | |
| 		netfs_issue_write(wreq, stream);
 | |
| 	}
 | |
| 
 | |
| 	if (needs_poke)
 | |
| 		netfs_wake_write_collector(wreq, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write some of the pending data back to the server
 | |
|  */
 | |
| int netfs_writepages(struct address_space *mapping,
 | |
| 		     struct writeback_control *wbc)
 | |
| {
 | |
| 	struct netfs_inode *ictx = netfs_inode(mapping->host);
 | |
| 	struct netfs_io_request *wreq = NULL;
 | |
| 	struct folio *folio;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (!mutex_trylock(&ictx->wb_lock)) {
 | |
| 		if (wbc->sync_mode == WB_SYNC_NONE) {
 | |
| 			netfs_stat(&netfs_n_wb_lock_skip);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		netfs_stat(&netfs_n_wb_lock_wait);
 | |
| 		mutex_lock(&ictx->wb_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Need the first folio to be able to set up the op. */
 | |
| 	folio = writeback_iter(mapping, wbc, NULL, &error);
 | |
| 	if (!folio)
 | |
| 		goto out;
 | |
| 
 | |
| 	wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK);
 | |
| 	if (IS_ERR(wreq)) {
 | |
| 		error = PTR_ERR(wreq);
 | |
| 		goto couldnt_start;
 | |
| 	}
 | |
| 
 | |
| 	trace_netfs_write(wreq, netfs_write_trace_writeback);
 | |
| 	netfs_stat(&netfs_n_wh_writepages);
 | |
| 
 | |
| 	do {
 | |
| 		_debug("wbiter %lx %llx", folio->index, atomic64_read(&wreq->issued_to));
 | |
| 
 | |
| 		/* It appears we don't have to handle cyclic writeback wrapping. */
 | |
| 		WARN_ON_ONCE(wreq && folio_pos(folio) < atomic64_read(&wreq->issued_to));
 | |
| 
 | |
| 		if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE &&
 | |
| 		    unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) {
 | |
| 			set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
 | |
| 			wreq->netfs_ops->begin_writeback(wreq);
 | |
| 		}
 | |
| 
 | |
| 		error = netfs_write_folio(wreq, wbc, folio);
 | |
| 		if (error < 0)
 | |
| 			break;
 | |
| 	} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
 | |
| 
 | |
| 	netfs_end_issue_write(wreq);
 | |
| 
 | |
| 	mutex_unlock(&ictx->wb_lock);
 | |
| 
 | |
| 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
 | |
| 	_leave(" = %d", error);
 | |
| 	return error;
 | |
| 
 | |
| couldnt_start:
 | |
| 	netfs_kill_dirty_pages(mapping, wbc, folio);
 | |
| out:
 | |
| 	mutex_unlock(&ictx->wb_lock);
 | |
| 	_leave(" = %d", error);
 | |
| 	return error;
 | |
| }
 | |
| EXPORT_SYMBOL(netfs_writepages);
 | |
| 
 | |
| /*
 | |
|  * Begin a write operation for writing through the pagecache.
 | |
|  */
 | |
| struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len)
 | |
| {
 | |
| 	struct netfs_io_request *wreq = NULL;
 | |
| 	struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp));
 | |
| 
 | |
| 	mutex_lock(&ictx->wb_lock);
 | |
| 
 | |
| 	wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp,
 | |
| 				      iocb->ki_pos, NETFS_WRITETHROUGH);
 | |
| 	if (IS_ERR(wreq)) {
 | |
| 		mutex_unlock(&ictx->wb_lock);
 | |
| 		return wreq;
 | |
| 	}
 | |
| 
 | |
| 	wreq->io_streams[0].avail = true;
 | |
| 	trace_netfs_write(wreq, netfs_write_trace_writethrough);
 | |
| 	return wreq;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Advance the state of the write operation used when writing through the
 | |
|  * pagecache.  Data has been copied into the pagecache that we need to append
 | |
|  * to the request.  If we've added more than wsize then we need to create a new
 | |
|  * subrequest.
 | |
|  */
 | |
| int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
 | |
| 			       struct folio *folio, size_t copied, bool to_page_end,
 | |
| 			       struct folio **writethrough_cache)
 | |
| {
 | |
| 	_enter("R=%x ic=%zu ws=%u cp=%zu tp=%u",
 | |
| 	       wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end);
 | |
| 
 | |
| 	if (!*writethrough_cache) {
 | |
| 		if (folio_test_dirty(folio))
 | |
| 			/* Sigh.  mmap. */
 | |
| 			folio_clear_dirty_for_io(folio);
 | |
| 
 | |
| 		/* We can make multiple writes to the folio... */
 | |
| 		folio_start_writeback(folio);
 | |
| 		if (wreq->len == 0)
 | |
| 			trace_netfs_folio(folio, netfs_folio_trace_wthru);
 | |
| 		else
 | |
| 			trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
 | |
| 		*writethrough_cache = folio;
 | |
| 	}
 | |
| 
 | |
| 	wreq->len += copied;
 | |
| 	if (!to_page_end)
 | |
| 		return 0;
 | |
| 
 | |
| 	*writethrough_cache = NULL;
 | |
| 	return netfs_write_folio(wreq, wbc, folio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * End a write operation used when writing through the pagecache.
 | |
|  */
 | |
| int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
 | |
| 			   struct folio *writethrough_cache)
 | |
| {
 | |
| 	struct netfs_inode *ictx = netfs_inode(wreq->inode);
 | |
| 	int ret;
 | |
| 
 | |
| 	_enter("R=%x", wreq->debug_id);
 | |
| 
 | |
| 	if (writethrough_cache)
 | |
| 		netfs_write_folio(wreq, wbc, writethrough_cache);
 | |
| 
 | |
| 	netfs_end_issue_write(wreq);
 | |
| 
 | |
| 	mutex_unlock(&ictx->wb_lock);
 | |
| 
 | |
| 	if (wreq->iocb) {
 | |
| 		ret = -EIOCBQUEUED;
 | |
| 	} else {
 | |
| 		wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE);
 | |
| 		ret = wreq->error;
 | |
| 	}
 | |
| 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write data to the server without going through the pagecache and without
 | |
|  * writing it to the local cache.
 | |
|  */
 | |
| int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len)
 | |
| {
 | |
| 	struct netfs_io_stream *upload = &wreq->io_streams[0];
 | |
| 	ssize_t part;
 | |
| 	loff_t start = wreq->start;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	_enter("%zx", len);
 | |
| 
 | |
| 	if (wreq->origin == NETFS_DIO_WRITE)
 | |
| 		inode_dio_begin(wreq->inode);
 | |
| 
 | |
| 	while (len) {
 | |
| 		// TODO: Prepare content encryption
 | |
| 
 | |
| 		_debug("unbuffered %zx", len);
 | |
| 		part = netfs_advance_write(wreq, upload, start, len, false);
 | |
| 		start += part;
 | |
| 		len -= part;
 | |
| 		iov_iter_advance(&wreq->io_iter, part);
 | |
| 		if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
 | |
| 			trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause);
 | |
| 			wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE);
 | |
| 		}
 | |
| 		if (test_bit(NETFS_RREQ_FAILED, &wreq->flags))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	netfs_end_issue_write(wreq);
 | |
| 	_leave(" = %d", error);
 | |
| 	return error;
 | |
| }
 |